工程流体力学概念

合集下载

工程流体力学课件-第一章

工程流体力学课件-第一章

二、流体力学在石油化工工业中的应用
流体力学是一门重要的工程学科,它的应用几乎遍及国民经济的各个部门, 尤其在石油工程和石油化工工业中,流体力学是其重要的理论核心之一。
在石油工业中 ,用到流体力学原理分析流体在管内的流动规律,压力、阻 力、流速和输量的关系,据此设计管径,校核管材强度,布置管线及选择泵的类 型和大小,设计泵的安装位置等;在校核油罐和其他储液容器的结构强度,估算 容器、油槽车、油罐的装卸时间,解释气蚀、水击等现象 。
实验方法的优点是能直接解决生产中的复杂问题,能发现流动中的新现象。
它的结果往往可作为检验其他方法是否正确的依据。这种方法的缺点是对不同 情况,需作不同的实验,也即所得结果的普适性较差。
3 、数值计算方法
数值计算方法是按照理论分析方法建立数学模型,在此基础上选择合理 的计算方法,如有限差分法、特征线法、有限元法、边界元法、谱方法等,将 方程组离散化,变成代数方程组,编制程序,然后用计算机计算,得到流动问 题的近似解。数值计算方法是理论分析法的延伸和拓展。
两板间流体沿y方向的速度呈线性分布。
上面的现象说明,当流体中发生了层与层之间的相对运动时,速度快的流层对 速度慢的流层产生了一个拉力使它加速,而速度慢的流层对速度快的流层就有 一个阻止它向前运动的阻力,拉力和阻力是大小相等方向相反的一对力,分别 作用在两个流体层的接触面上,这就是流体黏性的表现,这种力称为内摩擦力 或黏性力。
体积弹性模量:在工程上流体的压缩性也常用p的倒数即体积弹性模量来描述
E 1 dp
p dV /V
2.可压缩流动与不可压缩流动
流体的压缩性及相应的体积弹性模量是随流体的种类、温度和压力而变化 的。当压缩性对所研究的流动影响不大,可以忽略不计时,这种流动成为不可 压缩流动,反之称为可压缩流动。通常,液体的压缩性不大,所以工程上一般 不考虑液体的压缩性,把液体当作不可压缩流体来处理。当然,研究一个具体 流动问题时,是否考虑压缩性的影响不仅取决于流体是气体还是液体,而更主 要是由具体条件来决定。

(完整版)工程流体力学

(完整版)工程流体力学
Ocean Engineering & Naval Architecture
➢ Offshore structures, coastal structures, harbors, ports, …
➢ Ships, submarines, remote-operated vehicles,
Engineering Applications
Bernoulli
(1667-1748)
Euler
(1707-1783)
Navier
(1785-1836)
Stokes
(1819-1903)
Reynolds
(1842-1912)
Prandtl
(1875-1953)
Taylor
(1886-1975)
流体力学在生活中
• 无处不在
– 天气和气候 – 运输工具: 汽车, 火车, 船和飞机. – 环境 – 生物工程和医学 – 运动和休闲 – 人体内的流体 – ………………………………
• 秦朝在公元前256—公元前210年修建了我国历史上 的三大水利工程(都江堰、郑国渠、灵渠)——明 渠水流、堰流。
• 古代的计时工具“铜壶滴漏”——孔口出流。
• 清朝雍正年间,何梦瑶在《算迪》一书中提出流量 等于过水断面面积乘以断面平均流速的计算方法。
• 隋朝(公元587—610年)完成的南北大运河。
Water sports
运动和休闲
Cycling
Offshore racing
Auto racing
Surfing
What fluids are needed to run your
car?
➢ Gasoline (fuel) ➢ Air (air/fuel mixture,

工程流体力学知识点总结

工程流体力学知识点总结

工程流体力学知识点总结一、工程流体力学的内容1.流体力学的基本概念工程流体力学是一门重要的工程学科,它是研究运动的流体分布特性、流动过程的动力学特征、流体受力的控制机理以及提供理论支持的工程应用理论。

它综合了物理学、数学、材料学和力学等知识,它包括流体动力学、传热传质、流体力学和流体机械等方面的研究内容。

2.流体动力学流体动力学是流体运动的力学理论,它研究的是流体中的物理量,如流速、压力、密度等的变化和流体运动的规律。

它是流体物理学的基本内容,是工程流体力学的基础理论。

它的研究内容主要包括流体的静力学、流体的流变力学、流体的流动特性、流体的热力学性质、流体的动力学和流体的流动特性等。

3.传热传质传热传质是研究流体在传热和传质的过程中热量和物质的传递机理的一门学科。

它包括流体的热传导、热对流和热辐射、物质的传质、物质输运等方面的内容。

4.流体力学流体力学是一门综合学科,是研究流体的能量、动量和位置变化的动力学特性及其应用的学科。

流体力学研究的内容包括流体的流量和压力、流体的质量和动量、流体的流速、流体的流动特性等。

它主要研究的是流体受力的特性和运动特性,是工程流体力学中最重要的学科之一。

5.流体机械的理论流体机械是研究利用流体动力驱动转子的机械装置的科学,包括机械装置的流体的传动特性、涡轮机械和泵的流量控制、流体中的变频调速以及比热容与流场等。

它是工程流体力学中的重要内容,也是工程设计的重要基础。

二、工程流体力学的应用工程流体力学的基本理论可以应用于各种工程中,如机械制造、空气动力学、海洋技术、热能技术、新能源技术、能源储存和节能技术、化工反应技术等。

它在社会经济建设中发挥着重要作用,可以为社会生产提供良好的环境保护技术手段,也可以为工程设计和技术开发提供依据。

工程流体力学复习重点概念

工程流体力学复习重点概念

三、简答题1、 稳定流动及不稳定流动。

---在流场中流体质点通过空间点时所有的运动要素都不随时间改变,这种流动称为稳定流;反之,通过空间点处得流体质点运动要素的全部或局部要素随时间改变,这种流动叫不稳定流。

2、 产生流动阻力的原因。

---外因:水力半径的大小;管路长度的大小;管壁粗糙度的大小。

内因:流体流动中永远存在质点的摩擦和撞击现象,质点摩擦所表现的粘性,以及质点发生撞击引起运动速度变化表现的惯性,才是流动阻力产生的根本原因。

3、 串联管路的水力特性。

---串联管路无中途分流和合流时,流量相等,阻力叠加。

串联管路总水头损失等于串联各管段的水头损失之和,后一管段的流量等于前一管段流量减去前管段末端泄出的流量。

4、 如何区分水力光滑管和水力粗糙管,两者是否固定不变?---不是固定不变的。

通过层流边层厚度及管壁粗糙度值的大小进展比拟。

水力粗糙管。

水力光滑管;∆<∆>δδ5、 静压强的两个特性。

---1.静压强的方向是垂直受压面,并指向受压面。

2.任一点静压强的大小和受压面方向无关,或者说任一点各方向的静压强均相等。

6、 连续介质假设的内容。

---即认为真实的流体和固体可以近似看作连续的,充满全空间的介质组成,物质的宏观性质依然受牛顿力学的支配。

这一假设忽略物质的具体微观构造,而用一组偏微分方程来表达宏观物理量〔如质量,数度,压力等〕。

这些方程包括描述介质性质的方程和根本的物理定律,如质量守恒定律,动量守恒定律等。

7、 实际流体总流的伯诺利方程表达式为〔22222212111122z g v a p h g v a p z +++=++-γγ〕,其适用条件是稳定流,不可压缩流体,作用于流体上的质量力只有重力,所取断面为缓变流动。

8、 因次分析方法的根本原理。

---就是因次和谐的原理,根据物理方程式中各个项的因次必须一样,将描述复杂物理现象的各个物理量组合而成无因次数群π,从而使变量减少。

工程流体力学及泵与风机

工程流体力学及泵与风机

工程流体力学及泵与风机引言工程流体力学是研究涉及液体和气体在运动中的力学和热力学性质的学科。

它是工程领域中一个重要的分支,涉及到许多关键性的应用,如流体流动、流体阻力、泵与风机的设计与应用等等。

本文将对工程流体力学以及泵与风机进行介绍和探讨。

工程流体力学工程流体力学是研究液体和气体运动的力学学科,是研究流体力学在各种工程问题中的应用的科学。

它涉及到流体的流动、流体的阻力、流体的压力和速度分布等等。

在工程流体力学中,一些重要的概念和定律如下:流体静力学流体静力学是研究静止流体的力学性质,即在静止状态下的流体行为。

在流体静力学中,布劳伊定律是一个重要的定律,它描述了流体内部各处的静压力相等。

流体动力学流体动力学是研究流体在运动中的力学性质。

流体动力学可以进一步分为两个方面:流体运动的基本方程和流体力学的应用。

流体运动的基本方程包括质量守恒方程、动量守恒方程和能量守恒方程。

这些方程描述了流体在运动中质量、动量和能量的变化规律。

流体力学的应用涉及到各种工程问题,如流体的管道输送、飞机的气动力学、河流的水力学等等。

泵与风机泵和风机是工程领域中常见的设备,用于输送流体或气体。

它们在工业生产和生活中起着重要的作用。

泵泵是一种将液体或气体从低压区域输送至高压区域的设备。

泵的工作原理基于压力差的产生,通过旋转或往复运动的机械装置产生液体或气体的流动。

泵一般分为离心泵和容积泵两种类型。

离心泵通过离心力将液体或气体从中心向外推送,而容积泵则通过容积变化来输送介质。

泵的选择与应用需要考虑许多因素,如流量、扬程、压力损失、效率等等。

风机风机是一种将气体从一个区域输送到另一个区域的设备。

它由旋转的叶片和驱动装置组成,通过转动叶片产生气流。

风机一般分为轴流风机和离心风机两种类型。

轴流风机的气流方向与机轴平行,而离心风机的气流方向与机轴垂直。

风机的选择与应用也需要考虑类似于泵的因素,如风量、静压、效率等等。

结论工程流体力学及泵与风机是工程领域中的重要概念和设备。

工程流体力学

工程流体力学

§1.1 流体的定义
一、流体特征(续)
液体与气体的区别 液体的流动性小于气体; 液体具有一定的体积,并取容器的形状; 气体充满任何容器,而无一定体积。
流体的定义
流体是一种受任何微小的剪切力作用时,都 会产生连续变形的物质。 流动性是流体的主要特征。
§1.2 连续介质假说
微观:流体是由大量作无规则热运动的分子所组成, 分子间存有空隙,在空间上是不连续的。
在通常情况下,一个很小的体积内流体的分子数量极多;
例如,在标准状态下,1mm3体积内含有2.69×1016个气体分 子,分子之间在10-6s内碰撞1020次。
宏观:流体力学研究流体的宏观机械运动,研究的是 流体的宏观特性,即大量分子的平均统计特性。 结论:不考虑流体分子间的间隙,把流体视为由无 数连续分布的流体微团组成的连续介质。
1686年牛顿(Newton,I.)发表了名著《自然哲学的数学原理》 对普通流体的黏性性状作了描述,即现代表达为黏性切应力 与速度梯度成正比—牛顿内摩擦定律。为了纪念牛顿,将黏 性切应力与速度梯度成正比的流体称为牛顿流体。 18世纪~ 19世纪,流体力学得到了较大的发展,成为独立的一门学科。 古典流体力学的奠基人是瑞士数学家伯努利(Bernoulli,D.) 和他的亲密朋友欧拉(Euler,L.)。1738年,伯努利推导出了 著名的伯努利方程,欧拉于17 55年建立了理想流体运动微分 方程,以后纳维(Navier,C .-L.-M.-H.)和斯托克斯(Stokes, G.G.)建立了黏性流体运动微分方程。拉格朗(Lagrange)、 拉普拉斯(Laplace)和高斯(Gosse)等人,将欧拉和伯努利所 开创的新兴的流体动力学推向完美的分析高度。但当时由于 理论的假设与实际不尽相符或数学上的求解困难,有很多疑 不能从理论上给予解决。

猴博士工程流体力学

猴博士工程流体力学

猴博士工程流体力学1. 介绍猴博士工程流体力学是一门研究在工程领域中流体运动和相互作用的学科。

它涵盖了从空气、水、油到气体和液体等各种流体的运动行为的研究。

本文将详细介绍猴博士工程流体力学的基本概念、应用领域以及相关的数学模型。

2. 基本概念2.1 流体力学流体力学是研究流动物质(如气体和液体)运动规律的科学。

它可以分为两个分支:静力学和动力学。

静力学研究静止流体的性质,而动力学则关注运动中的流体。

2.2 流体在猴博士工程流体力学中,我们主要关注两种类型的流体:气态和液态。

气态包括空气、氧气等;液态包括水、油等。

2.3 流速与压强在研究流体运动时,我们需要考虑两个重要参数:流速和压强。

流速是流体单位时间通过某一横截面的体积,通常用速度来表示。

压强则是流体对单位面积施加的力。

3. 应用领域猴博士工程流体力学在许多领域中都有广泛应用,下面介绍其中几个重要的领域。

3.1 汽车工程在汽车工程中,猴博士工程流体力学可以帮助我们理解空气对汽车运动的影响。

例如,在设计车身外形时,通过模拟空气在汽车周围的流动,可以优化车辆的空气动力学性能,提高燃油效率和稳定性。

3.2 航空航天工程在航空航天工程中,猴博士工程流体力学可以帮助我们研究飞机和火箭等载具在飞行过程中与空气的相互作用。

通过分析气动力和风洞试验等手段,可以优化飞行器的设计,提高其性能和安全性。

3.3 水利工程水利工程是利用水资源进行水文、水资源、水环境等方面调查、规划、设计、建设和管理的一门综合性学科。

猴博士工程流体力学在水利工程中的应用非常广泛,可以用于研究水流、波浪、水头损失等问题,为水利工程的设计和管理提供科学依据。

3.4 石油工程石油工程是研究开采、生产和利用石油资源的一门学科。

在石油勘探和开采过程中,猴博士工程流体力学可以帮助我们分析地下岩层中的流体运动规律,优化注水和采油方法,提高石油开采效率。

4. 数学模型在猴博士工程流体力学中,我们使用数学模型来描述和预测流体的运动行为。

工程流体力学知识点总结

工程流体力学知识点总结

迹线和流线的差别:
迹线是同一流体质点在不同时刻的位移曲线,与
Lagrange观点对应;
流线是同一时刻、不同流体质点速度向量的包络线,
与Euler观点对应。
例 已知流场速度为
u
q 2
x
2
x
y
2
,
v
q 2
x2
y y2
,
w0
其中q为常数, 求流线方程
dx qx
q
dy y
解:
2 x2 y2 2 x2 y2
2020年5月20日8时36分
第二章 流体的主要物理性质
三、流体的粘性
1、流体的粘性
液体在外力作用下流动(或有流动趋势)时,其内部因相 对运动而产生内摩擦力的性质。
静止液体不呈现粘性。
2、牛顿内摩擦定律:
Ff
A dv
dy
流体流动时,阻滞剪切变形的内摩擦力与流体运动的速
度梯度成正比,与接触面积成正比,与流体的性质有关,与
dx/x=dy/y 积分 lnx=lny+c’ 即
y=cx
为平面点源流动
2020年5月20日8时36分
流体运动学基础
例: 已知平面流场速度分布为
u = 2yt+t3
v = 2xt
求时刻 t = 2 过点 (0,1) 的流线
dx
dy
解:
2 yt t 3 2 xt
2x dx = 2ydy +t2dy
(2)、四种压力的关系: 绝对压强=相对压强+大气压强 真空度=大气压强-绝对压强
2020年5月20日8时36分
流体静力学
p
大 强气

O 图3-6

工程流体力学

工程流体力学

vx v y vz 0 x y z div v 0 v 0
定常
不可压缩 vx v y vz 0 x y z div v 0 v 0
例题1(p49,例3-3)船用真空泵利用海水流经喷嘴 时所形成的真空来抽取空气.进口截面直径 d1=5cm,出口直径d=2cm.进口va1=6.2m/s, 求出口va2.
(2)数学表达式
2.流线 在某一瞬时,在某一曲线上任意一点的切线方向与流体在该点
(1)定义 的速度方向一致。 (2)数学表达式 (3)特点
dx dy dz vx x, y, z, t vy ( x, y, z, t ) vz ( x, y, z, t )
二.流管与过水段面
1.流管 在流场中作一条本身不是流线又不相交的封闭曲线,通过这
1.流量
单位时间内通过某一空间表面的流体的量,称为经过该表面的流量。
2.平均流速
是指流体流经某一空间表面流速大小的平均值。
3.例题3-2:
流体流经半径r0的直圆管时,其速度分布对称于r=0 的轴线,为抛物线分布 vx=vxmax(1-(r/r0)2).式中vx为 流体在横截面上的最大速度,为已知,求体积流量和平均流 速.
(1)vx ax 2 by 2 cz 2 , v y dxy eyz fzx y2 z2 x2 z 2 (2)vx ln 2 2 , v y sin 5 连续方程
一.微元流束与总流的连续方程
1.总流连续方程的形式 2.具有分支的管流计算 3.方程推导
(1)微元流束连续方程的推导 (2)总流连续方程的推导
二.直角坐标系中的连续方程

工程流体第一章

工程流体第一章
11
考核方法、学习要求、答疑 考核方法、学习要求、
考核方法: 1. 平时考勤、作业成绩占20%; 考核方法: 平时考勤、作业成绩占20% 2. 期末考试占80%。 期末考试占80% 学习要求: 学习要求: 1. 重点掌握 : 基础流体力学的基本概念 、 基本 重点掌握:基础流体力学的基本概念、 方程、 方程、基本应用 2. 按时 、 独立 、 认真完成作业 。 作业要求画图 , 按时、 独立、 认真完成作业。 作业要求画图, 代入数据。 代入数据。 答疑:1. 随时、随地欢迎同学们交流; 答疑: 随时、随地欢迎同学们交流; 2.主楼F613热工教研室; 主楼F613热工教研室 热工教研室; 3.Tel:61772472(O) Tel:61772472(O) 12 4.Email:lwy@ Email:lwy@.
7
4、我国水利事业的历史: 我国水利事业的历史:
4000多年前的 大禹治水”的故事——顺水之性,治 顺水之性, 4000多年前的 “大禹治水”的故事 顺水之性 水须引导和疏通 秦朝在公元前256 前210年修建了我国历史上的三大 秦朝在公元前256—前210年修建了我国历史上的三大 256 水利工程(都江堰、郑国渠、灵渠) 水利工程(都江堰、郑国渠、灵渠)-明渠水流和堰流 古代的计时工具“铜壶滴漏” 古代的计时工具“铜壶滴漏”——孔口出流 孔口出流 清朝雍正年间,何梦瑶在《算迪》一书中提出流量等 清朝雍正年间,何梦瑶在《算迪》 于过水断面面积乘以断面平均流速的计算方法。 于过水断面面积乘以断面平均流速的计算方法。 隋朝(公元587 610年 587—610 隋朝(公元587 610年)完成的南北大运河 隋朝工匠李春在冀中蛟河修建(公元605—617 隋朝工匠李春在冀中蛟河修建(公元605 617年)的 605 617年 赵州石拱桥——拱背的4个小拱,既减压主拱的负载, 拱背的4 赵州石拱桥 拱背的 个小拱,既减压主拱的负载, 又可宣泄洪水。 又可宣泄洪水。 8

工程流体力学

工程流体力学

工程流体力学引言工程流体力学是研究流体在工程应用中行为的科学和技术领域。

它涉及流体的运动、压力、力学特性、流动的稳定性等问题。

工程流体力学是许多工程领域的基础,如航空航天、能源、建筑等。

本文将介绍工程流体力学的基本原理、应用以及相关的数学模型和实验技术。

基本概念流体的特性流体是一种物质的形态,其特点是可以流动。

流体包括气体和液体。

相比固体,流体在外力作用下可以流动,具有较高的分子间自由度。

流体的主要特性包括密度、压力、速度等。

流体力学基本方程工程流体力学研究流体的运动和相互作用。

在研究中,以下几个基本方程是非常重要的:•质量守恒方程:描述了流体质量的守恒原理,表示流体质量的变化率与流体的进出和积累有关。

•动量守恒方程:描述了流体的动量守恒原理,表示流体的动量变化率与外力和内力有关。

•能量守恒方程:描述了流体的能量守恒原理,表示流体的能量变化率与外界的热流和功有关。

•热力学状态方程:描述了流体在热平衡状态下的物态关系,如理想气体状态方程等。

流体的流动性质流体的流动性质是工程流体力学的核心内容之一。

流动性质包括速度场、压力场、流线和湍流等。

流体的流动性质受到流体的物理性质、边界条件和流动过程中的各种相互作用的影响。

数学模型和实验技术为了研究流体的行为和特性,工程流体力学采用了数学模型和实验技术。

数学模型数学模型是通过建立流体运动的数学方程来描述和预测流体行为的工具。

常用的数学模型包括流体运动的偏微分方程,如Navier-Stokes方程,以及一些简化的模型,如边界层理论、湍流模型等。

数学模型的选择和建立要考虑流体的性质和问题的复杂程度。

实验技术实验技术是验证和研究数学模型的重要手段。

工程流体力学中常用的实验技术包括水槽试验、风洞试验、流速测量技术等。

实验技术可以帮助研究者观察流体的实际行为,获取流体的相关参数,并与数学模型的预测结果进行比较。

应用领域工程流体力学广泛应用于各个工程领域。

以下是一些常见的应用领域:航空航天工程航空航天工程是工程流体力学的重要应用领域。

工程流体力学基本概念复习

工程流体力学基本概念复习

▲连续介质模型:将流体作为无穷多稠密、没有间隙的流体质点构成的连续介质▲压缩性质和膨胀性质:流体在一定的温度下压强增大,体积减小;压强一定,温度变化,体积相应变化。

所有流体都具有这种特性。

▲流体黏性:流体流动时产生的内摩擦力的性质,是物体固有属性,但只有在运动状态下才能显现。

▲影响粘性的因素:①压强:压强改变对气体和液体的粘性的影响有所不同。

由于压强变化,对分子的动量交换影响非常小,所以气体的粘性随压强的变化很小。

压强增大时对分子的间距影响明显,故液体的粘性受压强变化的影响较气体大。

②温度:温度升高时气体的分子热运动加剧,气体的粘性增大,分子距增大对气体粘性的影响可以忽略不计。

对于液体,由于温度升高体积膨胀,分子距增大,分子间的引力减小,故液体的粘性随温度的升高而减小。

而液体温度升高引起的液体分子热运动的变化对粘性的影响可以忽略不计。

▲理想流体:为了处理工程实际问题方便起见建立一个没有黏性的理想流体模型,即把假想没有黏性的流体作为理想流体。

▲牛顿流体:剪切应力和流体微团角变形速度成正比的流体即符合牛顿内摩擦定律的流体▲非牛顿流体:剪切应力和角变形之间不符合牛顿内摩擦定律的流体称为非牛顿流体▲表面张力:自由液体分子间引力引起的,其作用结果使得液面好像一张紧的弹性膜▲毛细现象:由于内聚力和附着力的差别使得微笑间隙的液面上升和下降的现象▲绝对压强:以绝对真空为基准度量的压强▲相对压强/计示压强:以大气压为基准的度量▲真空:当被测流体的绝对压强低于大气压时,测得的计示压强为负值,负的表压强▲流体静压强:当流体处于平衡或相对平衡状态时,作用在流体上的应力只有法向应力而没有切向应力;此时,流体作用面上的法向应力就是静压强p,(单位Pa)▲流体静压强特性:①流体静压强的作用方向沿作用面的内法线方向。

②静止流体中任一点的流体静压强和作用面在空间的方位无关,只是坐标点的连续可微函数。

▲欧拉平衡方程物理意义:在静止流体内部的任一点上,作用在单位质量流体上的质量力和流体静压强相平衡。

流体力学的基本概念与原理

流体力学的基本概念与原理

流体力学的基本概念与原理引言:流体力学是研究流体运动规律的学科,涉及广泛且应用领域广泛。

本文将介绍流体力学的基本概念与原理,包括流体、流体静力学、流体动力学以及相关应用等方面的内容。

一、流体的基本特性流体是指能够流动的物质,主要包括液态流体和气态流体。

相较于固体,流体具有以下基本特性:1. 流动性:流体能够在物体表面滑动或流动。

2. 不可压缩性:理想流体在正常条件下几乎不可压缩,而实际流体也只在极高压力下才会发生明显的压缩。

3. 连续性:流体不存在间断,可以填充空间。

4. 流体内部分子间力的相对较小:流体分子间的相互作用力相对较弱,以致于在外力作用下,流体分子会相对较快地改变位置。

二、流体静力学流体静力学研究的是处于静止状态的流体,主要涉及以下概念与原理:1. 压强:压强是流体对单位面积上的压力。

根据帕斯卡原理,流体中的压强在各个方向上都是相等的。

2. 大气压:大气压是指大气对物体单位面积上的压力,通常用标准大气压作为基准。

3. 浮力:根据阿基米德原理,浸在液体中的物体会受到一个向上的浮力,其大小等于物体排斥液体的重量。

4. 斯托克斯定律:斯托克斯定律描述了粘性流体中小球的受力情况,根据该定律,小球的阻力与小球半径、流体黏度以及小球速度有关。

三、流体动力学流体动力学研究的是流体在运动过程中的行为,主要涉及以下概念与原理:1. 流速与流量:流速是单位时间内通过某个截面的流体体积,流量是单位时间内通过某个截面的流体质量或体积。

2. 流体动能:流体动能是流体由于运动而具有的能量,与流体的质量和速度有关。

3. 费诺特定律:费诺特定律是描述粘性流体内摩擦力与流速梯度之间关系的定律,根据该定律,粘性流体内部存在着滑动摩擦和黏滞摩擦。

4. 贝努利定律:贝努利定律描述了在不可压缩、稳定流动的流体中,沿着流线速度增大的地方,压强会减小;反之,速度减小的地方,压强会增大。

四、流体力学的应用流体力学的研究内容和应用广泛,常见的应用领域包括但不限于:1. 水力学:研究水的流动、水耗等问题,广泛应用于水利工程、水电站等领域。

中国石油大学(华东)工程流体力学课件

中国石油大学(华东)工程流体力学课件

绪论主要内容:●流体力学概述●工程流体力学概述●本学期学习任务●几点要求一、流体力学概述1、流体力学:研究流体的运动和平衡的规律以及流体和固体之间相互作用的一门科学。

2、流体力学的应用(1)航空航天领域——空气动力学、稀薄空气动力学飞机、火箭、人造地球卫星、宇宙探测器、航天飞机等航空器都是在大气层内活动的飞行器。

例:飞机为什么能飞?——各种飞机都是靠空气动力克服自身重力实现升空的。

飞机在空中飞行,必然有外力作用。

在水平飞行中,飞机上主要作用着4种力,它们是升力(Y)、阻力(X)、推力(P)和重力(G)。

飞机的受力直接影响飞机的运动状态,它们相互平衡时,飞机便作水平匀速直线飞行。

尽管有各个部件的配合,但是最主要的是飞机有一对采用特殊剖面形状的机翼。

翼剖面又称翼型。

大家知道,机翼外形都是采用称流线形设计。

根据流体的连续性和伯努利定理可知,相对远前方的空气来说,流经上翼面的气流受挤,流速加快,压力减小,甚至形成吸力(负压力);而流过下翼面的气流流速减慢。

于是上下翼面就形成了压力差。

这个压力差就是空气动力。

按力的分解法则,将其沿飞行方向分解成向上的升力和向后的阻力。

阻力由发动机提供的推力克服,升力正好可克服自身的重力,将飞机托向空中。

这就是飞机会飞的奥秘。

(2)船舶工业很显然,船舶工业更是离不开流体力学。

船舶、舰艇的外形直接影响到他们的航行速度、稳定性等特性,在设计时必须考虑在流体力学上如何使船体线型达到最佳。

例:潜艇现代潜艇按艇体线型的形状可分为三种,即常规型、水滴型和过渡型。

常规型适宜于水面航行,但对提高水下航速是不利的。

水滴型水下阻力小,有利于提高水下航速,但水滴型潜艇的水面航行性能较差,艇首容易上浪,而且易出现埋首现象。

过渡型潜艇是把常规型的直首和水滴型的尖尾相结合的一种潜艇线型,这种潜艇的水面航行性能优于水滴型,而水下航行性能优于常规型潜艇。

船吸现象1912年秋天,"奥林匹克"号正在大海上航行,在距离这艘当时世界上最大远洋轮的100米处,有一艘比它小得多的铁甲巡洋舰"豪克"号正在向前疾驶,两艘船似乎在比赛,彼此靠得较拢,平行着驶向前方。

工程流体力学水力学

工程流体力学水力学

且垂直于AB线,如下图。在AB线上H 各点的每一点
上各绘亦垂直AB线的γhi线γhi 段,等于各该点上的 静压强,这些线段的终点将处在一条直线AC上。
三角形ABC图就是铅垂线AB上的静压强分布图。
事实上,由式〔1-9〕C 知,当液B 体重度γ为常数
时,静压强p只是随淹没深γH度h而变化,两者成直
线关系。因此,在绘制静压图 1-强5 分布图时,只需在
单位重量流体从某一基准面算起所具有的位能,
因为对重量而言,所以称单位位能。的物理意义
是:单位重量流体所具有的压能,称单位压能。 因此流体静力学根本方程的物理意义是:在静止
❖ 流体中任以点的单位位能与单位压能之和,亦即 单位势能为常数。对于气体来说,因为重度γ值 较小,常忽略不计。由上式可知,气体中任意两 点的静压强,在两点间高差不大时,可认为相等。 对于液体来说,因为自由外表上的静压强p0常为 大气压强,是的。所以由上式可知液体中任一点 的静压强p为
止流体中任一点上流体静压强的大小与其作用面的方
位无关,即同一点上各个方向的静压强大小均相等

2.重力作用下的流体平衡方程

在实际工程中,静止流体所受的质量力只有重力。
这种流体通常称静止重力流体,因此,对于静止不可
压缩均质流体来说,总有一平衡方程式:

(1-12)
z p c
❖ 对于静止流体中任意两点来说,上式可写为:
❖ 〔二〕质量•密度
❖ 流体和其它物质一样,具有质量。流体单位
体积内所具有的质量称密度,以ρ表示。对于均
质流体,设体积为V的流体具有的质量为m,那
么密度ρ为

m
V
❖ 密度的单位为kg/m3。
〔1-1〕

流体力学概念总结

流体力学概念总结

第一章绪论1.工程流体力学的研究对象:工程流体力学以流体(包括液体和气体)为研究对象,研究流体宏观的平衡和运动的规律,流体与固体壁面之间的相互作用规律,以及这些规律在工程实际中的应用。

第二章流体的主要物理性质1.★流体的概念:凡是没有固定的形状,易于流动的物质就叫流体。

2.★流体质点:包含有大量流体分子,并能保持其宏观力学性能的微小单元体。

3.★连续介质的概念:在流体力学中,把流体质点作为最小的研究对象,从而把流体看成是:1)由无数连续分布、彼此无间隙地;2)占有整个流体空间的流体质点所组成的介质。

4.密度:单位体积的流体所具有的质量称为密度,以P表示。

5.重度:单位体积的流体所受的重力称为重度,以Y表示。

6.比体积:密度的倒数称为比体积,以u表示。

它表示单位质量流体所占有的体积。

7.流体的相对密度:是指流体的重度与标准大气压下4°C纯水的重度的比值,用d表示。

8.★流体的热膨胀性:在一定压强下,流体体积随温度升高而增大的性质称为流体的热膨胀性。

9.★流体的压缩性:在一定温度下,流体体积随压强升高而减少的性质称为流体的压缩性。

10.可压缩流体:P随T和p变化量很大,不可视为常量。

11.不可压缩流体:P随T和p变化量很小,可视为常量。

12.★流体的粘性:流体流动时,在流体内部产生阻碍运动的摩擦力的性质叫流体的粘性。

13.牛顿内摩擦定律:牛顿经实验研究发现,流体运动产生的内摩擦力与沿接触面法线方向的速度变化(即速度梯度)成正比,与接触面的面积成正比,与流体的物理性质有关,而与接触面上的压强无关。

这个关系式称为牛顿内摩擦定律。

14.非牛顿流体:通常把满足牛顿内摩擦定律的流体称为牛顿流体,此时不随du/d n而变化,否则称为非牛顿流体。

15.动力粘度u :动力粘度表示单位速度梯度下流体内摩擦应力的大小,它直接反映了流体粘性的大小。

16.运动粘度v :在流体力学中,动力粘度与流体密度的比值称为运动粘度,以v表示。

工程流体力学相关概念公式

工程流体力学相关概念公式

其次章流体及其物理性质流体:是一种受任何微小剪切力作用都能连续变形的物质。

流体连续介质假说:可以不去考虑分子间存在的空隙,而把流体视为由很多连续分布的流体微团所组成的连续介质。

作用在流体上的力:表面力和质量力。

流体密度:单位体积内所具有的质量。

压缩性:随着压强的增高,体积便缩小。

压缩系数:用单位压强所引起的体积变化率。

膨胀性:随着温度的提升,体积便膨胀。

体胀系数:单位温升所引起的体积变化率。

粘性:流体微团间发生相对滑移时产生切向阻力的性质。

牛顿内摩擦定律:作用在流层上的切向应力与速度梯度成正比,其比例系数为流体的动力粘度。

粘性与温度的关系:液体的粘度随温度提升而减小,气体的年度随温度提升而增大。

牛顿流体:凡作用在流体上的切向应力与它所引起的角变形速度(速度梯度)之间的关系符合牛顿内摩擦定律的流体。

第三章流体静力学流体静压强两个特性:一。

流体静压强的方向沿作用面的内法线方向。

-O静止流体中任一点流体静压强的大小与其作用面在空间的方位无关,只是该点坐标的连续函数,即静止流体中任一点上不论来自何方的静压强均相等。

等压面:压强相等的各点组成的面。

作用于静止流体中任一点的质量力必垂直于通过该点的等压面。

帕斯卡原理:施于在重力作用下不行压缩流体表面上的压强,将以同一数值沿各个方向传递到流体中的全部流体质点。

水头:单位重量流体所具有的能量用液柱高度表示。

压力体:液体作用在曲面上的总压力的铅直分力的大小恰好等于压力体的液体重力,但并非作用在曲面上的肯定是它上面压力体的液体重力。

(纯数学概念,与体内有无液体无关)第四章流体运动学和流体动力学基础流体运动的描述方法:欧拉方法和拉格朗日方法。

流线:在某一瞬时,一条曲线上的每一点的速度矢量总是在该点与此曲线相切。

流管:在流场内作一本身不是流线又不相交的封闭曲线,通过这样的封闭曲线上各点的流线所构成的管状表面。

有效截面:到处与流线相垂直的流束的截面。

湿周:在总流的有效截面上,流体同固体边界接触部分的周长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程流体力学概念1.连续介质模型:在流体力学的研究中,将实际的分子组成的结构用流体微元代替。

流体微元是由足够数量的分子组成,连续充满它所占据的空间,这就是连续介质模型。

2.表面力:作用在所研究流体外表面上与表面积大小成正比的力。

3.应力:单位面积上的表面力。

4.质量力:处于某种力场中的流体,所有质点均受到与质量成正比的力。

5.流体的相对密度:某均质流体的质量与4℃同体积的纯水的质量比称为该流体的相对密度。

ρρd w =6.体胀系数α:当压强不变而流体温度变化1K 时,其体积的相对变化率。

ΔT ΔV Vα1= 7.压缩率k :当流体温度不变,所受压强改变时,其体积的相对变化率。

ΔPΔV Vk 1-= 8.体积模量K :压缩率的倒数。

ΔV P V k K ∆-==1 9.粘性:当流体在外力作用下,流体微元间出现相对运动时,随之产生阻碍流体层相对运动的内摩擦力,流体产生内摩擦力的这种性质称为粘性。

10.动力粘度μ:单位速度梯度时内摩擦切应力的大小。

dh dv τμ=11.运动粘度υ:动力粘度与流体密度的比值。

ρμυ=12.恩氏粘度:被测液体与水粘度的比值。

13.牛顿内摩擦定律:流体内摩擦力(切力)的大小与流体的速度梯度和接触面积大小成正比,并与流体的粘性有关。

dhdv μA F f = 切应力:dh dv μτ= 14.理想流体:一种假想的没有粘性的流体。

15.牛顿流体:在流体力学研究中,凡切应力与速度梯度呈线性关系,即服从牛顿内摩擦定理的流体,称为牛顿流体。

16.表面张力σ:引起液体自由表面欲成球形的收缩趋势的力。

17.静压强:当流体处于绝对静止或相对静止时,流体中的压强为流体静压强。

18.有势质量力:质量力所做的功只与起点和终点的位置有关,这样的力称为有势质量力。

19.力的势函数:某函数对相应坐标的偏导数,等于单位质量力在相应坐标轴上的投影,该函数称为力的势函数。

20.等压面:在充满平衡流体的空间,连续压强相等的各点所组成的面称为等压面。

21.绝对压强:以绝对真空为零点开始计量的压强。

(气体状态方程中使用)22.计示压强(表压强):绝对压强与大气压强之差。

(开口容器或不可压缩流体使用)23.真空度:流体的绝对压强小于大气压而形成真空的程度。

24.压力体:由所研究的曲面,通过曲面周界所作的垂直柱面和流体的自由表面(或其延伸面)所围成的封闭体积叫做压力体V 。

25.实压力体:当所讨论的流体作用面为压力体的内表面时,称为实压力体。

26.虚压力体:当所讨论的流体作用面为压力体的外表面时,称为虚压力体。

27.浮力:液体对潜入其中的物体的作用力称为浮力。

28.当地加速度(时变加速度):位于所观察空间的流体质点的速度随时间的变化率。

29.迁移加速度(位变加速度):流体质点所在空间位置的变化所引起的速度变化率。

30.质点导数(全加速度或随体导数):时变加速度与位变加速度之和。

31.恒定流动(定常流动):流场中每一空间点上的运动参数不随时间变化的流动。

32.非恒定流动(非定常流动):流场中运动参数不但随位置改变而改变,而且也随时间变化的流动。

33.迹线:流体质点的运动轨迹。

34.流线:某瞬时在流场中所作的一条空间曲线,该瞬时位于曲线上各点的流体质点的速度在该点与曲线相切。

35.流管:在流场中任取一封闭曲线(非流线),过曲线上各点作流线,所有这些流线构成一管状曲面,成为流管。

36.流束:若在流场中取一非流面的曲面,则过曲面上各点所作流线的总合,成为流束。

37.总流:在实际工程中,把管内流动和渠道中的流动看成是总的流束,它由无限多微小流束组成,称为总流。

38.过流断面(有效断面):在流束或总流中与所有流线都相互垂直的横断面称为过流断面。

39.湿周X :在总流的过流断面上与流体相接触的固体边壁周长称为湿周。

40.水力半径R :总流过流断面面积与湿周之比。

X A R =41.当量直径d e :总流过流断面面积的四倍与湿周之比。

X A d e 4=42.流量:单位时间内流过总流过流断面的流体量称为流量。

43.断面平均流速:流经有效截面的流量除以有效面积的商。

A q v v =44.连续性:在流体力学的研究中,把流体看作是连续介质,即使是在运动流体的内部,流体质点也是连续充满所占据的空间,彼此间不会出现空隙。

流体的这种性质称为连续性。

45.柯西-亥姆霍兹定理:在一般情况下,任一流体微元的运动可以分解为三个运动:随同任意基点的平移、对于通过这个基点的瞬时轴的旋转运动和变形运动。

46.旋转角速度:单位时间旋转角度称为旋转角速度。

47.角变形速度:单位时间的角变形与1/2的乘积称为角变形速度。

48.有旋运动:流体微元的旋转角速度不等于零的流动。

49.无旋运动:流体微元的旋转角速度等于零的流动。

50.正压流体:密度只与压强有关,而与温度无关的流体。

51.位置水头:所研究点相对某一基准面的几何高度。

52.压强水头(测压管高度):所研究点处压强大小的高度,具有长度量纲。

53.速度水头(测速管高度):所研究点处速度大小的高度,具有长度量纲。

54.涡线:在某瞬时涡量场中所作的一条空间曲线,在该瞬时,位于涡线上的所有流体质点的旋转角速度向量与该线相切。

55.涡管:给定瞬时,在涡量场中,过任意封闭围线(不是涡线)上的点作涡线,所形成的管状表面。

56.涡束:若涡管中充满着作旋转运动的流体质点,就成为涡束。

57.漩涡强度J :在涡量场中取一微元面积dA ,dA 中流体质点的旋转角速度向量为w ρ,n 为dA 的法线方向,定义 dA ω,n)dA w (w dJ n ==ρρcos 为任意微元面积dA 上的漩涡强度。

58.速度环量Γ:假设某一瞬时t ,在流动空间中取任意曲线AB ,在AB 线上M 点处取微元线段dl ,M 点处速度为v ,v 与dl 的夹角为α,则称 αdl v l d v d Γcos =⋅=ρρ 为沿线段dl 的速度环量。

59.单连通域:如果周线区域内作的任意一条围线都可以连续地收缩至一点而不越出边界,则称为单连通域。

60.总流:无限多个微小流束的总和称为总流。

61.缓变流动:若某过流断面上的流线几乎是相互平行的直线,则此过流断面称为缓变断面,过流断面上的流动称为缓变流动。

62.动能修正因数α:用真实流速计算的动能与平均流速计算的动能间的比值。

(α>1)63.动量修正因数α0:用真实流速计算的动量与平均流速计算的动量间的比值。

(α0>1)64.系统:有限体积的流体质点的集合称为系统。

65.控制体:取流场中某一确定的空间区域,这个空间区域称为控制体。

66.瞬态力:在同一地点(控制体积内)由于时间变化而产生的力。

67.稳态力:由于流体质点流入流出控制面,所处的空间地点变化而产生的力。

68.速度势函数:若v x x =∂∂φ,v y y =∂∂φ,v z z =∂φ,则)(x,y,z,t φ成为速度势函数。

69.流函数:若v -x ψy =∂∂,v y ψx =∂∂,则称)(x,y,t ψ为流函数。

70.有势流动(无旋流动):流动场中,若任意流体质点的旋转角速度向量0=ωρ,则称为有势流动。

71.平面有势流动:若流体质点在相互平行的平面内作有势流动,则称该流动为平面有势流动。

72.均匀平行流:深度和宽度很大的流体流过平面时的流动,流场中每一点的速度大小相等,方向相同,流体作均匀直线流动。

73.点源:流体从一点径向均匀地向外流出,流动完全对称,流线是从源点发出的直线,这种流动称为点源。

74.点汇:流体径向直线均匀地流向一点,这种流动称为点汇。

75.点涡:涡束的半径R 趋于零时,变成一条涡线,垂直于无限长直涡线的各平行平面中的流动称为点涡。

76.翼型的中线:翼型所有内切圆心的连线。

77.翼弦:连接前缘点和后缘点的直线。

78.冲角:无穷远来流速度V ∞的方向与翼弦之间的夹角α。

79.几何相似:模型液流与实物液流有相似的边界条件,一切对应的特征尺寸成同一比例,且对应角相等。

80.运动相似:满足几何相似的两个液流中,若在对应瞬时,所有对应点上的速度方向一致,大小成同一比例,则两个液流运动相似。

81.动力相似:两个运动相似的液流中,在对应瞬时,对应点上受相同性质力的作用,力的方向相同,且各对应的同名力成同一比例,则两个液流动力相似。

82.力学相似:几何相似是运动相似的必要条件,运动相似是动力相似的必要条件,且当两流动对应点处的流体质点上作用着同名力,各同名力间有同一比例,并存在相似的起始和边界条件时,称该两流动力学相似。

83.牛顿数:v l ρF v l ρFm m m mt t t tNe 222222== 判断液流是否动力相似。

84.相似准则:如果粘性不可压缩流体的两个流动力学相似,那么,满足边界条件和起始条件相似的Sr,Eu,Re 和Fr 应当相等,这就是相似准则,称这些数为相似准数。

两个流动的相似准数相同,表示了对应点处单位质量流体上作用的力多边形几何相似。

85.决定性相似准数:两个力学相似的流动,由起始和边界条件所给定的物理量组成的相似准数,称为决定性相似准数。

86.稳定性:粘性物体在管道中流动时,不管入口处速度分布如何,必须经一定的入口段长度后,流速分布才固定下来,这种特性称为稳定性。

87.沿程阻力:流体沿流动路程所受到的阻碍称为沿程阻力。

88.沿程损失h f :由沿程阻力所引起的能量损失称为沿程损失。

89.局部损失h j :由局部阻力所引起的能量损失称为局部损失。

(h ξ为单位重力流体的局部损失。

总损失: ∑∑+=h h h j f w )90.层流:定向的恒定流动。

91.紊流:不定向的混杂流动。

92.上临界速度v cr ':在雷诺实验中,当流速增大时,流动状态由层流转变为紊流是在某一定流速时发生的,这个流速称为上临界速度。

93.下临界速度v cr :在雷诺实验中,当流速减小到某一流速时,流动状态由紊流转变为层流,这个流速称为下临界速度。

94.瞬时速度v (瞬时压强p ):表示在某时刻紊流流场中某点速度(压强)的真实值。

95.时间平均流速v :在某一时间间隔内,以某平均速度流经微小过流断面的流体体积与以真实速度流经时的流体体积相等,该平均速度称为时间平均流速。

96.断面平均流速v :以断面平均流速计算的流量与按实际流速计算的流量相等,即用有效截面的体积流量除以有效截面积得到断面平均流速。

97.脉动速度v '(脉动压强p '):表示某一空间点上速度(压强)的真实值与时间平均值的差值。

98.恒定紊流流动:当紊流流场中每一空间点上的运动参数时间平均值不随时间变化时,称为恒定紊流流动。

99.紊流流场中流线:在时间平均速度场中所作的曲线,再给定瞬时位于该曲线上的所有流体质点的时间平均速度向量都与曲线相切。

相关文档
最新文档