浙江省2017—2019年中考数学真题汇编专题5:二次函数(解析卷)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省2017—2019年中考数学真题汇编专题5:二次函数
姓名:__________班级:__________考号:__________
一、、选择题(本大题共10小题,每小题3分,共30分)
1.(2019年浙江省温州市)已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法
正确的是()
A.有最大值﹣1,有最小值﹣2 B.有最大值0,有最小值﹣1
C.有最大值7,有最小值﹣1 D.有最大值7,有最小值﹣2
【考点】二次函数的性质,二次函数的最值
【分析】把函数解析式整理成顶点式解析式的形式,然后根据二次函数的最值问题解答.
解:∵y=x2﹣4x+2=(x﹣2)2﹣2,
∴在﹣1≤x≤3的取值范围内,当x=2时,有最小值﹣2,
当x=﹣1时,有最大值为y=9﹣2=7.
故选:D.
【点评】本题考查了二次函数的最值问题,把函数解析式转化为顶点式形式是解题的关键.
2.(2019年浙江省绍兴市)在平面直角坐标系中,抛物线y=(x+5)(x﹣3)经变换后得到抛物线y=(x+3)
(x﹣5),则这个变换可以是()
A.向左平移2个单位B.向右平移2个单位
C.向左平移8个单位D.向右平移8个单位
【考点】二次函数图象与几何变换
【分析】根据变换前后的两抛物线的顶点坐标找变换规律.
解:y=(x+5)(x﹣3)=(x+1)2﹣16,顶点坐标是(﹣1,﹣16).
y=(x+3)(x﹣5)=(x﹣1)2﹣16,顶点坐标是(1,﹣16).
所以将抛物线y=(x+5)(x﹣3)向右平移2个单位长度得到抛物线y=(x+3)(x﹣5),
故选:B.
【点评】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.
3.(2019年浙江省嘉兴市)小飞研究二次函数y=﹣(x﹣m)2﹣m+1(m为常数)性质时如下结论:
①这个函数图象的顶点始终在直线y=﹣x+1上,
②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形,
③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2,
④当﹣1<x<2时,y随x的增大而增大,则m的取值范围为m≥2.
其中错误结论的序号是()
A.①B.②C.③D.④
【考点】一次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数图象上点的坐标特征,抛物线与x轴的交点,等腰直角三角形
【分析】根据函数解析式,结合函数图象的顶点坐标、对称轴以及增减性依次对4个结论作出判断即可.
解:二次函数y=﹣(x﹣m)2﹣m+1(m为常数)
①∵顶点坐标为(m,﹣m+1)且当x=m时,y=﹣m+1
∴这个函数图象的顶点始终在直线y=﹣x+1上
故结论①正确,
②假设存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形
令y=0,得﹣(x﹣m)2﹣m+1=0,其中m≤1
解得:x=m﹣,x=m+
∵顶点坐标为(m,﹣m+1),且顶点与x轴的两个交点构成等腰直角三角形
∴|﹣m+1|=|m﹣(m﹣)|
解得:m=0或1
∴存在m=0或1,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形
故结论②正确,
③∵x1+x2>2m
∴
∵二次函数y=﹣(x﹣m)2﹣m+1(m为常数)的对称轴为直线x=m
∴点A离对称轴的距离小于点B离对称轴的距离
∵x1<x2,且﹣1<0
∴y1>y2
故结论③错误,
④当﹣1<x<2时,y随x的增大而增大,且﹣1<0
∴m的取值范围为m≥2.
故结论④正确.
故选:C.
【点评】本题主要考查了二次函数图象与二次函数的系数的关系,是一道综合性比较强的题目,需要利用数形结合思想解决本题.
4.(2019年浙江省湖州市)已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx
与一次函数y2=ax+b的大致图象不可能是()
A.B. C.D.
【考点】一次函数的图象,二次函数的图象
【分析】根据二次函数y=ax2+bx与一次函数y=ax+b(a≠0)可以求得它们的交点坐标,然后根据一次函数的性质和二次函数的性质,由函数图象可以判断a、b的正负情况,从而可以解答本题.
解:解得或.
故二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中的交点在x轴上为(0,﹣)或点(1,a+b).
在A中,由一次函数图象可知a>0,b>0,二次函数图象可知,a>0,b>0,﹣<0,a+b>0,故选项A错误,
在B中,由一次函数图象可知a>0,b<0,二次函数图象可知,a>0,b<0,由|a|>|b|,则a+b>0,故选项B错误,
在C中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,a+b<0,故选项C错误,在D中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b>0,由|a|>|b|,则a+b<0,故选项D正确,
故选:D.
【点评】本题考查二次函数的图象、一次函数的图象,解题的关键是明确二次函数与一次函数图象的特点.
5.(2019年浙江省杭州市)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有
M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()
A.M=N﹣1或M=N+1 B.M=N﹣1或M=N+2
C.M=N或M=N+1 D.M=N或M=N﹣1
【考点】抛物线与x轴的交点
【分析】先把两个函数化成一般形式,若为二次函数,再计算根的判别式,从而确定图象与x轴的交点个数,若一次函数,则与x轴只有一个交点,据此解答.
解:∵y=(x+a)(x+b)=x2+(a+b)x+1,
∴△=(a+b)2﹣4ab=(a﹣b)2>0,
∴函数y=(x+a)(x+b)的图象与x轴有2个交点,
∴M=2,
∵函数y=(ax+1)(bx+1)=abx2+(a+b)x+1,