2020考研:考研数学最全公式整理
2020年考研数学(高数、线代、概率论)最全公式手册
且 lim (x) lim (x) A, 则 lim f (x) A
xx0
x x0
x x0
2 单调有界定理:单调有界的数列必有极限 3 两个重要极限:
极限存在 的两个准 则:单调 有界准则 和夹逼准 则,两个 重要极 限:
sin x (1) lim 1
x0 x
1
(2) lim(1 x) x e x0
d(ln x) 1 dx x
d(sin x) cos xdx d(cos x) sin xdx
(7) y tan x
y
1 cos2
x
sec2
x
d(tan x) sec2 xdx
(8) y cot x
(9) y sec x (10) y csc x
y
1 sin2
x
csc2
x
d(cot x) csc2 xdx
y sec x tan x
d(sec x) sec x tan xdx
y csc x cot x
d(csc x) csc x cot xdx
(11) y arcsin x (12) y arccos x
y 1 1 x2
重要公式: lim a0 xn a1xn1 an1x an x b0 xm b1xm1 bm1x bm
0ab,00n,
n
m m
, n m
4 几个常用极限特例
lim n n 1,
n
lim arctan x
连续,反之则不成立.即函数连续不一定可导.
Th3: f (x0 ) 存在 f(x0 ) f(x0 )
考研数学公式大全(考研必备
高等数学公式篇
导数公式:
基本积分表:
三角函数的有理式积分:
一些初等函数: 两个重要极限:
倍角公式:
·半角公式:
·正弦定理:·余弦定理:
反三角函数性质:
高阶导数公式——莱布尼兹(Leibniz)公式:
中值定理与导数应用:
曲率:
定积分的近似计算:
多元函数微分法及应用
微分法在几何上的应用:
方向导数与梯度:
多元函数的极值及其求法:
重积分及其应用:
柱面坐标和球面坐标:曲线积分:
曲面积分:
高斯公式:
斯托克斯公式——曲线积分与曲面积分的关系:级数审敛法:
绝对收敛与条件收敛:
幂级数:
函数展开成幂级数:
一些函数展开成幂级数:
欧拉公式:
三角级数:
傅立叶级数:
周期为的周期函数的傅立叶级数:
微分方程的相关概念:
一阶线性微分方程:
全微分方程:
二阶微分方程:
二阶常系数齐次线性微分方程及其解法:
(*)式的通解两个不相等实根
两个相等实根
一对共轭复根
二阶常系数非齐次线性微分方程。
(整理)考研必备考研数学公式(高数,线性代数)全收录
高等数学公式篇·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-co tαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
考研数学公式大全(考研必备,免费下载)
高等数学公式篇·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]导数公式:基本积分ax x a a a ctgx x x tgx x x x ctgx xtgx a xxln 1)(logln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin xarcctgx xarctgx xx xx +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x ax dx Cshx chxdx C chx shxdx Caadx aC x ctgxdx x C x dx tgx x Cctgx xdx xdxC tgx xdx x dxxx)ln(ln csc csc sec sec cscsinsec cos 22222222Cax xa dxCx a x a ax a dx C a x a x a a x dx C ax arctg a x a dxCctgx x xdx Ctgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰+-+--=-+++++=+-===-Ca x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n nnn ln 22)ln(221cos sin222222222222222220ππ·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctgtg·正弦定理:R CcBb Aa 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k nn uvvuk k n n n v un n v nuv uvuCuv +++--++''-+'+==---=-∑定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y na b x f y y y y n a b x f y y y na b x f )](4)(2)[(3)(])(21[)()()(1312420110110 抛物线法:梯形法:矩形法:定积分应用相关公式:αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==⎰⎰--==⋅=⋅=babadtt f ab dxx f ab y k rm m kF A p F s F W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:空间解析几何和向量代数:。
考研数学公式大全(考研必备)
高等数学公式篇导数公式: 基本积分表:C kx dx k +=⎰)1a (,C x 1a 1dx x 1a a-≠++=+⎰C x ln dx x 1+=⎰ C e dx e xx +=⎰C a ln a dx a xx+=⎰(1a ,0a ≠>) C x cos xdx sin +-=⎰C x sin dx x cos +=⎰ C x arctan dx x 112+=+⎰C axarcsin x a dx C x a xa ln a 21x a dx C a x ax ln a 21a x dx C a xarctan a 1x a dx Cx cot x csc ln xdx csc C x tan x sec ln xdx sec Cx sin ln xdx cot C x cos ln xdx tan 22222222+=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C)a x x ln(a x dx C shx chxdx C chx shxdx Ca ln a dx a Cx csc xdx cot x csc C x sec dx x tan x sec Cx cot xdx csc x sin dx C x tan xdx sec x cos dx 2222x x2222aln x 1)x (log a ln a )a (x cot x csc )x (csc x tan x sec )x (sec x csc )x (cot x sec )x (tan x cos )x (sin aX )X (0)C (a x x 221a a ='='⋅-='⋅='-='='='='='-2222xx x 11)x cot arc (x 11)x (arctan x 11)x (arccos x 11)x (arcsin x 1)x (ln e )e (x sin )x (cos +-='+='--='-='='='-='C x sin d x cos c ln B Ax dx x sin d x cos c xsin b x cos a +++=++⎰其中,)x sin d x cos c (B )x sin d x cos c (A x sin b x cos a +++=+ a Bd Ac =+B ,A b Bc Ad ⇒=-三角函数的有理式积分:2222u1du2dx 2x tan u u 1u 1x cos u 1u 2x sin +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·和差角公式: ·和差化积公式:·倍角公式:·半角公式:α-α=αα+=α-α+±=αα+α=αα-=α+α-±=αα+±=αα-±=αcos 1sin sin cos 1cos 1cos 12cot cos 1sin sin cos 1cos 1cos 12tan2cos 12cos 2cos 12sin ·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:x cot arc 2x arctan x arccos 2x arcsin -π=-π= 高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+α±ββ⋅α=β±αβ⋅αβ±α=β±αβαβα=β±αβα±βα=β±αcot cot 1cot cot )cot(tan tan 1tan tan )tan(sin sin cos cos )cos(sin cos cos sin )sin( α-α-α=αα-α=αα-α=α2333tan 31tan tan 33tan cos 3cos 43cos sin 4sin 33sin α-α=αα-α=αα-α=α-=-α=ααα=α222222tan 1tan 22tan cot 21cot 2cot sin cos sin 211cos 22cos cos sin 22sin中值定理与导数应用:拉格朗日中值定理。
考研数学常用公式总结
考研数学常用公式总结考研数学是考研中的一门重要科目,它的题目种类繁多,考察内容广泛。
在备考过程中,熟练掌握和灵活运用常用公式是非常关键的。
本文将就考研数学中常用的公式进行总结与归纳,以帮助考生更好地备考。
1、微积分公式微积分是考研数学中的重点内容,以下是一些常用的微积分公式:(1)导数公式:- 基本导数公式:a. 常数函数:$[k]'=0$;b. 幂函数:$[x^n]'=nx^{n-1}$;c. 指数函数:$[a^x]'=a^x\ln a$;d. 对数函数:$[\log_a x]'=\frac{1}{x\ln a}$;e. 三角函数:$[\sin x]'=\cos x$,$[\cos x]'=-\sin x$,$[\tan x]'=\sec^2 x$。
- 运算法则:a. 基本运算:$[u \pm v]'=u' \pm v'$;b. 乘法法则:$[uv]'=u'v+uv'$;c. 除法法则:$\left[\frac{u}{v}\right]'=\frac{u'v-uv'}{v^2}$;d. 复合函数:$[f(g(x))]'=f'(g(x))g'(x)$。
(2)积分公式:- 基本积分公式:a. 幂函数:$\int x^n\mathrm{d}x=\frac{x^{n+1}}{n+1}+C$;b. 指数函数:$\int a^x\mathrm{d}x=\frac{a^x}{\ln a}+C$;c. 对数函数:$\int \frac{1}{x\ln a}\mathrm{d}x=\log_a(\ln a)+C$;d. 三角函数:$\int \sin x\mathrm{d}x=-\cos x+C$,$\int \cosx\mathrm{d}x=\sin x+C$。
考研数学公式大全(考研必备,免费下载)
高等数学公式篇·平方关系:sin^2(α)+cos^2(α)=1如果大家愿意和我交流考研经验的话,可以加我的QQ953984048,或者发邮件到953984048@ tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαs ecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
考研数学公式大全--高数--线代--必背公式
数学知识点背诵高数部分1. 导数公式22(tan )sec (cot )csc (sec )sec tan (csc )csc cot x xx xx x x x x x'='=-'=⋅'=-⋅22(arcsin )(arccos )1(arctan )11(cot )1x x x x arc x x '='='=+'=-+2. 积分公式2222tan ln cos cot ln sin sec ln sec tan csc ln csc cot sec tan cos csc cot sin sec tan sec csc cot csc xdx x C xdx x Cxdx x x C xdx x x Cdx xdx x C x dx xdx x Cx x xdx x Cx xdx x C=-+=+=++=-+==+==-+⋅=+⋅=-+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2222221arctan 1ln 21ln 2ln(arcsin dx xC a x a a dx x aC x a a x a dx a xC a x a a x x CxC a=++-=+-++=+--=+=+⎰⎰⎰222ln(2ln 2arcsin 2a x Ca x C a x Ca=+=-++=++22201sin cos nn n n n I xdx xdx I nππ--===⎰⎰3. 和差化积sin sin 2sincos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=-4. 积化和差[][][][]1sin cos sin()sin()21cos sin sin()sin()21cos cos cos()cos()21sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=-+-- 5. 万能公式22tan2sin 1tan 2ααα=+ 221t a n2c o s 1t a n 2ααα-=+ 22t a n2t a n 1t a n2ααα=- 6. 半角公式221cos sin 221cos cos 22αααα-=+= 21c o s t a n 21c o s s i n 1c o s t a n 21c o s s i nαααααααα-=+-==+7. 三倍角公式3332sin 33sin 4sin cos34cos 3cos 3tan tan tan 313tan αααααααααα=-=--=- 8. 三角函数关系图sin costan 1cot sec csc↔↔↔⊗↔↔↔↔↔↔⊗⊗↔↔↔..1.a b c ⊗说明:六边形每个顶点等于两相邻顶点乘积三条对角线上,两端点相乘等于标记的三角形,上面的平方和等于下面的平方9. 等价无穷小33333333222201sin ()61arcsin ()61tan ()31arctan ()31ln(1)()21cos 1()2x x x x o x x x x o x x x x o x x x x o x x x x o x x x o x →=-+=++=++=-++=-+=-+时2011ln 11cos 2(1)1x x x e x a x a x xx x αα→---+-时10. 华里士公式等华里士公式:2200131,222sin cos 132,123n nn n n n n xdx xdx n n n n n πππ--⎧⋅⋅⎪⎪-==⎨--⎪⋅⎪-⎩⎰⎰为正的偶数为大于的奇数20sin 2sin nn xdx xdx ππ=⎰⎰2002c o s ,c o s 0,n nxdx n xdx n ππ⎧⎪=⎨⎪⎩⎰⎰为偶数为奇数2220004sin ,sin =cos 0,n n nxdx n xdx xdx n πππ⎧⎪=⎨⎪⎩⎰⎰⎰为偶数为奇数()()220sin cos f x dx f x dx ππ=⎰⎰ ()()00sin cos f x dx f x dx ππ≠⎰⎰()()()20sin sin sin 2xf x dx f x dx f x dx πππππ==⎰⎰⎰11. 函数展开为幂级数20201+()!2!1(1)1(1)(11)1n nxn n n n nn x x x e x x n n x x x x x x ∞=∞===++++-∞<<+∞=-=-+-+-+-<<+∑∑!20234111213572122011(11)1ln(1)(1)(1)(11)234sin (1)(1)()(21)!3!5!7!(21)!cos (1)1(2)!2!n n n n nn n n n n nnn n nn x x x x x x x x x x x x x x n nx x x x x x x x n n x x x n ∞=∞--=++∞=∞===+++++-<<-+=-=-+-++-+-<≤=-=-+-++-+-∞<<+∞++=-=-+∑∑∑∑()(][]4622(1)()4!6!(2)!(1)(1)(1)(1)12!!(1-1,1;10-1,1;0-1,1)nn nx x x x n n x x x x n αααααααααα-++-+-∞<<+∞---++=+++++≤--<<>时,收敛域为时,收敛域为时,收敛域为12. 幂级数的和函数1211121121212112220(1)11(1)1(1)(1)(1)(1)(1)1(1)1k nn k n n n n n n n n n n n n n n n n n n cx cx x x x nx x x x x x nx x nx x x x nx x nx x x n n x x x x ∞=∞∞-==∞∞-==∞∞+-==∞∞∞-====<-''⎛⎫⎛⎫===< ⎪ ⎪--⎝⎭⎝⎭==<-==<-''''''⎛⎫⎛⎫⎛⎫-=== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑∑∑∑∑3110001112(1)(1)1ln(1)(11)1n x x x n n n n n x x x t dt t dt dt x x n t ∞∞∞--====<-⎛⎫====---≤< ⎪-⎝⎭∑∑∑⎰⎰⎰13. 狄利克雷收敛定理设()f x 是以2l 为周期的可积函数,如果在[],l l -上()f x 满足: 1)连续或只有有限个第一类间断点; 2)只有有限个极值点;则()f x 的傅里叶级数处处收敛,记其和函数为()S x ,则()01cos sin 2n n n a n x n x S x a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑,且()()()()()(),00,200,2f x x f x f x S x x f l f l x ⎧⎪⎪-++⎪=⎨⎪⎪-++-⎪⎩为连续点为第一类间断点为端点 14. 周期为2l 的周期函数的傅里叶级数设周期为2l 的周期函数()f x 满足狄利克雷收敛定理的条件,则它的傅里叶级数为()()01cos sin 2n n n a n x n x f x S x a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑其中系数n a 和n b 分别为:()()1cos (0,1,2,)1sin (1,2,3,)l n l l n l n x a f x dx n l l n x b f x dx n l l ππ--⎧==⎪⎪⎨⎪==⎪⎩⎰⎰ (1)将普通周期函数()f x 在[],l l -上展开为傅里叶级数: 展开系数为()()()01,1cos ,(1,2,3,)1sin ,(1,2,3,)l l l n l l n la f x dx l n x a f x dx n l l n xb f x dx n l l ππ---⎧=⎪⎪⎪==⎨⎪⎪==⎪⎩⎰⎰⎰ (2)将奇偶周期函数()f x 在[],l l -上展开为傅里叶级数:当()f x 为奇函数时,展开为正弦级数()000,0,(1,2,3,)2sin ,(1,2,3,)n l n a a n n x b f x dx n l l π⎧⎪=⎪==⎨⎪⎪==⎩⎰当()f x 为偶函数时,展开为余弦级数()()0002,2cos ,(1,2,3,)0,(1,2,3,)l l nn a f x dx l n x a f x dx n l l b n π⎧=⎪⎪⎪==⎨⎪==⎪⎪⎩⎰⎰ (3)将非对称区间[]0,l 上的函数()f x 展开为正弦级数或余弦级数:将[]0,l 上的函数()f x ,根据要求作奇延拓(若要求展开为正弦级数)或偶延拓(若要求展开为余弦函数),得到[],l l -上的奇函数或偶函数,再根据(2)中的方式展开。
考研数学必背公式总结
考研数学必背公式总结考研数学是很多考生们的重点科目之一。
为了更好地备考数学,考生们需要掌握并熟记数学中的各种公式。
下面是一些考研数学必背公式的总结:一、高等数学1.极限公式:(1)对数函数极限:lim(log(1+x)/x)=1,当x趋于0时(2)三角函数极限:lim(sin(x)/x)=1,当x趋于0时lim((1-cos(x))/x)=0,当x趋于0时2.牛顿-莱布尼茨公式:∫abf(x)dx=F(b)-F(a),其中F(x)是f(x)的一个原函数3.泰勒公式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+ Rn(x)其中,Rn(x)是余项,有Lagrange余项和Cauchy余项两种形式。
二、线性代数1.向量公式:(1)向量的模:|a|=√(x1^2+x2^2+...+xn^2)(2)向量的点积:a·b=x1y1+x2y2+...+xnyn(3)向量的叉积:a×b=(y1z2-y2z1)i-(x1z2-x2z1)j+(x1y2-x2y1)k2.矩阵公式:(1)矩阵的乘积:C=AB,其中Cij=∑(k=1到n)AikBkj(2)矩阵的逆:若A是可逆矩阵,则A的逆矩阵A^-1满足AA^-1=A^-1A=E(3)矩阵的秩:矩阵的秩是指它的行与列的最大线性无关组数,也就是矩阵中含有的一个最大的非零子式的阶数。
三、概率论与数理统计1.概率公式:(1)全概率公式:P(B)=P(AB)+P(AcBc),其中A和B是两个事件,Ac和Bc是它们的补事件(2)条件概率公式:P(A|B)=P(AB)/P(B),其中A和B是两个事件2.数理统计公式:(1)样本平均数:x=(x1+x2+...+xn)/n(2)样本方差:S^2=[(x1-x)^2+(x2-x)^2+...+(xn-x)^2]/(n-1)(3)样本标准差:S=√[S^2]以上公式是考研数学中一些必背的公式总结。
2020全国硕士研究生入学统一考试联考数学公式知识点
b2
表示抛物线的顶点,决定函数的最值。
若 a 0 ,函数有最小值 4ac b2 ;若 a 0 ,函数有最大值 4ac b2 。
4a
4a
九、指数与对数函数
1、指数函数
指数函数 y a(x a 0, a 1)定义域是 R,过(0,1)点,当 a>1 时, y a x 单调递增,当
0 a 1时, y a x 单调递减。
推论:多项式 F (x) a0 xn a1xn1 an 除以一次因式 ax b 所得的余数一定是 F(b)。
a
4、因式定理: F x含有因式 x a (即整除),则 F a 0
推论: F x含有一次因式 ax b,则 F b =0
a
七、分式运算
x 1 a (注意变形的状态,比如 x2 3x 1 0 ) x
x2
1 x2
a2
2
x3
1 x3
a
a2 3
ห้องสมุดไป่ตู้ x4
1 x4
a2 2 2 2
x5
1 x5
a2 2
a
a2 3
a
八、一元二次函数
1、表达式
a) 一般式: y ax2 bx c
b)
顶点式:
y
a
x
b 2a
2
4ac 4a
b2
c) 交点式: y a x x1 x x2
目录
一、 奇偶性............................................................................................................................... 2 二、 质数合数...........................................................................................................................2 三、 比和比例...........................................................................................................................2 四、 绝对值............................................................................................................................... 3 五、 整式分式...........................................................................................................................4 六、 除法................................................................................................................................... 4 七、 分式运算...........................................................................................................................5 八、 一元二次函数...................................................................................................................6 九、 指数与对数函数...............................................................................................................6 十、 方程的解法.......................................................................................................................8 十一、 根与系数的关系(韦达定理)...................................................................................8 十二、 不等式的基本性质.......................................................................................................9 十三、 均值不等式.................................................................................................................10 十四、 数列............................................................................................................................. 11 十五、 平面几何..................................................................................................................... 11 十六、 立体几何.....................................................................................................................12 十七、 解析几何.....................................................................................................................12 十八、 数据描述.....................................................................................................................15 十九、 排列组合.....................................................................................................................16 二十、 概率.............................................................................................................................16
考研数学必备公式总结
考研数学必备公式总结随着考研大军的不断壮大,考研数学作为其中最重要的一门科目,备考的重要性不言而喻。
在备考数学的过程中,熟练掌握并运用各种数学公式无疑是提高解题效率和成绩的重要途径。
下面将对考研数学中的必备公式进行总结,以供同学们参考。
一、微积分公式1.导数运算法则:(uv)' = uv' + u'v,(u/v)' = (u'v - uv')/v²,(u^n)' = nu^(n-1)u',(e^u)' = u'e^u,(lnu)' = u'/u,带入法则等。
2.积分运算法则:∫udv = uv - ∫vdu,∫x^n dx = (x^(n+1)) / (n+1),∫du/u = ln|u| + C,∫e^u du = e^u + C,∫(1 / (a² + x²)) dx = (1/a)arctan(x/a) + C,等。
3.泰勒展开公式:f(x) = f(a) + f'(a)(x-a) + (f''(a))/2!(x-a)² + ... + (fⁿ(a))/n!(x-a)ⁿ +Rⁿ₊₁,其中Rⁿ₊₁是拉格朗日余项。
二、线性代数公式1.向量及矩阵:·向量点乘:A·B = |A||B|cosθ·向量叉乘:A×B = |A||B|sinθ·向量长度:|A| = √(x1² + x2² + ... + xn²)·平面向量:平移、旋转、缩放等基本变换·矩阵乘法:(AB)C = A(BC),(AB)⁻¹ = B⁻¹A⁻¹,(A⁻¹)⁻¹ = A·矩阵的行列式计算公式2.线性方程组:·克拉默法则·矩阵求逆法·高斯消元法三、概率统计公式1.概率公式:·全概率公式:P(A) = P(A|B₁)P(B₁) + P(A|B₂)P(B₂) + ... + P(A|Bn)P(Bn)·贝叶斯公式:P(Bi|A) = P(A|Bi)P(Bi) / (ΣP(A|Bj)P(Bj))2.数理统计公式:·样本均值:x = (x₁ + x₂ + ... + xn) / n·样本方差:s² = (Σ(xi - x)²) / (n-1)·样本标准差:s = √s²·样本协方差:sxy = (Σ(xi - x)(yi - ȳ)) / (n-1)·样本相关系数:r = sxy / (sx·sy)四、复变函数公式1.欧拉公式:e^(ix) = cosx + isinx2.柯西-黎曼方程:·设 f(z) = u(x,y) + iv(x,y) 是一个复变函数,则 u 和 v 的一阶偏导数存在且连续,且满足如下方程:∂u/∂x = ∂v/∂y,∂u/∂y = -∂v/∂x3.柯西积分公式:·设 f(z) 是闭区域 G 内的单值解析函数,C 是 G 内的一简单逐段光滑曲线,则有:∮C f(z) dz = 0综上所述,以上是考研数学中的一些必备公式的总结。
考研数学公式大全
考研数学公式大全考研数学对于许多考生来说是一座难以逾越的大山,而熟练掌握各类公式则是攻克这座大山的重要武器。
以下为大家整理了一份较为全面的考研数学公式,希望能助大家一臂之力。
一、高等数学部分1、函数、极限与连续(1)极限的四则运算法则:若 lim f(x) = A,lim g(x) = B,则 limf(x) ± g(x) = lim f(x) ± lim g(x) = A ± B;lim f(x) · g(x) = lim f(x) · limg(x) = A · B;lim f(x) / g(x) = lim f(x) / lim g(x) = A / B (B ≠ 0)。
(2)两个重要极限:lim (sin x / x) = 1 (x → 0);lim (1 + 1 / x)^x = e (x → ∞)。
(3)无穷小量的性质:有限个无穷小量的和、差、积仍是无穷小量;无穷小量与有界函数的乘积是无穷小量。
(4)函数连续的定义:设函数 y = f(x) 在点 x₀的某一邻域内有定义,如果 lim (x → x₀) f(x) = f(x₀),则称函数 f(x) 在点 x₀处连续。
2、一元函数微分学(1)导数的定义:f'(x₀) = lim (Δx → 0) f(x₀+Δx) f(x₀) /Δx。
(2)基本导数公式:(x^n)'= nx^(n 1);(sin x)'= cos x;(cos x)'= sin x;(e^x)'= e^x;(ln x)'= 1 / x。
(3)导数的四则运算法则:f(x) ± g(x)'= f'(x) ± g'(x);f(x) · g(x)'= f'(x)g(x) + f(x)g'(x);f(x) / g(x)'= f'(x)g(x)f(x)g'(x) / g(x)^2 (g(x) ≠ 0)。
考研数学公式汇总(最完整版)
·万能公式: sin α =2tan( α /2)/[1+tan^2( α /2)] cos α =[1-tan^2( α /2)]/[1+tan^2( α /2)] tan α =2tan( α /2)/-[t1an^2( α /2)]
sin (3π /2- α)=- cos α
cos ( 3π /2-α)=- sin α
tan ( 3π /2- α)= cot α
cot (3π /2- α)= tan α
(以上 k∈ Z) 部分高等内容
[编辑本段 ]
·高等代数中三角函数的指数表示 (由泰勒级数易得 ):
sinx=[e^(ix)-e^(-ix)]/(2i)
·积化和差公式: sin α· cos β =(1/2)[sin( α +β-)β+s)i]n( α cos α· sin β =(1/2)[sin( -sαin(+βα-β) )] cos α· cos β =(1/2)[cos( α +β )+-cβos)]( α sin α· sin-(β1/=2)[cos( α +-βco)s( α-β )]
·和差化积公式: sin α +sin β =2sin[( α +β )/2]c-oβs[()/2] α sin α-sin β =2cos[( α +β )/2]sin-[β( )/2α] cos α +cos β =2cos[( α +β )/2]cos-[β( )/2α] cos α- cos β=-2sin[( α +β )/2]sin[-(β )/2α]
考研数学公式大全(考研必备)
高等数学公式篇·平方关系:sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1·积的关系:sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·t anα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)co s(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) ·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] ·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] ·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinα cos(-α)=c osα tan(-α)=-tanα cot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系: sin (π/2+α)=cosα cos (π/2+α)=-sinα tan (π/2+α)=-cotα cot (π/2+α)=-tanα sin (π/2-α)=cosα cos (π/2-α)=sinα tan (π/2-α)=cotα cot (π/2-α)=tanα sin (3π/2+α)=-cosα cos (3π/2+α)=sinα tan (3π/2+α)=-cotα cot (3π/2+α)=-tanα sin (3π/2-α)=-cosα cos (3π/2-α)=-sinα tan (3π/2-α)=cotα cot (3π/2-α)=tanα (以上k ∈Z)部分高等内容·高等代数中三角函数的指数表示(由泰勒级数易得):[][][][])()()()()()()()(tan 2cos 2sin ix ix ix ix ix ix ix ix e e e e x e e x i e e x +-=+=-=, , 泰勒展开有无穷级数:⋯++⋯+++++==!!4!3!2!11)ex p(432n zz z z z z e nz此时三角函数定义域已推广至整个复数集。
考研数学公式大全(高数、概率、线代)目前文库中最全的
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
考研数学必备公式(不看后悔)
精心整理一. 三角公式1. 倍角公式与半角公式x x x cos sin 22sin =; x x x x x 2222sin 211cos 2sin cos 2cos -=-=-= 2cos 2cos 12x x =+, 或2cos 12cos 2x x += 2sin 2cos 12xx =-, 或2cos 12sin 2x x -=2. 三角函数定义与恒等式sin α=对边/斜边; cos α=邻边/斜边; tan α=对边/邻边;1c o s s i n22=+x x ; 22sec tan 1x x =+, 22tan sec 1x x =-xx x cos sin tan =; xx cos 1sec =3. 特殊角的三角与反三角函数值, 三角函数在四个象限中的符号arctan()/2π+∞=; a r c t a n ()/π-∞=- ,0e e +∞-∞=+∞=, l n (),l n 0++∞=+∞=-∞-- 1 -- 3. 诱导公式 s i n ()c o s 2παα-=; cos()sin 2παα-=; t a n ()c o t 2παα-=;s i n ()s i n παα-=; cos()cos παα-=-; tan()tan παα-=-ααs i n )s i n (-=-; ααc o s )c o s (=-; ααtan )tan(-=-二.代数公式1.2)1(321+=+⋅⋅⋅⋅+++n n n (等差数列求和公式) 2.21111nn a a a aa--+++⋅⋅⋅+=- (等比数列求和公式,1a <)或 )1)(1(121++⋅⋅⋅++-=---a a a a a n n n3.2222)(b ab a b a +±=± (和差的平方公式)3223333)(b ab b a a b a ±+±=± (和差的立方公式) ))((22b a b a b a -+=- (平方差公式) ))((2233b ab a b a b a +±=± (立方和、立方差公式)4.指数运算: c b c b a a a +=⋅; /b c b c a a a -=; bc cb a a =)(;()c c c a b a b ⋅=⋅; (/)/c c c a b a b =; 10=a ; 11/a a -=5. 对数运算: c b bc a a a log log )(log +=;log log log aa ab bc c=-; b b a a log 1log -=log log c a a b c b =; log b a b a =; 特别 ln b b e =log 10a =; log 1a a =; 特别 ln10=,ln 1e =;6. 基本不等式: x a a x a <⇔-<< (其中0a >)222a b ab +≥, 也可写成当,0a b >时成立2a b a b+≥ -- 2-- 7. 一元二次方程20ax bx c ++=求根公式: 有解21,242b b ac x a-±-=三.极限 四. 平面解析几何 1.直线方程: y k x b =+ (斜截式:斜率为k ,y轴上截距为b );00()y y k x x -=- (点斜式: 过点00(,)x y ,斜率为k );1x ya b+= (截距式: x 与y 轴上截距分别为a 与b ) 0a x b y c ++= (一般式)两直线垂直⇔它们的斜率为负倒数关系 121/k k =-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与有限此复合步骤所构成,并可用一个数学式子
数列极限 与函数极 限的定义 及其性 质,函数 的左极限
目录
一、高等数学........................................................................................1 (一) 函数、极限、连续.......................................................1 (二) 一元函数微分学...........................................................5 (三)一元函数积分学...........................................................13 (四) 向量代数和空间解析几何........................................ 21 (五)多元函数微分学...........................................................31 (六)多元函数积分学...........................................................37 (七)无穷级数.......................................................................42 (八)常微分方程...................................................................50
一、高等数学
(一) 函数、极限、连续
考试y ,变量 x 的定义域为 D ,如果对
函数和隐 函数
于 D 中的每一个 x 值,按照一定的法则,变量 y 有一 个确定的值与之对应,则称变量 y 为变量 x 的函数,
记作: y f x
基本初等函数包括五类函数:
经常用到的初等数学公式................................................................. 89 平面几何............................................................................. 94
三、概率论与数理统计..................................................................... 68 (一)随机事件和概率...........................................................68 (二)随机变量及其概率分布...............................................72 (三)多维随机变量及其分布...............................................74 (四)随机变量的数字特征...................................................78 (五)大数定律和中心极限定理.......................................... 80 (六)数理统计的基本概念...................................................82 (七)参数估计.......................................................................84 (八)假设检验.......................................................................87
1 幂函数: y x R ;
基本初等 函数的性 质及其图 形,初等 函数,函 数关系的
建立:
2 指数函数 y ax ( a 0 且 a 1 );
3 对数函数: y loga x ( a 0 且 a 1 ); 4 三角函数:如 y sin x, y cos x, y tan x 等; 5 反三角函数:如 y arcsin x, y arccos x, y arctan x 等. 初等函数:由常数 C 和基本初等函数经过有限次四则运算
二、线性代数......................................................................................55 (一) 行列式.........................................................................55 (二)矩阵............................................................................... 56 (三) 向量.............................................................................59 (四)线性方程组...................................................................62 (五)矩阵的特征值和特征向量.......................................... 64 (六)二次型...........................................................................66