离散数学平面图及图的着色
离散数学PPT课件10着色与对偶图(ppt文档)
不同颜色.
四. 图G的正常着色(简称着色):
1. 对G的每个结点指定一种颜色,使得相邻接的两个结点
着不同颜色. 如果G着色用了n种颜色,称G是 n-色的.
2.对G着色时,需要的最少颜色数,称为G的着色数,记作
x(G) .
3.对G着色方法:(下面介绍韦尔奇.鲍威尔法)
3.对G着色方法:(介绍韦尔奇.鲍威尔法 Welch.Powell) ⑴将G中的结点按照度数递减次序排序,(此排序可能不唯 一,因为可能有些结点的度数相同) ⑵用第一种颜色对第一个结点着色,并按照排序,对与前面 着色点不邻接的每一个点着上相同颜色. ⑶用另一种颜色对尚未着色的点, 重复执行⑵和⑶,直到
⑶当且仅当ek只是一个面Fi的边界时, vi*上有一个环ek* 与ek相交.
v3*
则称图G*是G的对偶图.
v5
F1 v1*
F3
可见G*中的结点数等于
F2 v2*
G中的面数.
二. 自对偶图:如果图G对偶图G*与G同构,则称G是自对偶
图. (如下图) 三.对偶图与平面图着色的关系:
对平面图面相邻面用不同颜 色的着色问题,可以归结到对 其对偶图的相邻接的结点着
有共同的学生在读, 就在两门课程之间连一直线.得到图:
结点度数递减排序:
A
B,C,D,G,A,E,F 对图正常着色后, 标有同一种颜色的 G
课,可以同时考试.安排考试日程: 周一: A 周二: B,F 周三:C,E 周四: D,G
F E
作业 P189 – 8.16 8.17
B C
D
所有结点都着上颜色为止.
B C
例如:结点排序:A,B,E,F,H,D,G,C A
离散数学 平面图与着色
这样的构造是可能的,因为G是联通的。在 添加m条边之后就获得G。设rk,mk,nk和 分别为Gk的面数、边数和顶点数。 现在用归纳法来进行证明。对G1来说关系 r1=m1-n1 +2为真,因为m1=1,n1=2 而r1=1。 现在假定 rk=mk-nk +2,我们来考虑Gk+1。 设Gk+1= Gk +(ak+1,bk+1),此时分两 种情况来讨论。
【定理12.3】若G的每个面的边界至少含k kr k 条边,则 m (n 2)
2 k 2
【例12.4】 证明K5是不可平面图 。 【例12.5】 证明K3, 3是不可平面图。
略
【定义12.3】在图G的边(u, v)上添加k个 顶点v1,v2,…,vk,从而使得边(u, v)变为 (k+1)条边(u,v),(v1, v2), …,( vk, v), 则称为对边(u, v)的加细。两个图称为同 胚的,其中一个图是另一个图的加细图。 【定理12.4】一个图G是可平面图的充要条 件是G没有同胚于K5或K3, 3的子图。
Theorem If every vertex of G has degree d(v) < k, then G is k-colorable. Proof: Use induction on n (number of vertices). 1.If n = 1 or n = 2, the assertion is easily seen to be true. Suppose n > 2, and assume that the proposition is valid for all graphs with fewer than n vertices. 2.Choose any vertex v of G and delete it and all the edges incident to v. This leaves a subgraph H of G with n - 1 vertices satisfying the given hypothesis (i.e. that every vertex has degree less than k). By the inductive hypothesis, (H) k. Now, consider any particular k-coloring of H. Since d(v) < k, the vertices of H that were adjacent to v in G are colored with at most k 1 different colors. Thus, there’s at least one color left with which we may color v, so that it is of a different color to each of its neighbors. This gives a coloring of G using the same colors as H. Therefore, G is k-colorable.
离散数学中的着色问题研究
离散数学中的着色问题研究离散数学是数学的一个分支,主要研究集合、函数、关系、图论等离散结构及其应用。
在离散数学中,着色问题是一个经典的研究方向。
着色问题是指在给定的图或图的某个特定部分上,给每个顶点或每条边分配一个颜色,使得相邻的顶点或边颜色不相同的一类问题。
着色问题最早可以追溯到1852年,当时英国著名数学家弗朗西斯·格思欧提出了“四色猜想”,即地图着色问题的一个特例。
他猜测,任意平面图都可以用四种颜色进行着色,使得任意两个相邻区域颜色不同。
虽然直到1976年才由凯尼思·阿普尔、沃尔夫冈·赫登和约翰·哈姆顿等人证明了这个猜想的正确性,但这个问题奠定了着色问题研究的基础。
在着色问题的研究中,最为著名的是顶点着色问题和图的边着色问题。
顶点着色问题是指对于给定的图,为图的每个顶点分配一个颜色,并且相邻的顶点颜色不能相同。
而图的边着色问题是指为图的每条边分配一个颜色,要求相邻的边颜色不相同。
这两个问题都是在给定一定的约束条件下,寻找合理的颜色分配方案,是离散数学中的基础问题。
着色问题在实际应用中有着广泛的意义和应用。
例如,在地图着色中,不同颜色的区域表示不同的行政区域或国家,通过合理的着色可以方便地进行区分。
此外,在调度问题中,着色问题也具有重要作用。
例如,在一条生产线上的任务安排,可以通过着色问题来确定每个任务在不同时间段的执行顺序,从而实现资源的优化分配。
在着色问题的研究中,有很多经典的算法和策略。
其中最著名的算法是所谓的贪心算法,即每次选择未被染色的顶点或边中与已染色顶点或边相邻且颜色不同的进行染色,直到所有顶点或边都被染色。
贪心算法是一种简单而有效的算法,但并不总是能够找到最优解。
其他的算法包括回溯算法、深度优先搜索算法等,它们在着色问题的求解中各有特点,可以根据具体情况进行选择和应用。
此外,在着色问题的研究中,还涉及到很多扩展和变种。
例如多重集着色问题,指的是允许相邻的顶点或边可以有相同的颜色;带权着色问题,指的是为每个颜色分配一个权重,并寻找使总权重最大的颜色分配方案等。
离散数学中的图的平面图与平面图的着色
图是离散数学中的重要概念,而平面图和平面图的着色是图论中的两个关键概念。
平面图是指在平面上绘制的图形,使得图中的边不会相交。
平面图的着色是指对平面图中的顶点进行染色,且相邻的顶点不会被染成相同的颜色。
平面图的概念最早由欧拉在1736年提出。
他发现,如果一个图是可以在平面上绘制而不会边相交的,那么这个图是一个平面图。
欧拉还引入了一个重要的公式,即欧拉定理,它描述了平面图中的顶点、边和面的关系:V - E + F = 2,其中V代表顶点数,E代表边数,F代表面数。
对于平面图的着色问题,四色定理是一个非常重要的结果。
四色定理指出,任何一个平面图,在不考虑多重边和自环的情况下,最多只需要使用四种颜色就能够对图的顶点进行染色,使得相邻的顶点不会有相同的颜色。
这个定理在1976年被由英国数学家Tomás Oliveira e Silva使用计算机辅助证明,被认为是图论史上的一大突破。
对于平面图的着色,有一种特殊的染色方法叫做四色标号。
四色标号是指对于任意一个平面图,都可以给图中的每个顶点赋予一个自然数,使得相邻的顶点之间的差值不超过3。
这种染色方法保证了相邻的顶点不会被染成相同的颜色,同时最多只需要使用四种颜色。
平面图的着色不仅在图论中有着重要的应用,同时在现实生活中也有很多实际的应用。
比如,考虑地图上的城市,如果我们希望将城市标记成不同的颜色,以表示它们的关系,那么可以利用平面图的着色来实现。
另外,平面图的着色还有很多其他的实际应用,比如在工程规划中用于规划电路的布线、在计算机科学中用于处理图像等等。
总之,离散数学中的图的平面图与平面图的着色是图论中的两个重要概念。
平面图是指在平面上绘制的图形,使得边不会相交;平面图的着色是指对平面图中的顶点进行染色,且相邻的顶点不会被染成相同的颜色。
四色定理是平面图着色的重要结果,它指出任意一个平面图可以使用最多四种颜色进行着色。
平面图的着色在现实生活中有着广泛的应用,是离散数学中的一个重要研究领域。
离散数学中的图的颜色数与四色定理
离散数学是研究离散结构和离散运算的数学分支,它在计算机科学、信息技术、密码学等领域中具有重要的应用价值。
而图论作为离散数学的一个重要分支,在实际应用中扮演着重要的角色。
图是由节点和连接节点的边组成的抽象表示,可以用来描述许多现实生活中的问题,如交通网络、社交网络等。
而图的着色问题,即如何给图的节点上色,是图论中一个重要的课题。
在离散数学中,图的颜色数是指给图的每个节点赋予的不同颜色的数量。
解决图的着色问题,即求解最小的颜色数,是离散数学中的一个经典问题。
根据图的邻接关系,我们可以将图分为不相邻的节点集合,或称为独立点集。
而在每个独立点集中,节点之间不存在连接,即没有边相连。
因此,在同一个独立点集中的节点可以赋予相同的颜色。
而对于连接的节点,我们需要确保相邻的节点颜色不同。
基于这样的思想,我们可以使用贪心算法来给图的节点进行着色。
贪心算法的基本思路是从一个初始节点开始,每次选择一个尚未被上色的节点,并且给它赋予不同于相邻节点的颜色。
重复这个过程,直到所有的节点都被着色。
但是,通过贪心算法所得到的着色结果并不一定是最优解。
这引出了著名的四色定理。
四色定理是图论中一个重要的定理,指出任何平面图都可以使用不超过四种颜色进行着色,使得相邻节点的颜色不同。
该定理是由基姆和罗伯特森等人在1976年通过计算机模拟方法得到的,随后在1997年由托马斯·韦伦斯顿等人通过使用图论方法进行证明。
证明四色定理的过程非常复杂,但基本思想是从数学的角度证明了四色定理的逻辑正确性。
简单来说,四色定理的证明过程是通过构造方法,将平面图转化为一种特殊的图结构,即棋盘染色问题。
然后通过分析棋盘染色问题的特征和规律,进行推理和证明。
四色定理的证明不仅仅具有理论意义,也具有重要的实际应用。
例如,在地图着色中,四色定理可以用于保证地图上相邻地区的颜色不同。
此外,在计算机图像处理中,也可以采用四色定理的方法,有效地减少图像的颜色数量,从而节省存储空间和运算时间。
离散数学平面图
又因为任取K3,3中三个结点,至少有两个点不邻接, 所以不能组成一个面,即K3,3中任何 一个面至少由四条边围成,即:所有面 的次数之和deg(r) >=4r=20 又由定理1知:deg(r)=2|E|=18 即18>=20矛盾不。论怎所么以画,K总3,有3不交是叉点平面图。
❖ 平面图基本性质
设G是一个有v个结点e条边的连通简单平面图,若v3, 则:e<=3v-6。等价于: 若不满足e<=3v-6,则G不是连通平面图。
例题:证明k5图不是平面图。
K5图中,v=5,e=10,10 3*v-6=35-6=9
但定理的条件只是必要条件。
如K3,3中v= 6,e =9, e<3v-6=12 满足条件,但K3,3不是平面图。
离散数学
❖ 图论
1 图的基本概念 2 路与回路 3 图的矩阵表示 4 欧拉图与汉密尔顿图 5 平面图 6 对偶图与着色 7 树与生成树
❖ 平面图基本概念
定义1:设G=<V,E>是一个无向图,如果能把G的所有结点和
边画在平面上,且使得任何两条边除了端点外没有其他的交点, 就称G是一个平面图。
(1)
G为k条边,再添加一条边,只有下述两种情况:
面数不变 点树加1 边数加1
点数不变 面数加1 边数加1
(Vk+1)-(ek+1)+rk=2成立
(Vk)-(ek+1)+(rk+1)=2成立
通过上述归纳法证明欧拉公式v-e+r=2成立。
❖ 平面图基本性质
例1:证明K3,3不是平面图
证:假设K3,3是平面图,
离散数学7-5平面图7-6对偶图与着色
第十六页,编辑于星期二:九点 四十六分。
K5和K3,3常称作库拉托夫斯基图。
K3,3
K5
第十七页,编辑于星期二:九点 四十六分。
作业
P317: (1)(2)
一、对偶图
1、对偶图 定义7-6.1 对具有面F1 ,F2,..., Fn的连通平面图 G=<V,E>实施下列步骤所得到的图G*称为图G的对偶 图(dual of graph):
第二十二页,编辑于星期二:九点 四十六分。
如果存在一个图G*=<V*,E*>满足下述条件: (a)在G的每一个面Fi的内部作一个G*的顶点vi* 。 即对图G的任一个面Fi内部有且仅有一个结点vi*∈V*。
第十八页,编辑于星期二:九点 四十六分。
7-6 对偶图与着色
掌握对偶图的定义,会画图G的对偶图 G* 掌握自对偶图的定义及必要条件。
第十九页,编辑于星期二:九点 四十六分。
与平面图有密切关系的一个图论的应用是图形的着色问 题,这个问题最早起源于地图的着色,一个地图中相邻国 家着以不同颜色,那么最少需用多少种颜色? 一百多年前,英国格色里(Guthrie)提出了用四种颜色即 可对地图着色的猜想,1879年肯普(Kempe)给出了这个 猜想的第一个证明,但到1890年希伍德(Hewood)发现肯 普证明是错误的,但他指出肯普的方法 虽不能证明地图 着色用四种颜色就够了,但可证明用五种颜色就够了,即 五色定理成立。
(c)当且仅当ek只是一个面Fi的边界时(割边),vi*存在 一个环e*k与ek相交。
即当ek为单一面Fi的边界而不是与其它面的公共边 界时,作vi*的一条环与ek相交(且仅交于一处)。所作的 环不与 G*的边相交。
离散第23讲 平面图的着色与树
n = 1时显然T无回路,因这时m=n–1=0。
设顶点数为n–1 的满足题设的图无回路,顶点数为n的图T至少有 两个悬挂点。去掉一悬挂点构成T’。显然T’仍连通,且m’=m– 1=n–2 = n’–1 ,因此由归纳假设T’无回路。在T’上加回所删去的 悬挂点得T,故T亦无回路。
第23讲 平面图的着色与树
-5-
对偶图例
第23讲 平面图的着色与树
-6-
对偶图例
同构图的对偶图可能不同构 左边的对偶图有5度顶点, 右边的对偶图却没有 平面图的对偶图仍为平面图
第23讲 平面图的着色与树
-7-
可k着色
定义: 无环图G称为可k-着色的,如果可用k种颜色 给G的所有顶点着色,使每个顶点着一种颜色,而同 一边的两个端点着不同颜色。
v5 v4
v1 v2
v0
v3
第23讲 平面图的着色与树
-10-
5色定理
为叙述简明,令RY表示G-v0中所有着红、黄顶点的集合,BW表 示G - v0中所有着黑、白顶点的集合。考虑RY生成的G的子图 G(RY)。
若v1,v3分属于G(RY)的两个不同的连通分支,那么只要将v 1所在分支的红、黄顶点的着色作一对换(从而v1着黄色), 便可给v0着红色以完成对G的5-着色。
若任意平面图可k-着色,则任意平面图的面可用k种 颜色之一着色,使得相邻的面着不同颜色
第23讲 平面图的着色与树
-8-
5色定理
定理: 任何平面图都是可5-着色的。 证:
连通分支、环和平行边与着色问题无关,因此 可只讨论平 面连通简单图。 设G为任一平面连通简单图,顶点个数为n 。对n归纳。 当n≤5时命题显然成立。 设n-1个顶点的平面图都是可5-着色的。考虑n个顶点的图G。
离散数学中的染色问题研究
离散数学中的染色问题研究离散数学是数学的一个分支领域,研究的是不连续的、离散的结构和对象。
其中一个重要的研究方向就是染色问题,它在多个领域有着广泛的应用。
本文将介绍离散数学中染色问题的基本概念、解决方法以及实际应用。
一、概述染色问题是一类涉及给定对象赋予各种颜色的数学问题。
常见的染色问题有图的顶点着色问题和平面地图着色问题。
图的顶点着色问题要求给定无向图的各个顶点赋予不同的颜色,使得相邻的顶点不能有相同颜色。
平面地图着色问题是指给定一个地图上的区域,要求相邻的区域之间不能有相同的颜色。
二、解决方法对于染色问题的解决方法,有多种不同的算法和策略。
下面将介绍其中较常用的几种方法。
1. 贪心算法贪心算法是一种简单而高效的解决染色问题的方法。
它的基本思想是每次选择一个合适的颜色给节点染色,并尽量避免相邻节点具有相同颜色。
贪心算法通常通过对节点顺序的选择和颜色的分配来实现。
2. 回溯算法回溯算法是一种递归的解决方法,它通过穷举所有可能的情况来求解染色问题。
具体实现时,从图的第一个节点开始遍历并进行颜色的选择,当发现无法进行下一步时就回溯到上一个节点进行其他尝试。
3. 图的染色多项式图的染色多项式是一种数学表示方法,用于描述染色问题的解决情况。
它能够准确计算出各种染色方案的数量,并通过多项式的形式抽象出问题的共性和规律。
三、实际应用染色问题在实际中具有广泛的应用,下面将介绍其中几个重要的应用领域。
1. 地图着色染色问题最早被应用于地图着色,目的是要求相邻的区域之间不能有相同的颜色。
这在地理学和地图制作中非常重要,能够帮助人们更清晰地理解地理空间。
2. 时间表编排染色问题在课程表、员工排班等时间表编排中也有广泛应用。
通过合理的染色方案,可以保证时间表的合理性和可行性,避免冲突和混乱。
3. 无线频道分配在无线通信领域,染色问题被应用于无线频道的分配。
通过给不同区域或设备分配不同的频道,可以减少干扰和信号冲突,提高通信效率。
离散数学(Ch15平面图及色数)
定理15.4 设G为任一平面图, 则(G)≤5. (五色定理)
用第一数学归纳法对G的顶点数n进行归纳: 显然, 当n≤5时, 有(G)≤5. 假设 n–1 (n≥6)时, (G)≤5成立.
显然, 平面图G中必有度数小于6的顶点u0. (因m≤3n-2) 将顶点u0从G中去掉(含u0邻接的边), 得G0=G – u0, 则G0仍是平面图且顶点数为n-1, 根据假设, 有(G0)≤5. 再从G0加入顶点u0及邻接的边, 还原为G. ⑴如果d(u0)≤4, 则与u0邻接顶点最多涂4色, 有(G)≤5成立. ⑵如果d(u0)=5, 令与u0邻接的顶点按顺时钟排为u1,u2,u3,u4,u5. 并设这5个顶点涂色为C1,C2,C3,C4,C5.
3
定义15.2 设G是一个平面图, 如果连接G的任意两个 不邻接顶点u和v, 都会使G+(u,v)变成非平 面图, 则称G为极大平面图. (边数极大)
极大平面图
K5非平面图
K3
定理15.2 设G是至少具有三个顶点的极大平面图, 则G的任何一个面都是K3.
假设G是极大平面图, 但有一个面不是K3面, 不妨设为{u1,u2,u3,u4,…,u1}, 考察: ⑴ (u1,u3)邻接, (u2,u4)邻接 两边会在圈外相交 ⑵ (u1,u3)不邻接 可加边(u1,u3), 仍是平面图 ⑶ (u2,u4)不邻接 可加边(u2,u4), 仍是平面图
6
§15.2 色数
1. 对偶图 定义15.3 设G是一个平面图, 具有k个面F1,F2,…,Fk, 其中包括无限面, 构造对偶图G*: ⑴ 在G的每个面Fi的内部取一点fi, 作为G*的顶点; ⑵ 对应于G的任意一条边e,
如果e是Fi和Fj的公共边, 则与e交叉连接fi和fj, 使(fi, fj)G* 如果e仅是Fj的悬挂边或桥, 则连一个自环, 使(fj, fj)G*
离散数学sec12 图的着色
地图的面着色
地图的面着色可转化成对偶图的点着色 定理12.13 地图G是k-面可着色的当且仅当它的对偶图
G*是k-点可着色的. 证明简单 定理12.15:每个平面图都是6可点(面)着色的。 定理12.16(Heawood):每个平面图都是5可点(面)着 色的。 四色定理:任何平面图都是4可着色的。
证明线索:对G的阶数n做归纳.
定理12.6:(Brooks)若连通无向图G不是Kn, (n3),也不是奇数阶的圈,则
(G) (G) 4 例:Petersen图的点色数为3.
地图着色与平面图的点着色
定义12.3 (1) 地图——连通无桥平面图(嵌入)与所有的面 (2) 国家——地图的面 (3) 两个国家相邻——它们的边界至少有一条公共边
第十二章 图的着色
▪点着色 ▪地图着色与平面图的点着色 ▪边着色
点着色
k可(点)着色:如果无环图G的每个顶点都可 用k种颜色之一着色,使得任意两个不同的相 邻顶点有不同颜色,则称G是k可(点)着色的。
点色数:如果G是k可点着色的,但不是k-1可 点着色的,则称G的点色数为k,记为
k可边(面)着色,边(面)色数
G1
G2
2
关于点着色的几个简单结果
① (G)=1当且仅当G为零图 ② (Kn)=n ③ 若G为奇圈或奇阶轮图,则(G)=3,若G为偶阶轮图,则
(G)=4. ④ 若G的边集非空,则(G)=2当且仅当G为二部图.
上述各图中,色数分别为2,3,4,5
色数的上界
定理12.5:对于任意无向图G,均有 (G) (G)+1
边着色
例12.7 某中学,星期一由m位教师给n个班上课: 1. 这一天至少要安排多少节课? 2. 在节数不增加的条件下至少需要几个教室? 3. 若m=4,n=5,设教员为t1,t2,t3,t4,班级
应用离散数学图论平面图及图的着色题库试卷习题及答案
§5.6 平面图与图地着色 习题5.61. 假定一个连通平面图有8个顶点,每个顶点地度数都为3。
请问,这个图地平面嵌入将平面分成多少个面?解 根据条件有8=p ,122/83=⨯=q ,从而根据欧拉定理有62=+-=p q f 。
2.设G 是具有k 个连通分图地)(q p ,平面图地一个平面嵌入,其面数为f ,证明:1+=+-k f g p解 下面用数学归纳法证明如下:(1)1=k 时即为欧拉公式,所以成立。
(2)假设m k ≤时公式成立。
(3)当1+=m 时,将图G 看成两个图1G 与2G 地并,其中1G 为一个连通分图, 2G 为其余m 个连通分图地并,根据上面地假设,对图1G 与2G 有:11111+=+-f q p ,1222+=+-m f q p ,将上两式相加得: 1)1()1()()(212121++=-+++-+m f f q q p p注意到图1G 与2G 共用一个外部面,我们即得1+=+-k f g p 。
3.假定一个)(q p ,图是连通地平面二部图,且p ≥3,则q ≤42-p 。
证;由于二部图中每个回路地长度都是偶数。
当p ≥3时,即每个面地围数至少是4。
据定理,2q ≥4f=4(2-p+q) 从而q ≤42-p 。
4.图5.42地4个图是平面图吗?如果是,给出一个平面嵌入;如果不是,找出与5K 或K 3,3同胚地子图。
图5.42 习题4地图解 图(1),(2),(4)改画如下:从而知图(1),(2)是可平面图,图(4)是5阶完全图5K ,从而是非可平面图。
图(3)也是一个非可平面图,可用库拉托斯基定理证明如下:5.一个简单图地交叉数是指在平面里画这个图且不允许任何三条边在同一点交叉时,各边交叉地最少次数。
求以下非平面图地交叉数:3,3K , 5K , 6K , 7K , 4,3K , 4,4K , 5,5K解:3,3K 地交叉次数是15K 地交叉次数是56K 地交叉次数是107K 地交叉次数是184,3K 地交叉次数是84,4K 地交叉次数是115,5K 地交叉次数是166.下面地算法可以用来为简单图点着色。
离散数学中的图着色问题研究与算法设计
离散数学中的图着色问题研究与算法设计离散数学是数学的一个分支,研究离散的结构和对象。
在离散数学中,图论是一个重要的研究领域。
图着色问题是图论中的一个经典问题,其研究和算法设计具有重要的理论和实际意义。
图着色问题是指如何用有限种颜色对图中的顶点进行着色,使得相邻的顶点颜色不相同。
这里的相邻顶点是指在图中有一条边连接的顶点。
图着色问题最早由英国数学家弗朗西斯·格斯顿于1852年提出,被称为“四色定理”。
四色定理是图着色问题的一个重要结果。
它指出,任何平面图都可以用至多四种颜色进行着色,使得相邻顶点颜色不相同。
这个定理的证明非常复杂,涉及到大量的数学理论和计算机算法。
直到1976年,美国数学家肯尼思·阿普尔和沃尔夫冈·哈肯提出了一个基于计算机的证明,才最终解决了这个问题。
除了四色定理,图着色问题还有许多其他的研究和算法设计。
其中一个经典的问题是最小顶点着色问题。
最小顶点着色问题是指找到一个最小的颜色数,使得图中的每个顶点都能被染上一种颜色,并且相邻顶点颜色不相同。
这个问题在实际中有着广泛的应用,比如任务调度、频率分配等领域。
解决最小顶点着色问题的算法有许多种。
其中一种常用的算法是贪心算法。
贪心算法的基本思想是每次选择一个顶点,将其染上一个未被使用的颜色,然后继续选择下一个顶点。
如果某个顶点的颜色与相邻顶点相同,则选择另一种颜色进行染色。
通过不断迭代,直到所有的顶点都被染色为止。
贪心算法的时间复杂度较低,但是并不一定能够找到最优解。
除了贪心算法,还有其他的算法可以解决最小顶点着色问题,比如回溯算法、分支定界算法等。
这些算法的时间复杂度较高,但是可以找到最优解。
然而,由于图着色问题是一个NP完全问题,即不存在多项式时间内的算法可以解决该问题。
因此,对于大规模的图着色问题,通常采用近似算法或者启发式算法来求解。
近似算法是一种在多项式时间内找到一个接近最优解的算法。
其中一个常用的近似算法是基于最大度数的着色算法。
离散数学-图论-平面图
13
例:对偶图
对偶图的性质
性质1:若G是平面图,则G必有对偶图G*,且G*是 唯一的.
可平面图的不同平面嵌入可有不同构的对偶图. 即使G不连通.
性质2: G*是连通图.
性质3:若G是连通平面图,那么(G*)* G. 性质4:对连通平面图G及其对偶图G*: m m*, n d *, d n*
原图与加细图称为同胚.
定理(Kuratowski):G是可平面图 G没有同胚 于K5和K3,3的子图.
9
极大可平面图u和v之间加 入边(u,v)都会使G + (u,v)成为不可平面图,则称 G是极大可平面图.
注意:这里指的是加入边(u,v)在本质上破坏了图的可 平面性. 可能在一种平面表示下不能加,但在另一种表示下可 以加.
不可平面图
定理:设G是简单连通平面图.若每个面的度k, 则 kr/2 m (n – 2)k/(k – 2) 例: K5是不可平面图.
K5是结点数最少的不可平面图. K3,3是n6时边数最少的不可平面图.
例: K3,3是不可平面图.
8
Kuratowski定理
加细:在图的边上任意增加一些度为2的顶点.
12
对偶图
定义:给定图G,如下构造的图G*,称为G的对偶 图(dual graph). 1.G中每个面Ri内放一个G*顶点v*i ; 2.对应面Ri和Rj的公共边e,作一条仅与e相交一 次的边e* (v*i,v*j) E(G*); 3.若割边e在面Ri的边界上,则作v*i上仅与e相交 一次的环e*.
趣题:Gardner的愚人节地图
离散数学第四篇7图 5-6平面图及图的着色
7-6-2 图中顶点的着色
7-6-3 地图的着色与平面图的点着色 7-6-4 边着色 本章小结 习 题
4
7-5-1 平面图的基本概念
一、关于平面图的一些基本概念 1、 平面图的定义 定义7-5-1 G可嵌入曲面S——如果图G能以这样的方式画在曲面S上 ,即除顶点处外无边相交。 G是可平面图或平面图——若G可嵌入平面。
证明
设G的连通分支分别为G1、G2、…、Gk,并设Gi的顶点数、 边数、面数分别为ni、mi、ri、i=1,2,…,k。
由欧拉公式可知: ni-mi+ri = 2,i=1,2,…,k 易知, m mi,n ni
i 1 i 1 k k
(7-5-1)
由于每个Gi 有一个外部面,而G只有一个外部面,所以G的面数 k r ri k 1
(3)设m=k(k≥1)时成立,当m=k+1时,对G进行如下讨论。 若G是树,则G是非平凡的,因而G中至少有两片树叶。 设v为树叶,令G'=G-v,则G'仍然是连通图,且G'的边数 m'=m-1=k,n'=n-1,r'=r。 由假设可知 n'-m'+r'=2,式中n',m',r'分别为G'的顶点数, 边数和面数。 于是n-m+r=(n'+1)-(m'+1)+r'=n'-m'+r'=2 若G不是树,则G中含圈。
R1
R0 R2
R3
平面图有4个面,deg(R1)=1,9deg(R2)=3, deg(R3)=2, deg(R0)=8。
定理7-6-1 平面图G中所有面的次数之和等于边数m的两倍,即
离散数学 7-5 平面图7-6对偶图与着色
证明一个图的色数为n,首先 必须证明用n种颜色可以着色该 图,其次证明用少于n种颜色不 能着色该图。
4、对点着色的鲍威尔方法: 第一步:对每个结点按度数递减次序进行排列(相 同度数的结点次序可随意) 第二步:用第一种颜色对第一个结点着色,并按次
颜色即可对地图着色的猜想,1879年肯普(Kempe) 给出了这个猜想的第一个证明,但到1890年希伍德
(Hewood)发现肯普证明是错误的,但他指出肯普
的方法 虽不能证明地图着色用四种颜色就够了,但 可证明用五种颜色就够了,即五色定理成立。
此后四色猜想一直成为数学家感兴趣而未能解 直到1976年美国数学家阿佩尔和黑肯宣布:他
(2)归纳假设:设G有k个结点时结论成立。即G是最多可5-着色 的。 (3)归纳推理:需要证明G有k+1个结点时结论仍成立。 先在G中删去度数小于5的结点u,根据归纳假设,所得的图G-{u} 有k个结点,结论成立。然后考虑在G-{u}中加上一个结点的情况。 若加入的结点满足deg (u)<5,则可以对u正常着色。若加入的结 点满足deg (u)=5,则与它邻接的5个结点可以用4种颜色着色。 分两中情况证明: . 对调v1,v3两个结点的颜色后,给着v1的颜色。 .对调v2,v4两个结点的颜色后,给着v2的颜色。
r=8,则e=2r=16。
5.定理7-5.3 设G为一简单连通平面图,其顶点数 v≥3,其边数为e,那么 e≤3v – 6 证明思路:设G的面数为r,当v=3,e=2时上式成立, 若e≥3,则每一面的次数不小于3。由欧拉定理,各面 次数之和不小于2e。因此 2e≥3r, r≤2e/3 代入欧拉公式: 2=v-e+r≤v-e+ 2e/3 整理后得: e≤3v – 6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实线边图为平面图,虚线边图为其对偶图。
从定义不难看出G的对偶图G*有以下性质: G*是平面图,而且是平面嵌入。 G*是连通图。 若边e为G中的环,则G*与e对应的边e*为桥,若e为桥, 则G*中与e对应的边e*为环。 在多数情况下,G*为多重图(含平行边的图)。
同构的平面图(平面嵌入)的对偶图不一定是同构的。
无限面(外部面)——面积无限的面,记作R0。
有限面(内部面)——面积有限的面 ,记作R1, R2, …, Rk。
面Ri的边界——包围面Ri的所有边组成的回路组。
面Ri的次数——Ri边界的长度,记作deg(Ri)。
2、几点说明 若平面图G有k个面,可笼统地用R1, R2, …, Rk表示,不需 要指出外部面。 回路组是指:边界可能是初级回路(圈),可能是简单回 路,也可能是复杂回路。特别地,还可能是非连通的回路 之并。
设e为G的任意一条边,
若e在G的面Ri 与Rj 的公共边界上,做G*的边e*与e相交, 且e*关联G*的位于Ri与Rj中的顶点vi*与vj*,即e*=(vi*,vj*) ,e*不与其它任何边相交。 若e为G中的桥且在面Ri的边界上,则e*是以Ri中G*的顶点 vi*为端点的环,即e*=(vi*,vi*)。
图的同构
2、图之间的同胚 定义17.6 若两个图G1与G2同构,或通过反复插入或消去2 度顶点后是同构的,则称G1与G2是同胚的。
上面两个图分别与K3,3, K5同胚 。
17.4 平面图的对偶图
一、对偶图的定义 定义17.7 设G是某平面图的某个平面嵌入,构造G的对偶图 G*如下: 在G的面Ri中放置G*的顶点vi* 。
证明
设G的连通分支分别为G1、G2、…、Gk,并设Gi的顶点数、 边数、面数分别为ni、mi、ri、i=1,2,…,k。
由欧拉公式可知: ni-mi+ri = 2,i=1,2,…,k 易知, m mi,n ni
i 1 i 1 k k
(17.1)
由于每个Gi 有一个外部面,而G只有一个外部面,所以G的面数 k r ri k 1
于是每条边在计算总次数时,都提供2,因而deg(Ri)=2m。
三、极大平面图 1、 定义 定义17.3 若在简单平面图G中的任意两个不相邻的顶点之 间加一条新边所得图为非平面图,则称G为极大平面图。
注意:若简单平面图G中已无不相邻顶点,G显然是极大平 面图,如K1(平凡图), K2, K3, K4都是极大平面图。
(2)m*=m
(3)r*=nk+1
(4)设G*的顶点v*i位于G的面Ri中,则dG*(v*i)=deg(Ri)
本章主要内容
平面图及平面嵌入。 平面图的面与次数。 极大平面图及性质。 极小非平面图。 欧拉公式及其推广。 平面图的边数m与顶点数n的关系。
简单平面图G中,δ(G)≤5。
m l (n k 1) l 2
定理17.12 设G为n(n3)阶m条边的简单平面图,则m3n6。
证明
设G有k(k1)个连通分支, 若G为树或森林,当n3时,m=n-k3n6为真。
若G不是树也不是森林,则G中必含圈,又因为G是简单图 ,所以,每个面至少由l(l3)条边围成,又在l=3达到最大 值,由定理17.11可知
m l 2 (n k 1) (1 )(n k 1) 3(n 2) 3n 6 l 2 l 2
定理17.13 设G为n(n3)阶m条边的极大平面图,则m=3n6。
证明
由于极大平面图是连通图,由欧拉公式得:
r=2+m-n
(17.4)
又因为G是极大平面图,由定理17.7的必要性可知,G的每个 面的次数均为3,所以:
定理17.2 设GG,若G为非平面图,则G也是非平面图。 推论 Kn(n5)和K3,n(n3)都是非平面图。 定理17.3 若G为平面图,则在G中加平行边或环所得图还是 平面图。 即平行边和环不影响图的平面性。
二、平面图的面与次数(针对平面图的平面嵌入而言) 1、 定义 定义17.2 设G是平面图, G的面——由G的边将G所在的平面划分成的每一个区域。
17.3 平面图的判断
一、为判断定理做准备 1、 插入2度顶点和消去2度顶点 定义17.5 设e=(u,v)为图G的一条边,在G中删除e,增加新的顶点w, 使u、v均与w相邻,称为在G中插入2度顶点w。 设w为G中一个2度顶点,w与u、v相邻,删除w,增加新边 (u,v),称为在G中消去2度顶点w。
小节结束
17.2 欧拉公式
一、欧拉公式相关定理 1、 欧拉公式 定理17.8 对于任意的连通的平面图G,有 n-m+r=2 其中,n、m、r分别为G的顶点数、边数和面数。
定理17.9 对于具有k(k≥2)个连通分支的平面图G,有 n-m+r = k+1 其中n,m,r分别为G的顶点数,边数和面数。
2、极大平面图的主要性质 定理17.5 极大平面图是连通的。(根据注意!) 定理17.6 n(n3)阶极大平面图中不可能有割点和桥。
定理17.7 设G为n(n3) )阶简单连通的平面图,G为极大平面图 当且仅当G的每个面的次数均为3。
四、极小非平面图 定义17.4 若在非平面图G中任意删除一条边,所得图G为平面 图,则称G为极小非平面图。 由定义不难看出: K5, K3,3都是极小非平面图。 极小非平面图必为简单图。 例如:以下各图均为极小非平面图。
G的平面嵌入——画出的无边相交的平面图。
(2)是(1)的平面嵌入,(4)是(3)的平面嵌入。
2、 几点说明及一些简单结论 一般所谈平面图不一定是指平面嵌入,但讨论某些性质时, 一定是指平面嵌入。 很显然:K5和K3,3都不是平面图。见P181
定理17.1 设GG,若G为平面图,则G也是平面图。
m
证明
l (n 2) l 2
由定理17.4(面的次数之和等于边数的2倍)及欧拉公式得
2m deg( Ri ) l r l (2 m n)
r i 1
l (n 2) 解得 m l 2
推论 K5, K3,3不是平面图。
证明
若K5是平面图,由于K5中无环和平行边,所以每个面的次数 均大于或等于l≥3,由定理17.10可知边数10应满足
10≤(3/(3-2))(5-2) = 9
这是个矛盾,所以K5不是平面图。 若K3,3是平面图,由于K3,3中最短圈的长度为l≥4,于是边数9 应满足 9≤ (4/(4-2))(6-2) = 8
这又是矛盾的,所以K3,3也不是平面图。
定理17.11 设G是有k(k≥2)个连通分支的平面图,各面的次数 至少为l(l≥3),则边数m与顶点数n应有如下关系:
二、平面图与对偶图的阶数、边数与面数之间的关系。 结论 设G*是连通平面图G的对偶图,n*、m*、r*和n、 m 、r分别为G*和G的顶点数、边数和面数,则 (1)n*= r
(2)m*=m
(3)r*=n (4)设G*的顶点v*i位于G的面Ri中,则dG*(vi *)=deg(Ri)
定理17.18 设G*是具有k(k2)个连通分支的平面图G的 对偶图, n*, m*, r*, n, m, r分别为G*和G的顶点数、边数 和面数, (1)n*= r
平面图的对偶图。
i 1
于是,对(17.1)的两边同时求和得
2k (ni mi ri ) ni mi ri n m r k 1
i 1 i 1 i 1 i 1 k k k k
经整理得 n-m+r = k+1。
2、 与欧拉公式有关的定理 定理17.10 设G为连通的平面图,且每个面的次数至少为 l(l<=3),则 G的边数与顶点数有如下关系:
2m= d (vi ) 6n
i 1 n
因而m 3n,这与定理17.12(m3n6)矛盾。 所以,假设不成立,即G的最小度(G)5。
说 明
本定理在图着色理论中占重要地位。
定理17.7 设G为n(n3) )阶简单连通的平面图,G为极大平面 图当且仅当G的每个面的次数均为3。
小节结束
R1
R0 R2
R3
平面图有4个面,deg(R1)=1, deg(R2)=3, deg(R3)=2, deg(R0)=8。
定理17.4 平面图G中所有面的次数之和等于边数m的两倍,即
deg( R ) 2m
证 明
i 1 i
r
其中r为G的面数
本定理中所说平面图是指平面嵌入。
e∈E(G),
当e为面Ri和Rj(i≠j)的公共边界上的边时,在计算Ri和Rj的次 数时,e各提供1。 当e只在某一个面的边界上出现时,则在计算该面的次数时 ,e提供2。
江苏科技大学本科生必修课程
离散数学
第17章 平面图及图的着 色
计算机系 周塔
本章–平面图的判断
–平面图的对偶图 –顶点着色及点色数 –地图的着色与平面图的点着色 –边着色及边色数
特别说明:
本章所涉及到的图均指无向图。
17.1 平面图的基本概念
一、关于平面图的一些基本概念 1、 平面图的定义 定义17.1 如果图G能以这样的方式画在曲面S上,即除顶点处外无 边相交,称图G为平面图。
2m deg( Ri ) 3r
i 1 r
(17.5)
将(17.4)代入(17.5),整理后得 m = 3n-6。
二、一个意义重大的定理 定理17.14 设G为简单平面图,则G的最小度(G)5。
证明
若阶数 n6,结论显然成立。
若阶数n7时,用反证法。
假设(G) 6,由握手定理可知: