铁基高温超导体的研究进展及展望
铁基高温超导
铁基高温超导简介随着科技的进步,人们对于高温超导材料的研究与应用越来越重视。
铁基高温超导材料作为一类新型高温超导材料,具有较高的临界温度和较强的超导电性能,成为当前研究的热点之一。
本文将重点探讨铁基高温超导的特点、研究进展以及其在实际应用中的潜力。
一、铁基高温超导的特点铁基高温超导材料具有以下几个显著的特点:1.较高的临界温度:与传统的铜基和镧基超导材料相比,铁基高温超导材料的临界温度更高,一般超过20K,甚至可以达到以往认为仅仅是理论上的极限,如高达57K的铁基超导体FS-10。
2.较强的超导电性能:铁基高温超导材料具有较高的超导电流密度和临界电场,使其在实际应用中具有更大的优势。
3.多相共存:铁基高温超导材料往往由多相组成,包含超导相及非超导相。
这种多相共存的现象极大地挑战了对材料的制备与性能控制。
二、铁基高温超导的研究进展自2008年首次发现LaFeAsO以来,铁基高温超导领域的研究取得了巨大的进展。
以下是目前的研究方向和最新进展:1. 结构调控•多晶合成:优化化学溶液中的原料浓度和表面张力,采用多晶合成的方法制备均匀的铁基高温超导材料。
•纳米颗粒控制:通过控制晶粒大小和分布,改善材料的超导性能。
2. 电子结构研究•图像化电子结构:借助计算机模拟和电子显微镜等技术手段,研究铁基高温超导材料的电子结构,探索超导机制。
•局域原子对探测:通过X射线和中子散射等技术研究局域原子对在铁基高温超导材料中的相互作用和影响。
3. 材料制备与性能优化•低温沉积法:采用低温溶液燃烧合成法或化学气相沉积法等制备技术,制备高质量的铁基高温超导材料。
•化学掺杂:通过在材料中引入不同的元素掺杂,调控材料的化学组成和晶格结构,提高材料的超导性能。
4. 应用前景•能源传输:铁基高温超导材料具有较高的电流承载能力和低损耗特性,有望应用于能源传输领域,提高电力输送效率。
•电磁体:铁基高温超导材料在制备高场强、高速度旋转和大功率的超导电磁体方面具有广阔的应用前景。
超导体材料中的铁基超导机制研究
超导体材料中的铁基超导机制研究超导体是一种在低温下表现出零电阻和完全排斥磁场的材料。
自从高温超导体的发现以来,科学家们一直在探索不同的材料和机制,以了解超导的起因和原理。
在目前的超导体中,铁基超导体是一个备受关注的领域。
本文将详细讨论铁基超导体材料中的超导机制研究进展。
一、铁基超导的发现与研究历程铁基超导体是在2008年首次被报道的。
研究人员发现,含铁的化合物LaOFeAs在低温下表现出了超导的特性。
这一发现引起了科学界的广泛兴趣,并开启了对铁基超导机制的研究。
二、铁基超导的基本特性铁基超导体具有多种特殊的性质。
首先,它们需要在较低的温度下才能显示超导行为,这与高温超导体有所不同。
其次,铁基超导体的超导转变温度随电子掺杂的变化而变化,这为调控超导性能提供了途径。
此外,铁基超导体还表现出较大的磁各向异性和非线性磁性响应等特点。
三、铁基超导的可能机制目前,科学家们提出了多种关于铁基超导机制的理论。
其中最主要的是基于费米面奇点附近的磁激元交换机制和多铁怀特功能的结构耦合机制。
通过理论模型和计算方法,研究人员成功解释了铁基超导材料的一些实验现象,并对超导转变温度和超导性能进行了预测和优化。
四、铁基超导的材料设计与合成为了实现更高的超导转变温度和更好的超导性能,科学家们积极进行铁基超导材料的设计和合成。
他们通过改变晶体结构、控制元素替代和优化样品制备工艺等方法,不断寻找更适合超导的铁基化合物。
这些努力为进一步理解超导机制和实现超导应用奠定了重要基础。
五、铁基超导的理论模拟和实验验证理论模拟和实验验证是研究超导机制不可或缺的手段。
科学家们利用密度泛函理论、自旋波理论、近似自洽微扰论等方法,模拟和计算铁基超导材料的电子结构、准粒子能谱、自旋波激发等性质。
同时,他们还通过磁性测量、输运性质测试等实验手段,验证超导理论的可行性和有效性。
六、展望与挑战尽管铁基超导材料研究取得了一系列重要进展,但许多问题仍然没有被彻底解决。
高温超导材料研究现状与未来发展趋势
高温超导材料研究现状与未来发展趋势引言高温超导材料是指能在较高温度下表现出超导特性的物质。
自从1986年首次发现铜氧化物系统具有高温超导特性以来,高温超导材料的研究引起了全球科学界的广泛关注。
高温超导材料具有低电阻、大电流传输能力和巨大的应用潜力,对能源传输、医疗诊断、电子设备和磁学研究等领域具有重要意义。
本文将详细探讨高温超导材料研究的现状以及未来发展趋势。
一、高温超导材料的研究现状迄今为止,高温超导材料的研究已取得了许多重要的成果。
铜氧化物超导体是高温超导材料的先驱,如YBa2Cu3O7和Bi2Sr2Ca2Cu3O10等化合物,具有较高的临界温度(Tc)。
它们的发现打破了人们对超导材料只能在极低温度下才能发挥作用的传统认知。
然而,铜氧化物超导体存在一些限制性问题。
首先,它们的合成方法复杂且昂贵,限制了规模化生产的可能性。
其次,这些材料的晶体结构和化学成分对其超导性能具有较大影响,难以找到一种通用的方法来设计和合成高温超导材料。
此外,这种类型的超导体通常在液氮温度下才能发挥较好的超导性能,这仍然对实际应用造成了一定局限性。
为了克服上述问题,研究人员正在积极寻找新的高温超导材料。
在过去的二十多年里,许多新的高温超导材料相继被发现,如铁基超导体、碲化铜等。
这些新型材料具有更高的临界温度和更好的超导性能,给高温超导材料研究带来了新的希望。
二、高温超导材料的未来发展趋势在未来的发展中,高温超导材料研究将朝着以下几个方向发展:1. 理论研究的深入:深入理解高温超导机制是推动材料研究和设计的关键。
理论模型的发展将帮助揭示超导过程中的物理现象,并推动新材料的发现。
2. 新材料的发现与设计:通过理论指导和高通量实验技术,研究人员将继续探索新型高温超导材料。
此外,将开发新的材料设计策略,如人工智能和机器学习,以加快新型材料的发现和合成。
3. 优化材料性能:通过改变材料的晶体结构、控制材料的缺陷结构和化学配比,提高高温超导材料的超导性能。
高温超导技术的研究现状与应用展望
高温超导技术的研究现状与应用展望在当今科技迅猛发展的时代,高温超导技术是一个备受关注的热门话题。
在科学界和工业界中,高温超导技术作为一种新型的电学材料,已经取得了极其重要的成就,并且还有着广阔的应用前景。
本文将会介绍高温超导技术的研究现状和应用展望。
一、研究现状1.1 高温超导技术的定义高温超导技术是一种特殊的超导技术,在该技术中,所谓“高温”是指超导材料的临界温度在液氮沸点以上,通常为77 Kelvin 左右。
因此,相对于常温超导技术,高温超导技术使用的冷却介质温度高出很多。
1.2 高温超导技术的发现高温超导技术是在1986年被突然发现的。
当时,密歇根大学的一组科学家发现了铜基氧化物中的一些氧化物可以表现出超导的奇异性能。
这一发现引起了全球科学界的极大关注,并引发了一系列的研究工作。
1.3 高温超导技术的优点相对于常温超导技术,高温超导技术具有很多优点。
例如:(1)高温超导材料的临界温度高,便于制备和应用;(2)高温超导材料的制备工艺相对简单;(3)高温超导材料的基底可以选用广泛的常见材料,被制备成薄膜后,与许多其他材料可以实现良好的匹配,这样可以使高温超导材料的应用范围更加广泛。
1.4 高温超导技术的研究进展自1986年高温超导技术被发现以来,科学家们一直在对高温超导材料进行研究和实验。
他们使用各种不同的实验手段来探索高温超导材料的性质和应用等方面的问题。
随着研究的深入,越来越多的高温超导材料被研制出来,并被应用在许多领域中。
例如,高温超导材料被用于磁共振成像、电子器件、能源传输和存储等领域。
此外,高温超导技术还被用于研究一些基础物理问题和天体物理学中的问题。
二、应用展望2.1 高温超导材料在电力领域的应用高温超导技术在电力领域中有着广泛的应用前景。
研究人员们已经开始着手研究高温超导材料在电力输送和存储方面的应用。
在能源传输过程中,超导材料不仅可以提高能量传输的效率,还可以降低电能损耗。
因此,高温超导技术被认为是电力传输和储存过程中的一项革新技术。
高温超导体的研究现状及展望
高温超导体的研究现状及展望一、引言高温超导体是一类在相对较高温度下呈现超导状态的特殊材料。
由于其零电阻和完全抗磁性等独特性质,高温超导体在能源传输、电子器件、磁悬浮列车等领域具有广泛应用前景。
本文将重点探讨高温超导体的研究现状,展望未来的研究方向与技术发展预测。
二、高温超导材料的制备与特性研究近年来,随着科研技术的不断进步,高温超导材料的制备方法得到了显著提升。
目前,常用的制备方法包括化学合成法、物理气相沉积法、溶胶凝胶法等。
这些方法在制备具有优异性能的高温超导材料方面取得了显著成果。
同时,高温超导材料的特性研究也取得了重要进展,包括材料的磁通动力学特性、能隙结构等方面。
三、高温超导材料的物理性质研究高温超导材料的物理性质研究是理解其超导机制的关键。
目前,科研人员已经对高温超导材料的能隙结构、自旋涨落、电荷涨落等方面进行了深入研究。
这些研究有助于揭示高温超导材料的微观机制,为进一步优化材料性能提供理论支持。
四、高温超导材料的应用场景与前景高温超导体在能源传输、电子器件、磁悬浮列车等领域具有广泛应用前景。
例如,高温超导电缆可用于长距离无损耗传输电能;高温超导滤波器可用于无线通信;高温超导磁悬浮列车则可以实现高速、安全、环保的交通方式。
随着技术的不断进步,高温超导材料的应用场景将进一步拓展。
五、高温超导材料面临的挑战与问题尽管高温超导体在理论和实验上都取得了重要进展,但仍面临许多挑战和问题。
例如,提高高温超导体的临界温度和降低其能隙是当前研究的重点;此外,高温超导体的稳定性、可加工性以及应用过程中的热管理等问题也需要进一步解决。
六、未来研究方向与技术发展预测未来高温超导体的研究方向主要包括以下几个方面:1. 探索新的高温超导材料:通过深入研究现有材料和开发新型材料,寻找具有更高临界温度和优异性能的高温超导体。
2. 深入研究高温超导机制:通过深入研究高温超导材料的微观机制,揭示其能隙结构和磁通动力学特性等方面的规律,为优化材料性能提供理论依据。
铁基超导体研究及其应用前景
铁基超导体研究及其应用前景随着科技的不断发展,人类对于新材料的需求也越来越高。
其中,超导体是一种被广泛研究和应用的材料。
近年来,铁基超导体成为了超导体领域的研究热点之一。
本文将就铁基超导体的研究进展及其应用前景进行探讨。
一、简介超导体是一种具有零电阻和反磁性的材料。
传统超导体主要是指气体超导体和金属超导体。
气体超导体是指将某些气体在极低温度下压缩得非常高,从而使它们的电阻变成零,而金属超导体则是指将某些金属在极低温度下冷却至临界温度以下,从而使其电阻变成零。
铁基超导体是指在某些铁化合物中,加入少量其他元素或通过应用外部压力等方式,使其在斯格明子自旋液与费米面相互作用的背景下形成材料,具有超导性质。
二、研究进展铁基超导体是在2008年被发现的,自此以后受到了广泛的研究关注。
目前已经发现的铁基超导体大约有100多种。
研究表明,铁基超导体在室温下具有相对较高的电导率,并且其超导转变温度可以高达55K。
与传统超导体相比,铁基超导体具有更高的临界磁场和更强的超导电流密度。
在对铁基超导体的研究中,光谱技术、X射线成像技术等被广泛应用。
通过这些技术,研究者们可以深入了解铁基超导体的电子结构、物理性质等,从而为材料设计和应用开发提供更多的数据支持。
三、应用前景铁基超导体具有在室温下超导、超导转变温度高、临界磁场和超导电流密度高等优点,因此在能源、医学、通信、环境等领域具有广泛的应用前景。
1、能源铁基超导体可以被应用于现代电力系统中,例如替代现有的电力输运系统,从而达到更高的功率密度和更高的能量效率。
此外,利用超导体来制造高效的电动汽车电机、磁悬浮列车等产品还具有广泛的市场前景。
2、医学医疗领域中,MRI(核磁共振成像)技术被广泛应用。
铁基超导体可以进一步改善MRI的图像质量和分辨率,并且减少对患者身体的损伤,因此具有广阔的应用前景。
3、通信在通信领域,超导微波器件可以被用于设计高精度无线通信系统。
铁基超导体可以被应用于这些超导微波器件中,从而提高其性能、稳定性和可靠性。
高温超导体的研究进展及其应用前景
高温超导体的研究进展及其应用前景高温超导是指在较高温度下发生超导现象的物质,相对于传统的低温超导,其应用前景更为广阔。
高温超导在能源转换、医疗设备、高速列车以及能源传输等领域都有重要的应用价值。
本文将从高温超导现象的发现及其材料基础、应用前景和存在的问题等方面进行探讨。
一、高温超导现象的发现及其材料基础高温超导现象是在1986年被发现的,意味着超导材料的临界温度可以达到摄氏零下196度以上,这样的温度相对于低温超导为高温状态。
而能够达到高温超导的材料,主要的结构特征为层状结构或者梯度结构,如铜氧化物、铁基超导等。
这些材料在超导状态下,电阻极低,可以实现电流传输而不损失能量。
其中以铜氧化物超导体研究最为广泛。
对于铜氧化物超导体,其样品形式通过低温或混合气相法来制备,相较于传统低温超导材料的单晶样品,铜氧化物超导材料的研究制备还较为复杂和困难。
研究人员通过掺杂和制备复合材料等方式来不断提高材料的超导临界温度和电流传输能力。
截至目前,超过140种的铜氧化物超导材料已被发现。
二、高温超导的应用前景高温超导材料的超导电性能对于能源转换、物理测量等方面具有很高的应用价值。
下面主要介绍几个领域中的应用前景。
1.能源转换领域高温超导体在能源转换领域具有很好的应用前景,可以用于大规模能源传输、变压器、电动汽车等。
由于高温超导体的低电阻特性,可以大幅提高电转换的效率,能有效降低电线传输的能量损耗。
2.医疗设备高温超导技术在医疗设备领域也有广阔的应用前景,如MRI磁共振成像等。
铜氧化物超导体由于其高温超导性能,可用于制备MRI磁共振成像设备中的感应线圈等关键元件,可以提高成像的精确度和分辨率。
3.高速列车目前,世界上的磁悬浮列车大多采用低温超导材料制成,但生产成本较高,上下车较为麻烦,限制了磁浮列车的普及。
而高温超导体的使用可以大幅降低制造成本,从而促进磁浮列车的推广应用。
三、高温超导存在的问题虽然高温超导是一项非常重要的技术领域,但是在实际应用中也存在一些问题和挑战。
铁基高温超导体研究进展
图 1 SmFeAs (O , F) 的结构示意图 ,它具有 ZrCuSiAs 的四方结构 , 图中的黑色虚线代表一个原胞 (图引自文献[ 5 ])
在 ZrCuSiA s (1111) 型结构的铁基超导体被发 现后不久 , ThCr2 Si2 型铁基超导体也被发现具有超 导电性 ,其最高超导温度可达到 38 K[11] . 我们组在 国际上较早地开展了对 122 结构铁基超导体的研 究 ,成功地合成了 ThCr2 Si2 型结构的 Ba1 - x M x Fe2 A s2 ( M = La 和 K) 样品 ,并系统地研究了其热电势 ( T EP) 和霍尔系数 ( RH ) [12 ] . Ba Fe2 A s2 母体的电阻 率在 140 K 附 近 存 在 一 个 异 常 , 这 与 L nO FeA s (1111) 体系母体行为很类似. 通过 La 部分替换 Ba , 可以使这个电阻异常行为向低温漂移 ,但是在低温 并没有出现超导电性. Ba Fe2 A s2 和 L a 掺杂 Ba Fe2 A s2 样品的霍尔系数 ( RH ) 及热电势 ( T EP) 都为负 值 ,这表明它们都是 n 型载流子 ,而 Ba1 - x Kx Fe2 A s2 样品的霍尔系数 ( RH ) 及热电势 ( T EP) 为正值 ,这表 明其是 p 型载流子 ,这与电子型载流子的 L nO1 - x Fx FeA s 体系是不一样的. 结果明确表明 ,p 型载流子 掺杂在 122 结构中也同样可以实现超导电性. 2. 1. 3 1111 结构中氧缺陷导致的超导电性
这里将主要介绍我们组在铁基超导体方面的最 新研究进展 ,文章分为三个部分 :第一部分介绍新型 高温超导材料探索及物性研究 ;第二部分介绍铁基 超导体的单晶制备以及物性研究 ;第三部分介绍铁 基超导体的电子相图以及超导和自旋密度波共存的 研究进展. 最后 ,在已完成的工作基础上提出了一些 今后的研究方向和发展前景.
铁基高温超导体的研究进展及展望
2008年 第53卷 第19期: 2265 ~ 2273 2265《中国科学》杂志社SCIENCE IN CHINA PRESS评 述铁基高温超导体的研究进展及展望方磊, 闻海虎*中国科学院物理研究所超导国家重点实验室, 北京 100190 * 联系人, E-mail: hhwen@ 2008-07-21收稿, 2008-09-03接受摘要 自从2008年2月末F 掺杂的LaFeAsO 被报道有26 K 的超导电性后, 基于此体系材料的超导转变温度在短短几个月中被迅速地提高到55 K, 很多新超导体被发现, 同时人们对具有更高临界转变温度的新超导材料充满希望. 本文简要地回顾了这种体系中材料的探索、制备以及设计, 另外在理论和实验上对其超导机理的认识也给予了介绍和总结. 最后基于目前的实验数据, 对铁基超导体和铜氧化物高温超导体的重要物理参数进行了比较, 同时展望了这种新超导体的应用前景.关键词 铁基超导体 超导转变温度 ZrCuSiAs 结构配对对称性超导是一种宏观量子现象, 费米面上动量相反的电子配成对, 同时建立长程的位相相干进而发生凝聚, 其结果是超导体在临界温度下电阻的消失(零电阻)和对磁力线的排斥(完全抗磁性). 在正常金属中, 电子在一个充满各种振动的背景中运动, 最普通的是晶格的振动. 晶格的振动模可以被一种称为“声子”的元激发进行描述. 电子和声子碰撞后损失了动能进而导致能量的损耗. 这也就是正常金属在有限温度下电阻的来源. 然而在零温极限下所有的振动模式都停止了(不计量子涨落), 所以一个干净的系统中能量的损耗和电阻率都是为零的. 对于一个超导体而言, 费米面上的电子两两吸引形成束缚对, 这种束缚的电子对被称为库珀对. 库珀对服从玻色统计, 在临界温度(T c )下发生凝聚. 这种凝聚态具有很长的相干长度, 因而对晶格振动导致的局域散射不敏感, 所以输运上并不损耗能量, 电阻率可以在较高温度(T c 以下)保持为零. 与此同时, Ⅱ类超导体具有在很高的磁场下承载巨大电流密度的优越性能, 人们因此对高临界温度的新超导体充满了期望.人类寻找新超导体的历史已经持续将近100年, 在最初的几十年中, 新超导体的探索主要集中在单元素材料和多元素合金上. 然而这些材料的超导转变温度不超过23 K(Nb 3Ge)[1]. 一个重大的突破发生在1986年底, 在IBM Zurich 工作的Bednorz 和 Muller [2]发现铜氧化物LaBaCuO 的超导转变温度高于30 K. 自此寻找更高T c 的超导体的浪潮席卷全世界, 在短短的几年中, 铜氧化物超导转变温度被提升到134 K(常压)和164 K(高压). 然而铜氧化物超导体的相干长度非常短, 各向异性度很高, 又因为是陶瓷, 所以材质很脆, 这些不利因素都妨碍了它在工业上大规模的应用. 所以, 超导界的科学家们一直希望发现另外一种非铜氧基的高温超导体, 并且这种超导体具备更优异的性质.转机发生在2008年的2月末, 日本东京工业学院Hosono 教授的研究小组发现在母体材料LaFeAsO 中掺杂F 元素可以实现26 K 的超导电性[3]. 此类母体材料的研究历史可以追溯到1974年美国杜邦公司Johnson 等人[4]在寻找新的功能材料中的工作. 随后, 一个德国的研究组合成了系列的具有同样ZrCuSiAs 结构的新材料[5]. 这些新材料被取名为四元磷氧化物LnOMPn(Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy; M=Mn, Fe, Co, Ni; Pn=P, As). 图1是LaFeAsO 的基本结构. 这个体系空间群为P4/nmm, 具有四方的层状结构, 在c 方向上以—(LnO)2-(MP)2-(LnO)2—形式交替堆砌, 一个单胞中有两个分子LnOMP. 对于母体材料而言, 层和层之间电荷是平衡的, 例如,2008年10月 第53卷 第19期2266(LnO)+1和(MP)−1的电荷是平衡的. 由于四元磷氧化物LnOMPn 中的一些材料在低温下是超导体, 因此 这个体系构建了铜氧化物外的另一个层状超导体家族[6,7]. 在Hosono 小组发现LaFeAsO1−x F x (x =0.05~ 0.12)具有26 K 的转变温度后[3], 新的一轮寻找高温超导材料的浪潮再次到来.图1 LaFeAsO 的原子结构图LaFeAsO 属于ZrCuSiAs 结构, 在c 方向—(LaO)2-(FeAS)2-(LaO)2- (FeAs)2—相互交叠进而构成一个典型的层状化合物. 铁离子排布成一个四方结构, 近邻的铁离子距离2.853 Å, 对角的铁离子距离3.97 Å1 追寻更高T c在Hosono 小组的工作发表后的很短时间, 中国科学院物理研究所的王楠林小组、闻海虎小组和美国橡树岭国家实验室的Mandrus 小组, 分别独立地制备出超导温度26 K 的LaFeAsO 1−x F x 并作了系统的输运测量[8~10]. 数据揭示LaFeAsO 1−x F x 的载流子为电子型而且载流子密度很低, 这些性质和铜氧化物高温超导体都很类似. 随即不同小组追寻更高超导转变温度的竞争拉开序幕. 大部分的研究进展都以非正式发表的形式及时刊登在美国Los Alamos 国家实验室的免费电子资源平台上(/list/cond-mat. supr-con/). Takahashi 等人[11]利用高压技术(3 GPa)把LaFeAsO 0.89F 0.11的转变温度从26 K 提高到43 K. 2008年3月20日闻海虎小组报道了利用二价的Sr 代替部分三价的La(空穴掺杂), La 1−x Sr x FeAsO 可以实现25 K 的超导转变, 从而否定了Hosono 小组关于空穴掺杂在铁基母体中不能实现超导的结论[12]. 几天后, 中国科学技术大学陈仙辉小组报道了SmFeAs- O 0.85F 0.15中实现43 K 的超导电性[13]. 几乎同一时间中国科学院物理研究所的王楠林小组[14]发现41 K 超导体CeFeAsO 1−x F x , 赵忠贤小组[15]报道了接近或超过50 K 的超导体NdFeAsO 0.85F 0.15和PrFeAsO 0.85F 0.15. 在追逐更高T c 的激烈竞争中, 人们发现高压技术合成样品是效率较高的, 例如, 低于2 h 的样品烧结时间以及高压导致F 的有效掺杂. 高压技术的应用可以很容易实现高的超导转变温度, 稀土金属Ce, Pr, Nd, Sm, Eu 和Gd 的铁基超导体基本都可以达到50~55 K [16]. 另外, 赵忠贤和任治安等人认识到由于名义上的化学计量比的F 含量在烧结过程中可能丢失, 铁基超导体中氧缺位实际上是存在的. 因此, 任治安等人利用高压技术直接合成了无氟缺氧的LnFeAsO 1−x , 发现超导转变温度达到了55 K, 从而证实了他们的氧位缺失导致超导的观点[17]. 但必须说明的是, 常压合成的无氟缺氧LnFeAsO 1−x 并不超导, 即使样品很纯净, 也没有任何超导迹象出现[18]. 一种可能性是此类缺氧的相是一个亚稳相, 在常压下合成出来的实际上是不缺氧的相. 此外, 曹光汉和许祝安小组还发现利用Th 替换Gd 的方法在Gd 1−x Th x FeAsO 中观察到56 K 的超导电性[19]. 同时他们在Tb 1−x Th x FeAsO 中也观察到超过50 K 的超导电性[20]. 最近利用高压技术, 重稀土Tb 和Dy 的铁基超导体也实现了40 K 的高温超导电性[21]. 在图2中, 我们给出了超导转变温度和发现时间的关系曲线, 可以很清楚地发现超导转变温度随时间上升得非常快, 同时铁基超导体的临界温度能否超过液氮温度77 K, 也给人们很大的想象空间.在探寻具有更高转变温度的超导体的时候, 有几种可能的途径. 第一个也是最直接的办法就是合成一个单胞中有多个FeAs 层. 这个想法来自铜氧化物超导体, 因为两个体系的上临界场都特别高, 从而配对势很强, 但超流密度却很低[8~10]. 所以按照提高铜氧化物超导温度的思路, 只要超导转变由相位涨落控制而不受配对强度影响的话, 多层可以产生更高的超流密度. 然而必须指出的是, 铁基超导体的位相涨落并不是特别的强, 至少最优掺杂的样品是这样. 能斯特效应的测量确实发现在超导转变温度以上能斯特效应很弱, 而且扩展的温区只有10 K 以内, 确实说明此类材料中的相位涨落很弱[22]. 闻海虎小组[23,24]最近率先测量了NdFeAsO 0.82F 0.18单晶的上临界磁场和超导态电阻随磁场的各向异性, 发现各向异性度Г = (m c /m ab )1/2小于5或者6. 但对低掺杂的样品的各向异2267性度和配对能隙的研究至今没有报道, 如果没有比最佳掺杂提高很多, 反而像BCS 型超导体要求[25]的那样2∆sc /k B T c ≈4, 那么利用多层来提高超导转变温度的可能性就大大受到限制.但不管怎样, 一种新的结图2 铁基超导体的发现时间和超导转变温度的关系图(2008年6月15日以前)白色的圆点代表电子型超导体, 由F 掺杂或者氧缺位所致. 黑色的原点代表空穴型超导体. 具有更高超导转变温度的新超导体是值得期待的构往往导致配对强度和费米面上态密度的改变, 从而多层系统的T c 可以随机地增大或者减小.第二个寻找高T c 的途径就是通过元素替代来合成新材料. 目前为止, 并没有直接的解释为什么FeAs 系统中的T c 要高于NiAs 或者FeP 系统, 然而探寻不含As 的超导体是物有所值的, 毕竟As 带有毒性. 如果坚持以FeAs 为基的话, 空穴掺杂也许是另外一个重要的方向. 按照闻海虎小组的观点, 空穴掺杂可以导致超导电性[12], 同时T c 的变化随着空穴或者电子的掺杂量是基本对称的. 这个观点的提出在开始遇到很大阻力, 但是随着时间的推移, 逐渐被实验事实所支持. 一个类似的结果就是Hosono 小组报道的LaFePO 中实现了电子掺杂(F 替代O)和空穴掺杂(Ca 替代La), 但该文作者把Ca 掺杂提高T c 的结果归于晶格的收缩而不是能带的填充[26]. 最近闻海虎小组又成功制备了LaNiAsO 1−x F x 和La 1−x Sr x NiAsO 体系[27], 发现T c 的改变随着空穴或者电子的掺杂量也是基本对称的. 在Sr 掺杂的样品中, T c 随着晶格常数的增加而单调上升, 事实上Sr 2+的离子半径(0.112 nm)大于La 3+的离子半径(0.106 nm), 所以在不考虑结构畸变的情况下, 晶格应该有所膨胀. 关于ZrCuSiAs (1111)结构中可以利用空穴导致超导电性, 目前只有闻海虎小组有报道. 也有报道称, 可能是氧缺位导致超 导[28]. 然而, 闻海虎等人的数据表明, 只要二价金属原子Sr 等被有效掺到晶格位置, 就会出现超导[29]. 这方面的结论需要更多研究组工作的确认, 相信不久就会有最终结论. 最近, Rotter 等人用K +替代Ba 2+离子, 发现(Ba 0.6K 0.4)Fe 2As 2中存在38 K 的超导电性[30], 这是FeAs 基材料中空穴掺杂导致超导的进一步例证. 其母相BaFe 2As 2从电阻率随温度的变化关系上看是一个坏金属, 在140 K 附近有一个自旋密度波反常, 这些性质非常类似于零掺杂的LnFeAsO 的电输运特性. 总的来说, Rotter 等人的工作很明确地证实了闻海虎小组早期提出的空穴掺杂导致超导的观点[12]. 因而从这个方面而言, 通过空穴掺杂寻找新超导体仍有广阔天地.2 材料的合成为了对FeAs 基超导体物理性质有准确及深入的认识, 高质量的样品是不可或缺的. 目前为止, 国际上已经有很多小组合成出接近单相的LnFeAsO 1−x F x (Ln=La, Ce, Pr, Nd, Sm, Gd [31], Eu, Tb, Dy, Gd/Th). 制2008年10月 第53卷 第19期2268备样品的主要途径就是化学固相反应, 固相反应合成可以一步或者分步完成, 所谓一步法就是把金属单质和其他化合物按照化学计量比称量研磨和烧结, 而分步法就是先制备出砷化稀土和砷化铁, 再和其他所需化合物按照化学配平称量研磨和烧结, 如闻海虎小组初期采用的两步法合成单相样品的工艺就是行之有效的[9]. 不管一步还是分步合成样品, 原料需密封在石英管中烧结, 烧结温度在1150~1260℃之间. 由于稀土元素很容易被氧化, 研磨和压片的过程必须在充满保护气体的手套箱中进行. 另外, 砷单质和其化合物都是有毒的, 所以任何涉及砷的材料制备过程都必须严格控制在手套箱中以保护科研人员的健康. 第二种制备材料的方法就是前面提到的高压合成技术, 这种方法的优点就是元素反应迅速而且非常高效, 但由于反应时间过短, 化学合成不充分, 有杂相存在, 如FeAs 等. 第三种获得纯相的途径就是助溶剂方法[23,24], 这种方法的优点是烧结温度比较低. 我们已经利用这种方法成功制备出系列的NdFeAsO 1−x F x 单相样品.为了获得FeAs 基超导体的本征性质, 单晶的制备极为重要. 尽管有很多小组在随后的时间中报道了Ba 1−x K x Fe 2As 2单晶的生长, 但是在作者完成这篇初稿时(2008年6月15日之前), 只有两个小组报道了ZrCuSiAs(1111)相单晶样品的合成, 因此本文不再对Ba 1−x K x Fe 2As 2晶体的制备过程进行介绍. 关于F 掺杂的LnFeAsO 晶体的制备, 其中一个小组利用高温高压技术(ETH, Zurich)成功制备出最大尺寸为100 µm 的单晶[32], 他们利用混合的NaCl 和KCl 作助溶剂, 原料ReFeAsOF 和助溶剂的量控制在1:1到1:3之间, 原料和助溶剂充分混合后压片放在一个BN 坩埚中, 外面再用叶腊石包套密封. 实验采用的压力为3 GPa, 在1 h 之内升温至1350~1450℃之间, 保温 4~10 h, 最后用5~24 h 降温来促进晶体长大. 实际上, 同期我们已经在常压下利用助溶剂方法生长出NdFeAsO 1−x F x 单晶, 化学计量比的FeAs, NdAs, Fe 2O 3, NdF 3, Fe 和助溶剂NaCl 均匀混合(原料量:助溶剂量=1:10), 压片真空封管, 在1050℃保持5~10 d 后以3℃/h 降温到NaCl 的熔点800℃, 随即断电随炉降温. 所得大量片状单晶附着在NaCl 单晶上, 用水洗去NaCl 即得NdFeAsO 1−x F x 单晶. 图3(a)显示了图3(a) NdFeAsO 1−x F x 单晶面内电阻率随温度的变化曲线, 超导转变在50 K 附近, 转变宽度小于2 K; 插图显示一个20 µm 的单晶, 利用聚焦离子束技术化学气象沉积了Pt 膜作为四个电极; (b) 单晶的X 射线衍射谱, 只有(00l)方向的布拉格峰出现, 显示了单晶很好的取向性; (c) 不同磁场下电阻率随温度的变化关系, 超导转变起始温度点随磁场的加大而略微平移, 显示铁基超导体具有很高的上临界场(以正常态电阻率的95%作为判据); (d) NdFeAsO 1−x F x 单晶磁场随温度的相图, 四方格子代表T c 附近上临界场斜率, 原点线是超导体的不可逆线(以正常态电阻率的1%作为判据)一个NdFeAsO1−x F x单晶面内电阻率随温度的变化曲线, 超导转变在50 K附近, 转变宽度小于2 K. 图3(b)是一片单晶的X射线衍射谱, 只有(00l)方向的布拉格峰出现, 显示了单晶很好的取向性. 我们利用扫描电子显微镜进行晶体形貌测量发现单晶最大尺寸为70 µm, 如果进一步控制晶体生长的成核率以及优化成核温度, 更大尺寸的单晶是可以获得的. 不管怎样, 随着时间的推移, 生长大尺寸FeAs基超导体单晶的方法将不断涌现.3理论和实验对超导机理的研究进展当FeAs基材料的超导电性被相继报道后, 科研工作者随即开展了大量的科学研究, 希望能找到超导电子配对的机理. 最初的理论计算发现电声耦合常数λel-ph仅为0.21[33], 这么低的λel-ph显然不足以导致55 K之高的超导转变温度. 实际上一个类似的系统LaFePO已经有了能带计算结果[34]. LaFePO的超导转变温度为4 K, 电阻率随温度的变化关系是一个金属型的(0~300 K), 这种金属型的电输运行为和零掺杂的LaFeAsO截然不同, LaFeAsO的电阻率在150 K有个很大的下降, 接近零温时电阻率反而微微上翘[3,35]. 电阻率在150 K下降的起因早期被解释为费米面上电子口袋和空穴口袋之间的叠套引起的自旋密度波(SDW), 随后中子散射实验观测到对应此SDW的布拉格峰, 这些布拉格峰对应着一种相互交错的反铁磁长程序, 这种反铁磁长程序发生在136 K, 在此温度之上的150 K体系还有一个结构相变发生, 因而可能是结构相变先发生然后反铁磁序才被建立[36], 然而很难说电子态的不稳定和材料结构的畸变究竟谁是诱因. 很快穆斯堡尔谱实验也证实了零掺杂的LaFeAsO中结构相变和SDW序的共存[37], 显示了不同测量手段所得结论的一致性. 通过F掺杂, 电阻率在150 K的突降被逐渐抹平, 电阻率在低温下的上翘也被严重压制, 当电子和空穴掺杂量到了一定程度后超导就出现了. 由于在样品制备过程中F很容易损失, 因此实际的掺杂和名义上的掺杂量是不同的, 所以超导究竟在哪个掺杂量出现还是不确定的. 此外在欠掺杂区超导转变温度是否随掺杂量单调上升也不明确. 在掺杂最优化的情况下, 单晶正常态ab面内的电阻率显示连续弯曲的特性, 这显然与理论上预言的非常规金属正常态电导线性特征相违背, 这方面一个重要的例子就是铜氧化物高温超导体最佳掺杂点的电阻超线性行为. 因此, 在铁基超导体中目前还很难说某些掺杂点附近存在量子临界点.据已报道的数据, 最高的掺杂可以达到50%, 然而T c仍然维持在55 K或者仅比55 K有轻微的提高, 所以在严重过掺的样品中相分离可能存在, 因为F显然是不均匀的.最早的理论工作是关于能带的计算, 按照Lebègue的工作[34]及Singh和Du的计算结果[38], 母相LaFePO和LaFeAsO中Fe3d电子的5个轨道跨越了费米能, 费米面由5个部分组成, 沿M-A方向的电子型的费米面, 这个费米面上的电子费米速度比较高; 沿Γ-Z方向的空穴型的费米面, 费米速度在这个区域比较低; 还有一个三维的在Z点的空穴口袋. 由于电子型的圆柱形费米面上费米速度比较高, 因而面内电导被认为由这部分费米面负主要责任. 然而这些理论计算并没有考虑到电子的关联效应, Kotliar用动力学平均场方法(DMFT)估算到电子关联能大概为4 eV, 并认为母体LaFeAsO是一个坏金属, 处在金属绝缘体转变(MIT)的边缘[39]. 在考虑到电子的关联效应以及Fe-Fe键(J1, 近邻)和Fe-As-Fe键(J2, 次近邻)的超交换相互作用后, 理论上发现LaFeAsO的最低能量态是反铁磁长程序[40], 电子的自旋相互交错(interpenetrated), 在134 K进入反铁磁长程序以降低系统的能量, 同时在较高温度还有一个结构相变. 目前为止还不能确定反铁磁序和结构相变之间是否有紧密的联系, 如果有联系, 那么谁起主要作用也有待考证.关于超导态的配对对称性的研究, 理论上已经提出了很多可能, 限于篇幅以及个人的认识, 我们只能挑选出一部分来加以阐述. 第一种是扩展的S波配对, 认同这种观点的工作目前不多, 基于特殊结构的配对势V kk′, 费米面上不同部分的能隙符号相反, 因而超导波函数的能隙方程为扩展的S波[41,42]. 此外,一些理论工作者关注费米面上环绕着M点的两个电子型费米口袋, 根据第一性原理计算, 依赖于掺杂的超导转变温度被认为受控于这两个费米口袋的轨道能级简并度[43]. 第二种观点是能隙带有节点(node)的配对对称性, 一些理论认为Fe的d轨道中的铁磁性的洪特耦合将起到很重要的配对作用, 例如Dai等人[44]提出了一个新颖的配对方式, 即组成库珀对的22692008年10月 第53卷 第19期2270两个电子来自不同的电子口袋, 导致了自旋的三重态, 轨道的单态以及动量空间的偶宇称. 另一方面, Lee 和Wen [45]认为洪特耦合将导致带间的p 波对称, 特别是在能级劈裂的情况下, 这种配对对称性将更加稳定. 其他一些理论或多或少基于电子-空穴对称性或者假设带间带内的涨落为配对的媒介[46,47]. 由于实验上对铁基超导体的微观描述比较少, 因而对其超导配对对称性的定论还不能得到. 然而纯粹从对称性角度出发, 某些理论并不需要实验上的微观结果, 已经能推演出超导态对称性的一些普遍性质[48~50].实验上关于FeAs 基超导体能隙可能存在节点的报道最早来自闻海虎小组, 该小组利用低温比热测量超导转变温度为26 K 的LaFeAsO 0.9F 0.1的低能元激发, 发现电子比热系数γ和外加磁场成非线性关系[25], 同时点接触隧道谱也显示零偏压电导峰(ZBCP)的存在, 随着温度和磁场的增加, ZBCP 逐渐消失. ZBCP 通常被解释为电子隧穿一个金属和一个能隙存在节点的超导体的界面效应[51]. 随后, 两个不同小组基于µSR 实验分别指出FeAs 基超导体的配对对称性为脏的d 波[52,53], 他们指出这个体系的超流密度很低, 超流密度符合Uemura 关系, 即T c ∝ρs [54]. 如果Uemura 关系真能满足, 那么两层结构的FeAs 基超导体将具备更高的超导转变温度. 最近, 核磁共振实验发现自旋点阵弛豫率1/T 1T 符合一个幂次关系(power law), 自旋点阵弛豫率测量的是超导态的准粒子态密度, 因而在超导态随着温度升高费米面上已经有准粒子态密度的存在, 因此超导态的能隙函数可能有节点存在. 作者进一步指出库珀对为自旋单态[55,56]. 但也有些测量倾向于没有节点的能隙, 例如在SmFeAs- O 0.85F 0.15上面的点接触隧道谱的结果认为是一个单一的S 波能隙, 基本满足BCS 预期[57]; 在NdFeAs-表1 铁基超导体和铜氧化物超导体的物理性质比较物理参数 铁砷基铜氧化物 评价H c 1约50~100 Oe (1 Oe = 79.5775 A/m) ~100 Oe下临界场比较接近, 欠掺杂铜氧化物符合Uemura 定律, 铁基可能符合H c 2H c 2(H ||c ): ~70 T H c 2(H ||ab ): ~300 T由NdFeAsO 0.88F 0.12单晶输运数据估算而得 对YBCO 而言 H c 2(H ||c ): 100 TH c 2(H ||ab ): 300~600 T 两个系统的上临界场都很高, 所以配对能隙很强各向异性 Γ=(m c /m ab )1/24~5: NdFeAsO 0.88F 0.12单晶T C 附近 ~2: Ba 1−x K x Fe 2As 2单晶T C 附近对YBCO 而言7~20; 对Bi-2212而言100目前为止单层的铁基超导体的各向异性甚至小于YBCO能隙 LaFeAsOF 的能隙在4 meV 左右, 对(Nd, Pr,Sm) FeAsOF 而言7~10 meV, 2∆/k B T c = 3.5~4.5, 可能有双能隙2∆/k B T c = 8?由于赝能隙的存在,能隙值还不确定 铁基超导体的涨落效应可能不是很强, 但这和低的超流密度相违背能隙对称性 自旋单态观点居多. 带节点、节线的能隙和S 波能隙观点相当. 这方面的结论目前分歧很大主要是d 波配对 目前多数在1111结构中的实验结果支持超导体能隙是带节点的(也有S 波实验结果), 然而在122结构中看见了S 波能隙超流密度 低 低 铜氧化物中位相涨落很明显, 但铁基超导体中似乎不强相干长度对T c = 52 K 的NdFeAsOF 而言ξab = 15-25 Å ξc = 5-10 Å 对T c =90 K 的YBCO 而言ξab = 10 Å ξc = 2~3 Å 两个体系的相干长度都很小, 对应着比较小的凝聚能钉扎势 穿透深度λab = 1000-2000 Å λc = 3000-5000 Å对YBCO 而言 λab = 1000~2000 Å λc = 3000~6000 Å两个系统的λ都很大, 显示低的超流密度母体性质反铁磁或者自旋密度波序, 磁矩0.3~1 µB反铁磁长程序, 磁矩0.5µB, 交换关联能J为0.13meV 二个体系的共同之处是反铁磁序的压制可以诱导超导的出现能带多带空穴掺杂的材料是单带,电子掺杂的材料是多带铁基超导体更类似于电子型的铜氧化物超导体O0.9F0.1单晶上的穿透深度测量就倾向于超导序参量是不带节点的弱各向异性的S波[58]; 另外, NdFeAs- O0.9F0.1单晶上的角分辨光电子能谱测量发现在Γ点的空穴型费米面在超导转变温度以下有完全的能隙打开, 因而超导序参量是各向同性的S波或者是各向异性的S波[59]. 需要指出的是, 作者并没有说明另外两个电子型费米面上的能隙分布如何, 毕竟电子型费米面对正常态输运也起重要作用, 所以序参量S波对称的观点还有待更好的实验数据来证实. 总之从目前的实验数据而言, 单层的FeAs基超导体(ZrCuSiAs 结构)配对对称性d波的可能性比较大, 但还没有定论. 然而, 在BaFe2As2结构中, 最近的角分辨光电子能谱等数据表明S波配对对称性的可能性较大[60]. 鉴于此类超导体具有极其复杂的费米面构成, 因此关于超导能隙的对称性的定论尚需时日.4 铁砷基超导体(ZrCuSiAs结构)和铜氧化物超导体物性的简单比较在表1中我们对铁基超导体和铜氧化物超导体的物理性质做了一个初步的比较, 所有的物理参数均来自于已发表的或者刊登在arXiv数据库上以及我们自己测量的结果.比较表1所列的物性参数, 我们可以发现铁基超导体和铜氧化物超导体有很多类似之处. 然而目前为止还很难说两者的超导配对机理是相同的, 因此基于单晶样品的详实可靠的数据是必需的.5结论与展望很明显, 铁基超导体为探索超导体提供了一个新的平台, 同时它的物理性质也可能是非常规的. 高的上临界场、较小的各向异性和更大的相干长度(相对铜氧化物超导体而言)保证了这种材料的应用潜力. 图3(d)中我们给出了单晶的相图, 可以很清楚地发现它的临界场已经远远超过了MgB2, 因而铁基超导体在工业应用上有很大潜力. 在机理方面, 对于所有欠掺杂的样品而言, 反铁磁序是否是一个共同的特征是非常值得探寻的, 进一步来说, 反铁磁涨落对超导是否有影响将非常重要. 下一步从单晶样品上获得可靠数据将对阐明费米面的形状以及费米面随掺杂的演化, 及超导机理问题非常重要. 沿着空穴掺杂、新结构或者多层的思路去探索新材料, 可能会发现具有更高T c的新超导体.编后语此文的主体部分是2008年6月15日前完成的, 因此它主要反映的是此前的信息. 随后的一些重要工作可能未能够反映出来, 请见谅.参考文献1 Poole C P. Handbook of Superconductivity. New York: Academic Press, 20002 Bednorz J G, Muller K A. Possible high T c superconductivity in the Ba-La-Cu-O System. Z Phys B, 1986, 64: 189—1933 Kamihara Y, Watanabe T, Hirano M, et al. Iron-based layered superconductor La[O1−x F x]FeAs(x=0.05-0.12) with T c=26 K. J AmChem Soc, 2008, 130: 3296—32974 Johnson V, Jeitschko W. ZrCuSiAs: A “filled” PbFCl type. J Solid State Chem, 1974, 11: 161—1665 Zimmer B I, Jeitschko W, Albering J H, et al. The rare earth transition metal phosphide oxides LnFePO, LnRuPO and LnCoPO withZrCuSiAs type structure. J Alloys Comp, 1995, 229: 238—2426 Kamihara Y, Hiramatsu H, Hirano M, et al. Iron-based layered superconductor: LaOFeP. J Am Chem Soc, 2006, 128: 10012—100137 Watanabe T, Yanagi H, Kamiya T, et al. Nickel-based oxyphosphide superconductor with a layered crystal structure, LaNiOP. InorgChem, 2007, 46: 7719—77218 Chen G F, Li Z, Li G, et al. Superconducting properties of Fe-based layered superconductor LaO0.9F0.1−δFeAs. Phys Rev Lett, 2008,101: 0570079 Zhu X Y, Yang H, Fang L, et al. Upper critical field, Hall effect and magnetoresistance in the iron-based layered superconductor2271。
新型超导体的研究进展
新型超导体的研究进展超导体是指在某些物质中,当温度降到某一特定值以下,电阻突然消失,这种物质叫做超导体。
超导体因其具有超低电阻、超高电导和超高磁场等优越性质而备受关注。
新型超导体的研究一直是科学家们的热点领域之一。
本文将介绍新型超导体的研究进展。
一、铁基超导体铁基超导体是一类新型超导体,它们的基本结构是由两个铁磁层包围一个超导电子层。
铁基超导体具有良好的机械性能和化学稳定性,并能在相对较高的温度下实现超导。
自2008年铁基超导体被发现以来,科学家们已在这一领域取得了许多进展。
首先,在铁基超导体中,一种新的竞争性序参与到超导机制中,称为反铁磁序。
反铁磁序具有存在于超导体材料中的稳定性。
此外,超导和反铁磁序共存的现象也被发现。
有科学家提出,反铁磁序或其他有序电子状态,可能在超导体材料中起到一种类似于拼图的作用,使材料在一定条件下具有优越的超导性能。
其次,铁基超导体的制备也得到了极大的改善。
现在,我们已经能够通过了解材料的物理性质和化学合成技术,准确地制备出新型铁基超导体。
其中,超高压合成法是铁基超导体制备的一种最有效的方法之一。
利用这种方式,科学家们可以在兆帕级的压力下制备铁基超导体,从而改善其机械性能和超导性能。
最后,我们还能够将铁基超导体应用于实际的技术领域。
例如,铁基超导体可以用于制造超导电线和感应加热器等领域。
由于其较高的超导温度,可以替代银、铜和铝等传统导体制造出更高效的电线。
因此,铁基超导体在未来的市场发展中具有广阔的前景。
二、高温超导体高温超导体是指在高温条件下表现出超导性质的材料。
由于较高的超导温度,高温超导体具有更广泛的应用领域。
与低温超导体相比,高温超导体的结构更加复杂,因此其研究难度更大。
在高温超导领域的研究中,有一个重要的挑战是发现新的高温超导体。
而利用计算机设计新型高温超导体的方法已经成为科学家的一个研究热点。
通过计算,科学家们可以预测哪些化学元素和拓扑结构的材料可能成为高温超导体。
高温超导材料的研究现状和展望
高温超导材料的研究现状和展望随着现代科学技术的不断发展,高温超导技术逐渐成为科技领域中备受瞩目的前沿科技之一。
高温超导材料的研究不仅彰显了人类智慧和创造力的高度,还为能源、电力等领域的科技创新提供了无限的可能性。
笔者将从研究现状、关键技术、应用前景等角度,探讨高温超导材料的最新研究进展和未来展望。
一、研究现状高温超导材料,指具有高温超导特性的材料,其超导温度通常比低温超导材料高得多。
高温超导材料不仅具有超导电性能良好,而且具有电阻低、输电效率高、环保节能等优点,被广泛应用于工业、能源、医疗、计算机等多领域。
然而,高温超导材料研究仍面临着众多挑战。
目前,高温超导材料研究集中在寻求更高的超导温度,并探究材料超导机制。
近年来,国内外涌现出了一大批高品质的高温超导材料,例如:YBCO(氧化物超导体),Bi-2212(铋系超导体),FeSe(铁基超导体)等等。
其中,YBCO首次发现于1987年,是目前超导温度最高的材料之一,其超导温度达到了92K左右。
Bi-2212是一种新型的氧化物超导体,超导温度高达108K。
FeSe是一种新兴的铁基超导体,结构简单,制备工艺方便,于2008年被发现,其超导温度达到了近40K左右。
二、关键技术高温超导材料的研究有赖于先进的实验技术和完善的理论研究。
近年来,一系列先进的技术正在不断涌现,加速了高温超导材料的研究进程。
1.物理化学方法物理化学方法是高温超导材料研究的关键技术之一,主要包括物理气相沉积法(PVD)、溶胶-凝胶法(SG)、水热合成法、高压下制备等等。
其中,PVD法得益于其制备工艺简单、物理性能稳定等特点,在制备氧化物超导体、铁基超导体以及镍基超导体等高温超导材料方面得到了广泛应用。
2.凝胶预处理方法凝胶预处理方法是一种技术成熟度较高的高温超导材料制备方法,主要通过凝胶法制备前体纳米粉末,再采用固相反应制备高温超导材料。
该方法具有制备工艺简单、材料均匀性好、超导性能稳定等优点,被广泛应用于高温超导材料制备中。
高温超导材料中铁基超导机理研究
高温超导材料中铁基超导机理研究近几十年来,超导材料的研究一直是科学界的热点之一。
超导材料具有电阻为零的特性,在电力输送和能源转换等领域具有重要的应用潜力。
虽然早期的超导材料只能在极低的温度条件下实现超导,但是在2008年,中国物理学家发现了一种可以在相对较高温度下实现超导的铁基超导材料,为超导技术的应用带来了新的希望。
高温超导材料中铁基超导机理的研究重要性不言而喻。
了解铁基超导材料的机理可以帮助我们解决一些关键问题,如如何提高超导转变温度、如何改进材料的超导性能,以及如何为实际应用提供更可行的方案等。
首先,铁基超导材料的超导机理研究还是一个相对较新的领域。
与早期的经典超导材料(如铜基超导体)相比,铁基超导材料具有更复杂的电子结构和更多的自由度。
因此,了解铁基超导材料中超导的本质和机制对于设计新的高温超导材料具有重要的意义。
铁基超导材料中超导的机制是一个仍然具有争议的问题。
在过去的几年中,有许多理论和实验研究对铁基超导材料中超导机制进行了深入的探索。
目前,有几种模型被提出来解释铁基超导材料中的超导现象,如费米面奇点理论、层状载流子耦合理论和磁激子机制等。
然而,由于实验结果的复杂性和有效的理论描述之间的不一致性,目前仍没有一个统一的超导机制被广泛接受。
实验研究在揭示铁基超导机理中发挥了重要的作用。
许多实验技术被应用于铁基超导材料中,以便更好地理解超导机制。
例如,X射线衍射技术和中子衍射技术可以提供关于晶体结构、电子密度和自旋排列等信息,这些对揭示超导机理非常重要。
同时,超导体的磁性和传输性质的测量也为理解超导机制提供了更多的线索。
理论研究是揭示铁基超导机制的另一个重要领域。
基于电子结构和相互作用理论的计算模拟为解释铁基超导体中的电子输运、响应和激发等提供了有力的工具。
通过模拟计算,人们可以更好地理解超导转变温度、自旋-电荷耦合等关键问题。
了解铁基超导机理对于改进材料的超导性能具有重要的意义。
通过揭示超导机制,我们可以设计新的材料组成和晶体结构,以提高超导转变温度和临界电流密度等性能指标。
铁基高温超导体的制备与性能研究
铁基高温超导体的制备与性能研究随着科技的快速发展,新型材料的研究成为了各个领域的重点之一。
在材料领域中,超导材料的研究则是必不可少的一部分。
超导材料具有很多优异的特性,如低电阻、磁场强度大、强度高等。
而铁基高温超导体则是近年来比较热门的一类超导材料。
其特有的超导性能和电子结构使得其被科学家们广泛研究和应用。
本文将从铁基高温超导体的制备与性能两个方面展开阐述这一领域的研究现状。
一、铁基高温超导体的制备铁基高温超导体的制备是非常关键的,制备过程中的方法和条件等都会对其最终性能产生影响。
目前,较为常见的制备方法是固相反应法、氧化还原法、微波处理法以及水热合成法等。
1. 固相反应法固相反应法是铁基高温超导体制备的一种传统方法。
在制备过程中,一般需要配制出合适的原料混合物,将混合物在高温条件下进行烧结。
这种方法的优点是在制备过程中反应产物纯度高、稳定性好。
不过,在制备过程中也需要掌握好恰当的烧结时间和温度等条件,否则会影响其最终性能。
2. 氧化还原法氧化还原法是一种经济、简便的方法,利用氢气、氮气等还原剂将前驱体还原,得到铁基高温超导体材料。
这种方法的特点是对制备条件要求不高,比较适合于大规模生产。
3. 微波处理法微波处理法的原理与固相反应法类似,不过它将能量控制在微波范围内,加快材料的反应过程,从而得到更为完整的铁基高温超导体晶体。
这种方法具有反应条件温和、能耗低的优点。
4. 水热合成法水热合成法是一种相对较新的制备方法,其原理是在高温高压下使用水作为反应介质,通过水解或水热反应等方式制备铁基高温超导体。
这种方法制备出来的铁基高温超导体具有很高的晶度和单相性。
以上几种方法对铁基高温超导体的制备都有一定的作用,但仍有许多需要解决的问题,如材料到底应该怎样制备才能更好地保持其超导性质、如何利用新技术减小电阻等问题。
因此,铁基高温超导体的研究仍是需要不断探索的领域。
二、铁基高温超导体的性能研究铁基高温超导体在电学性质、物理性质、热学性质等方面都有着出众的性能。
铁基高温超导材料的研究进展
铁基高温超导材料的研究进展近年来,铁基高温超导材料引起了科学界的广泛关注。
这类材料具有重要的理论和应用价值,因此吸引了众多科学家的研究兴趣。
本文将从材料的发现历程、物理性质、制备方法和应用前景等方面,对铁基高温超导材料的研究进展进行探讨。
一、材料的发现历程铁基高温超导材料的发现可以追溯到2008年,当时日本科学家在ODFeAs中发现了超导转变温度高达55K的现象,这一突破引起了科学界的轰动。
接着,各国的科研团队纷纷进入到该领域进行探索,相继发现了其他类型的铁基高温超导材料,如LaFeAsO、BaFe2As2等。
这些发现为进一步的研究奠定了基础。
二、物理性质铁基高温超导材料具有很多特殊的物理性质。
首先,它们的超导转变温度相对较高,甚至可以高达超低温液氦的沸点-268.95℃。
其次,铁基高温超导材料表现出复杂的电子结构和磁性行为,如多带结构和自旋密度波等。
这些特性使得铁基高温超导材料在研究中备受关注,并被认为是理解高温超导机制的重要窗口。
三、制备方法目前,已经发现的铁基高温超导材料的制备方法主要有固相法、溶胶法和气相沉积法等。
固相法是最早采用的方法,它通过高温反应合成超导材料。
溶胶法则是利用溶液的化学反应来制备,这种方法成本较低且适用性广。
而气相沉积法是通过气体在固体表面沉积形成超导材料,可以制备大面积、高质量的薄膜材料。
这些制备方法的发展为铁基高温超导材料的研究提供了可靠的实验基础。
四、应用前景铁基高温超导材料具有广阔的应用前景。
首先,它们在能源领域有着巨大的潜力。
高温超导材料的研究和应用可以提高电力输送效率,减少能源损耗。
其次,铁基高温超导材料还可以应用于磁性材料和传感器等方面。
这些应用领域的拓展将促进铁基高温超导材料的进一步研究和发展。
总结起来,铁基高温超导材料是当前研究的热点之一,其物理性质和应用前景使其成为材料科学领域的重要组成部分。
随着研究的不断深入,相信铁基高温超导材料的研究进展将为我们揭示更多的科学奥秘,并在实际应用中发挥重要作用。
高温超导材料研究现状及未来发展趋势
高温超导材料研究现状及未来发展趋势高温超导是指在大气压下,在较高温度下(相对于传统的低温超导,它的临界温度高)能够实现电流无损传输的物质。
高温超导的发现,是全球物理学研究领域的一次重大突破,改变了长期以来人们对超导材料质量和温度的认识。
因此,高温超导材料的研究也成为当前物理学的热门话题之一。
在高温超导材料的研究领域,第一批发现的高温超导体系主要是氧化铜(Tl, Bi) - 铜 (Cu) - 钙 (Ca) - 氧 (O) 系统、氧化铜(YBa2Cu3O7,简称YBCO) 系统、铁基超导体(如钆钴铁基超导材料),以及铜基硫氧化物(例如钌基超导材料和铜基氧化物超导材料)等。
其中,铁基超导体的出现,极大丰富了高温超导材料的研究领域,也为超导材料研究带来了更多可能性。
目前,高温超导材料的研究主要围绕着以下几个方向展开:一、提高临界温度:目前高温超导材料的临界温度仍然比较低,无法在实际应用中充分发挥其优势,因此如何提高临界温度成为了研究的一个重要方向。
二、提高超导材料的制备技术:要想在实际应用中大量生产高温超导材料,需要建立一整套高效的制备工艺。
目前,铁基超导材料的制备技术比较成熟,但其他类别的高温超导材料仍然需要进一步的技术开发。
三、探索高温超导材料的电性质和磁性质:电性质和磁性质是高温超导材料的两个基本性质,它们直接影响着超导材料的超导性能。
因此,深入探究高温超导材料的电性质和磁性质,对于进一步提高超导材料的超导性能及应用价值具有显著的意义。
随着人们对超导材料的研究不断深入,高温超导材料的研究也在不断发展。
预计在未来的研究中,高温超导材料的研究将呈现出以下几个发展趋势:一、采用新型材料和制备方法:随着研究的不断深入和技术的不断发展,新型高温超导材料的发现和研究成为当前的一个重要方向。
利用新型材料和制备方法,有望进一步提高高温超导材料的临界温度和超导性能,丰富高温超导材料的研究领域。
二、深化对高温超导材料性质的研究:众所周知,高温超导材料的性质十分复杂,它们的电性质和磁性质不仅取决于材料本身的结构和成分,还受到其制备过程、加工处理等因素的影响。
超导体的研究现状与展望
超导体的研究现状与展望超导体(Superconductor)是指在特定温度下,在电磁场中能完全抵抗电阻的一类材料。
在超导体中,电子通过一种名为“库伦配对”的机制组成“库伦对”,从而能够在低温下行使电子对的运动,使电流在材料内的导体中被完全内部传播而无阻力。
超导体被广泛应用于医学、太空科技、电力输送等各个领域,如MRI扫描仪、磁悬浮列车,超导电缆等。
近年来,随着新材料的不断涌现,超导体的研究展现出了愈发良好的势头。
下面,就当前超导体的研究现状与展望进行探讨。
超导体研究现状目前在超导体的研究领域中,已经取得了许多的成果,如早期发现的铅和铝超导体、在-196℃左右温度下的氦超导体,以及更为接近室温下的铜基和铁基超导体。
在1986年,发现了第一个高温超导体——铜基氧化物超导体。
随后,在1994年,又发现了铁基高温超导体。
这两种高温超导体的发现具有里程碑式的意义,它们的超导温度高达77K和54K左右,远高于室温低得多的铅和铝超导体。
这意味着我们可以在相对较为容易地实现的低温下观察到超导现象。
但是,传统的铜基和铁基高温超导体中,仍存在诸多的问题,例如:它们的制备过程十分复杂且成本极高,超导材料中的内部缺陷对超导性能影响很大,超导材料的磁场受敏感性较大等。
因此,人们尝试寻找新的高温超导体,以便更加高效且可靠地制备新的超导体材料。
超导体研究展望当前,人们对超导体研究的兴趣持续上升,迫切需要各种新的超导材料解决人类实际生活中的需求。
超导磁体在磁共振成像(MRI)和核磁共振(NMR)等医疗应用方面具有重要作用;超导电缆则可以降低电网的输电损耗;利用超导核磁共振(NMR)技术还可以研究医药、生命科学和新材料等领域的基础和应用研究。
与此同时,各种新材料、新技术的涌现,也为超导体的研究提供了新的可能。
例如,在2019年,美国MIT的研究团队发现了一种新的类金属体,可以在室温下实现超导性,其可能实现了从低温到室温超导的跨越。
高温超导体技术的研究现状及展望
高温超导体技术的研究现状及展望随着科技的不断进步,人类对材料的需求也变得越来越高。
高温超导材料不仅是材料科学中的一个热点研究方向,同时也是未来科技发展的重要基础。
目前,高温超导体技术的研究已经取得了一定的进展,但仍面临着许多挑战。
本文将介绍高温超导体技术的研究现状,并探讨未来的发展方向与应用前景。
一、高温超导体的定义和特性所谓高温超导体,是指在一定的温度下具有无阻力的电流运输能力的物质。
高温超导体的温度通常指的是液氮沸腾点以下的温度范围,即约为零下196℃到零下150℃之间。
与传统的超导体相比,高温超导体具有以下特点:1. 较高的临界温度,使得液氮可以作为冷却介质,这样就大大降低了制冷成本。
2. 较高的临界电流密度,使得高温超导体可以应用于强电磁场领域,如磁体等。
3. 较高的自旋准备,可以在实验室条件下合成出各种形态的高温超导体。
二、高温超导体技术的研究现状高温超导体技术的研究始于1986年,当时世界各国的科学家们纷纷投入到这个领域的研究中。
经过多年的努力,高温超导体的研究已经取得了一定的进展。
1. 高温超导材料的研究高温超导材料的研究是高温超导体技术研究的重要方面。
当前,高温超导体材料主要分为两类:铜氧和铁基高温超导体。
铜氧类高温超导材料是第一个被发现的高温超导材料,是超导材料研究中的一个里程碑。
铁基高温超导材料则是相对较新的高温超导材料,其超导温度已经接近液氮沸腾点。
2. 高温超导体的制备方法高温超导体的制备方法也是高温超导体技术研究的重要方面。
当前,高温超导体的制备方法主要分为两类:固相反应法和液相法。
固相反应法是当前最主要的一种高温超导体制备方法,其制备过程包括高温烧结、退火等多个步骤。
液相法则是新型的高温超导体制备方法,其制备过程包括溶胶凝胶法、溶液共沉淀法和水热法等。
3. 高温超导体的应用领域目前,高温超导体已经应用于多个领域,如电力、计算机和仪器等。
其中,高温超导电缆是高温超导体技术应用的一大亮点。
铁基超导体的物性研究及其新进展
铁基超导体的物性研究及其新进展摘要:铁基超导体是继铜氧化合物高温超导体之后又被发现的一类新型高温超导材料。
本文通过解释超导现象引入,并介绍了铁基超导体的应用、结构体系、制备方法以及一些铁基超导体材料研究的新进展,最后展望了这种新超导体的应用前景。
关键词:铁基超导体铁基超导体的应用铁基超导体的结构铁基超导体的制备1、引言超导是一种宏观量子现象,费米面上动量相反的电子配成对,同时建立长程的位相相干进而发生凝聚,其结果是超导体在临界温度下电阻的消失(零电阻)和对磁力线的排斥(完全抗磁性)。
在正常金属中,电子在一个充满各种振动的背景中运动。
最普通的是晶格的振动。
晶格的振动模可以被一种称为“声子”的元激发进行描述。
电子和声子碰撞后损失了动能进而导致能量的损耗,这也就是正常金属在有限温度下电阻的来源。
然而在零温极限下所有的振动模式都停止了(不计量子涨落),所以一个干净的系统中能量的损耗和电阻率都是为零的。
对于一个超导体而言,费米面上的电子两两吸引形成束缚对,这种束缚的电子对被称为库珀对,库珀对服从玻色统计,在临界温度(tc)下发生凝聚,这种凝聚态具有很长的相干长度,因而对晶格振动导致的局域散射不敏感,所以输送上并不损耗能量,电阻率可以在较高温度(tc以下)保持为零。
与此同时,ⅱ类超导体具有在很高的磁场下承载巨大电流密度的优越性能,人们因此对高临界温度的新超导体充满了期望。
2、铁基超导体的应用2.1 超导磁悬浮列车随着国民经济的发展,社会对交通运输的要求越来越高,因而需要有时速达数百公里的快列车。
磁悬浮列车具有高速(≥500km /h)、安全、噪音低等优点,是未来理想的交通工具。
磁悬浮列车是利用磁悬浮作用使车轮与地面脱离接触悬浮于轨道之上,并利用直线电机推动列车运动的一种新型交通工具。
超导磁悬浮列车设想是美国与1966年首先提出的。
具体方案是在轨道上安装一系列电机电枢绕组,这些绕组从电网获得电能并与车体内超导磁产生的磁场相互作用,并产生推力推动列车前进。
新型铁基超导材料的研究与开发
新型铁基超导材料的研究与开发超导材料具有极低的电阻和磁通排斥效应,是能源传输和储存领域的重要材料。
自从1957年首次发现超导现象以来,研究人员一直在寻找更高温度下的超导材料。
近年来,铁基超导材料的发现引发了科学界的广泛兴趣。
本文将介绍新型铁基超导材料的研究进展以及其在能源领域的潜在应用。
一、铁基超导材料的发现2008年,日本一个科研团队首次在铁系杂质样品中观察到超导转变温度高达26K的现象,这引起了全球科学界的关注。
传统的超导材料如铜氧化合物和镧系氧化物需要非常低的温度才能实现超导,而铁基超导材料的高转变温度意味着更容易实现实际应用。
二、铁基超导材料的结构和性质铁基超导材料是一类复杂的金属氧化物,其晶格结构通常由铁基层和氧化物层组成。
这些材料中的超导电子对主要由铁基层上的电子构成。
与传统的BCS超导理论不同,铁基超导材料的超导机制仍然不完全清楚。
除了高转变温度外,铁基超导材料还具有其他一些特殊性质。
例如,铁基超导材料不仅在零场下表现出超导性,而且在外加磁场下也能保持较高的超导转变温度。
这使得铁基超导材料在强磁场应用领域具有巨大潜力。
三、铁基超导材料在能源领域的应用由于铁基超导材料具有高转变温度和较高的超导电流密度,因此在能源领域有着广泛的应用前景。
1. 电力传输超导材料的应用最为直接的领域之一就是电力传输。
传统的铜导线由于电阻存在较大的能量损耗,而超导材料的零电阻特性可以显著减少电力传输过程中的能量损耗。
铁基超导材料的高转变温度使得冷却成本大大降低,有望用于高温超导电力传输的大规模应用。
2. 能源储存超导材料还可以用于能源储存,例如超导磁能储存器。
该设备利用超导体在磁场中保持零阻抗的特性,将电能转化为磁能进行储存。
铁基超导材料在外加磁场下仍然保持较高的超导转变温度,能够提供更高的能量储存密度和更低的能量损耗。
3. 恒温电缆铁基超导材料的高转变温度使其在制造恒温电缆方面具有潜力。
恒温电缆可以在恒定的温度下传输电能,不受外界温度的影响。
高温超导材料研究现状与展望
高温超导材料研究现状与展望随着能源的日益增长,对电力的需求也与日俱增。
电力作为现代社会的基础设施,其可靠性和供应能力已成为社会经济发展和人民生活需要的必要条件。
因此,研发更高效、更节能的电力设备已成为科学家们致力的一项重要任务。
高温超导材料的出现,使得超导技术在动力电子、能源传输、静电控制等领域发挥了重要作用,并在高速列车、磁悬浮、日常生活等多领域得到了广泛应用。
高温超导材料被定义为在温度高于液氮沸点(77 K)的温度下,其电阻率可降至零的材料。
然而,高温超导材料中存在的困难是在超导突破点以上几乎没有任何材料性质相关的导电性(如导电度或超导密度)。
开发新的高温超导材料的研究一直是超导领域的重要性目标之一,也是研究者们一直在追求的方向。
高温超导材料与传统超导材料不同,它们不仅具有超导性能,还存在磁性等特殊性质。
此外,高温超导材料的四种主要机制包括离子液滴和亚稳结构的形成、氧化还原反应、晶格摆动和位错自组装等,使其在新能源、新材料等领域都有巨大的应用潜力。
高温超导材料的研究取得了长足进展。
截至目前,最高的Tc 值测试结果是前苏联所研制的Bi-Sr-Ca-Cu-O材料,其等效Tc值约为135 K。
近年来,实验室通过对高温超导材料微观观察和之前的理论预测,已有许多新型材料被发现。
其中,铁基高温超导材料由于其在科学上的重要性,被认为是新材料领域的一颗明珠,将于未来取代铜基高温超导材料。
然而,目前高温超导材料研究面临诸多挑战。
如何有效提高高温超导材料的制备工艺和制备效率,如何减小高温超导材料制备中的缺陷,如何克服高温超导材料的脆性和热容量不足等问题,都是需要攻克的难关。
这些挑战都需要在理论和实践方面获得突破,以提高高温超导材料的结构设计和合成效率。
未来,高温超导材料在能源和新材料领域中仍然将发挥着重要的作用。
从技术应用上看,高温超导材料可以广泛应用于电力传输、动力装置和磁悬浮。
在能源存储领域,高温超导材料可以使锂电池的充电和放电速度得到增加,使电子市场的发展迈出重要一步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年 第53卷 第19期: 2265 ~ 2273 2265《中国科学》杂志社SCIENCE IN CHINA PRESS评 述铁基高温超导体的研究进展及展望方磊, 闻海虎*中国科学院物理研究所超导国家重点实验室, 北京 100190 * 联系人, E-mail: hhwen@ 2008-07-21收稿, 2008-09-03接受摘要 自从2008年2月末F 掺杂的LaFeAsO 被报道有26 K 的超导电性后, 基于此体系材料的超导转变温度在短短几个月中被迅速地提高到55 K, 很多新超导体被发现, 同时人们对具有更高临界转变温度的新超导材料充满希望. 本文简要地回顾了这种体系中材料的探索、制备以及设计, 另外在理论和实验上对其超导机理的认识也给予了介绍和总结. 最后基于目前的实验数据, 对铁基超导体和铜氧化物高温超导体的重要物理参数进行了比较, 同时展望了这种新超导体的应用前景.关键词 铁基超导体 超导转变温度 ZrCuSiAs 结构配对对称性超导是一种宏观量子现象, 费米面上动量相反的电子配成对, 同时建立长程的位相相干进而发生凝聚, 其结果是超导体在临界温度下电阻的消失(零电阻)和对磁力线的排斥(完全抗磁性). 在正常金属中, 电子在一个充满各种振动的背景中运动, 最普通的是晶格的振动. 晶格的振动模可以被一种称为“声子”的元激发进行描述. 电子和声子碰撞后损失了动能进而导致能量的损耗. 这也就是正常金属在有限温度下电阻的来源. 然而在零温极限下所有的振动模式都停止了(不计量子涨落), 所以一个干净的系统中能量的损耗和电阻率都是为零的. 对于一个超导体而言, 费米面上的电子两两吸引形成束缚对, 这种束缚的电子对被称为库珀对. 库珀对服从玻色统计, 在临界温度(T c )下发生凝聚. 这种凝聚态具有很长的相干长度, 因而对晶格振动导致的局域散射不敏感, 所以输运上并不损耗能量, 电阻率可以在较高温度(T c 以下)保持为零. 与此同时, Ⅱ类超导体具有在很高的磁场下承载巨大电流密度的优越性能, 人们因此对高临界温度的新超导体充满了期望.人类寻找新超导体的历史已经持续将近100年, 在最初的几十年中, 新超导体的探索主要集中在单元素材料和多元素合金上. 然而这些材料的超导转变温度不超过23 K(Nb 3Ge)[1]. 一个重大的突破发生在1986年底, 在IBM Zurich 工作的Bednorz 和 Muller [2]发现铜氧化物LaBaCuO 的超导转变温度高于30 K. 自此寻找更高T c 的超导体的浪潮席卷全世界, 在短短的几年中, 铜氧化物超导转变温度被提升到134 K(常压)和164 K(高压). 然而铜氧化物超导体的相干长度非常短, 各向异性度很高, 又因为是陶瓷, 所以材质很脆, 这些不利因素都妨碍了它在工业上大规模的应用. 所以, 超导界的科学家们一直希望发现另外一种非铜氧基的高温超导体, 并且这种超导体具备更优异的性质.转机发生在2008年的2月末, 日本东京工业学院Hosono 教授的研究小组发现在母体材料LaFeAsO 中掺杂F 元素可以实现26 K 的超导电性[3]. 此类母体材料的研究历史可以追溯到1974年美国杜邦公司Johnson 等人[4]在寻找新的功能材料中的工作. 随后, 一个德国的研究组合成了系列的具有同样ZrCuSiAs 结构的新材料[5]. 这些新材料被取名为四元磷氧化物LnOMPn(Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy; M=Mn, Fe, Co, Ni; Pn=P, As). 图1是LaFeAsO 的基本结构. 这个体系空间群为P4/nmm, 具有四方的层状结构, 在c 方向上以—(LnO)2-(MP)2-(LnO)2—形式交替堆砌, 一个单胞中有两个分子LnOMP. 对于母体材料而言, 层和层之间电荷是平衡的, 例如,2008年10月 第53卷 第19期2266(LnO)+1和(MP)−1的电荷是平衡的. 由于四元磷氧化物LnOMPn 中的一些材料在低温下是超导体, 因此 这个体系构建了铜氧化物外的另一个层状超导体家族[6,7]. 在Hosono 小组发现LaFeAsO1−x F x (x =0.05~ 0.12)具有26 K 的转变温度后[3], 新的一轮寻找高温超导材料的浪潮再次到来.图1 LaFeAsO 的原子结构图LaFeAsO 属于ZrCuSiAs 结构, 在c 方向—(LaO)2-(FeAS)2-(LaO)2- (FeAs)2—相互交叠进而构成一个典型的层状化合物. 铁离子排布成一个四方结构, 近邻的铁离子距离2.853 Å, 对角的铁离子距离3.97 Å1 追寻更高T c在Hosono 小组的工作发表后的很短时间, 中国科学院物理研究所的王楠林小组、闻海虎小组和美国橡树岭国家实验室的Mandrus 小组, 分别独立地制备出超导温度26 K 的LaFeAsO 1−x F x 并作了系统的输运测量[8~10]. 数据揭示LaFeAsO 1−x F x 的载流子为电子型而且载流子密度很低, 这些性质和铜氧化物高温超导体都很类似. 随即不同小组追寻更高超导转变温度的竞争拉开序幕. 大部分的研究进展都以非正式发表的形式及时刊登在美国Los Alamos 国家实验室的免费电子资源平台上(/list/cond-mat. supr-con/). Takahashi 等人[11]利用高压技术(3 GPa)把LaFeAsO 0.89F 0.11的转变温度从26 K 提高到43 K. 2008年3月20日闻海虎小组报道了利用二价的Sr 代替部分三价的La(空穴掺杂), La 1−x Sr x FeAsO 可以实现25 K 的超导转变, 从而否定了Hosono 小组关于空穴掺杂在铁基母体中不能实现超导的结论[12]. 几天后, 中国科学技术大学陈仙辉小组报道了SmFeAs- O 0.85F 0.15中实现43 K 的超导电性[13]. 几乎同一时间中国科学院物理研究所的王楠林小组[14]发现41 K 超导体CeFeAsO 1−x F x , 赵忠贤小组[15]报道了接近或超过50 K 的超导体NdFeAsO 0.85F 0.15和PrFeAsO 0.85F 0.15. 在追逐更高T c 的激烈竞争中, 人们发现高压技术合成样品是效率较高的, 例如, 低于2 h 的样品烧结时间以及高压导致F 的有效掺杂. 高压技术的应用可以很容易实现高的超导转变温度, 稀土金属Ce, Pr, Nd, Sm, Eu 和Gd 的铁基超导体基本都可以达到50~55 K [16]. 另外, 赵忠贤和任治安等人认识到由于名义上的化学计量比的F 含量在烧结过程中可能丢失, 铁基超导体中氧缺位实际上是存在的. 因此, 任治安等人利用高压技术直接合成了无氟缺氧的LnFeAsO 1−x , 发现超导转变温度达到了55 K, 从而证实了他们的氧位缺失导致超导的观点[17]. 但必须说明的是, 常压合成的无氟缺氧LnFeAsO 1−x 并不超导, 即使样品很纯净, 也没有任何超导迹象出现[18]. 一种可能性是此类缺氧的相是一个亚稳相, 在常压下合成出来的实际上是不缺氧的相. 此外, 曹光汉和许祝安小组还发现利用Th 替换Gd 的方法在Gd 1−x Th x FeAsO 中观察到56 K 的超导电性[19]. 同时他们在Tb 1−x Th x FeAsO 中也观察到超过50 K 的超导电性[20]. 最近利用高压技术, 重稀土Tb 和Dy 的铁基超导体也实现了40 K 的高温超导电性[21]. 在图2中, 我们给出了超导转变温度和发现时间的关系曲线, 可以很清楚地发现超导转变温度随时间上升得非常快, 同时铁基超导体的临界温度能否超过液氮温度77 K, 也给人们很大的想象空间.在探寻具有更高转变温度的超导体的时候, 有几种可能的途径. 第一个也是最直接的办法就是合成一个单胞中有多个FeAs 层. 这个想法来自铜氧化物超导体, 因为两个体系的上临界场都特别高, 从而配对势很强, 但超流密度却很低[8~10]. 所以按照提高铜氧化物超导温度的思路, 只要超导转变由相位涨落控制而不受配对强度影响的话, 多层可以产生更高的超流密度. 然而必须指出的是, 铁基超导体的位相涨落并不是特别的强, 至少最优掺杂的样品是这样. 能斯特效应的测量确实发现在超导转变温度以上能斯特效应很弱, 而且扩展的温区只有10 K 以内, 确实说明此类材料中的相位涨落很弱[22]. 闻海虎小组[23,24]最近率先测量了NdFeAsO 0.82F 0.18单晶的上临界磁场和超导态电阻随磁场的各向异性, 发现各向异性度Г = (m c /m ab )1/2小于5或者6. 但对低掺杂的样品的各向异2267性度和配对能隙的研究至今没有报道, 如果没有比最佳掺杂提高很多, 反而像BCS 型超导体要求[25]的那样2∆sc /k B T c ≈4, 那么利用多层来提高超导转变温度的可能性就大大受到限制.但不管怎样, 一种新的结图2 铁基超导体的发现时间和超导转变温度的关系图(2008年6月15日以前)白色的圆点代表电子型超导体, 由F 掺杂或者氧缺位所致. 黑色的原点代表空穴型超导体. 具有更高超导转变温度的新超导体是值得期待的构往往导致配对强度和费米面上态密度的改变, 从而多层系统的T c 可以随机地增大或者减小.第二个寻找高T c 的途径就是通过元素替代来合成新材料. 目前为止, 并没有直接的解释为什么FeAs 系统中的T c 要高于NiAs 或者FeP 系统, 然而探寻不含As 的超导体是物有所值的, 毕竟As 带有毒性. 如果坚持以FeAs 为基的话, 空穴掺杂也许是另外一个重要的方向. 按照闻海虎小组的观点, 空穴掺杂可以导致超导电性[12], 同时T c 的变化随着空穴或者电子的掺杂量是基本对称的. 这个观点的提出在开始遇到很大阻力, 但是随着时间的推移, 逐渐被实验事实所支持. 一个类似的结果就是Hosono 小组报道的LaFePO 中实现了电子掺杂(F 替代O)和空穴掺杂(Ca 替代La), 但该文作者把Ca 掺杂提高T c 的结果归于晶格的收缩而不是能带的填充[26]. 最近闻海虎小组又成功制备了LaNiAsO 1−x F x 和La 1−x Sr x NiAsO 体系[27], 发现T c 的改变随着空穴或者电子的掺杂量也是基本对称的. 在Sr 掺杂的样品中, T c 随着晶格常数的增加而单调上升, 事实上Sr 2+的离子半径(0.112 nm)大于La 3+的离子半径(0.106 nm), 所以在不考虑结构畸变的情况下, 晶格应该有所膨胀. 关于ZrCuSiAs (1111)结构中可以利用空穴导致超导电性, 目前只有闻海虎小组有报道. 也有报道称, 可能是氧缺位导致超 导[28]. 然而, 闻海虎等人的数据表明, 只要二价金属原子Sr 等被有效掺到晶格位置, 就会出现超导[29]. 这方面的结论需要更多研究组工作的确认, 相信不久就会有最终结论. 最近, Rotter 等人用K +替代Ba 2+离子, 发现(Ba 0.6K 0.4)Fe 2As 2中存在38 K 的超导电性[30], 这是FeAs 基材料中空穴掺杂导致超导的进一步例证. 其母相BaFe 2As 2从电阻率随温度的变化关系上看是一个坏金属, 在140 K 附近有一个自旋密度波反常, 这些性质非常类似于零掺杂的LnFeAsO 的电输运特性. 总的来说, Rotter 等人的工作很明确地证实了闻海虎小组早期提出的空穴掺杂导致超导的观点[12]. 因而从这个方面而言, 通过空穴掺杂寻找新超导体仍有广阔天地.2 材料的合成为了对FeAs 基超导体物理性质有准确及深入的认识, 高质量的样品是不可或缺的. 目前为止, 国际上已经有很多小组合成出接近单相的LnFeAsO 1−x F x (Ln=La, Ce, Pr, Nd, Sm, Gd [31], Eu, Tb, Dy, Gd/Th). 制2008年10月 第53卷 第19期2268备样品的主要途径就是化学固相反应, 固相反应合成可以一步或者分步完成, 所谓一步法就是把金属单质和其他化合物按照化学计量比称量研磨和烧结, 而分步法就是先制备出砷化稀土和砷化铁, 再和其他所需化合物按照化学配平称量研磨和烧结, 如闻海虎小组初期采用的两步法合成单相样品的工艺就是行之有效的[9]. 不管一步还是分步合成样品, 原料需密封在石英管中烧结, 烧结温度在1150~1260℃之间. 由于稀土元素很容易被氧化, 研磨和压片的过程必须在充满保护气体的手套箱中进行. 另外, 砷单质和其化合物都是有毒的, 所以任何涉及砷的材料制备过程都必须严格控制在手套箱中以保护科研人员的健康. 第二种制备材料的方法就是前面提到的高压合成技术, 这种方法的优点就是元素反应迅速而且非常高效, 但由于反应时间过短, 化学合成不充分, 有杂相存在, 如FeAs 等. 第三种获得纯相的途径就是助溶剂方法[23,24], 这种方法的优点是烧结温度比较低. 我们已经利用这种方法成功制备出系列的NdFeAsO 1−x F x 单相样品.为了获得FeAs 基超导体的本征性质, 单晶的制备极为重要. 尽管有很多小组在随后的时间中报道了Ba 1−x K x Fe 2As 2单晶的生长, 但是在作者完成这篇初稿时(2008年6月15日之前), 只有两个小组报道了ZrCuSiAs(1111)相单晶样品的合成, 因此本文不再对Ba 1−x K x Fe 2As 2晶体的制备过程进行介绍. 关于F 掺杂的LnFeAsO 晶体的制备, 其中一个小组利用高温高压技术(ETH, Zurich)成功制备出最大尺寸为100 µm 的单晶[32], 他们利用混合的NaCl 和KCl 作助溶剂, 原料ReFeAsOF 和助溶剂的量控制在1:1到1:3之间, 原料和助溶剂充分混合后压片放在一个BN 坩埚中, 外面再用叶腊石包套密封. 实验采用的压力为3 GPa, 在1 h 之内升温至1350~1450℃之间, 保温 4~10 h, 最后用5~24 h 降温来促进晶体长大. 实际上, 同期我们已经在常压下利用助溶剂方法生长出NdFeAsO 1−x F x 单晶, 化学计量比的FeAs, NdAs, Fe 2O 3, NdF 3, Fe 和助溶剂NaCl 均匀混合(原料量:助溶剂量=1:10), 压片真空封管, 在1050℃保持5~10 d 后以3℃/h 降温到NaCl 的熔点800℃, 随即断电随炉降温. 所得大量片状单晶附着在NaCl 单晶上, 用水洗去NaCl 即得NdFeAsO 1−x F x 单晶. 图3(a)显示了图3(a) NdFeAsO 1−x F x 单晶面内电阻率随温度的变化曲线, 超导转变在50 K 附近, 转变宽度小于2 K; 插图显示一个20 µm 的单晶, 利用聚焦离子束技术化学气象沉积了Pt 膜作为四个电极; (b) 单晶的X 射线衍射谱, 只有(00l)方向的布拉格峰出现, 显示了单晶很好的取向性; (c) 不同磁场下电阻率随温度的变化关系, 超导转变起始温度点随磁场的加大而略微平移, 显示铁基超导体具有很高的上临界场(以正常态电阻率的95%作为判据); (d) NdFeAsO 1−x F x 单晶磁场随温度的相图, 四方格子代表T c 附近上临界场斜率, 原点线是超导体的不可逆线(以正常态电阻率的1%作为判据)一个NdFeAsO1−x F x单晶面内电阻率随温度的变化曲线, 超导转变在50 K附近, 转变宽度小于2 K. 图3(b)是一片单晶的X射线衍射谱, 只有(00l)方向的布拉格峰出现, 显示了单晶很好的取向性. 我们利用扫描电子显微镜进行晶体形貌测量发现单晶最大尺寸为70 µm, 如果进一步控制晶体生长的成核率以及优化成核温度, 更大尺寸的单晶是可以获得的. 不管怎样, 随着时间的推移, 生长大尺寸FeAs基超导体单晶的方法将不断涌现.3理论和实验对超导机理的研究进展当FeAs基材料的超导电性被相继报道后, 科研工作者随即开展了大量的科学研究, 希望能找到超导电子配对的机理. 最初的理论计算发现电声耦合常数λel-ph仅为0.21[33], 这么低的λel-ph显然不足以导致55 K之高的超导转变温度. 实际上一个类似的系统LaFePO已经有了能带计算结果[34]. LaFePO的超导转变温度为4 K, 电阻率随温度的变化关系是一个金属型的(0~300 K), 这种金属型的电输运行为和零掺杂的LaFeAsO截然不同, LaFeAsO的电阻率在150 K有个很大的下降, 接近零温时电阻率反而微微上翘[3,35]. 电阻率在150 K下降的起因早期被解释为费米面上电子口袋和空穴口袋之间的叠套引起的自旋密度波(SDW), 随后中子散射实验观测到对应此SDW的布拉格峰, 这些布拉格峰对应着一种相互交错的反铁磁长程序, 这种反铁磁长程序发生在136 K, 在此温度之上的150 K体系还有一个结构相变发生, 因而可能是结构相变先发生然后反铁磁序才被建立[36], 然而很难说电子态的不稳定和材料结构的畸变究竟谁是诱因. 很快穆斯堡尔谱实验也证实了零掺杂的LaFeAsO中结构相变和SDW序的共存[37], 显示了不同测量手段所得结论的一致性. 通过F掺杂, 电阻率在150 K的突降被逐渐抹平, 电阻率在低温下的上翘也被严重压制, 当电子和空穴掺杂量到了一定程度后超导就出现了. 由于在样品制备过程中F很容易损失, 因此实际的掺杂和名义上的掺杂量是不同的, 所以超导究竟在哪个掺杂量出现还是不确定的. 此外在欠掺杂区超导转变温度是否随掺杂量单调上升也不明确. 在掺杂最优化的情况下, 单晶正常态ab面内的电阻率显示连续弯曲的特性, 这显然与理论上预言的非常规金属正常态电导线性特征相违背, 这方面一个重要的例子就是铜氧化物高温超导体最佳掺杂点的电阻超线性行为. 因此, 在铁基超导体中目前还很难说某些掺杂点附近存在量子临界点.据已报道的数据, 最高的掺杂可以达到50%, 然而T c仍然维持在55 K或者仅比55 K有轻微的提高, 所以在严重过掺的样品中相分离可能存在, 因为F显然是不均匀的.最早的理论工作是关于能带的计算, 按照Lebègue的工作[34]及Singh和Du的计算结果[38], 母相LaFePO和LaFeAsO中Fe3d电子的5个轨道跨越了费米能, 费米面由5个部分组成, 沿M-A方向的电子型的费米面, 这个费米面上的电子费米速度比较高; 沿Γ-Z方向的空穴型的费米面, 费米速度在这个区域比较低; 还有一个三维的在Z点的空穴口袋. 由于电子型的圆柱形费米面上费米速度比较高, 因而面内电导被认为由这部分费米面负主要责任. 然而这些理论计算并没有考虑到电子的关联效应, Kotliar用动力学平均场方法(DMFT)估算到电子关联能大概为4 eV, 并认为母体LaFeAsO是一个坏金属, 处在金属绝缘体转变(MIT)的边缘[39]. 在考虑到电子的关联效应以及Fe-Fe键(J1, 近邻)和Fe-As-Fe键(J2, 次近邻)的超交换相互作用后, 理论上发现LaFeAsO的最低能量态是反铁磁长程序[40], 电子的自旋相互交错(interpenetrated), 在134 K进入反铁磁长程序以降低系统的能量, 同时在较高温度还有一个结构相变. 目前为止还不能确定反铁磁序和结构相变之间是否有紧密的联系, 如果有联系, 那么谁起主要作用也有待考证.关于超导态的配对对称性的研究, 理论上已经提出了很多可能, 限于篇幅以及个人的认识, 我们只能挑选出一部分来加以阐述. 第一种是扩展的S波配对, 认同这种观点的工作目前不多, 基于特殊结构的配对势V kk′, 费米面上不同部分的能隙符号相反, 因而超导波函数的能隙方程为扩展的S波[41,42]. 此外,一些理论工作者关注费米面上环绕着M点的两个电子型费米口袋, 根据第一性原理计算, 依赖于掺杂的超导转变温度被认为受控于这两个费米口袋的轨道能级简并度[43]. 第二种观点是能隙带有节点(node)的配对对称性, 一些理论认为Fe的d轨道中的铁磁性的洪特耦合将起到很重要的配对作用, 例如Dai等人[44]提出了一个新颖的配对方式, 即组成库珀对的22692008年10月 第53卷 第19期2270两个电子来自不同的电子口袋, 导致了自旋的三重态, 轨道的单态以及动量空间的偶宇称. 另一方面, Lee 和Wen [45]认为洪特耦合将导致带间的p 波对称, 特别是在能级劈裂的情况下, 这种配对对称性将更加稳定. 其他一些理论或多或少基于电子-空穴对称性或者假设带间带内的涨落为配对的媒介[46,47]. 由于实验上对铁基超导体的微观描述比较少, 因而对其超导配对对称性的定论还不能得到. 然而纯粹从对称性角度出发, 某些理论并不需要实验上的微观结果, 已经能推演出超导态对称性的一些普遍性质[48~50].实验上关于FeAs 基超导体能隙可能存在节点的报道最早来自闻海虎小组, 该小组利用低温比热测量超导转变温度为26 K 的LaFeAsO 0.9F 0.1的低能元激发, 发现电子比热系数γ和外加磁场成非线性关系[25], 同时点接触隧道谱也显示零偏压电导峰(ZBCP)的存在, 随着温度和磁场的增加, ZBCP 逐渐消失. ZBCP 通常被解释为电子隧穿一个金属和一个能隙存在节点的超导体的界面效应[51]. 随后, 两个不同小组基于µSR 实验分别指出FeAs 基超导体的配对对称性为脏的d 波[52,53], 他们指出这个体系的超流密度很低, 超流密度符合Uemura 关系, 即T c ∝ρs [54]. 如果Uemura 关系真能满足, 那么两层结构的FeAs 基超导体将具备更高的超导转变温度. 最近, 核磁共振实验发现自旋点阵弛豫率1/T 1T 符合一个幂次关系(power law), 自旋点阵弛豫率测量的是超导态的准粒子态密度, 因而在超导态随着温度升高费米面上已经有准粒子态密度的存在, 因此超导态的能隙函数可能有节点存在. 作者进一步指出库珀对为自旋单态[55,56]. 但也有些测量倾向于没有节点的能隙, 例如在SmFeAs- O 0.85F 0.15上面的点接触隧道谱的结果认为是一个单一的S 波能隙, 基本满足BCS 预期[57]; 在NdFeAs-表1 铁基超导体和铜氧化物超导体的物理性质比较物理参数 铁砷基铜氧化物 评价H c 1约50~100 Oe (1 Oe = 79.5775 A/m) ~100 Oe下临界场比较接近, 欠掺杂铜氧化物符合Uemura 定律, 铁基可能符合H c 2H c 2(H ||c ): ~70 T H c 2(H ||ab ): ~300 T由NdFeAsO 0.88F 0.12单晶输运数据估算而得 对YBCO 而言 H c 2(H ||c ): 100 TH c 2(H ||ab ): 300~600 T 两个系统的上临界场都很高, 所以配对能隙很强各向异性 Γ=(m c /m ab )1/24~5: NdFeAsO 0.88F 0.12单晶T C 附近 ~2: Ba 1−x K x Fe 2As 2单晶T C 附近对YBCO 而言7~20; 对Bi-2212而言100目前为止单层的铁基超导体的各向异性甚至小于YBCO能隙 LaFeAsOF 的能隙在4 meV 左右, 对(Nd, Pr,Sm) FeAsOF 而言7~10 meV, 2∆/k B T c = 3.5~4.5, 可能有双能隙2∆/k B T c = 8?由于赝能隙的存在,能隙值还不确定 铁基超导体的涨落效应可能不是很强, 但这和低的超流密度相违背能隙对称性 自旋单态观点居多. 带节点、节线的能隙和S 波能隙观点相当. 这方面的结论目前分歧很大主要是d 波配对 目前多数在1111结构中的实验结果支持超导体能隙是带节点的(也有S 波实验结果), 然而在122结构中看见了S 波能隙超流密度 低 低 铜氧化物中位相涨落很明显, 但铁基超导体中似乎不强相干长度对T c = 52 K 的NdFeAsOF 而言ξab = 15-25 Å ξc = 5-10 Å 对T c =90 K 的YBCO 而言ξab = 10 Å ξc = 2~3 Å 两个体系的相干长度都很小, 对应着比较小的凝聚能钉扎势 穿透深度λab = 1000-2000 Å λc = 3000-5000 Å对YBCO 而言 λab = 1000~2000 Å λc = 3000~6000 Å两个系统的λ都很大, 显示低的超流密度母体性质反铁磁或者自旋密度波序, 磁矩0.3~1 µB反铁磁长程序, 磁矩0.5µB, 交换关联能J为0.13meV 二个体系的共同之处是反铁磁序的压制可以诱导超导的出现能带多带空穴掺杂的材料是单带,电子掺杂的材料是多带铁基超导体更类似于电子型的铜氧化物超导体O0.9F0.1单晶上的穿透深度测量就倾向于超导序参量是不带节点的弱各向异性的S波[58]; 另外, NdFeAs- O0.9F0.1单晶上的角分辨光电子能谱测量发现在Γ点的空穴型费米面在超导转变温度以下有完全的能隙打开, 因而超导序参量是各向同性的S波或者是各向异性的S波[59]. 需要指出的是, 作者并没有说明另外两个电子型费米面上的能隙分布如何, 毕竟电子型费米面对正常态输运也起重要作用, 所以序参量S波对称的观点还有待更好的实验数据来证实. 总之从目前的实验数据而言, 单层的FeAs基超导体(ZrCuSiAs 结构)配对对称性d波的可能性比较大, 但还没有定论. 然而, 在BaFe2As2结构中, 最近的角分辨光电子能谱等数据表明S波配对对称性的可能性较大[60]. 鉴于此类超导体具有极其复杂的费米面构成, 因此关于超导能隙的对称性的定论尚需时日.4 铁砷基超导体(ZrCuSiAs结构)和铜氧化物超导体物性的简单比较在表1中我们对铁基超导体和铜氧化物超导体的物理性质做了一个初步的比较, 所有的物理参数均来自于已发表的或者刊登在arXiv数据库上以及我们自己测量的结果.比较表1所列的物性参数, 我们可以发现铁基超导体和铜氧化物超导体有很多类似之处. 然而目前为止还很难说两者的超导配对机理是相同的, 因此基于单晶样品的详实可靠的数据是必需的.5结论与展望很明显, 铁基超导体为探索超导体提供了一个新的平台, 同时它的物理性质也可能是非常规的. 高的上临界场、较小的各向异性和更大的相干长度(相对铜氧化物超导体而言)保证了这种材料的应用潜力. 图3(d)中我们给出了单晶的相图, 可以很清楚地发现它的临界场已经远远超过了MgB2, 因而铁基超导体在工业应用上有很大潜力. 在机理方面, 对于所有欠掺杂的样品而言, 反铁磁序是否是一个共同的特征是非常值得探寻的, 进一步来说, 反铁磁涨落对超导是否有影响将非常重要. 下一步从单晶样品上获得可靠数据将对阐明费米面的形状以及费米面随掺杂的演化, 及超导机理问题非常重要. 沿着空穴掺杂、新结构或者多层的思路去探索新材料, 可能会发现具有更高T c的新超导体.编后语此文的主体部分是2008年6月15日前完成的, 因此它主要反映的是此前的信息. 随后的一些重要工作可能未能够反映出来, 请见谅.参考文献1 Poole C P. Handbook of Superconductivity. New York: Academic Press, 20002 Bednorz J G, Muller K A. Possible high T c superconductivity in the Ba-La-Cu-O System. Z Phys B, 1986, 64: 189—1933 Kamihara Y, Watanabe T, Hirano M, et al. Iron-based layered superconductor La[O1−x F x]FeAs(x=0.05-0.12) with T c=26 K. J AmChem Soc, 2008, 130: 3296—32974 Johnson V, Jeitschko W. ZrCuSiAs: A “filled” PbFCl type. J Solid State Chem, 1974, 11: 161—1665 Zimmer B I, Jeitschko W, Albering J H, et al. The rare earth transition metal phosphide oxides LnFePO, LnRuPO and LnCoPO withZrCuSiAs type structure. J Alloys Comp, 1995, 229: 238—2426 Kamihara Y, Hiramatsu H, Hirano M, et al. Iron-based layered superconductor: LaOFeP. J Am Chem Soc, 2006, 128: 10012—100137 Watanabe T, Yanagi H, Kamiya T, et al. Nickel-based oxyphosphide superconductor with a layered crystal structure, LaNiOP. InorgChem, 2007, 46: 7719—77218 Chen G F, Li Z, Li G, et al. Superconducting properties of Fe-based layered superconductor LaO0.9F0.1−δFeAs. Phys Rev Lett, 2008,101: 0570079 Zhu X Y, Yang H, Fang L, et al. Upper critical field, Hall effect and magnetoresistance in the iron-based layered superconductor2271。