一种简易锂电池恒流充电电路的设计
锂电池恒流定压充电电路
锂电池恒流定压充电电路
闲来无事,设计了一个充电电路图,用外接直流供电(点烟器接口等等),充满后关断恒流回路,静止电压下降后又自动再充电。
R1确定充电电流,W1调定再充电压,W2调定停充电压,SW1手动充电启动,SW2手动停止充电,Q3、Q4互补组成模拟可关断可控硅(C2、R4的作用是增加Q3、Q4的稳定性)。
注意元件R、R1、Q1、D1的额定电流要达到设计的指标(充电电流I=(V LED-V Q1be)/R1,图中电流理论值为(2-0.7)/2=650mA)。
由于D1的隔离作用,电池平时理论上无放电消耗回路,可以长期不取下来。
LED为充电指示灯,同时为恒流源提供基准电压源。
R起限流作用。
细节加QQ:1191789075。
锂电池充电器中恒流恒压控制电路的设计
锂电池充电器中恒流恒压控制电路的设计应建华,陈建兴,唐 仙,黄 杨(华中科技大学电子科学与技术系,武汉 430074)摘 要: 设计了一种采用开漏输出MOS管取代二极管的恒流恒压控制电路,对电路处于过渡区的原理进行了详细分析;通过在放大器内部引入负反馈的方式,优化了恒流向恒压过渡时的稳定性。
电路采用德国XFAB公司的0.6μm BiCMOS工艺模型,得到最终测试电压为4.192V,充电精度为0.19%。
关键词: 恒流;恒压;锂电池充电器;过渡区中图分类号: TN432 文献标识码: A文章编号:100423365(2008)0320445204 Design of Constant2Current/Constant2Voltage R egulation Loopin Li2ion B attery ChargerYIN G Jianhua,C H EN Jianxing,TAN G Xian,HUAN G Yang (Dept.of Elect ronic S cience and Technolog y,H uaz hong Universit y of Science&Technolog y,W uhan430074,P.R.China) Abstract: A constant2current/constant2voltage regulation circuit was designed using open2drain MOSFET to re2 place diode.The principle of the transition was analyzed in detail.The stability of the system was improved by in2 troducing negative feedback into amplifier.The circuit was implemented in XFAB’s0.6μm n2well BiCMOS mixed2 signal technology.Test results showed that the circuit had a constant voltage of4.192V and an accuracy error of only0.19%.K ey w ords: Constant current;Constant voltage;Li2ion battery charger;Transition regionEEACC: 2570F1 引 言锂离子电池具有较高的能量重量比、无记忆效应、可重复充电多次、使用寿命长、价格低等优点。
各种锂电池充电电路设计
六、简易充电电路:现在有不少商家出售不带充电板的单节锂电池。
其性能优越,价格低廉,可用于自制产品及锂电池组的维修代换,因而深受广大电子爱好者喜爱。
有兴趣的读者可参照图二制作一块充电板。
其原理是:采用恒定电压给电池充电,确保不会过充。
输入直流电压高于所充电池电压3伏即可。
R1、Q1、W1、TL431组成精密可调稳压电路,Q2、W2、R2构成可调恒流电路,Q3、R3、R4、R5、LED为充电指示电路。
随着被充电池电压的上升,充电电流将逐渐减小,待电池充满后R4上的压降将降低,从而使Q3截止, LED将熄灭,为保证电池能够充足,请在指示灯熄灭后继续充1—2小时。
使用时请给Q2、Q3装上合适的散热器。
本电路的优点是:制作简单,元器件易购,充电安全,显示直观,并且不会损坏电池.通过改变W1可以对多节串联锂电池充电,改变W2可以对充电电流进行大范围调节。
缺点是:无过放电控制电路。
图三是该充电板的印制板图(从元件面看的透视图)。
概述PT6102 是一款高度集成的单节锂离子电池充电器,较少的外部元件数目使得它非常适合于便携式应用。
内部集成功率管,不需要外部检测电阻和防倒灌二极管。
充电电流通过外部电阻进行设置,充电结束电压固定在4.2V。
热反馈可以自动调节充电电流,可以在大功率或高环境温度下对芯片加以保护PT6102 分三个阶段对电流进行充电:当电池电压低于2.9V 时是涓流充电,当电池电压大于2.9V 时是恒流充电,并且涓流充电电流是恒流充电电流的1/10,当电池电压到4.2V 时进行恒压充电,在恒压充电过程中,充电电流逐渐减少,当减少到恒流充电电流的1/10 时,结束充电过程。
特点可以用 USB 端口直接对单节电池进行充电.充电电流最大可以到 800mA不需要外部功率管,检测电阻和防倒灌二极管涓流、恒流、恒压三阶段,并有热调节功能,可以在无过热的情况下最大化充电电流精度达±1%的4.2V 充电电压SOT23-5 和ESOP8 封装TP4057简介:TP4057是上海霖叶电子有限公司生产的单节锂电池充电管理芯片,输入电压为4V ~ 9V,典型值为5V,可改变TP4057的6脚电阻来控制充电电流,计算公式为RPROG =1000/IBAT(当IBAT <300毫安时)、RPROG =1300/IBAT -1000(当IBAT>300毫安时),调节范围100 ~ 500毫安,截止充电电压4.2V,外围简单,无须外接开关管,具有充电指示和充满指示、防电池反接、电源欠压保护等功能。
充电电路DIY——简单实用且带充电指示灯的锂电池充电电路
充电电路DIY——简单实用且带充电指示灯的锂电池充电电路
本文介绍一款采用TP4057锂电池专用充电IC制作的锂电池充电电路,其可以对单节锂电池进行充电,并且带有充电指示灯和充满指示灯。
在锂电池充满电之后,整个电路自动处于微功耗省电状态。
▲ TP4057构成的锂电池充电电路。
TP4057是一款单节锂电池专用的恒流/恒压线性充电IC,其内部带有电池反接保护及防倒充电路。
该充电IC的工作电压范围为4~6V,静态工作电流仅有40μA,其输出的充电电流可由⑥脚外接的电阻R2来设定,最大充电电流为600mA。
TP4057的①脚为充电指示端,充电时①脚外接的LED1指示灯点亮;⑤脚为充满指示端,充满电时,⑤脚外接的LED2指示灯点亮。
R1为LED1和LED2的限流电阻。
R2为充电电流设定电阻,其阻值为1.6KΩ时,输出的充电电流为500mA。
本电路可以使用手机充电器或充电宝输出的5V电压供电。
▲ SOT23-6封装的TP4057。
TP4057采用SOT23-6封装,其体积很小,一般采用丝印“57b5”来表示其型号。
▲ TP4057锂电池充电板。
上图为成品的TP4057锂电池充电板,其输入电压为5V(可以使用手机充电器输出的5V电压),输出可以给单节锂电池充电,充电终止电压为4.2V。
充电板采用的LED指示灯为共阳极的红绿双色LED指示灯。
锂电池简易充电电路
六、简易充电电路:
现在有不少商家出售不带充电板的单节锂电池。
其性能优越,价格低廉,可用于自制产品及锂电池组的维修代换,因而深受广大电子爱好者喜爱。
有兴趣的读者可参照图二制作一块充电板。
其原理是:采用恒定电压给电池充电,确保不会过充。
输入直流电压高于所充电池电压3伏即可。
R1、Q1、W1、TL431组成精密可调稳压电路,Q2、W2、R2构成可调恒流电路,Q3、R3、R4、R5、LED为充电指示电路。
随着被充电池电压的上升,充电电流将逐渐减小,待电池充满后R4上的压降将降低,从而使Q3截止,LED将熄灭,为保证电池能够充足,请在指示灯熄灭后继续充1—2小时。
使用时请给Q2、Q3装上合适的散热器。
本电路的优点是:制作简单,元器件易购,充电安全,显示直观,并且不会损坏电池.通过改变W1可以对多节串联锂电池充电,改变W2可以对充电电流进行大范围调节。
缺点是:无过放电控制电路。
图三是该充电板的印制板图(从元件面看的透视图)。
自制简单锂电池充电器电路-副本
自制简单锂电池充电器电路电路很简单,如附图所示,元件很容易廉价获得,适用范围很宽,可以适应1节一4节串连电压,充电电流可以通过元件参数选择,充电特性也比较理想,原理如下:由LM317和R1、R2 R3组成一个典型的恒流电路(431暂时认为断开R4比较大可以先不看)。
当电压不太高时保持恒定的充电电流。
以两节电池充电为例,理想状态下,充电电流应该是电压达到8.3V前一直保持恒定。
当A点电压达到拐点值8.3V时,经过R4R5分压,TL431 开始导通,并把LM3仃的基准点电压从8.3V逐渐拉下。
所谓拐点就是指电流开始下降的那点。
直到电压达到8.4V的0电流点,A点仍然保持这个8.3V电压,LM3仃的输出Vout下降到8.4V,其调整端下降到7.17V。
电池电压为8.3V时(拐点)各点的电压都标在图上,充电截止(8.4V )的各点电压以括号形式也标在后边。
元件选择LM317,三端可调串连稳压块,选塑封的,LM3仃T常用。
根据电流不同,应选用相应的散热片。
TL431,三端可调并联稳压块,与一个小三极管外形一样,常用。
RL就是外接被充电池。
电流采样电阻R1,计算方法是R1 = 1.23 / 充电电流。
例如,若充电电流为0.3A,则电阻应该选择4.1欧。
这个电阻一般要选择功率大一些的,比如1A就应该是2W的。
可调电阻R4可以选择那种篮色的精密多圈,取比额定值大一些的,比如23.2k的就可以选择25K的多圈。
若嫌多圈太贵或难找,也可以用一个固定电阻串连一个普通可调电阻。
例如23.2k的就可以选择22k固定加一个2.2k —3.9k可调节的,以便进行精细调节。
电阻R2的要求不是很高,可以采用串并联的方法得到。
比如8.8欧可以选择10欧并联75欧(或并50欧—91欧)若电路设计为适应不同的电压,比如可以转换完成2节、3节、4节电池的充电,那就应该分别选择可调电阻,并找一个2刀3掷波段开关,用来切换两个可调电阻。
若要求充电电流也可以变化,自然也可以使用波段开关来转换。
锂电池恒流充电器课程设计
锂电池恒流充电器摘要锂电池充电采用恒流方式时,电池充满后若不切断电源会影响电池的寿命,且浪费电资源。
而本次设计的是一种经济实用的锂电池恒流充电器,能够以恒定的电流对锂电池进行充电,电路能够显示充电过程,当电池电量不满时电池两端的电压逐渐增大时,LM556集成块的电势差逐渐降低,二极管发光逐渐变暗,当电池两端电压大于3.7V(7.4V)时,利用TL082通用的J-FET双运算放大器,通过与3.7V(7.4V)基准电压比较,输出高电平,继电器工作,开关吸合,充电断开,同时二极管发光,表示充满。
本文设计的充电器是由变压器,桥式整流电路、恒流生成电路、自动断电电路、显示电路和电源电路6部分组成。
本文较为详细的介绍了变压器整流电路、恒流成生电路、自动断电电路、显示电路的工作原理及功能,向大家简单的展示了锂电池恒流充电器的基本原理。
关键词锂电池恒流自动断电电量显示目录中文摘要1锂电池课程设计的目的 (1)1.1课程设计的四个目的 (1)2锂电池的总体设计思路 (2)2.1设计概念图 (2)2.1设计思路概括 (2)3锂电池恒电流充电电路的具体电路分析 (3)3.1桥式整流电路 (3)3.2滤波稳压电路 (4)3.3稳压管特性 (5)3.4三端稳压电路LM317 (6)3.5充电显示电路LM556多谢振荡器 (7)3.6自动断开电路 (8)4总结与体会 (9)参考文献 (9)(附录) (10)附录一:原件清单 (10)附录二:总设计电路图 (10)1锂电池课程设计的目的1.1课程设计的四个目的2锂电池的总体设计思路2.1设计概念图2.1设计思路概括通过电源电路可以将电网中的220V电压转变成为锂电池所需要的3.7V和7.4V电压,经过桥式整流电路将交流电变成直流电,再通过滤波电路、稳压电路,出来后就可以出来稳定的直流电,为电路提供稳定的直流电。
经过变压、整流、滤波、稳压出来的稳定直流电进入恒流生成电路,利用运算放大器构成的电流负反馈放大电路起到稳定输出电流的作用,为电路产生恒定的充电电流。
锂电池充电器电路设计
锂电池充电器电路设计湖南文理学院课程设计报告课程名称:《电子设计制作与工艺实习》课题名称:锂电池充电器电路设计系部:电气与信息工程学院专业班级:自动化10 级1班学生姓名:常亮指导教师:王文虎完成时间:2012年6月11日报告成绩:评阅意见:评阅教师日期摘要锂电池充电器是专用的锂电池充电工具,由于锂电池大量使用,且锂电池的价格比较昂贵,大众对充电器的讲究越来越重视;于是设计了一个稳定可靠充电模式的充电器。
它由变压器、全桥整流管、三端稳压器和电容构成了电源单元;二极管和电阻构成电池采样单元;由两个不同的三极管构成恒流恒压转换单元;由运放器、电阻、稳压二极管构成电池充电电路的逻辑处理单元;由DW01芯片、二极管和两个CMOS管构成保护电路。
电源部分、电池采样单元、逻辑处理单元、恒流恒压转换单元以及锂电池充电器保护电路组成了安全的,且具有恒流和恒压充电模式的充电器。
经过电路单元分析计算设计出锂电池充电器的恒流恒压转换的临界电压值;通过multisim仿真结果显示与分析计算达到了一致。
锂电池充电电路在原来单纯的恒流充模式的基础上增加了一个恒压充模式;然后经过计算分析,设置出锂电池的恒流恒压转换的临界电压值;与此同时增加了一个充电器保护单元,有效的起到了过充保护作用。
但在整个电池充电器电路中的一些不足还有待解决。
关键词:锂电池;整流;电压采样;恒流恒压模式;保护电路AbstractLithium battery charger is special lithium battery tool, due to the use of lithium batteries, and the price of lithium battery relatively expensive, the exquisite pay more and more attention to the charger; Then design a stable and reliable charging mode charger. It consists of transformer, the whole bridge, the voltage stabilizer and emission three capacitance constitute the power supply unit; Diode and resistance constitutes battery sampling unit; By two different transistor constitute a constant voltage conversion unit; The op-amp device, resistance, constitute the battery voltage circuit of the diode logical processing unit; By DW01 chip, diodes and two CMOS tube constitute the protection circuit. The power of the battery unit, logic, sampling the processing unit, constant voltage conversion unit and lithium battery charger protection circuit formed safe, and with constant flow and constant pressure charging mode charger. After analysis to design the circuit units lithium battery charger of the constant pressure of conversion of critical voltage value; Through the multisim simulation results indicate that the calculation and analysis to the same. Lithium battery charging circuit in the original simple constant current filling the basis of the model of added a constant pressure filling mode; Then through calculation and analysis, set out of lithium-ion batteries constant voltage conversion of critical voltage value; At the same time added a charger protection unit, effective played the overcharge protection. But in the whole battery chargers in the circuit some shortage remains to be resolvedKeywords:Lithium battery; Rectification; Voltage sampling; Constant voltage mode; Protection circuit目录摘要 (I)Abstract......................................................................................................................................... I I 第一章锂电池充电器方案设计 .. (1)1.1 绪论 (1)1.2 锂电池充电器的设计方案 (1)1.2.1 恒流充电器设计 (1)1.2.2 恒流恒压充电器设计 (3)1.3 方案分析 (3)第二章锂电池充电器电路设计 (3)2.1 电源单元 (4)2.2 电池采样单元 (4)2.3 逻辑处理单元 (4)2.3.1分析与计算 (4)2.3.2 器件介绍 (5)2.3 恒流恒压转换单元 (5)2.5 电池保护电路 (5)2.6 整体电路 (7)第三章充电器仿真实验 (7)3.1 仿真实验 (8)总结 (9)参考文献 (10)致谢 (11)附录1 锂电池充电器电路图 (12)附录2 锂电池充电器电路元器件明细表 (13)第一章锂电池充电器方案设计锂电池一般经过涓流充,然后经过恒流充,最后进行恒压充。
一款最简易、成本最低、应用最广泛的锂离子电池充电电路
一款最简易、成本最低、应用最广泛的锂离子电池充电电路锂离子电池使用广泛,在很多电子产品上都有应用。
锂离子电池对应的电子充电电路也各种各样,今天来介绍一个最简单的锂离子电池充电电路,也是成本最低的锂离子电池充电电路,在很多廉价电子产品上有广泛应用。
锂离子电池标称电压为3.7V,充电电压限制在4.2V以内,充电电流一般限制在1A以内。
根据锂离子电池的特性可以设计如下充电电路(嘿嘿,这个电路其实是从老年人唱戏机上抄出来的):锂离子电池充电电路本电路的基本功能是使用5V电源(USB供电)给锂离子电池充电,电路带有充电指示功能,电池充满指示灯熄灭。
接下来分析一下电路的运行原理:5V电源通过D1后电压为5V-0.7V=4.3V,4.3V通过R1(阻值为1Ω)为锂离子电池充电。
其中D1的作用主要是降压,将5V电压降为4.3V,R1的作用是限流,将电流限制在(4.3V-3.7V)/1Ω=0.6A以内。
随着充电进行电池电压升高,5V电源与电池之间的压差越来越小,充电电流也越来越小,当电池充满后电路停止充电。
充电电路的指示灯部分是由R2、Q1、R3和D3组成。
当电池未充满时,5V电源与电池之间有5V-3.7V=1.3V的压差,这个压差可以是Q1导通,D3点亮。
随着充电的进行,电池电压随之升高,当电池充满电时,5V电源与电池之间的压差降为5V-4.2V=0.8V,这个压差不能使Q1导通,D3随之熄灭。
注意事项:1、R1在充电时自身最高消耗功率为(0.6Ax0.6A)x1Ω=0.36W,所以R1电阻推荐选用1/2W的电阻(1812封装电阻)。
2、如果想降低充电电流可以适当加大R1的电阻阻值,当R1=2Ω时,充电最大电流为(4.3V-3.7V)/2Ω=0.3A,此时R1电阻可选用1/3W的电阻(1210封装电阻)。
网友疑问:有网友提出电池在充到4.2V以后并不能断开充电,一直浮充对电池会造成损伤。
现在对此做一下解释。
1、从理论来说,此电路最高充电电压能到4.3V,虽然锂电池标称最大充电电压是4.2V,但4.3V对锂电池也不会造成损伤。
自制极简单的手机锂电池充电器浏览文章维修技术维修吧
自制极简单的手机锂电池充电器浏览文章维修技术维修吧
笔者近日制作了一台电路极为简单的锂电池充电器。
该充电器在电池未充满时以近似恒流方式工作,当电池达到4.5V后,即以恒压断续充电保持端电压在4.15~4.2V之间。
该充电器电路如下图所示。
本电路粗看似乎与串联型线性稳压电源相同,但实际上该电路工作下脉动状态,其关键就在下将高精度稳压器TL431接成比较器。
我们知道TL431的控制极K端实际上是比较器的个输入端,而比较器的另一输入端已被内电路接成2.5V的基准端(由于器件离散性,该基准电压并不都在2.5V,有小范围偏差)。
当本电路输出的“+、-”端接上待充电池后,低于4.15V的待充电池电压经1K电阻和33k电位器分压后低于2.5V时,TL431就呈现截止状态,则三极管C2238饱和导通,由22Ω电阻限流的约200mA电流供电池充电。
当电池电压充至4.15V时,TL431的K端达到2.5V,TL431比较器翻转,将三极管c2238的基极电位钳定在2.5V。
故三极管C2238因发射结反偏而截止,停止对电池充电。
经试验TL431的K端电压在基准点上下变化3mV时,TL431状态就可翻转,因此在本电路中充满电时的电压误差不会超过±6mV,符合锂电池在恒压充电时的要求。
电路中绿色发光管作为电源指示,红色发光管为充电指示,充电时常亮,电池充满后随着三极管C2238的不断导通和截止而闪烁。
调试时在输出端并接上 5.1k电阻,1000uF电解和数字电压表,调整W使三极管C2238在4.15V刚好截止即可。
简单可靠的锂电池充电方案(电路图)
简单可靠的锂电池充电方案(电路图)A:图1电路特点:相对简单,容易理解,元件容易取得,功能完善,特性理想。
Vin是直流,蒸馏稳压即可,但需要保证最小输入比vout 高2V。
图2为改进型,从功能上,可充1~4节锂电池(通过R2来转换),充电电流0.1~3A连续可调(通过R5),方式是高精度的恒流恒压(CC/CV)。
指示方面,分别用白色、红色、橙色、绿色LED指示电源、快充、慢充、充满、提供短路保护、过电压保护、反接保护、断电保护。
CC/CV方式本身保证充电不会过呀、过流。
图2电路的设计中,感觉比较得意的有两点:1.LED1和LED2兼做"与门"罗技。
2.充满指示,与电流设定值无关,都是到最大充电电流的5%,感觉不安的有:1.LED2必须用红色,要求5mA下压降不要超过1.8V,否则短路电流(设计为很小)仍然较大。
2.还是复杂了些(主要考虑在保证性能,功能前提下的简化问题)。
Q:那直接把LM324换成IM339不久可以了?还有,那个电流源怎么做?难道真的做个恒流电路?A:是的,LM324和LM339通用,开始我的确使用OC的LM339来解决"或"关系,但后来把LED插进来,发现也可以用LM324,而且我手边只有LM324,如果省去充电指示功能(很多充电器没有或者不是真正的,例如飞毛腿),可以用8脚的双比较器LM393,并可以省去另外4个元件。
电流源可以这样做:1.用成品电流源,我手里有两个。
2.用小功率结型场效应管,直接把S和G(即源极和栅极)接到一起。
3.用1个二极管、2个电阻和一个PNP三极管。
若不用恒流源也可以凑合使用,改为一个店主(1KΩ),但效果差一些。
Q:此电路充电电流也是0.6A吗?多长时间能充满7.2V、1360mAh的锂电池?A:电流是可以通过店主来调节的。
当调节到700mA时,充满为两个多小时,一般充电电流都取0.5C,太大了对寿命不理,太小了充电时间太长。
最简单的锂电池充电电路
最简单的锂电池充电电路锂电池充电电路是一种相对较新的充电系统,它可以通过电压和电流控制的方式快速充电锂电池,是减少低耗能设备的最佳选择。
建立锂电池充电电路,一般有两种方式:一是使用集成电路,并通过温度控制以确保安全运行;二是组装端到端的充电电路。
本文主要介绍第二种方式,使用简单的端到端充电电路来充电锂电池,建立起一个最简单的锂电池充电电路。
首先,需要准备一块锂电池,它必须包含一个压缩电路板。
然后,组装一个简单的端到端的锂电池充电电路,需要在电路板上安装一个小电流型电源,它可以提供1.5V-2.2V的直流电,以及一个桥式整流电路。
此外,还需要安装一个恒流恒压控制电路,可以控制电流和电压,以及一个示波器,可以监控电路工作情况。
安装完上述元器件后,可以通过控制和观察恒流恒压控制电路和示波器的所有参数,以确保锂电池在最安全的条件下充电。
具体来说,需要把桥式整流电路的输出电压设置为大于1.5V,以保证能够正常充电。
通过调整电流控制电路,可以有效控制电流,并通过观察示波器,可以掌握当前电路的实时电流、电压以及其他参数。
最后,将锂电池接入端到端的充电电路,将整流电源处于开机状态下,就可以开始充电了。
在充电过程中,可以不断通过观察示波器上电流和电压以及其他参数,确保锂电池运行安全可靠。
在电流和电压满足要求的情况下,锂电池就可以充满电并停止充电了。
以上是我们如何建立一个简单的锂电池充电电路的步骤,要想实现自动充电和智能控制,则可以采用更复杂的方法。
另外,锂电池充电电路也有一些特殊场合也可以考虑使用,比如家庭影院类应用中,需要考虑建立多个锂电池充电电路,以满足不同的时间要求。
简易5号电池恒流源充电器
1工作方案设计总体设计简易51. 是由整流电路,恒流可调电路,检测电压电路,充电显示电路四局部构成完整的充电电路。
图1-1 简易电池自动可调恒流充电电路的总体框图变压器整流电路的功能是将电网中的220V 交流电转换为适宜的电流和电压信号,从而为后续电路提供信号。
恒流可调电路的功能是利用LM7812型三端稳压集成电路产生恒定的充电电流。
检测电压电路的功能是比拟器,比拟电池两端的电压,控制继电器工作,从而实现当电池充满电时能够自动切断电源。
充电显示电路的功能是利用555构成的多谢振荡器与发光二极管将电路充电状态和完毕充电的状态显示出来。
稳压电源电路的功能是为上述所有电路提供直流电压。
2主要单元电路设计2.1 整流电路图2-1 整流电路变压器整流电路,其主要由变压器、二极管桥式电路、电容构成。
其中变压器采用常规的铁心变压器,并将电网中的220 V交流电变为20 V交流电,再通过二极管桥式电路进展整流和电容Cp3和C3滤波。
为了得到平滑的负载电压,一般取τd=RL≥(3~5)T/2,T为电源交流电压的周期,在整流电路阻不太大和放电时间常数满足上式关系时,V输出=〔1.1~1.2〕V2。
2.2 恒流可调电路图2-2 恒流可调电路恒流源由三端稳压集成块LM7812构成,它的地端末端0v,工作在悬浮状态。
充电时DC1两端接入1~2节电池,此时输入1脚电压为+20V,输出端2脚和3脚的电势差恒为12V,充电电流可由公式I充=12/R决定,所以,只有调节电阻器R的阻值就可以满足不同型号电池的充电要求,通过J2两端串联一个万用表来测试电流。
2.3 检测电压电路图2-3 检测电压电路LM7805是固定式三端稳压集成电路,其标称输出电压为+5V,电阻R1与电位器R3组成分压器,分压点接在三端稳压集成块7805的地端GND2脚上,调节电位器R3改变集成块地端电位,故能改变电路的输出电压大小。
当电位器滑到最上端时,相当于2脚地端接地,输出电压等于集成块的标称输出电压5V。
锂电池充电电路
离子电池充电要求较高.过充会造成电池报废。
采用图1所示最简充电电路绝无过充之虞。
该电路通过1μF电容将充电电流限制在70mA左右。
将TL431接成4.2V的电压源并联在电池两端。
当电池电压低于4.2V时,TL431截止.电流全部充入电池。
当电池电压升高到接近4.2V时,TL431开始发挥分流作用,当电池电压为4.2V时,电流全部流入TL431。
此时,TL431的功耗为0.3W,不超过最大功耗。
由于充电电流较小.故充电时间较长是其不足之处。
电路中,R2和R3的阻值一定要准确。
可在接入电池前测一下TL431两端是否为4.2V。
本电路同220V交流电之间无变压器隔离,所以应在接好电池后再插人插座,以保证人身安全。
简述:自制一个简单实用的锂电池充电器,改变图中4欧的电阻可以改变充电电流,D1是电源指示,D2是充电指示兼限流。
简单实用的锂电充电器自制一个简单实用的锂电池充电器改变图中4欧的电阻可以改变充电电流,D1是电源指示,D2是充电指示兼限流。
调试时6.8K电阻用一10K微调电阻代换,用数字表监视电池电压到4.2V时,调10K微调电阻到内置充放电控制与保护电路的半导体照明锂电池矿用帽灯发布时间:2007-5-14 14:25:001 概述为了减小体积和重量,近年来矿用帽灯开始采用锂离子电池。
在电池组内加装过充电、过放电和短路保护电路后,不仅保护锂离子电池,而且开灯、关灯甚至外部短路时,都不会产生火花,实现了本质安全工作。
在实际推广应用中,这种新型矿灯暴露出许多较严重的问题。
主要表现在锂离子电池的安全性能较差,尽管加入了保护电路,但仍出现了电池组燃烧和爆炸的严重事故。
此外,矿灯改用锂离子电池后,原有的充电架不能对锂电池矿灯充电,矿山必须更换充电架,造成巨大的资源浪费。
另外,锂离子电池的价格较高,矿灯用的8Ah锂电池组的价格在90元左右,矿灯的零售价为250多元,为现有铅酸电池矿灯的3~4倍。
因此大量普及这种新型矿灯的难度很大。
一种简易锂电池恒流充电电路的设计
一种简易锂电池恒流充电电路的设计手机电脑中的锂电池的充电需要恒流电流,而日常生活中我们所使用的是220V的正弦交流电。
为了给锂电池充电,我们需要将220V的正弦交流电转换成特定电压的恒流电。
我设计的一种转换电路如下,它包括变压器整流电路、恒流产生电路、自动断电电路、显示电路和电源电路5个部分。
变压器整流电路的功能是将220V 正弦交流电转换为合适的电流和电压信号,从而为后续电路提供信号。
晶体管电流源为电路产生恒定的充电电流。
利用三极管饱和导通时的电压特性实现自动断电电路的功能,从而实现当电池充满电时电路能够自动断开。
显示电路的功能是利用发光二极管将电路开始充电和结束充电的状态显示出来。
稳压电源电路的功能是为上述所有电路提供直流电压。
变压器整流电路和稳压电源电路(如图虚线左边所示) ,其主要由变压器、二极管桥式电路、电容构成。
其中变压器采用常规的铁心变压器,并将普通的220V正弦交流电变为12V 正弦交流电,再通过二极管桥式电路进行整流和电容C1滤波。
整流信号由VC1引出。
在此基础上再接三端稳压器CW7812 及电容C3、C4 (如图虚线右边所示) ,这样整个电路就构成稳压电源电路。
由B点提供+ 12 V的直流电压。
如图二所示,由稳压管VZ1、晶体管VT1、电阻R1、电容C2构成的晶体管电流源提供恒定电流, I C≈I E = UV Z1 - UB E1 R1。
取稳压管电压为5V ,R1为51Ω,此时I C≈100 mA ,作为电路的充电电流。
如图三所示,自动断电电路是由三极管VT2、电压跟随器A1、电压比较器A2电阻R4、R5、R6、R7、R8、R11和可变电阻R P1构成。
当充电开始时,电压比较器输出高电平, V T2导通,V T1也导通,指示灯发光二极管亮,给电池充电。
可以先设定转换开关为1时给一节电池充电,转换开关为2时给二节电池充电,依次类推,实现对1至4节电池充电。
当电池充满时,电压比较器输出低电平,V T2截止,V T1不导通,发光二极管熄灭,充电完毕。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一种简易锂电池恒流充电电路的设计
手机电脑中的锂电池的充电需要恒流电流,而日常生活中我们所使用的是220V的正弦交流电。
为了给锂电池充电,我们需要将220V的正弦交流电转换成特定电压的恒流电。
我设计的一种转换电路如下,它包括变压器整流电路、恒流产生电路、自动断电电路、显示电路和电源电路5个部分。
变压器整流电路的功能是将220V 正弦交流电转换为合适的电流和电压信号,从而为后续电路提供信号。
晶体管电流源为电路产生恒定的充电电流。
利用三极管饱和导通时的电压特性实现自动断电电路的功能,从而实现当电池充满电时电路能够自动断开。
显示电路的功能是利用发光二极管将电路开始充电和结束充电的状态显示出来。
稳压电源电路的功能是为上述所有电路提供直流电压。
变压器整流电路和稳压电源电路(如图虚线左边所示) ,其主要由变压器、二极管桥式电路、电容构成。
其中变压器采用常规的铁心变压器,并将普通的220V正弦交流电变为12V 正弦交流电,再通过二极管桥式电路进行整流和电容C1滤波。
整流信号由VC1引出。
在此基础上再接三端稳压器CW7812 及电容C3、C4 (如图虚线右边所示) ,这样整个电路就构成稳压电源电路。
由B点提供+ 12 V的直流电压。
如图二所示,由稳压管VZ1、晶体管VT1、电阻R1、电容C2构成的晶体管电流源提供恒定电流, I C≈I E = UV Z1 - UB E1 R1。
取稳压管电压为5V ,R1为51Ω,此时I C≈100 mA ,作为电路的充电电流。
如图三所示,自动断电电路是由三极管VT2、电压跟随器A1、电压比较器A2电阻R4、R5、R6、R7、R8、R11和可变电阻R P1构成。
当充电开始时,电压比较器输出高电平, V T2导通,V T1也导通,指示灯发光二极管亮,给电池充电。
可以先设定转换开关为1时给一节电池充电,转换开关为2时给二节电池充电,依次类推,实现对1至4节电池充电。
当电池充满时,电压比较器输出低电平,V T2截止,V T1不导通,发光二极管熄灭,充电完毕。