七年级上角平分线练习题及答案
七年级数学三角形的高中线与角平分线练习题
7.1.2 三角形的高、中线与角平分线7.1.3 三角形的稳定性基础过关作业1.以下说法错误的是()A.三角形的三条高一定在三角形内部交于一点B.三角形的三条中线一定在三角形内部交于一点C.三角形的三条角平分线一定在三角形内部交于一点D.三角形的三条高可能相交于外部一点2.如果一个三角形的三条高的交点恰好是这个三角形的一个顶点,•那么这个三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定3.如图1,BD=12BC,则BC边上的中线为______,△ABD的面积=_____的面积.(1) (2) (3)4.如图2,△ABC中,高CD、BE、AF相交于点O,则△BOC•的三条高分别为线段________.5.下列图形中具有稳定性的是()A.梯形 B.菱形 C.三角形 D.正方形6.如图3,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm,求△ABD•与△ACD的周长之差.7.如图,∠BAD=∠CAD,AD⊥BC,垂足为点D,且BD=CD.•可知哪些线段是哪个三角形的角平分线、中线或高?综合创新作业8.(综合题)如图5,在等腰三角形ABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长分为15和6两部分,求该等腰三角形的腰长及底边长.9.有一块三角形优良品种试验基地,如图所示,•由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择(画图说明).10.(创新题)如图,在△ABC 中,D 、E 分别是BC 、AD 的中点,S △ABC =4cm 2,求S △ABE .11.(2004年,陕西)如图,在锐角△ABC 中,CD 、BE 分别是AB 、AC 上的高,•且CD 、BE 交于一点P ,若∠A=50°,则∠BPC 的度数是( )A .150°B .130°C .120°D .100°培优作业12.(探究题)(1)如图7-1-2-9,AD 是△ABC 的角平分线,DE ∥AB ,DF ∥AC ,EF 交AD 于点O .请问:DO 是△DEF 的角平分线吗?如果是,请给予证明;如果不是,请说明理由.(2)若将结论与AD 是△ABC 的角平分线、DE ∥AB 、DF ∥AC 中的任一条件交换,•所得命题正确吗?13.(开放题)要使四边形木架(用4根木条钉成)不变形,至少要再钉上几根木条?五边形木架和六边形木架呢?n 边形木架呢?14.(趣味题)《三国演义》中有关木牛流马的叙述:“孔明即手书一纸,付众观看,众将环绕而视.造木牛之法云:‘方腹曲头,一脚四足;头入领中,舌着于腹.载多而行少,独行者数十里,群行者二十里.曲者为牛头,双者为牛脚,横者为牛领,转者为牛足,覆者为牛背,方者为牛腹,垂者为牛舌,曲者为牛肋,刻者为牛齿,立者为牛角,细者为牛鞅,摄者为牛轴.牛仰双辕,人行六尺,牛行四步.’每牛载十人所食一月之粮,人不大劳,牛不饮食.”你知道木牛流马中运用了什么数学知识吗?数学世界探险家的“难极”有一个探险家,挖空心思想出一个“难极”来.什么是探险家的“难极”呢?一般情况下,如果从某地出发,先往北走100公里,再往东走100公里,然后往南走100公里,这时,终止地总要在出发地正东100公里处.而若从某地出发,先往北走100公里,再往东走100公里,然后往南走100•公里,能正好回到原来的出发地.这个出发地被探险家称其为“难极”.你知道探险家的“难极”在哪里吗?答案:1.A 点拨:锐角三角形的三条高在三角形内部交于一点,•直角三角形的三条高交于直角顶点,钝角三角形的三条高在三角形外部交于一点. 2.B 3.AD ;△ACD 4.BD ,CE ,OF 5.C 6.解:∵AD 为△ABC 的中线, ∴BD=CD ,∴△ABD 与△ACD 的周长之差为:(AB+BD+AD )-(AC+CD+AD )=AB-AC=5-3=2(cm ).7.解:∵∠BAD=∠CAD ,∴AD 是△ABC 的角平分线,DE 是△BEC 的角平分线. ∵AD ⊥BC ,垂足为点D ,∴AD 是△ABC 的高,DE 是△BEC 的高. ∵BD=CD ,∴AD 是△ABC 的中线,DE 是△BEC 的中线. 点拨:本题是考查三角形的角平分线、中线和高的概念. 8.解:设AB=AC=2x ,则AD=CD=x . (1)AB+AD=15,BC+CD=6时, 有2x+x=15,解得x=5. ∴2x=10,BC=6-5=1.(2)当BC+CD=15,AB+AD=6时, 有2x+x=6,解得x=2. ∴2x=4,BC=15-2=13.∵4+4>13,∴此时构不成三角形.∴这个等腰三角形的腰长及底边长分别为10,1.点拨:要注意检验结果是否满足三角形三边关系定理.9.解:方案1:如答图1,在BC 上取D 、E 、F ,使BD=ED=EF=FC ,连接AE 、ED 、•AF .(1) (2) (3)方案2:如答图2,分别取AB 、BC 、CA 的中点D 、E 、F ,连接DE 、EF 、DF . 方案3:如答图3,分别取BC 的中点D ,CD 的中点E ,AB 的中点F ,连接AD 、AE 、DF .同学们,你还有别的方法吗?试试看. 点拨:三角形面积计算公式为12×底×高,因此解题的关键是找出底、高分别相等的四个三角形.10.解:∵AD 是△ABC 的边BC 上的中线,∴S△ABD=12S△ABC=12×4=2(cm2).∵BE是△ABD的边AD上的中线,∴S△ABE=12S△ABD=12×2=1(cm2).点拨:三角形的任一中线将三角形分为面积相等的两个小三角形.11.B 点拨:∵CD、BE分别是AB、AC边上的高,∴∠AEB=∠CDB=90°,∵∠A=•50°,∴∠ABE=40°,∴∠BPD=180°-∠CDB-∠ABE=180°-90°-40°=50°,•∴∠BPC=180°-∠BPD=180°-50°=130°.12.解:(1)DO是△DEF的角平分线.证明:∵AD是△ABC的角平分线,∴∠EAD=∠FAD.∵DE∥AB,DF∥AC,∴∠EDA=∠FAD,∠FDA=∠EAD(两直线平行,内错角相等).∴∠EDA=∠FDA.∴DO是△DEF的角平分线.(2)所得命题正确.13.解:要使四边形木架不变形,至少要再钉上1根木条.要使五边形木架不变形,至少要再钉上2根木条.要使六边形木架不变形,至少要再钉上3根木条.要使n边形木架不变形,至少要再钉上(n-3)根木条.14.答:用手抬按木牛的双辕或木马的头部,木牛流马会稳稳地向前迈进.用手操作的时候,人和木牛流马总是呈三角形.这符合三角形稳定性原理,•这也是木牛流马“上山下岭,各尽其便”的原因.数学世界答案:探险家的“难极”就是南极点.。
人教版七年级数学知识点试题精选-角平分线的定义
七年级上册角平分线的定义一.选择题(共20小题)1.如图A、O、B三点共线,OD平分∠AOC,OE平分∠BOC,则∠DOE度数为()A.30°B.60°C.90°D.120°2.如图,点O在直线AB上,OD平分∠BOC,若∠BOD=55°,则∠AOC的度数是()A.110°B.70°C.55°D.35°3.如图,如果∠AON=∠BOM,OC平分∠MON,那么图中除∠AON=∠BOM外,相等的角还有()A.1对 B.2对 C.3对 D.4对4.如图,OC是∠AOB的平分线,下列表达式中错误的是()A.∠AOC=∠AOB B.∠AOB=2∠BOC C.∠AOC=∠COB D.∠AOB=2∠O5.如图,OM平分∠AOB,OC是∠AOB内部的一条射线,ON平分∠BOC,有以下说法:①∠AOC=∠BOM②∠CON=∠BON③∠AOC=∠AOM+∠COM④∠AOC=∠BOM+∠COM⑤∠AOC=2∠MOC+∠COB⑥∠AOC=2∠MOC+2∠CON⑦∠AOC=2∠MON其中正确的有()个.A.4 B.5 C.6 D.76.如图,已知∠AOB是直角,OM平分∠AOC,ON平分∠BOC,则∠MON的度数是()A.60°B.50°C.45°D.30°7.点C在∠AOB的内部,现在五个等式:∠AOB=∠BOC,∠BOC=∠AOB,∠AOB=2∠AOC,∠AOB=2∠AOC,∠AOC+∠BOC=∠AOB,其中能表示OC是∠AOB 平分线的等式有()A.2个 B.3个 C.4个 D.5个8.如图,∠AOB是平角,∠AOC,∠BOC的角平分线分别是OD,OE,则∠DOE 是()A.80°B.90°C.100° D.105°9.如图,射线OC,OD在∠AOB的内部,OC是∠AOD的平分线,若∠AOB=100°,∠COD=15°,则∠BOD的度数为()A.85°B.80°C.70°D.60°10.如图,已知∠AOB=40°,∠AOC=90°,OD平分∠BOC,则∠AOD的度数是()A.20°B.25°C.30°D.35°11.如图,已知OD平分∠AOB,OE平分∠BOD,若=,则的值为()A.B.C.D.12.如图,已知∠BOC=40°,OD平分∠AOC,∠AOD=25°,那么∠AOB的度数是()A.65°B.50°C.40°D.90°13.点M,O,N顺次在同一直线上,射线OC,OD在直线MN同侧,且∠MOC=64°,∠DON=46°,则∠MOC的平分线与∠DON的平分线夹角的度数是()A.85°B.105°C.125° D.145°14.如图所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,则∠MON的度数为()A.30°B.45°C.60°D.75°15.点P在∠MON内部,则四个等式:①∠POM=∠NOP;②∠PON+∠POM=∠MON;③∠MOP=∠MON,④∠MON=2∠NOP,其中能表示OP是角平分线的式子有()A.1个 B.2个 C.3个 D.4个16.已知∠AOB=60°,作射线OC,使∠AOC等于40°,OD是∠BOC的平分线,那么∠BOD的度数是()A.100°B.100°或20°C.50°D.50°或10°17.已知∠AOB=80°,OM是∠AOB的平分线,∠BOC=20°,ON是∠BOC的平分线,则∠MON的度数为()A.30°B.40°C.50°D.30°或50°18.如图,∠AOB是直角,∠AOC=38°,OD平分∠BOC,则∠AOD的度数为()A.52°B.38°C.64°D.26°19.射线OC在∠AOB的内部,下列给出的条件中不能得出OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOC+∠BOC=∠AOBC.∠AOB=2∠AOC D.∠BOC=∠AOB20.如图所示,已知O是直线AB上一点,∠1=68°,OD平分∠BOC,则∠2的度数是()A.40°B.45°C.44°D.46°二.填空题(共20小题)21.若∠AOB=4∠α,OC为∠AOB的角平分线,则∠AOC=∠α.22.如图,∠AOB=68°,OC平分∠AOB,则∠BOC的度数为.23.如图,∠1=∠2=∠3=∠4.(1)那么OD是的角平分线,OE是是的角平分线,OC是的角平分线;(2)=4∠1,==3∠1;(3)∠BOD=∠BOC=∠AOB;(4)若∠BOE=30°,那么∠AOE=.24.一个角的平分线把这个角分为30°的两个角,则这个角是.25.从一个角的点引出一条线,把这个角分成个,这条线叫做这个角的平分线.如图所示,如果OC是∠AOB的平分线,那么:①∠AOC==;②∠AOB==.26.一条以一个角的为的射线把这个角分成的角,这条射线叫做这个角的.27.如图,∠AOB是直角,∠BOC=50°,OM平分∠AOC,ON平分∠BOC,则∠MON的度数为.28.如图,OC平分∠AOB,若∠BOC=29°34′,则∠AOB=°′.29.如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,则∠AOB=.30.如图,O是直线AB上一点,OC为任意一条射线,OD平分∠BOC,OE平分∠AOC.若∠BOC=66°,则∠EOC=度.31.如图,两个直角∠AOC和∠BOD有公共顶点O,下列结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③若OB平分∠AOC,则OC平分∠BOD;④∠AOD的平分线与∠BOC的平分线是同一条射线,其中正确的是.(填序号)32.如图直线AB、CD相交于点E,EF是∠BED的角平分线,已知∠DEF=70°,则∠AED的度数是.33.如图,已知A,O,E三点在同一条直线上,OB平分∠AOC,OD平分∠COE,则∠BOC与∠COD的关系为.34.如图所示,已知OE是∠AOC的平分线,OD是∠BOC的平分线.(1)若∠AOC=120°,∠BOC=β,求∠DOE;;(2)若∠AOC=α,∠BOC=β(α>β),求∠BOE..35.已知直线AB上有一点O,射线OC、OD在AB的同侧,∠AOD=24°,∠BOC=46°,则∠AOD与∠BOC的平分线的夹角的度数为.36.如图,O是直线AB上的一点,OD平分∠AOC,OE平分∠BOC,则∠DOE=度.37.如图,OB在∠AOC内部,且∠BOC=3∠AOB,OD是∠AOB的平分线,∠BOC=3∠COE,则下列结论:①∠EOC=∠AOE;②∠DOE=5∠BOD;③∠BOE=(∠AOE+∠BOC);④∠AOE=(∠BOC﹣∠AOD).其中正确结论有.38.如图所示,∠AOB=85°,∠AOC=10°,OD是∠BOC的平分线,则∠BOD的度数为度.39.如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°10′,则∠AOB的度数为.40.如图,OC平分∠AOB,若∠AOC=27°30′,则∠AOB=度.三.解答题(共10小题)41.如图,OB是∠AOC的平分线,OD是∠EOC的平分线.(1)如果∠AOD=75°,∠BOC=19°,则∠DOE的度数为;(2)如果∠BOD=56°,求∠AOE的度数.解:如图,因为OB是∠AOC的平分线,所以=2∠BOC.因为OD是∠EOC的平分线,所以=2∠COD.所以∠AOE=∠AOC+∠COE=2∠BOC+2∠COD=°.42.已知平角AOB及其平分线OC,如果作射线OD,使∠BOD与∠COD的度数之比为7:3,那么∠AOD等于多少度?43.已知,如图,∠AOB=90°,∠EOD=70°,OE、OD分别是∠AOB和∠BOC的角平分线,求∠BOC的度数.44.如图,已知O为直线AF上一点,OE平分∠AOC,(1)若∠AOE=20°,求∠FOC的度数;(2)若OD平分∠BOC,∠AOB=84°,求∠DOE的度数.45.如图所示,BD平分∠ABC,BE分∠ABC成2:5的两部分,∠DBE=27°,求∠ABC的度数.46.如图,O是直线AB上的一点,OC是△BOD的平分线,已知∠AOD=113°24′,求∠COD的度数.47.如图1,OM是∠BOC的角平分线,ON是∠AOC的角平分线,且∠AOB=76°.(1)求∠MON的度数;(2)当OC在∠AOB内另一个位置时,∠MON的值是否发生变化?若不变化,请你在图2中画图加以说明;(3)由(1)、(2)你发现了什么规律?当OC在∠AOB外的某一个位置时,你发现的规律还成立吗?请你在图3中画图加以说明.48.如图,点O为直线AB上一点,∠AOC=50°,OD平分∠AOC.(1)求∠BOD的度数;(2)若OE平分∠BOC,求∠DOE的度数.49.如图,OC是∠AOM的平分线,OD是∠BOM的平分线.(1)如图1,若∠AOB=90°,∠AOM=60°,求∠COD的度数;(2)如图2,若∠AOB=90°,∠AOM=130°,则∠COD=°;(3)如图3,若∠AOB=m°,∠AOM=n°,则∠COD=°.50.如图所示,OC是∠AOD的平分线,OE是∠BOD的平分线.(1)若∠AOB=120°,则∠COE是多少度?(2)若∠EOC=65°,∠DOC=25°,则∠BOE是多少度?七年级上册角平分线的定义参考答案与试题解析一.选择题(共20小题)1.如图A、O、B三点共线,OD平分∠AOC,OE平分∠BOC,则∠DOE度数为()A.30°B.60°C.90°D.120°【分析】根据角平分线的定义可得∠COD=∠AOC,∠COE=∠COB,再根据∴∠DOE=∠COD+∠COE=∠AOC+∠COB=(∠AOC+∠COB)可得答案.【解答】解:∵OD平分∠AOC,OE平分∠BOC,∴∠COD=∠AOC,∠COE=∠COB,∴∠DOE=∠COD+∠COE=∠AOC+∠COB=180°=90°,故选:C.【点评】此题主要考查了角平分线的定义,关键是掌握角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.2.如图,点O在直线AB上,OD平分∠BOC,若∠BOD=55°,则∠AOC的度数是()A.110°B.70°C.55°D.35°【分析】先由角平分线的定义得出∠BOC=2∠BOD,再根据邻补角定义即可求解.【解答】解:∵OD平分∠BOC,∠BOD=55°,∴∠BOC=2∠BOD=110°,∵AB是直线,∴∠AOC=180°﹣∠B0C=70°.故选B.【点评】此题考查角平分线与邻补角的定义,属于基础题,比较简单.3.如图,如果∠AON=∠BOM,OC平分∠MON,那么图中除∠AON=∠BOM外,相等的角还有()A.1对 B.2对 C.3对 D.4对【分析】根据角平分线的定义和图中角与角间的和差关系进行计算.【解答】解:∵∠AON=∠BOM,∴∠AON+∠MON=∠BOM+∠MON,即∠AOM=∠BON;又∵OC平分∠MON,∴∠MOC=∠NOC,∴∠AON+∠NOC=∠BOM+∠MOC,即∠AOC=∠BOC.综上所述,图中除∠AON=∠BOM外,相等的角还有∠AOM=∠BON、∠MOC=∠NOC、∠AOC=∠BOC,共有3对.故选:C.【点评】本题考查了角平分线的定义.实际上是根据角平分线定义得出所求角与已知角的关系转化求解.4.如图,OC是∠AOB的平分线,下列表达式中错误的是()A.∠AOC=∠AOB B.∠AOB=2∠BOC C.∠AOC=∠COB D.∠AOB=2∠O 【分析】根据角平分线的定义对各选项进行逐一分析即可.【解答】解:A、∵OC是∠AOB的平分线,∴∠AOC=∠AOB,故本选项正确;B、∵OC是∠AOB的平分线,∴∠AOB=2∠BOC,故本选项正确;C、∵OC是∠AOB的平分线,∴∠AOC=∠COB,故本选项正确;D、∵从点O出发由三个角,故不能确定∠AOC的大小,故本选项错误.故选D.【点评】本题考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.5.如图,OM平分∠AOB,OC是∠AOB内部的一条射线,ON平分∠BOC,有以下说法:①∠AOC=∠BOM②∠CON=∠BON③∠AOC=∠AOM+∠COM④∠AOC=∠BOM+∠COM⑤∠AOC=2∠MOC+∠COB⑥∠AOC=2∠MOC+2∠CON⑦∠AOC=2∠MON其中正确的有()个.A.4 B.5 C.6 D.7【分析】根据角平分线的定义对各小题进行逐一分析即可.【解答】解:∵OM平分∠AOB,ON平分∠BOC,∴∠AOM=∠BOM,∠BON=∠CON.①∵∠AOM=∠BOM,∴∠AOC≠∠BOM,故本小题错误;②∵ON平分∠BOC,∴∠CON=∠BON,故本小题正确;③由图可知,∠AOC=∠AOM+∠COM,故本小题正确;④∵∠AOC=∠AOM+∠COM,∠AOM=∠BOM,∴∠AOC=∠BOM+∠COM,故本小题正确;⑤∵∠AOC=∠AOM+∠MOC,∠AOM=∠BOM,∠BOC+∠MOC=∠BOM,∴∠AOC=2∠MOC+∠COB,故本小题正确;⑥∵∠AOC=2∠MOC+∠COB,∠COB=2∠CON,∴∠AOC=2∠MOC+2∠CON,故本小题正确;⑦∵∠AOM=∠BOM=2∠CON+∠MOC,∠BOM=2∠CON,∴∠AOC=∠AOM+∠MOC=2∠CON+∠MOC+∠MOC=2∠MON.故本小题正确.故选C.【点评】本题考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.6.如图,已知∠AOB是直角,OM平分∠AOC,ON平分∠BOC,则∠MON的度数是()A.60°B.50°C.45°D.30°【分析】结合图形,根据角的和差,以及角平分线的定义,找到∠MON与∠AOB 的关系,即可求出∠MON的度数.【解答】解:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC,∠NOC=∠BOC,∴∠MON=∠MOC﹣∠NOC=(∠AOC﹣∠BOC)=(∠AOB+∠BOC﹣∠BOC)=∠AOB=45°.故选C.【点评】本题考查了角的计算,属于基础题,此类问题,注意结合图形,运用角的和差和角平分线的定义求解.7.点C在∠AOB的内部,现在五个等式:∠AOB=∠BOC,∠BOC=∠AOB,∠AOB=2∠AOC,∠AOB=2∠AOC,∠AOC+∠BOC=∠AOB,其中能表示OC是∠AOB 平分线的等式有()A.2个 B.3个 C.4个 D.5个【分析】根据角平分线的定义对各等式进行逐一分析即可.【解答】解:点C在∠AOB的内部时,∠AOB>∠BOC,原等式不能表示OC是∠AOB平分线;∠BOC=∠AOB,原等式能表示OC是∠AOB平分线;∠AOB=∠AOC,原等式不能表示OC是∠AOB平分线;∠AOB=2∠AOC,原等式能表示OC是∠AOB平分线;∠AOC+∠BOC=∠AOB,原等式不能表示OC是∠AOB平分线;故选A.【点评】本题考查的是角平分线的定义,即从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.8.如图,∠AOB是平角,∠AOC,∠BOC的角平分线分别是OD,OE,则∠DOE 是()A.80°B.90°C.100° D.105°【分析】本题比较多的条件是角平分线,OD和OE分别是∠AOC,∠BOC的角平分线,则2∠DOC+2∠EOC=180°,从而可以求解.【解答】解:∵OE平分∠BOC,OD平分∠AOC,∴∠AOC=2∠DOC,∠BOC=2∠COE,∵∠AOC+∠BOC=180°,∴2∠DOC+2∠EOC=180°,∴∠DOE=90°,故选:B.【点评】本题主要考查了角平分线的性质,关键是掌握角平分线把角分成相等的两部分.9.如图,射线OC,OD在∠AOB的内部,OC是∠AOD的平分线,若∠AOB=100°,∠COD=15°,则∠BOD的度数为()A.85°B.80°C.70°D.60°【分析】根据角平分线的定义,及角的和差进行计算即可.【解答】解:∵OC是∠AOD的平分线,∴∠AOD=2∠COD,∵∠COD=15°,∴∠AOD=2∠COD=30°,∵∠BOD=∠AOB﹣∠AOD,∠AOB=100°,∴∠BOD=100°﹣30°=70°.故选C.【点评】此题考查了角的平分线的定义,及角的和差计算,解题的关键是:根据角平分线的定义,先求出∠AOD的度数.10.如图,已知∠AOB=40°,∠AOC=90°,OD平分∠BOC,则∠AOD的度数是()A.20°B.25°C.30°D.35°【分析】先求出∠BOC=40°+90°=130°,再根据角平分线的定义求得∠BOD=65°,把对应数值代入∠AOD=∠BOD﹣∠AOB即可求解.【解答】解:∵∠AOB=40°,∠AOC=90°,∴∠BOC=40°+90°=130°,∵OD平分∠BOC,∴∠BOD=65°,∴∠AOD=∠BOD﹣∠AOB=65°﹣40°=25°.故选B.【点评】本题主要考查了角平分线的定义和角的运算.要会结合图形找到其中的等量关系:∠BOC=∠AOC+∠AOB,∠AOD=∠BOD﹣∠AOB是解题的关键.11.如图,已知OD平分∠AOB,OE平分∠BOD,若=,则的值为()A.B.C.D.【分析】由=,可设∠AOC=3x,∠BOC=2x,则∠AOB=5x,由OD平分∠AOB,可得∠AOD=∠BOD==,进而可得∠DOC=x,由OE平分∠BOD,可得∠DOE=∠BOE=∠BOD=,进而可得∠COE=∠DOE﹣∠DOC=,将∠COE=,∠BOE=,代入即可.【解答】解:∵=,可∴设∠AOC=3x,∠BOC=2x,则∠AOB=5x,∵OD平分∠AOB,∴∠AOD=∠BOD==,∴∠DOC=∠AOC﹣∠AOD=x,∵OE平分∠BOD,∴∠DOE=∠BOE=∠BOD=,∴∠COE=∠DOE﹣∠DOC=,∴==故选:C.【点评】本题主要考查了角平分线的定义,解题的关键是利用角平分线的定义找出各角之间的关系.12.如图,已知∠BOC=40°,OD平分∠AOC,∠AOD=25°,那么∠AOB的度数是()A.65°B.50°C.40°D.90°【分析】利用角平分线的定义得出∠COD=25°,进而得出答案.【解答】解:∵OD平分∠AOC,∠AOD=25°,∴∠COD=25°,∴∠AOB的度数是:∠BOC+∠AOD+∠COD=90°.故选:D.【点评】此题主要考查了角平分线的定义,得出∠COD的度数是解题关键.13.点M,O,N顺次在同一直线上,射线OC,OD在直线MN同侧,且∠MOC=64°,∠DON=46°,则∠MOC的平分线与∠DON的平分线夹角的度数是()A.85°B.105°C.125° D.145°【分析】先画出图形,然后根据角平分线的定义解题.【解答】解:如图,设∠MOC的平分线为OE,∠DON的平分线为OF,∵∠MOC=64°,∠DON=46°,∴∠MOE=∠MOC=×64°=32°,∠NOF=∠DON=×46°=23°,∴∠EOF=180°﹣∠MOE﹣∠NOF=180°﹣32°﹣23°=125°.故选C.【点评】根据题意画出图形是解题的关键.然后根据角平分线的定义进行计算.14.如图所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,则∠MON的度数为()A.30°B.45°C.60°D.75°【分析】根据角平分线的定义得到∠MOC=∠AOC,∠NOC=∠BOC,则∠MON=∠MOC﹣∠NOC=(∠AOC﹣∠BOC)=∠AOB,然后把∠AOB的度数代入计算即可.【解答】解:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC,∠NOC=∠BOC,∵∠AOC=∠AOB+∠BOC,∴∠MON=∠MOC﹣∠NOC=(∠AOB+∠BOC﹣∠BOC)=∠AOB,∵∠AOB=90°,∴∠MON=×90°=45°.故选B.【点评】本题考查了角平分线的定义,做这类题时学生总会认为条件不够,其实只要把这些等量关系合并化简即可求出角的度数,所以学生做题时有是不要急于计算,而是要先化简后再合并,属于基础题.15.点P在∠MON内部,则四个等式:①∠POM=∠NOP;②∠PON+∠POM=∠MON;③∠MOP=∠MON,④∠MON=2∠NOP,其中能表示OP是角平分线的式子有()A.1个 B.2个 C.3个 D.4个【分析】利用角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线可得答案.【解答】解;如图:根据角平分线定义可得三个等式:①∠POM=∠NOP,③∠MOP=∠MON,④∠MON=2∠NOP;故选:C.【点评】此题主要考查了角平分线定义,题目比较简单,画出图形分析即可.16.已知∠AOB=60°,作射线OC,使∠AOC等于40°,OD是∠BOC的平分线,那么∠BOD的度数是()A.100°B.100°或20°C.50°D.50°或10°【分析】分为两种情况:①当OC在∠AOB外部时,②当OC在∠AOB内部时,求出∠BOC,根据∠BOD=∠BOC求出即可.【解答】解:分为两种情况:①当OC在∠AOB外部时,∵∠AOB=60°,∠AOC=40°,∴∠BOC=60°+40°=100°,∵OD是∠BOC的平分线,∴∠BOD=∠BOC=50°,②当OC在∠AOB内部时,∵∠AOB=60°,∠AOC=40°,∴∠BOC=60°﹣40°=20°,∵OD是∠BOC的平分线,∴∠BOD=∠BOC=10°,故选D.【点评】本题考查了角平分线定义和角的有关计算,解此题的关键是求出符合条件的所有情况.17.已知∠AOB=80°,OM是∠AOB的平分线,∠BOC=20°,ON是∠BOC的平分线,则∠MON的度数为()A.30°B.40°C.50°D.30°或50°【分析】由于OA与∠BOC的位置关系不能确定,故应分OA在∠BOC内和在∠BOC外两种情况进行讨论.【解答】解:当OA与∠BOC的位置关系如图1所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠AOM=∠AOB=×80°=40°,∠BON=∠COB=×20°=10°,∴∠MON=∠BON﹣∠AOM=40°﹣10°=30°;当OA与∠BOC的位置关系如图2所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠BOM=∠AOB=×80°=40°,∠BON=∠BOC=×20°=10°,∴∠MON=∠BOM+∠BON=10°+40°=50°.故选:D.【点评】本题考查的是角平分线的定义,解答≜此题时要根据OA与∠BOC的位置关系分两种情况进行讨论,不要漏解.18.如图,∠AOB是直角,∠AOC=38°,OD平分∠BOC,则∠AOD的度数为()A.52°B.38°C.64°D.26°【分析】先求得∠BOC的度数,然后由角平分线的定义可求得∠BOD的度数,最后根据∠AOD=∠AOB﹣∠BOD求解即可.【解答】解:∠BOC=∠AOB﹣∠AOC=90°﹣38°=52°,∵OD平分∠BOC,∴∠BOD=∠BOC=26°.∴∠AOD=∠AOB﹣∠BOD=90°﹣26°=64°.故选:C.【点评】本题主要考查的是角平分线的定义,掌握角平分线的定义是解题的关键.19.射线OC在∠AOB的内部,下列给出的条件中不能得出OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOC+∠BOC=∠AOBC.∠AOB=2∠AOC D.∠BOC=∠AOB【分析】利用角平分的定义从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线.可知B不一定正确.【解答】解:A、正确;B、不一定正确;C、正确;D、正确;故选B.【点评】此题主要考查了从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线.20.如图所示,已知O是直线AB上一点,∠1=68°,OD平分∠BOC,则∠2的度数是()A.40°B.45°C.44°D.46°【分析】根据角平分线的定义求出∠BOC,再根据邻补角的定义列式计算即可得解.【解答】解:∵OD平分∠BOC,∴∠BOC=2∠1=2×168°=136°,∴∠2=180°﹣∠BOC=180°﹣136°=44°.故选C.【点评】本题考查了角平分线的定义,邻补角的定义,熟记概念并准确识图是解题的关键.二.填空题(共20小题)21.若∠AOB=4∠α,OC为∠AOB的角平分线,则∠AOC=2∠α.【分析】直接根据角平分线的定义即可求解.【解答】解:∵∠AOB=4∠α,OC为∠AOB的角平分线,∴∠AOC=∠AOB=×4∠α=2∠α.故答案为:2.【点评】本题考查了角平分线的性质:从角的顶点引一条射线,把这个角分成相等的两部分,那么这条射线叫这个角的平分线.22.如图,∠AOB=68°,OC 平分∠AOB ,则∠BOC 的度数为 34° .【分析】根据角平分线的定义即可直接求解.【解答】解:∵OC 平分∠AOB ,∴∠BOC=∠AOB=×68=34°.故答案是:34°.【点评】此题主要考查了垂线和角平分线的定义,理解定义是关键.23.如图,∠1=∠2=∠3=∠4.(1)那么OD 是 ∠AOB 和∠COE 的角平分线,OE 是 ∠BOD 是的角平分线,OC 是 ∠AOD 的角平分线;(2) ∠AOB =4∠1, ∠BOC = ∠AOE =3∠1;(3)∠BOD= ∠BOC= ∠AOB ;(4)若∠BOE=30°,那么∠AOE= 90° .【分析】根据角平分线的定义、结合图形进行解答即可.【解答】解:(1)OD 是∠AOB 和∠COE 的角平分线,OE 是∠BOD 是的角平分线,OC是∠AOD的角平分线;(2)∠AOB=4∠1,∠BOC=∠AOE=3∠1;(3)∠BOD=∠BOC=∠AOB;(4)若∠BOE=30°,那么∠AOE=90°,故答案为:(1)∠AOB和∠COE;∠BOD;∠AOD;(2)∠AOB;∠BOC;∠AOE;(3);;(4)90°.【点评】本题考查的是角平分线的定义,掌握角平分线是经过角的顶点把这个角分成相等的两个角的射线是解题的关键.24.一个角的平分线把这个角分为30°的两个角,则这个角是60°.【分析】依据角平分线的定义回答即可.【解答】解:∵一个角的平分线把这个角分为30°的两个角,∴这个角=30°×2=60°.故答案为:60°.【点评】本题主要考查的是角平分线的定义,掌握角平分线的定义是解题的关键.25.从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.如图所示,如果OC是∠AOB的平分线,那么:①∠AOC=∠BOC=∠AOB;②∠AOB=2∠AOC=2∠BOC.【分析】根据角平分线的定义和性质进行解答即可.【解答】解:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线;①∠AOC=∠BOC=∠AOB;②∠AOB=2∠AOC=2∠BOC.故答案为:顶;射;两;相等的角;射;①∠BOC;∠AOB;②2∠AOC;2∠BOC.【点评】从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.(2)性质:若OC是∠AOB的平分线则∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.26.一条以一个角的顶点为端点的射线把这个角分成两个相等的角,这条射线叫做这个角的平分线.【分析】根据角平分线的定义解答.【解答】解:顶点、端点、两个相等.一条以一个角的顶点为端点的射线把这个角分成两个相等的角,这条射线叫做这个角的平分线.【点评】此题考查了角平分线的定义,直接按定义填空即可.27.如图,∠AOB是直角,∠BOC=50°,OM平分∠AOC,ON平分∠BOC,则∠MON的度数为45°.【分析】先根据∠AOB是直角,∠BOC=50°得出∠AOC的度数,再根据OM平分∠AOC,ON平分∠BOC得出∠COM与∠CON的度数,由∠MON=∠COM﹣∠CON 即可得出结论.【解答】解:∵∠AOB是直角,∠BOC=50°,∴∠AOC=90°+50°=140°.∵OM平分∠AOC,ON平分∠BOC,∴∠COM=∠AOC=×140°=70°,∠CON=∠BOC=25°,∴∠MON=∠COM﹣∠CON=70°﹣25°=45°.故答案为:45°.【点评】本题考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.28.如图,OC平分∠AOB,若∠BOC=29°34′,则∠AOB=59°8′.【分析】从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线.根据定义求得即可.【解答】解:∠AOB=2×29°34′=59°8′.故答案为59、8.【点评】本题主要考查了角平分线的定义.29.如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,则∠AOB=28°.【分析】设∠AOB=x°,根据已知和角平分线定义得出∠AOD=∠COD=(x+14)°,求出∠AOC=2∠AOD=3∠AOB,得出方程3x=2(x+14),求出方程的解即可.【解答】解:设∠AOB=x°,∵∠BOD=14°,OD平分∠AOC,∴∠AOD=∠COD=(x+14)°,∵∠BOC=2∠AOB,∴∠AOC=2∠AOD=3∠AOB,∴3x=2(x+14),解得:x=28,∴∠AOB=28°,故答案为:28°.【点评】本题考查了角平分线定义和角的有关计算的应用,解此题的关键是能得出关于x的方程,难度适中.30.如图,O是直线AB上一点,OC为任意一条射线,OD平分∠BOC,OE平分∠AOC.若∠BOC=66°,则∠EOC=57度.【分析】先根据OE平分∠AOC,∠BOC=66°求出∠COD的度数,再由OD平分∠BOC,OE平分∠AOC得出∠EOD的度数,根据∠EOC=∠EOD﹣∠COD即可得出结论.【解答】解:∵OE平分∠AOC,∠BOC=66°,∴∠COD=∠BOC=×66°=33°,∵OD平分∠BOC,OE平分∠AOC,∴∠EOD=∠EOC+∠COD=∠AOC+∠BOC=(∠AOC+∠BOC)=90°,∴∠EOC=∠EOD﹣∠COD=90°﹣33°=57°.故答案为:57.【点评】本题考考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.31.如图,两个直角∠AOC和∠BOD有公共顶点O,下列结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③若OB平分∠AOC,则OC平分∠BOD;④∠AOD的平分线与∠BOC的平分线是同一条射线,其中正确的是①③④.(填序号)【分析】根据角的计算和角平分线性质,对四个结论逐一进行计算即可.【解答】解:①∵∠AOC=∠BOD=90°,∴∠AOB=90°﹣∠BOC,∠COD=90°﹣∠BOC,∴∠AOB=∠COD;故①正确.②只有当OB,OC分别为∠AOC和∠BOD的平分线时,∠AOB+∠COD=90°;故②错误.③∵∠AOC=∠BOD=90°,OB平分∠AOC,∴∠AOB=∠COB=45°,则∠COD=90°﹣45°=45°∴CB平分∠BOD;故③正确.④∵∠AOC=∠BOD=90°,∠AOB=∠COD(已证);∴∠AOD的平分线与∠COB的平分线是同一条射线.故④正确.故答案为:①③④.【点评】此题主要考查学生对角的计算,角平分线的理解和掌握,此题难度不大,属于基础题.32.如图直线AB、CD相交于点E,EF是∠BED的角平分线,已知∠DEF=70°,则∠AED的度数是40°.【分析】根据角平分线的定义求出∠DEB的度数,然后根据平角等于180°列式进行计算即可求解.【解答】解:∵EF是∠BED的角平分线,∠DEF=70°,∴∠DEB=2∠DEF=2×70°=140°,∴∠AED=180°﹣∠DEB=180°﹣140°=40°.故答案为:40°.【点评】本题考查了角平分线的定义,平角等于180°,是基础题,需熟练掌握.33.如图,已知A,O,E三点在同一条直线上,OB平分∠AOC,OD平分∠COE,则∠BOC与∠COD的关系为∠BOC+∠DOC=90°.【分析】根据已知得出∠AOC+∠EOC=180°,∠BOC=∠AOC,∠DOC=EOC,求出∠BOC+∠DOC=(∠AOC+∠EOC)=90°,即可得出答案.【解答】解:∠BOC+∠DOC=90°,理由是:∵A,O,E三点在同一条直线上,OB平分∠AOC,OD平分∠COE,∴∠AOC+∠EOC=180°,∠BOC=∠AOC,∠DOC=EOC,∴∠BOC+∠DOC=(∠AOC+∠EOC)=180°=90°,∴∠BOC与∠COD的关系为∠BOC+∠DOC=90°,故答案为:∠BOC+∠DOC=90°.【点评】本题考查了角平分线定义和角的有关计算的应用,能识别图形是解此题的关键.34.如图所示,已知OE是∠AOC的平分线,OD是∠BOC的平分线.(1)若∠AOC=120°,∠BOC=β,求∠DOE;60°﹣β;(2)若∠AOC=α,∠BOC=β(α>β),求∠BOE.α﹣β.【分析】根据角平分线的性质计算.【解答】解:(1)∠AOC=120°,∴∠COE=60°(角平分线定义),∵∠BOC=β,∴∠COD=β(角平分线定义),∴∠DOE=60°﹣β;(2)∵∠AOC=α,OE是∠AOC的平分线,且∠BOC=β(α>β),∴∠COE=α(角平分线定义).∴∠BOE=∠COE﹣∠BOC=α﹣β.【点评】此题主要考查了角平分线定义.由角平分线的定义,易求该角的度数.35.已知直线AB上有一点O,射线OC、OD在AB的同侧,∠AOD=24°,∠BOC=46°,则∠AOD与∠BOC的平分线的夹角的度数为145°.【分析】先根据题意画出图形,然后依据角平分线的定义求得∠AOF和∠EOB的度数,然后依据平角是180°可求得∠EOF的度数.【解答】解:如图所示:∵OF平分∠AOD,∴∠AOF=AOD==12°.同理可知:∠EOB=.∴∠EOF=180°﹣∠AOF﹣∠EOB=180°﹣12°﹣23°=145°.故答案为:145°.【点评】本题主要考查的是角平分线的定义,根据题意画出图形是解题的关键.36.如图,O是直线AB上的一点,OD平分∠AOC,OE平分∠BOC,则∠DOE=90度.【分析】利用角平分线的性质计算.【解答】解:∵OD平分∠AOC,OE平分∠BOC,则∠DOE=(∠AOC+∠BOC)=90°.故答案为90.【点评】此题主要考查角平分线的定义和平角的定义.37.如图,OB在∠AOC内部,且∠BOC=3∠AOB,OD是∠AOB的平分线,∠BOC=3∠COE,则下列结论:①∠EOC=∠AOE;②∠DOE=5∠BOD;③∠BOE=(∠AOE+∠BOC);④∠AOE=(∠BOC﹣∠AOD).其中正确结论有①②④.【分析】根据∠BOC=3∠AOB,∠BOC=3∠COE,得∠COE=∠AOB,则∠BOC=∠AOE,设∠AOD=x,则∠AOB=∠COE=2x,∠AOE=∠BOC=6x,得出①②④正确,③不正确.【解答】解:①∵∠BOC=3∠AOB,∠BOC=3∠COE,∴∠COE=∠AOB,∴∠COE+∠BOE=∠AOB+∠BOE,∴∠BOC=∠AOE,∵OD是∠AOB的平分线,∴∠AOD=∠BOD,设∠AOD=x,则∠AOB=∠COE=2x,∠AOE=∠BOC=6x,∴∠COE=∠AOE;所以①正确;②∵∠DOE=∠BOD+∠BOE=x+4x=5x,∠BOD=x,∴∠DOE=5∠BOD,所以②正确;③∵∠BOE=4x,(∠AOE+∠BOC)=(6x+6x)=6x,∴∠BOE≠(∠AOE+∠BOC),所以③不正确;④∵∠AOE=6x,(∠BOC﹣∠AOD)=(6x﹣x)=6x,∴∠AOE=(∠BOC﹣∠AOD),所以④正确.故答案为:①②④.【点评】本题考查了角平分线的性质和角的和差倍分,一般情况下,根据已知条件得出各角之间的关系,设一个最小角为x°,分别表示出各角的关系,得出相应的结论.38.如图所示,∠AOB=85°,∠AOC=10°,OD是∠BOC的平分线,则∠BOD的度数为37.5度.【分析】利用角与角的和差关系及角平分线的性质计算.【解答】解:∵∠AOB=85°,∠AOC=10°∴∠BOC=85°﹣10°=75°又∵OD是∠BOC的平分线,∴∠BOD=∠COD=∠BOC,即∠BOD的度数为×75°=37.5°故∠BOD的度数为37.5度.【点评】本题主要考查角平分线的知识点,比较简单.39.如图,OC是∠AOB的平分线,OD是∠AOC的平分线,且∠COD=25°10′,则∠AOB的度数为100°40′.【分析】直接利用角平分线的性质得出∠AOC的度数,进而得出答案.【解答】解:∵OD是∠AOC的平分线,且∠COD=25°10′,∴∠AOC=2×25°10′=50°20′,∵OC是∠AOB的平分线,∴∠AOB的度数为:50°20′×2=100°40′.故答案为:100°40′.【点评】此题主要考查了角平分线的定义,正确把握定义是解题关键.40.如图,OC平分∠AOB,若∠AOC=27°30′,则∠AOB=55度.【分析】直接利用角平分线的定义得出∠AOC=∠BOC,进而得出答案.【解答】解:∵OC平分∠AOB,∴∠AOC=∠BOC,∵∠AOC=27°30′,∴∠AOB=27°30′×2=55°.故答案为:55.【点评】此题主要考查了角平分线的定义以及度分秒的换算,正确把握角平分线的定义是解题关键.三.解答题(共10小题)41.如图,OB是∠AOC的平分线,OD是∠EOC的平分线.(1)如果∠AOD=75°,∠BOC=19°,则∠DOE的度数为37°;(2)如果∠BOD=56°,求∠AOE的度数.解:如图,因为OB是∠AOC的平分线,所以AOC=2∠BOC.因为OD是∠EOC的平分线,所以COE=2∠COD.所以∠AOE=∠AOC+∠COE=2∠BOC+2∠COD=112°°.【分析】(1)角平分线的定义求得∠AOC=38°,∠DOE=∠DOC=∠AOD﹣∠AOC=75°﹣38°=37°;(2)根据角平分线的定义易求∠AOE=2∠BOD.【解答】解:(1)∵OB是∠AOC的平分线,∠BOC=19°,∴∠AOC=2∠BOC=38°.∴∠DOC=∠AOD﹣∠AOC=75°﹣38°=37°.又∵OD是∠EOC的平分线,∴∠DOE=∠DOC=37°.故填:37°;(2)如图,因为OB是∠AOC的平分线,所以AOC=2∠BOC.因为OD是∠EOC的平分线,所以COE=2∠COD.所以∠AOE=∠AOC+∠COE=2∠BOC+2∠COD=112°°.故填:∠AOC,∠COE,112°.【点评】本题考查了角平分线的定义.解题时,实际上是根据角平分线定义得出所求角与已知角的关系转化求解.42.已知平角AOB及其平分线OC,如果作射线OD,使∠BOD与∠COD的度数之比为7:3,那么∠AOD等于多少度?【分析】根据题意画出图形,由角平分线的定义得出∠COB的度数,再根据∠BOD 与∠COD的度数之比为7:3求出∠COD的度数,根据∠AOD=∠AOC+∠COD即可得出结论.【解答】解:如图1所示,∵∠AOB=180°,OC是∠AOB的平分线,∴∠COB=×180°=90°.∵∠BOD与∠COD的度数之比为7:3,∴∠COD=∠COB=×90°=27°,∴∠AOD=∠AOC+∠COD=90°+27°=117°.如图2所示,∵∠AOD:∠COD=1:3,∴∠AOD=90°×=22.5°.答:∠AOD等于117°或22.5°.【点评】本题考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.43.已知,如图,∠AOB=90°,∠EOD=70°,OE、OD分别是∠AOB和∠BOC的角平分线,求∠BOC的度数.【分析】先由∠AOB=90°,OE是∠AOB的角平分线,得出∠EOB=∠AOB=45°,那么∠BOD=∠EOD﹣∠EOB=70°﹣45°=25°,再由OD是∠BOC的角平分线,得出∠BOC=∠BOD=50°.【解答】解:∵∠AOB=90°,OE是∠AOB的角平分线,∴∠EOB=∠AOB=45°,∵∠EOD=70°,∴∠BOD=∠EOD﹣∠EOB=70°﹣45°=25°,∵OD是∠BOC的角平分线,∴∠BOC=∠BOD=50°.【点评】本题考查了角的计算及角平分线的定义,首先确定各角之间的关系,利用角平分线的性质来求.44.如图,已知O为直线AF上一点,OE平分∠AOC,(1)若∠AOE=20°,求∠FOC的度数;(2)若OD平分∠BOC,∠AOB=84°,求∠DOE的度数.【分析】①利用角平分线的定义求出∠AOC,∠FOC与∠AOC和是180°.②从图中不难看出∠DOE是由∠AOB与∠BOC半角之和,也就是∠AOB的一半.【解答】解:①∵OE平分∠AOC,∠AOE=20°∴∠AOC=2∠AOE=40°∴∠FOC=180°﹣∠AOC=140°;②∵OE平分∠AOC,OD平分∠BOC,∴∠AOE=∠COE=∠AOC,∠COD=∠BOD=∠BOC,∴∠DOE=∠COE+∠COD=∠AOC+∠BOC=∠AOB,已知∠AOB=84°∴∠DOE=42°.【点评】本题考查了角平分线的定义,解决本题的关键牢记角平分线的定义,注意实际问题中的转化.45.如图所示,BD平分∠ABC,BE分∠ABC成2:5的两部分,∠DBE=27°,求∠ABC的度数.【分析】此题的关键是要先设∠ABC的度数.然后再利用题中的关系求出,∠DBE 的值,让它与27°列成等式.从而求出∠ABC的度数.【解答】解:设∠ABC=α,则∠ABD=,∠ABE=α∵∠DBE=∠ABD﹣∠ABE∴﹣α=27°得α=126°。
七年级数学上册专题提分精练三角板转动求角和角平分线结合(解析版)
专题23 三角板转动求角和角平分线结合1.直角三角形纸板COE的直角顶点O在直线AB上.(1)如图1,当∠AOE=165°时,∠BOE=°;(2)如图2,OF平分∠AOE,若∠COF=20°,则∠BOE=°;(3)将三角形纸板COE绕点O逆时针方向转动至如图3的位置,仍有OF平分∠AOE,若∠COF=56°,求∠BOE的度数.【答案】(1)15;(2)40;(3)112°【分析】(1)根据平角的定义求解即可;(2)根据∠COF=20°,先求解∠EOF=70°,再根据OF平分∠AOE,求解∠AOE=140°,最后根据平角的定义求解∠BOE即可;(3)根据∠COF=56°,先求解∠EOF=34°,由OF平分∠AOE,可得到∠AOE=68°,最后根据平角的定义求解∠BOE即可.【详解】解:(1)∵∠AOE+∠BOE=180°,∠AOE=165°,∴∠BOE=180°﹣∠AOE=15°,故答案为:15;(2)∵∠COE=90°,∠COF=20°,∠COE=∠COF+∠EOF,∴∠EOF=90°﹣20°=70°,∵OF平分∠AOE,∴∠AOE=2∠EOF=140°,∵∠AOE+∠BOE=180°,∴∠BOE=180°﹣∠AOE=40°,故答案为:40;(3)∵∠COE=90°,∠COE=∠COF+∠EOF,∠COF=56°,∴∠EOF=90°﹣∠COF=90°﹣56°=34°,∵OF平分∠AOE,∴∠AOE=2∠EOF=68°,∵∠AOE+∠BOE=180°,∴∠BOE=180°﹣∠AOE=112°.【点睛】本题考查了角的计算,平角的定义,角的平分线定义,直角的定义,熟练掌握补角的定义,角的平分线定义,角的和与差是解题的关键.2.如图1,某校七年级数学学习小组在课后综合实践活动中,把一个直角三角尺AOB 的直角顶点O 放在互相垂直的两条直线PQ 、MN 的垂足O 处,并使两条直角边落在直线PQ 、MN 上,将AOB 绕着点O 顺时针旋转()0180αα︒︒<<︒.(1)如图2,若26α=︒,则BOP ∠=_____________,AOM BOQ ∠+∠=_____________; (2)若射线OC 是BOM ∠的角平分线,且POC β∠=︒.①若AOB 旋转到图3的位置,BON ∠的度数为多少?(用含β的代数式表示) ②AOB 在旋转过程中,若∠AOC =2∠AOM ,求此时β的值. 【答案】(1)64°,180°; (2)①2β︒;②60°或36°【分析】(1)根据∠BOP =180°-∠AOB -∠AOQ ,可分别计算出结果; (2)①先求∠BOP 与∠PON ,再利用∠BON =∠BOP +∠PON 得出结论;②分两种情况讨论:当OB 旋转到OP 左侧时;当OB 旋转到OP 右侧时解答即可. (1)解:MN ⊥PQ ,∴∠MOQ =90°,∠AOB =90°, ∵∠AOQ =β︒,∴∠BOP =180°-∠AOB -∠AOQ =180°-90°-26°=64°,∠AOM =∠MOQ -∠AOQ =90°-β︒, ∵∠BOQ =∠AOB +∠AOQ =90°+β︒, ∴∠AOM +BOQ =90°-β︒+90°+β︒=180°; (2)①∵∠MOP =90°,∠POC =β︒, ∴∠MOC =90°-β︒,∵OC 是BOM ∠的角平分线,∴∠BOM =2∠MOC =2(90°-β︒)=180°-2β︒,∴∠BOP=90°-∠BOM=2β︒-90°,∵∠PON=90°,∴∠BON=∠BOP+∠PON=2β︒-90°+90°=2β︒;②当OB旋转到OP左侧时,如图:∠的角平分线,∵OC是BOM∴∠BOC=∠MOC,∵∠AOC=2∠AOM,∴∠AOM=∠MOC,∴∠BOC=∠MOC=∠AOM,∵∠BOC+∠MOC+∠AOM=90°,∴∠BOC=∠MOC=∠AOM=30°,∠=︒=90°-∠MOC=60°;∴POCβ当OB旋转到OP右侧时,如图:设∠AOM=x,∵∠AOC=2∠AOM=2x,∴∠MOC=3∠AOM=3x,∵∠BOC+∠MOC+∠AOM=90°,∴∠BOC=∠MOC=∠AOM=30°,∠的角平分线,∵OC是BOM∴∠BOC=∠MOC=3x,∴∠AOB=∠AOC+∠BOC=5x=90°,∴x=18°,∴∠MOC=3x=54°,∠=︒=90°-∠MOC=36°;∴POCβ综上β的值为:60°或36°.【点睛】本题考查了旋转的性质,角平分线的性质,分情况讨论是解题关键.3.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=50°.现将一直角三角板的直角顶点放在点O处,一边OD与射线OB重合,如图2.(1)∠EOC=;(2)如图3,将三角板DOE绕点O逆时针旋转一定角度,此时OC是∠EOB的角平分线,求∠BOD的度数;(3)将三角板DOE绕点O逆时针旋转,在OE与OA重合前,是否有某个时刻满足∠DOC=13∠AOE,求此时∠BOD的度数.【答案】(1)40°;(2)10°;(3)30°或60°)解:OC是∠BOC=∠=DOC ∠=BOD ∠+∠350α∴+︒-20α∴=︒②若OD 在设∠DOC 50BOD ∠=BOD ∠+∠350α∴+︒10α∴=︒(1)如图,若28MOC ∠=︒,求BON ∠的度数; (2)若MOC m ∠=︒,则BON ∠的度数为 ;(3)由(1)和(2),我们发现MOC ∠和BON ∠之间有什么样的数量关系?(4)若将三角形MON 绕点O 旋转到如图所示的位置,试问MOC ∠和BON ∠之间的数量关系是否发生变化?请说明理由.【答案】(1)56BON ∠=︒;(2)2m ︒;(3)2BON MOC ∠=∠;(4)不变.理由见解析. 【分析】(1)根据90MOC NOC ∠+∠=︒,28MOC ∠=︒,即可求出62NOC ∠=︒,根据角平分线的性质得到2124AON NOC ∠=∠=︒,即可求出BON ∠的度数. (2)根据(1)中的步骤进行求解即可. (3)根据(1),(2)的结果直接进行计算即可.(4)根据90MOC NOC ∠+∠=︒,得到90NOC MOC ∠=︒-∠,根据角平分线的性质得到2AON NOC ∠=∠,根据180180218029018018022BON AON NOC MOC MOC MOC ∠=︒-∠=︒-∠=︒-︒-∠=︒-︒+∠=∠(),即可求解.【详解】解:(1)90MON ∠=︒, 90MOC NOC ∴∠+∠=︒.又28MOC ∠=︒, 62NOC ∴∠=︒.OC 平分AON ∠,2124AON NOC ∴∠=∠=︒. 180BON AON ∠+∠=︒, 56BON ∴∠=︒.(2)90MON ∠=︒, 90MOC NOC ∴∠+∠=︒.又MOC m ∠=︒,90NOC m ∴∠=︒-︒. OC 平分AON ∠,21802AON NOC m ∴∠=∠=︒-︒.180BON AON ∠+∠=︒,2BON m ∴∠=︒.故答案为:2m ︒.(3)2BON MOC ∠=∠. (4)不变,理由如下: 90MON ∠=︒, 90MOC NOC ∴∠+∠=︒, 90NOC MOC ∴∠=︒-∠,OC 平分AON ∠,2AON NOC ∴∠=∠, 180BON AON ∠+∠=︒,180BON AON ∴∠=︒-∠1802NOC =︒-∠180290MOC ()=︒-︒-∠2MOC =∠, 即2BON MOC ∠=∠.【点睛】本题考查了直角三角形、角平分线的性质及邻补角等知识,熟练掌握直角三角形与角平分线的性质进行计算是解题的关键.5.如图1,点A 、O 、B 在同一直线上,∠AOC=60°,在直线AB 另一侧,直角三角形DOE 绕直角顶点O 逆时针旋转(当OD 与OC 重合时停止),设∠BOE=α: (1)如图1,当DO 的延长线OF 平分∠BOC ,∠α=______度;(2)如图2,若(1)中直角三角形DOE 继续逆时针旋转,当OD 位于∠AOC 的内部,且∠AOD=13∠AOC ,∠α=__度;(3)在上述直角三角形DOE 的旋转过程中,(∠COD+∠α)的度数是否改变?若不改变,请求出其度数;若改变,请说明理由.【答案】(1)30 ;(2) 110;(3)(∠COD+∠α)的度数不变,见解析.60角的三角板的上方,其中A 60∠=,另一块含45角的三角板POQ 的一边OQ 在直线MN 上,另一边OP 在直线MN 的下方.()1现将图1中的三角板POQ 绕点O 按顺时针方向旋转,当直线MN 恰好为POQ ∠的平分线时,如图2所示,则AOP ∠的度数______度;()2继续将图2中的三角板绕点O 按顺时针方向旋转至图3的位置,使得边OA 落在QOB∠的内部,且AO 恰好为POQ ∠的平分线时,求BOP ∠的度数;()3在上述直角三角板从图1按顺时针方向旋转至图位置为止,这个过程中,若三角板POQ绕点O 以每秒15的速度匀速旋转,当三角板POQ 的OP 边或OQ 边所在直线平分AOB ∠,则求此时三角板POQ 绕点O 旋转的时间t 的值(请直接写出答案).15;(3)当)1直线MN 90, 45,又AOB 60∠=且MOB ∠POA 180POM AOB 180456075∠∠∠=--=--=,故AOP ∠的度数为75; 故答案为75)2AO 恰好为POQ ∠的平分线,1AOP 452∠=,AOB 30∠=,BOP AOP BOP 15∠∠∴=-=;()3根据题意可知,分两种情况,①当OP AOB 时,136090AOB2∠--或1902∠-AOB 30∠=,∴时间()t 36090151517(=--÷=秒)9015155(-÷=秒②当OQ 边所在直线平分AOB ∠时,三角板PQO 绕点O 旋转的度数为13602∠-1180AOB 2∠-,AOB 30∠=,∴时间)t 360151523(=-÷=秒)180151511(-÷=秒∠时旋转时间为5秒或17秒,当OQ边所在直线平综合①②得当OP边所在直线平分AOB∠时旋转时间为11秒或23秒.分AOB【点睛】此题考查了角平分线的定义,根据题意找到各个量之间的关系是解题的关键.7.将一三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)如图1,若∠BOD=35°,则∠AOC=______°;若∠AOC=135°,则∠BOD=_____°;(2)如图2,若∠AOC=140°,则∠BOD=_____°;(3)猜想∠AOC与∠BOD的大小关系,并结合图1说明理由;(4)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD角度所有可能的值,不用说明理由.【答案】(1)145°,45°;(2)40°;(3)∠AOC与∠BOD互补,理由详见解析;(4)∠AOD 角度所有可能的值为:30°、45°、60°、75°【分析】(1)由于是两直角三角形板重叠,根据∠AOC=∠AOB+∠COD-∠BOD可分别计算出∠AOC、∠BOD的度数;(2)根据∠BOD=360°-∠AOC-∠AOB-∠COD计算可得;(3)由∠AOD+∠BOD+∠BOD+∠BOC=180°且∠AOD+∠BOD+∠BOC=∠AOC可知两角互补;(4)分别利用OD⊥AB、CD⊥OB、CD⊥AB、OC⊥AB分别求出即可.【详解】解:解:(1)若∠BOD=35°,∵∠AOB=∠COD=90°,∴∠AOC=∠AOB+∠COD﹣∠BOD=90°+90°﹣35°=145°,若∠AOC=135°,则∠BOD=∠AOB+∠COD﹣∠AOC=90°+90°﹣135°=45°;(2)如图2,若∠AOC=140°,则∠BOD=360°﹣∠AOC﹣∠AOB﹣∠COD=40°;(3)∠AOC与∠BOD互补.∵∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°,即∠AOC与∠BOD互补.(4)OD⊥AB时,∠AOD=30°,CD⊥OB时,∠AOD=45°,CD⊥AB时,∠AOD=75°,OC⊥AB时,∠AOD=60°,即∠AOD角度所有可能的值为:30°、45°、60°、75°;故答案为(1)145°,45°;(2)40°.【点睛】本题题主要考查了互补、互余的定义等知识,解题的关键是理解重叠的部分实质是两个角的重叠.8.如图1,将三角板如图放置,∠AOC=60°.将另一把直角三角尺的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方,其中∠OMN=45°.(1)将图1中的三角尺MON绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,求∠CON的度数;(2)将图1中的三角尺MON绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第____秒时,直线MN恰好与直线OC垂直;在第__秒时,直线ON恰好平分锐角∠AOC.(直接写出结果);(3)将图1中的三角尺MON绕点O顺时针旋转使ON在∠AOC的内部,请探究∠AOM与∠NOC之间的数量关系,并说明理由.(4)通过操作我们发现,将图1中三角形AOC绕点O顺时针旋转一定角度α(0<α<180°)时,三角形AOC会被直线AB或ON分成两个三角形,其中一个三角形有两个角相等,请直接写出所有符合条件的旋转角度α.【答案】(1)∠CON=150°(2)1.5或19.5;12或30(3)∠AOM与∠NOC之间的数量关系为:∠AOM﹣∠NOC=30°.理由见解析(4)45︒或60︒或135︒或150︒如图,当OMN旋转到直线如图,当OMN在直线当OMN旋转到当OMN旋转到∵∠MON=90°,∠AOC=60°,∴∠AON=90°﹣∠AOM,∠AON=60°﹣∠NOC,∴90°﹣∠AOM=60°﹣∠NOC,∴∠AOM﹣∠NOC=30°,故∠AOM与∠NOC之间的数量关系为:∠AOM﹣∠NOC=30°.(4)解:其中一个三角形是等腰三角形①OC在直线OB上方:当45AOH AHO∠=∠=︒时,α=︒-︒=︒∴904545的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系,并说明理由.【点睛】本题考查了角平分线,与三角板有关的计算,对顶角等知识.解题的关键在于找出角度的数量关系.10.已知直角三角板ABC和直角三角板DEF,∠ACB=∠EDF=90°,∠ABC=60°,∠DEF =45°.(1)如图1.将顶点C和顶点D重合.保持三角板ABC不动,将三角板DEF绕点C旋转,当CF平分∠ACB时,则∠ACE= ;(2)在(1)的条件下,继续旋转三角板DEF,猜想∠ACE与∠BCF有怎样的数量关系?并利用图2所给的情形说明理由;(3)如图3,将顶点C和顶点E重合,保持三角板ABC不动,将三角板DEF绕点C旋转.写出∠ACD与∠BCF之间的数量关系并说明理由.【答案】(1)45°(2)∠ACE=∠BCF(3)∠BCF-∠ACD =45°【分析】(1) 根据CF平分∠ACB,得到∠BCF=∠ACF=45°,结合∠EDF=90°,计算即可.(2) 根据∠ACB=∠EDF=90°,得∠ACE=90°-∠ACF,∠BCF=90°-∠ACF,根据互余的性质证明即可.(3)根据∠ACF+∠ACD =45°,∠ACF=90°-∠BCF,代入等式消去∠ACF,整理可得证.(1)∵CF平分∠ACB,∠ACB=∠EDF=90°,∴∠BCF=∠ACF=45°,∴∠ACE=∠EDF-∠ACF=90°-45°=45°,故答案为:45°.(2)∠ACE=∠BCF.理由如下:∵∠ACB=∠EDF=90°,∴∠ACE=90°-∠ACF,∠BCF=90°-∠ACF,∴∠ACE =∠BCF . (3)∠BCF -∠ACD =45°.理由如下: ∵∠ACB =∠EDF =90°,∠DEF =45°, ∴∠ACF +∠ACD =45°,∠ACF =90°-∠BCF , ∴∠BCF -∠ACD =45°.【点睛】本题考查了互余的性质,两个角的和,角的平分线即从角的顶点出发的射线把这个角分成相等的两个角,熟练掌握两个角互余的性质是解题的关键.11.将两块直角三角板的顶点A 叠在一起,已知∠BAC =30°,∠DAE =90°,将三角板ADE 绕点A 旋转,在旋转过程中,保持∠BAC 始终在∠DAE 的内部.(1)如图①,若∠BAD =25°,求∠CAE 的度数.(2)如图①,∠BAE 与∠CAD 有什么数量关系,请说明理由.(3)如图②,若AM 平分∠BAD ,AN 平分∠CAE ,问在旋转过程中,∠MAN 的大小是否发生改变?若不变,请说明理由;若改变,请求出变化范围. CAE 12,∠BAC 130902即可.=30°,∠DAE =90°,∠DAE -∠BAD -∠BAC =90°CAE 12, BAM , CAE 12, BAD CAE 1302,BAC 130902,3030,60=︒.【点睛】本题考查三角板中角度计算,余角性质,角的和差,角平分线有关计算,掌握三角板中角度计算,角的和差,角平分线有关计算是解题关键.12.如图1,O 为直线AB 上一点,的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周,如图2,经过t 秒后,OM 恰好平分BOC ∠. ①t 的值是_________;②此时ON 是否平分AOC ∠?说明理由;(2)在(1)的基础上,若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分MON ∠?请说明理由; (3)在(2)的基础上,经过多长时间,10BOC ∠=︒?请画图并说明理由. 【答案】(1)①5;②是,理由见解析则有30°+6t+10°=180°,或30°+6t-10°=180°,∠COD=60°.(1)求图1中∠BOD的度数.(2)如图2,三角板COD固定不动,将三角板AOB绕点O按顺时针方向旋转一个角度α(即∠AOE=α),在转动过程中两个三角板一直处于直线EF的上方.①当OB平分OA、OC、OD其中的两边组成的角时,求满足要求的所有旋转角度α的值;②在转动过程中是否存在∠BOC=2∠AOD?若存在,求此时α的值;若不存在,请说明理由.【答案】(1)75(2)①旋转角α的值为30°,90°,105°;②当α=105°或125°时,存在∠BOC=2∠AOD.【分析】(1)根据平平角的定义即可得到结论;(2)①根据已知条件和角平分线的定义即可得到结论;②当OA在OD的左侧时,当OA在OD的右侧时,列方程即可得到结论.=30°)的直角顶点放在点O处,另一边OM与OC都在直线AB的上方,将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)几秒后ON与OC重合?(2)如图2,经过秒后,MN∥AB;(3)若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC与OM重合?请并说明理由.(4)在(3)的条件下,求经过多长时间OC平分∠MOB?请说明理由.顶点放在点O处.(1)如图1,将三角板MON的一边ON与射线OB重合时,求∠MOC的度数;(2)如图2,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的平分线,求∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图3时,∠NOC=14∠AOM,求∠NOB的度数.的量.16.如图1,已知50ABC ∠=︒,有一个三角板BDE 与ABC ∠共用一个顶点B ,其中45EBD ∠=︒.(1)若BD 平分ABC ∠,求EBC ∠的度数;(2)如图2,将三角板绕着点B 顺时针旋转α度(090α︒<<︒),当AB BD ⊥时,求EBC ∠的度数. )BD 平分12DBC ABC =∠ABC ∠=︒1502ABD DBC ∴∠==⨯EBC EBD DBC ∴∠=+∠(2)当AB ABD ∠=ABC ∴∠+EBC ∴∠=【点睛】本题考查角平分线的性质、与三角板有关的角的和差计算等知识,是重要考点,难度较易,掌握相关知识是解题关键.17.直角三角板ABC的直角顶点C在直线DE上,CF平分∠BCD.(1)在图1中,若∠BCE=40°,∠ACF=;(2)在图1中,若∠BCE=α,∠ACF=(用含α的式子表示);(3)将图1中的三角板ABC绕顶点C旋转至图2的位置,若∠BCE=150°,试求∠ACF 与∠ACE的度数.∵∠ACB=90°,∠BCE=40°,∵点C在DE上,【点睛】考查了角的计算和角平分线的定义,主要考查学生的计算能力,求解过程类似. 18.如图,以直线AB 上一点O 为端点作射线OC ,使80BOC ∠=︒,将一个直角三角形的直角顶点放在点O 处(注:90DOE ∠=︒)()1如图①,若直角三角板DOE 的一边OD 放在射线OB 上,则COE ∠= .()2如图②,将直角三角板DOE 绕点O 逆时针方向转动到某个位置,若OC 恰好平分∠BOE ,求COD ∠的度数;()3如图③,将直角三角板DOE 绕点O 转动,如果OD 始终在BOC ∠的内部,试猜想BOD ∠与COE ∠有怎样的数量关系?并说明理由.【答案】(1)10°;(2)10°;(3)∠COE -∠BOD =10°,理由见解析.(3)猜想:∠COE-∠BOD=10°理由:∵∠COE=∠DOE-∠COD=90°-∠COD∠COD=∠BOC-∠BOD=80°-∠B OD∴∠COE=90°-(80°-∠B OD)=10°+∠B OD即∠COE-∠BOD=10°【点睛】本题考查了角的度数问题,掌握角平分线的性质、余角的性质是解题的关键.。
初一上角度计算专题(含答案)
角度计算能力专项练习1.已知:如图示,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?2.如图示,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.(1)求∠EOF的度数;(2)若将条件“∠AOB是直角,∠BOC=60°”改为:∠AOB=x°,∠EOF=y°,其它条件不变.①则请用x的代数式来表示y;②如果∠AOB+∠EOF=156°.则∠EOF是多少度?3.如图,∠AOB=90°,∠BOC=30°,射线OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1)、(2)、(3)的结果中,你能看出什么规律?4.(1)如图所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数;(2)如(1)中的∠AOB=α,∠BOC=β,其它条件不变,请用求α或β来表示∠MON的度数.5.如图所示,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)求∠BOD的度数;(2)试判断∠BOE和∠COE有怎样的数量关系,说说你的理由.6.如图所示,O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=120°,则∠DOE=;若∠AOC=140°,则∠DOE=;(2)若∠AOC=α,则∠DOE=(用含α的式子表示),请说明理由;(3)在∠AOC的内部有一条射线OF,满足∠AOC﹣3∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE 的度数之间的关系,并说明理由.7.如图所示,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=(直接写出结果).(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON=(直接写出结果).8.已知∠AOB内部有三条射线,其中,OE平分∠BOC,OF平分∠AOC.(1)如图1,若∠AOB=90°,∠AOC=30°,求∠EOF的度数;(2)如图2,若∠AOB=α,求∠EOF的度数(用含α的式子表示);(3)若将题中的“平分”的条件改为“∠EOB=∠COB,∠COF=∠COA”,且∠AOB=α,用含α的式子表示∠EOF的度数为.9.在学习了角的相关知识后,老师给张萌留了道作业题,请你帮助张萌做完这道题.作业题已知∠MON=100°,在∠MON的外部画∠AON,OB,BO分别是∠MOA和∠BON的平分线.(题中所有的角都是小于平角的角)(1)如图1,若∠AON=40°,求∠COA的度数;(2)如图2,若∠AON=120°,求∠COA的度数.10.已知∠AOB内部有三条射线,其中OE平分∠BOC,OF平分∠AOC.(1)如图1,若∠AOB=90°,∠AOC=30°,求EOF的度数;(2)如图2,若∠AOB=α,求∠EOF的度数(用含α的式子表示);(3)若将题中的“OE平分∠BOC,OF平分∠AOC”的条件改为“∠EOB=∠BOC,∠COF=∠AOC”,且∠AOB=α,求∠EOF的度数(用含α的式子表示)11.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,猜想∠MON与α、β有数量关系吗?如果有,指出结论并说明理由.12.已知∠AOB=160°,∠COE=80°,OF平分∠AOE.(1)如图1,若∠COF=14°,则∠BOE=;若∠COF=n°,则∠BOE=,∠BOE与∠COF的数量关系为;(2)当射线OE绕点O逆时针旋转到如图2的位置时,(1)中∠BOE与∠COF的数量关系是否仍然成立?请说明理由;(3)在(2)的条件下,如图3,在∠BOE的内部是否存在一条射线OD,使得∠BOD为直角,且∠DOF=3∠DOE?若存在,请求出∠COF的度数;若不存在,请说明理由.13.问题引入:(1)如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC=(用α表示);如图②,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,则∠BOC=(用α表示)拓展研究:(2)如图③,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,请猜想∠BOC=(用α表示),并说明理由.类比研究:(3)BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,请猜想∠BOC=.14.如图(a),将两块直角三角尺的直角顶点C叠放在一起.(1)若∠DCE=25°,∠ACB=;若∠ACB=130°,则∠DCE=;(2)猜想∠ACB与∠DCE大大小有何特殊关系,并说明理由;(3)如图(b),若是两个同样的三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的大小有何关系,请说明理由;(4)已知∠AOB=α,∠COD=β(α、β都是锐角),如图(c),若把它们的顶点O重合在一起,则∠AOD 与∠BOC的大小有何关系,请说明理由.15.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.北师版初一上角度提升参考答案与试题解析一.解答题(共15小题)1.解:(1)∠MON=∠MOC﹣∠NOC=65°﹣20°=45°,(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵=,又∠AOB是直角,∴.2.解:(1)∵∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.∴∠EOF=∠EOC﹣∠FOC=∠AOC﹣∠BOC=(∠AOB+∠BOC)﹣∠BOC=∠AOB=45°;(2)①∵∠AOB=x°,∠EOF=y°.y=x.②∵∠AOB+∠EOF=156°.则x+y=156°,y=52°.3.解:(1)∠MON=60°﹣15°=45°;(2)∠AOB=α,∠BOC=30°,∠MON=α+15°﹣15°=α.(3)∠AOB=90°,∠BOC=β,∴∠AOC=β+90°.∠MON=β+45°﹣β=45°.(4)根据(1)、(2)、(3)可知∠MON=∠BOC,与∠BOC的大小无关.4.解:(1)∠MON=∠MOC﹣∠NOC=60°﹣15°=45°,(2)∠MON=∠MOC﹣∠NOC=(α+β)﹣β=α.5.解:(1)∠BOD=180°﹣∠AOD=180°﹣25°=155°;(2)∠BOE=∠COE,理由如下:∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,∠COE=∠DOE﹣∠COD=90°﹣25°=65°.6.解:(1)60°;70°;(2)。
2017年秋人教版七年级数学上册热点专题高分特训:第4章:中点及角平分线
学生做题前请先回答以下问题问题1:线段上的点把线段分成相等的两条线段,则这个点叫做线段的________.问题2:从一个角的顶点引出一条_________,把这个角分成两个_________的角,这条射线叫做这个角的平分线.问题3:如图,若点C为线段AB的中点,则中点的六种表示是__________________________________________________________________.(1)若已知AC=3,求BC,则用哪一种表示方法:_____________.(2)若已知AC=3,求AB,则用哪一种表示方法:_____________.(3)若已知AB=6,求AC,则用哪一种表示方法:_____________.问题4:如图,若OC为∠AOB的平分线,则角平分线的六种表示是_______________________________________________________________.(1)若已知∠BOC=35°,求∠AOB,则用哪一种表示方法:_____________.(2)若已知∠BOC=35°,求∠AOC,则用哪一种表示方法:_____________.(3)若已知∠AOB=70°,求∠BOC,则用哪一种表示方法:_____________.中点及角平分线(人教版)一、单选题(共10道,每道10分)1.下列关于中点的说法,正确的是( )A.如果MA=MB,那么点M是线段AB的中点B.如果MA=AB,那么点M是线段AB的中点C.如果AB=2AM,那么点M是线段AB的中点D.如果点M是线段AB上一点,并且MA=MB,那么点M是线段AB的中点答案:D解题思路:A,B,C选项均未强调点A,B,M位于同一直线上.故选D.试题难度:三颗星知识点:中点的定义与表示2.点P在∠AOB内部,下面四个等式:①∠POA=∠BOP;②∠AOP=∠AOB;③∠AOP=∠BOP;④∠AOB=2∠BOP,其中能表示OP是∠AOB的平分线的有( )A.1个B.2个C.3个D.4个答案:C解题思路:由角平分线的6种表示可知,正确的有:①②④.故选C.试题难度:三颗星知识点:角平分线的定义及表示3.如图所示,长度为12cm的线段AB的中点为点M,点C将线段MB分成MC:CB=1:2,则线段AC的长度为( )A.2cmB.4cmC.6cmD.8cm答案:D解题思路:试题难度:三颗星知识点:求线段的长4.如图,已知直线AB,CD相交于点O,OE平分∠COB,若∠EOB=55°,则∠BOD的度数是( )A.35°B.55°C.70°D.110°答案:C解题思路:试题难度:三颗星知识点:角度的计算5.如图,B,C是线段AD上任意两点,M是AB的中点,N是CD的中点,若MN=a,BC=b,则AD的长是( )A.2a-bB.a-bC.a+bD.2(a-b)答案:A解题思路:试题难度:三颗星知识点:中点的应用6.如图所示,∠AOC=90°,∠COB=α,OD平分∠AOB,则∠COD的度数为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:角的计算7.如图,已知线段AB=12,点C是线段AB的中点,求BC的长.解:如图,∵________________∴________________∵________________∴________________即BC的长为6.①;②AB=2AC;③点C是线段AB的中点;④AC=6;⑤;⑥BC=AC;⑦AB=2BC;⑧;⑨AB=12.以上空缺处依次所填最恰当的是( )A.②①③⑨B.③⑤④⑨C.③①④⑧D.③①⑨⑧答案:D解题思路:试题难度:三颗星知识点:中点过程训练8.如图所示,AM=5,点M为线段AB的中点,点C为线段MB上一点,且MC=2,求BC的长.解:如图,∵________________∴________________∵________________∴________________∵MC=2即BC的长为3.①AB=2AM;②BM=AM;③;④;⑤点M是线段AB的中点;⑥BM=5;⑦AM=5;⑧AB=10.以上空缺处依次所填最恰当的是( )A.⑤①⑦⑧B.⑤②⑦⑥C.⑦⑧④⑥D.⑤③②⑥答案:B解题思路:试题难度:三颗星知识点:中点过程训练9.如图,已知OC平分∠AOB,∠AOC=35°,求∠AOB的度数.解:如图,∵OC平分∠AOB∴________________∵________________∴________________即∠AOB的度数为70°.①∠AOB=2∠AOC;②∠COB=∠AOC;③∠AOC=∠AOB;④∠AOC=35°;⑤.以上空缺处依次所填最恰当的是( )A.①③⑤B.③④⑤C.①④⑤D.②④⑤答案:C解题思路:试题难度:三颗星知识点:角平分线过程训练10.如图,已知∠AOB=90°,∠AOC=40°,OM平分∠AOB,求∠MOC的度数.解:如图,∵OM平分∠AOB∴________________∵________________∴________________∵________________即∠MOC的度数为5°.①∠AOB=2∠AOM;②;③∠AOM=∠BOM;④∠AOB=90°;⑤∠AOC=40°;⑥.以上空缺处依次所填最恰当的是( )A.②⑤⑥①B.②④⑥⑤C.③④②⑤D.⑥②④⑤答案:B解题思路:试题难度:三颗星知识点:角平分线过程训练。
三角形中的特殊模型-双角平分线模型(解析版)
三角形中的特殊模型-双角平分线模型模型1、双角平分线模型1)两内角平分线的夹角模型条件:如图1,在△ABC 中,∠ABC 和∠ACB 的平分线BE ,CF 交于点G ;结论:∠BGC =90°+12∠A .图1图2图32)两外角平分线的夹角模型条件:如图2,在△ABC 中,BO ,CO 是△ABC 的外角平分线;结论:∠O =90°-12∠A .3)一个内角一个外角平分线的夹角模型条件:如图3,在△ABC 中,BP 平分∠ABC ,CP 平分∠ACB 的外角,两条角平分线相交于点P ;结论:∠P =12∠A .图4图5图64)凸多边形双内角平分线的夹角模型条件:如图4,BP 、CP 平分∠ABC 、∠DCB ,两条角平分线相交于点P ;结论:2∠P =∠A +∠D 5)两内角平分线的夹角模型条件:如图5,BP 、DP 平分∠BCD 、∠CDE ,两条角平分线相交于点P ;结论:2∠P =∠A +∠B +∠E -180°6)一个内角一个外角平分线的夹角模型(累计平分线)条件:如图6,∠A =α,∠ABC ,∠ACD 的平分线相交于点P 1,∠P 1BC ,∠P 1CD 的平分线相交于点P 2,∠P 2BC,∠P2CD的平分线相交于点P3⋯⋯以此类推;结论:∠P n的度数是α2n.7)旁心模型旁心:三角形的一条内角平分线与其他两个角的外角平分线交于一点条件:如图,BD平分∠ABC,CD平分∠ACB的外角,两条角平分线相交于点D;结论:AD平分∠CAD 1(2023·绵阳市八年级课时练习)如图,在ΔABC中,∠ABC=80°,∠ACB=50°,BP平分∠ABC,CP平分∠ACB,则∠BPC=.【答案】115°【分析】先根据角平分线的性质求出∠PBC+∠PCB的度数,再利用三角形内角和定理即可求解.【详解】解:∵BP平分∠ABC,CP平分∠ACB,∴∠PBC+∠PCB=12(80°+50°)=65°,∴∠BPC=180°-65°=115°.【点睛】本题考查了角平分线的性质及三角形内角和定理.熟练掌握三角形内角和定理是解题的关键.2(2023·河南周口·八年级统考期末)如图,在四边形ABCD中,∠A+∠D=∂,∠ABC的平分线与∠BCD 的平分线交于点P,则∠P=()A.90°+12∂ B.90°-12∂ C.12∂ D.180°-12∂【答案】C【分析】根据四边形的内角和求得∠ABC+∠BCD=360°-∂,再根据角平分线的定义求得∠PBC+∠PCB,再根据三角形内角和即可求解.【详解】解:在四边形ABCD中,∠A+∠D=∂,∴∠ABC+∠BCD=360°-∂,由题意可得:BP平分∠ABC,CP平分∠BCD,∴∠PBC=12∠ABC,∠PCB=12∠BCD,∴∠PBC+∠PCB=12∠ABC+∠BCD=180°-∂2,∴∠BPC=180°-∠PBC+∠PCB=12∂故选:C.【点睛】此题考查了多边形内角和的性质、三角形内角和的性质以及角平分线的性质,解题的关键是掌握并灵活运用相关性质进行求解.3(2023秋·山西太原·八年级校考期末)已知:如图,P是△ABC内一点,连接PB,PC.(1)猜想:∠BPC与∠ABP、∠ACP、∠A存在怎样的等量关系?证明你的猜想.(2)若∠A=69°,PB、PC分别是∠ABC、∠ACB的三等分线,直接利用(1)中结论,可得∠BPC的度数为.【答案】(1)∠BPC=∠A+∠ABP+∠ACP,证明见解析(2)106°【分析】(1)根据三角形内角和定理得到∠A+∠ABC+∠ACB=180°,∠BPC+∠CBP+∠BCP=180°,再结合∠CBP=∠ABC-∠ABP,∠BCP=∠ACB-∠ACP即可得到结论;(2)先根据三角形内角和定理和角三等分线的定义得到∠ABC+∠ACB=111°,∠ABP=13∠ABC,∠ACP=13∠ACB,再代入(1)中结论求解即可.【详解】(1)解:猜想:∠BPC=∠A+∠ABP+∠ACP,证明:由题意得:∠A+∠ABC+∠ACB=180°,∠BPC+∠CBP+∠BCP=180°,∵∠CBP=∠ABC-∠ABP,∠BCP=∠ACB-∠ACP,∴∠BPC+∠ABC-∠ABP+∠ACB-∠ACP=180°,∴∠BPC+∠ABC+∠ACB-∠ABP+∠ACP=180°,∴∠BPC+180°-∠A-∠ABP+∠ACP=180°,∴∠BPC=∠A+∠ABP+∠ACP;(2)解:∵∠A=69°,PB、PC分别是∠ABC、∠ACB的三等分线,∴∠ABC+∠ACB=180°-∠A=111°,∠ABP=13∠ABC,∠ACP=13∠ACB,∴∠BPC=∠A+13∠ABC+∠ACB=69°+37°=106°.故答案为:106°.【点睛】本题主要考查了三角形内角和定理,角三等分线的定义,熟知三角形内角和为180度是解题的关键.4(2023秋·成都市·八年级专题练习)如图,在△ABC中,∠B=58°,三角形两外角的角平分线交于点E,则∠AEC=.【答案】61°【分析】先根据三角形的内角和定理和平角定义求得∠DAC+∠ACF的度数,再根据角平分线的定义求得∠EAC+∠ECA的度数,即可解答.【详解】解:∵∠B+∠BAC+∠BCA=180°,∠B=58°,∴∠BAC+∠BCA=180°-∠B=180°-58°= 122°,∵∠BAC+∠DAC=180°,∠BCA+∠ACF=180°,∴∠DAC+∠ACF=360°-(∠BAC+∠BCA)=360°-122°=238°,∵AE平分∠DAC,CE平分∠ACF,∴∠EAC=12∠DAC,∠ECA=12∠ACF,∴∠EAC+∠ECA=12(∠DAC+∠ACF)=119°,∵∠EAC+∠ECA+∠AEC=180°,∴∠AEC=180°-(∠EAC+∠ECA)=180°-119°=61°,故答案为:61°.【点睛】本题考查三角形的内角和定理、角平分线的定义、平角定义,熟练掌握三角形的内角和定理和角平分线的定义是解答的关键.5(2023·绵阳市·八年级专题练习)如图,已知在ΔABC中,∠B、∠C的外角平分线相交于点G,若∠ABC =m°,∠ACB=n°,求∠BGC的度数.【答案】∠BGC=12m°+n°【分析】运用角平分线的知识列出等式求解即可.解答过程中要注意代入与之有关的等量关系.【详解】解:∠B、∠C的外角平分线相交于点G,在ΔBCG中,∠BGC=180°-12∠EBC+12∠BCF=180°-12(∠EBC+∠BCF)=180°-12(180°-∠ABC+180°-∠ACB)=180°-12(180°-m°+180°-n°);=12m°+n°【点睛】本题考查的是三角形内角和定理以及角平分线的知识.此类题的关键是找出与之相关的等量关系简化计算得出.6(2023春·广西·七年级专题练习)如图,在△ABD中,∠ABD的平分线与∠ACD的外角平分线交于点E,∠A=80°,求∠E的度数【答案】40°【分析】由题意:设∠ABE =∠EBC =x ,∠ACE =∠ECD =y ,利用三角形的外角的性质构建方程组解决问题即可.【详解】由题意:设∠ABE =∠EBC =x ,∠ACE =∠ECD =y ,则有2y =2x +∠A ①y =x +∠E ②,①-2×②可得∠A =2∠E ,∴∠E =12∠A =40°.【点睛】本题考查三角形的外角的性质,角平分线的定义等知识,解题的关键是学会利用参数构建方程组解决问题.7(2023春·山东泰安·七年级校考阶段练习)如图,在△ABC 中,∠A =α,∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得A 2;⋯;∠A 2019BC 与∠A 2019CD 的平分线相交于点A 2020,得∠A 2020,则∠A 2020=.【答案】α22020【分析】结合题意,根据角平分线、三角形外角、三角形内角和的性质,得∠A 1=12∠A ,同理得∠A 2=12∠A 1=α22;再根据数字规律的性质分析,即可得到答案.【详解】根据题意,∠A =α,∠ABC 与∠ACD 的平分线交于点A 1∴∠A 1=180°-12∠ABC -∠ACB -12∠ACD ∵∠ACD =∠A +∠ABC ∴∠A 1=180°-∠ABC -∠ACB -12∠A∵∠A +∠ABC +∠ACB =180°∴∠A 1=12∠A 同理,得∠A 2=12∠A 1=12×12∠A =α22;∠A 3=12∠A 2=12×12×12∠A =α23;∠A 4=12∠A 3=12×12×12×12∠A =α24;⋯∠A n =12∠A n -1=α2n ∴∠A 2020=α22020故答案为:α22020.【点睛】本题考查了三角形和数字规律的知识;解题的关键是熟练掌握三角形内角和、三角形外角、角平分线、数字规律的性质,从而完成求解.8(2023·河北·九年级专题练习)问题情境:如图1,点D 是△ABC 外的一点,点E 在BC 边的延长线上,BD 平分∠ABC ,CD 平分∠ACE .试探究∠D 与∠A 的数量关系.(1)特例探究:如图2,若△ABC是等边三角形,其余条件不变,则∠D=;如图3,若△ABC是等腰三角形,顶角∠A=100°,其余条件不变,则∠D=;这两个图中,与∠A度数的比是 ;(2)猜想证明:如图1,△ABC为一般三角形,在(1)中获得的∠D与∠A的关系是否还成立?若成立,利用图1证明你的结论;若不成立,说明理由.【答案】(1)30°;50°;1:2(2)成立,见解析【分析】(1)根据三角形的一个外角等于和它不相邻的两个内角的和用∠A和∠D表示出∠ACE,再根据角平分线的定义得到∠ACE=2∠DCE,∠ABC=2∠DBC,然后整理即可.(2)根据三角形的一个外角等于和它不相邻的两个内角的和用∠A和∠D表示出∠ACE,再根据角平分线的定义得到∠ACE=2∠DCE,∠ABC=2∠DBC,然后整理即可.【详解】(1)解:如图2,∵ΔABC是等边三角形,∴∠ABC=60°,∠ACE=120°,∵BD平分∠ABC,CD平分∠ACE.∴∠DBC=30°,∠DCE=60°,∵∠DCE=∠D+∠DBC,∴∠D=30°;如图3,∵ΔABC是等腰三角形,∠A=100°,∴∠ABC=∠ACB=40°,∠ACE=140°,∵BD平分∠ABC,CD平分∠ACE.∴∠DBC=20°,∠DCE=70°,∵∠DCE=∠D+∠DBC,∴∠D=50°;故答案为30°,50°,1:2;(2)解:成立,如图1,在ΔABC中,∠ACE=∠A+∠ABC,在ΔDBC中,∠DCE=∠D+∠DBC,⋯(1)∵CD平分∠ACE,BD平分∠ABC,∴∠ACE=2∠DCE,∠ABC=2∠DBC,又∵∠ACE=∠A+∠ABC,∴2∠DCE=∠A+2∠DBC,⋯(2)由(1)×2-(2),∴2∠D+2∠DBC-(∠A+2∠DBC)=0,∴∠A=2∠D.【点睛】本题考查了等边三角形的性质、等腰三角形的性质、利用三角形的外角性质和角平分线的定义解答是关键.9(2023·重庆·七年级专题练习)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,分析发现∠BOC=90°∠A,理由如下:∵BO和CO分别是∠ABC、∠ACB的角平分线+12∴∠1=12∠ABC,∠2=12∠ACB∴∠1+∠2=12(∠ABC+∠ACB)=12(180°-∠A)=90°-12∠A∴∠BOC=180°-(∠1+∠2)=180°-90°-12∠A=90°+12∠A(1)探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.(2)探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(直接写出结论)(3)拓展:如图4,在四边形ABCD中,O是∠ABC与∠DCB的平分线BO和CO的交点,则∠BOC与∠A+∠D有怎样的关系?(直接写出结论)(4)运用:如图5,五边形ABCDE中,∠BCD、∠EDC的外角分别是∠FCD、∠GDC,CP、DP分别平分∠FCD和∠GDC且相交于点P,若∠A=140°,∠B=120°,∠E=90°,则∠CPD=度.【答案】(1)∠BOC=12∠A;(2)∠BOC=90°-12∠A;(3)∠BOC=12(∠BAD+∠CDA);(4)95【分析】(1)根据角平分线的性质及三角形外角的性质求解即可;(2)根据角平分线的性质、三角形内角和及三角形外角的性质求解即可;(3)由角平分线的性质、四边形内角和及三角形内角和定理即可求得两者的关系;(4)由角平分线的性质、五边形内角和及三角形内角和定理即可求得结果.【详解】(1)探究2结论:∠BOC=12∠A理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线∴∠1=12∠ABC,∠2=12∠ACD∵∠ACD是△ABC的一个外角∴∠ACD=∠A+∠ABC∴∠2=12∠ACD=12(∠A+∠ABC)=12∠A+∠1∵∠2是△BOC的一个外角∴∠BOC=∠2-∠1=12∠A+∠1-∠1=12∠A(2)探究3结论:∠BOC=90°-12∠A∵BO和CO分别是∠DBC和∠ECB的角平分线∴∠OBC=12∠DBC,∠OCB=12∠ECB∵∠DBC=2∠OBC=∠ABC+∠A,∠ECB=2∠OCB=∠ACB+∠A 两式相加得:2∠OBC+2∠OCB=∠ABC+∠ACB+2∠A即∠OBC+∠OCB=12(∠ABC+∠ACB)+∠A∴180°-∠BOC=12(180°-∠A)+∠A整理得:∠BOC=90°-12∠A(3)拓展结论:∠BOC =12(∠A +∠D )∵BO 和CO 分别是∠ABC 和∠BCD 的角平分线∴∠OBC =12∠ABC ,∠OCB =12∠BCD ∴∠OBC +∠OCB =12(∠ABC +∠BCD )=12(360°-∠A -∠D )=180°-12(∠A +∠D )在△BOC 中,180°-∠BOC =∠OBC +∠OCB∴180°-∠BOC =180°-12(∠A +∠D )∴∠BOC =12(∠BAD +∠CDA )(4)运用:∵CP 和DP 分别是∠DCF 和∠GDC 的角平分线∴∠PCD =12∠DCF ,∠PDC =12∠GDC∴∠PCD =12(180°-∠DCB ),∠PDC =12(180°-∠EDC )∴∠PCD +∠PDC =12(360°-∠DCB -∠EDC )∵∠DCB +∠EDC =540°-∠A -∠B -∠E =190°∴∠PCD +∠PDC =12(360°-190°)=85°在△CPD 中,∠CPD =180°-(∠PCD +∠PDC )=180°-85°=95°故答案为:95【点睛】本题考查了角平分线的性质,多边形内角和定理与三角形外角的性质,难度不大,掌握角平分线的性质及多边形内角和定理是关键.课后专项训练1(2023·浙江·八年级假期作业)如图,OG 平分∠MON ,点A ,B 是射线OM ,ON 上的点,连接AB .按以下步骤作图:①以点B 为圆心,任意长为半径作弧,交AB 于点C ,交BN 于点D ;②分别以点C 和点D 为圆心,大于12CD 长为半径作弧,两弧相交于点E ;③作射线BE ,交OG 于点P .若∠ABN =140°,∠MON =50°,则∠OPB 的度数为()A.35°B.45°C.55°D.65°【答案】B【分析】根据条件可知BP 平分∠ABN ,则可求出∠PBN ,根据OG 平分∠MON 求出∠BOG ,进而利用∠PBN =∠POB +∠OPB 即可求出答案.【详解】由作法得BP 平分∠ABN ,∴∠PBN =12∠ABN =12×140°=70°,∵OG 平分∠MON ,∴∠BOP =12∠NOM =12×50°=25°,∵∠PBN =∠POB +∠OPB ,∴∠OPB =∠PBN -∠POB =70°-25°=45°.故选B .【点睛】本题主要考查角平分线的定义及作法,三角形的外角的性质,根据题目条件发现角平分线是解题的关键.2(2023·江苏·八年级月考)ΔABC中,点O是ΔABC内一点,且点O到ΔABC三边的距离相等;∠A= 40°,则∠BOC=()A.110°B.120°C.130°D.140°【解答】解:∵O到三角形三边距离相等,∴O是内心,即三条角平分线交点,AO,BO,CO都是角平分线,∴∠CBO=∠ABO=12∠ABC,∠BCO=∠ACO=12∠ACB,∴∠ABC+∠ACB=180°-40°=140°,∴∠OBC+∠OCB=70°,∴∠BOC=180°-70°=110°.故选:A.3(2023·成都·八年级月考)如图,ΔABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=()A.40°B.45°C.50°D.60°【解答】解:延长BA,作PN⊥BD,PF⊥BA,PM⊥AC,设∠PCD=x°,∵CP平分∠ACD,∴∠ACP=∠PCD=x°,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴PF=PM,∵∠BPC=40°,∴∠ABP=∠PBC=∠PCD-∠BPC=(x-40)°,∴∠BAC=∠ACD-∠ABC=2x°-(x°-40°)-(x°-40°)=80°,∴∠CAF=100°,在RtΔPFA和RtΔPMA中,PA=PA PM=PF,∴RtΔPFA≅RtΔPMA(HL),∴∠FAP=∠PAC=50°.故选:C.4(2023·重庆·八年级专题练习)已知,如图,△ABC中,∠ABC=48°,∠ACB=84°,点D、E分别在BA、BC延长线上,BP平分∠ABC,CP平分∠ACE,连接AP,则∠PAC的度数为()A.45°B.48°C.60°D.66°【答案】D【分析】根据角平分线的性质定理证得PF=PH,PF=PG,进而得出PH=PG,从而判定AP平分∠CAD,再利用外角的性质求出∠CAD即可.【详解】解:作PF⊥BE于点F,PH⊥BD于点H,PG⊥AC于点G,∵BP平分∠ABC,CP平分∠ACE,∴PF=PH,PF=PG,∴PH=PG,∵PH⊥BD,PG⊥AC,∴AP平分∠CAD,∵∠ABC=48°,∠ACB=84°,∴∠CAD=∠ABC+∠ACB=48°+84°=132°,∴∠PAC=12∠CAD=66°.故选:D.【点睛】本题考查了角平分线的判定和性质定理,解题的关键是根据已知添加适当的辅助线.5(2023秋·绵阳市·八年级专题练习)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°【答案】B【分析】根据三角形的内角和定理列式计算即可求出∠BAC,即可判断A选项;根据角平分线的定义求出∠ABO,再利用三角形的内角和定理求出∠AOB,然后利用对顶角,即可判断B选项;根据邻补角的定义和角平分线的定义求出∠DCO,再利用三角形的内角和定理求出∠BDC,即可判断C选项;利用角平分线的性质,推出AD为△ABC的外角平分线,然后列式计算求出∠DAC,即可判断D选项.【详解】解:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°-∠ABC-∠ACB=180°-50°-60°=70°,故A选项正确,不符合题意;∵BD平分∠ABC,∴∠ABO=12∠ABC=12×50°=25°,在△ABO中,∠AOB=180°-∠BAC-∠ABO=180°-70°-25°=85°,∴∠DOC=∠AOB=85°,故B选项错误,符合题意;∵CD平分∠ACE,∴∠ACD=12∠ACE=12180°-∠ACB=12180°-60°=60°,在△COD中,∠BDC=180°-∠COD-∠ACD=180°-85°-60°=35°,故C选项正确,不符合题意;∵BD、CD分别是∠ABC和∠ACE的平分线,∴D到AB、AC、BC的距离相等,∴AD是△ABC的外角平分线,∴∠DAC=12180°-∠BAC=12180°-70°=55°,故D选项正确,不符合题意.故选:B.【点睛】本题考查角平分线的性质,三角形的内角和定理,角平分线的定义,熟记定理和概念是解题关键.6(2022春·重庆黔江·七年级统考期末)如图,已知AB∥CD,点E在两平行线之间,连接BE,CE,∠ABE的平分线与∠BEC的平分线的反向延长线交于点F,若∠BFE=50°,则∠C等于( ).A.70°B.80°C.85°D.90°【答案】B【分析】延长BE交DC的延长线于G,根据三角形内角和定理,可得∠EBF+∠BEF=130°,根据∠ABE的平分线与∠BEC的平分线的反向延长线交于点F可得∠ABE+∠BEF+∠FEC=260°,根据平行线的性质可得∠ECG=100°,进而可求解.【详解】解:延长BE交DC延长线于点G,∵∠BFE=50°,∠EBF+∠FEB+∠BFE=180°,∴∠EBF+∠BEF=180°-50°=130°,∵∠ABE的平分线与∠BEC的平分线的反向延长线交于点F,∴∠ABE+∠BEF+∠FEC=260°,∵AB∥CD,∴∠ABE=∠BGC,∴∠BGC+∠BEF+∠FEC=260°,∵∠BEF+∠FEG=180°,∴∠BGC+∠CEG=80°,∴∠ECG=100°,∴∠ECD=180°-100°=80°.故选:B【点睛】本题主要考查有关角平分线的计算,平行线的性质,三角形内角和定理,熟练掌握平行线的性质是解题的关键.7(2022春·北京海淀·七年级校考期中)如图,在平面直角坐标系中,直线AB与y轴在正半轴、x轴正半轴分别交A 、B 两点,点C 在BA 的延长线上,AD 平分∠CAO ,BD 平分∠ABO ,则∠D 的度数是()A.30°B.45°C.55°D.60°【答案】B 【分析】由OA ⊥OB 即可得出∠OAB +∠ABO =90°、∠AOB =90°,再根据角平分线的定义以及三角形内角和定理即可求出∠D 的度数.【详解】解:∵OA ⊥OB ,∴∠OAB +∠ABO =90°,∠AOB =90°.∵DA 平分∠CAO ,∴∠DAO =12∠OAC =12(180°-∠OAB ).∵DB 平分∠ABO ,∴∠ABD =12∠ABO ,∴∠D =180°-∠DAO -∠OAB -∠ABD =180°-12(180°-∠OAB )-∠OAB -12∠ABO =90°-12(∠OAB +∠ABO )=45°.故选:B .【点睛】本题考查了三角形内角和定理,解题的关键是找出∠D =90°-12(∠OAB +∠ABO ).本题属于基础题,难度不大,解决该题型题目时,熟练运用三角形内角和定理解决问题是关键.8(2023·江苏·八年级月考)如图,ΔABC 的外角∠ACD 的平分线CP 与内角∠ABC 平分线BP 交于点P ,若∠BPC =40°,则∠BAC 的度数是.【解答】解:在ΔABC 中,∠ACD =∠A +∠ABC ,在ΔPBC 中,∠PCD =∠P +∠PBC ,∵PB 、PC 分别是∠ABC 和∠ACD 的平分线,∴∠PCD =12∠ACD ,∠PBC =12∠ABC ,∴∠P +∠PCB =12(∠A +∠ABC )=12∠A +12∠ABC =12∠A +∠PCB ,∴∠PCD =12∠A ,∴∠BPC =40°,∴∠A =2×40°=80°,即∠BAC =80°.故答案为:80°.9(2023春·河北·七年级专题练习)如图,在△ABC 中,∠ABC 和∠ACB 的角平分线交于点O ,延长BO 与∠ACB 的外角平分线交于点D ,若∠BOC =130°,则∠D =【答案】40°【分析】根据角平分线的定义结合三角形外角的性质即可得到结论.【详解】解:∵∠ABC和∠ACB的角平分线交于点O,∴∠ACO=12∠ACB,∵CD平分∠ACE,∴∠ACD=12∠ACE,∵∠ACB+∠ACE=180°,∴∠OCD=∠ACO+∠ACD=12(∠ACB+∠ACE)=12×180°=90°,∵∠BOC=130°,∴∠D=∠BOC-∠OCD=130°-90°=40°,故答案为:40°.【点睛】本题考查了三角形的外角性质,角平分线的定义,熟练掌握相关性质和概念正确推理计算是解题的关键.10(2022秋·浙江八年级课时练习)(2018育才单元考)如图,在△ABC中,∠ABC和∠ACD的角平分线交于点A1,得∠A1,∠A1BC和∠A1CD的角平分线交于点A2,得∠A2,⋯⋯,∠A n-1BC和∠A n-1CD的角平分线交于点A n,得∠A n(1)若∠A=80°,则∠A1=,∠A2=,∠A3=(2)若∠A=m°,则∠A2015=.【答案】40°20°10°m 22015 °【分析】(1)利用角平分线的定义和三角形外角性质,易证∠A1=12∠A,进而可求∠A1,同理易证∠A2=1 2∠A1,∠A3=12∠A2,进而可求∠A2和∠A3;(2)利用角平分线的定义和三角形外角性质,易证∠A1=12∠A,进而可求∠A1,同理易证∠A2=12∠A1,∠A3=12∠A2,⋯,以此类推可知∠A2015即可求得.【详解】解:(1)∵∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC∵∠ABC和∠ACD的角平分线交于点A1,∠A=80°∴∠A1CD=12∠ACD,∠A1BC=12∠ABC∴∠A1=∠A1CD-∠A1BC=12∠ACD-12∠ABC=12(∠ACD-∠ABC)=12∠A=40°同理可证:∠A2=12∠A1=20°,∠A3=12∠A2=10°故答案为:40°;20°;10°.(2)∵∠A=∠ACD-∠ABC,∠A1=∠A1CD-∠A1BC∵∠ABC 和∠ACD 的角平分线交于点A 1,∠A =m °∴∠A 1CD =12∠ACD ,∠A 1BC =12∠ABC ∴∠A 1=∠A 1CD -∠A 1BC =12∠ACD -12∠ABC =12(∠ACD -∠ABC )=12∠A =m 2°同理可证:∠A 2=12∠A 1=m 22 °,∠A 3=12∠A 2=m 23 °∴∠A 2015=m 22015 °故答案为:m 22015°.【点睛】本题考查了角平分线定义和三角形外角性质,解题的关键是推导出∠A 1=12∠A ,并依此找出规律.11(2023·浙江杭州·八年级期末)如图,在四边形ABCD 中,∠A +∠D =m °,∠ABC 的平分线与∠BCD 的平分线交于点P ,则∠P =.(用含字母m 的代数式表示)【答案】12m o 【分析】根据四边形的内角和是360°,求出∠ABC +∠BCD 的度数,然后根据角平分线的定义及三角形的内角和定理求出∠P 的度数即可.【详解】解:∵∠A +∠D =m °,且四边形内角和为360°,∴∠ABC +∠BCD =360°-m °,∵PB 、PC 是∠ABC 、∠BCD 的角平分线,∴∠PBC =12∠ABC ,∠BCP =12∠BCD ,∴∠PBC +∠BCP =12∠ABC +12∠BCD =12∠ABC +∠BCD =12360°-m o ∴∠P =180°-(∠PBC +∠BCP )=180°-12360°-m o 故答案为:12m o .【点睛】本题考查了四边形的内角和及三角形的内角和与角平分线相关的角度计算问题,解题的关键是表达出∠PBC +∠BCP 的度数.12(2023春·河南·七年级专题练习)如图,点M 是△ABC 两个内角平分线的交点,点N 是△ABC 两外角平分线的交点,如果∠CMB :∠CNB =3:2,那么∠CAB =.【答案】36°【分析】由角平分线的定义得∠NCM =∠MBN =12×180°=90°,再比的关系可求得∠CMB =108°,再由内角平分线及三角形内角和即可求得结果.【详解】由题意得:∠NCM =∠MBN =12×180°=90°,∴∠CMB +∠CNB =180°,又∠CMB :∠CNB =3:2,∴∠CMB =108°,∴12(∠ACB +∠ABC )=180°-∠CMB =72°,∴∠ACB+∠ABC=144°,∴∠CAB=180°-(∠ACB+∠ABC)=36°.【点睛】本题考查了三角形内角和定理、三角形角平分线的定义等知识,由条件得到∠NCM=∠MBN=90°是关键.13(2023·甘肃陇南·统考一模)在△ABC中,AB=AC,∠A=100°.点M在BC的延长线上,∠ABC 的平分线交AC于点D.∠MCA的平分线与射线BD交于点E.(1)依题意补全图形;用尺规作图法作∠MCA的平分线;(2)求∠BEC的度数.【答案】(1)见解析(2)50°【分析】(1)根据尺规作图法可作∠MCA的平分线;(2)根据角平分线的定义可得∠ABD=∠CBD=20°,∠MCE=∠DCE=70°,再根据三角形内角和定理即可求解.【详解】(1)解:如图,CE即为所求;(2)解:∵AB=AC,∠A=100°,∴∠ACB=∠ABC=40°,∵BD是∠ABC的平分线,∴∠ABD=∠CBD=20°,∵∠ACM=180°-40°=140°,CE是∠MCA的平分线,∴∠MCE=∠DCE=70°,∴∠BEC=∠MCE-∠CBD=70°-20°=50°.【点睛】本题考查尺规作图-角平分线、角平分线的定义、三角形内角和定理,熟练掌握尺规作图的方法和相关知识是解题的关键.14(2023·山东八年级期中)如图,在ΔABC中,角平分线AD、BE、CF相交于点O,过点B作BG⊥CF于点G,∠OBG=12∠BAC成立吗?说明理由.【答案】∠OBG=12∠BAC 成立,见解析.【分析】根据三角形内角平分线的交角的基本图形和结论和三角形外角的性质定理即可得出答案【详解】解:∠OBG=12∠BAC成立.理由如下:∵在ΔABC中,角平分线AD、BE、CF相交于点O,由三角形内角平分线的交角的基本图形和结论得,∠BOC=90°+12∠BAC.由三角形的外角性质得,∠BOC=∠G+∠OBG=90°+∠OBG,∴90°+12∠BAC=90°+∠OBG,∴∠OBG=12∠BAC【点睛】本题考查三角形的内角和定理,及三角形的角平分线的性质,熟练掌握相关的知识点是解题关键.15(2023·黑龙江八年级课时练习)(1)如图(1)所示,已知在△ABC中,O为∠ABC和∠ACB的平分线BO,CO的交点.试猜想∠BOC和∠A的关系,并说明理由.(2)如图(2)所示,若O为∠ABC的平分线BO和∠ACE的平分线CO的交点,则∠BOC与∠A的关系又该怎样?为什么?【答案】(1)∠BOC=12∠A+90°;理由见解析;(2)∠BOC=12∠A;理由见解析【分析】(1)根据三角形内角和定理得出∠A+∠ABC+∠ACB=180°,∠BOC+∠OBC+∠OCB=180°,根据角平分线的性质得出∠ABC=2∠OBC,∠ACB=2∠OCB,然后得出∠BOC+12∠ABC+12∠ACB=180°,最后得出结论;(2)根据外角的性质得出∠A+∠ABC=∠ACE,∠OBC+∠BOC=∠OCE,然后根据角平分线的性质得出∠ABC=2∠OBC,∠ACE=2∠OCE,最后根据∠BOC=∠OCE-∠OBC得出答案.【详解】(1)∠BOC=12∠A+90°.在△ABC中,∠A+∠ABC+∠ACB=180°,在△BOC中,∠BOC+∠OBC+∠OCB=180°,又∵BO,CO分别是∠ABC,∠ACB的平分线,∴∠ABC=2∠OBC,∠ACB=2∠OCB.∴∠BOC+12∠ABC+12∠ACB=180°.∴∠BOC=180°-12(∠ABC+∠ACB)=180°-12(180°-∠A)=90°+12∠A.(2)∠BOC=12∠A.∵∠A+∠ABC=∠ACE,∠OBC+∠BOC=∠OCE,∴∠A=∠ACE-∠ABC,∠BOC=∠OCE-∠OBC又∵BO,CO分别是∠ABC和∠ACE的平分线,∴∠ABC=2∠OBC,∠ACE=2∠OCE.∴∠BOC=∠OCE-∠OBC=12∠ACE-12∠ABC=12(∠ACE-∠ABC)=12∠A.【点睛】本题考查了角平分线的性质和三角形外角的性质,熟练掌握外角性质并能正确计算是解题关键.16(2023春·八年级单元测试)如图,∠CBF,∠ACG是△ABC的外角,∠ACG的平分线所在的直线分别与∠ABC,∠CBF的平分线BD,BE交于点D,E.(1)若∠A=70°,求∠D的度数;(2)若∠A=a,求∠E;(3)连接AD,若∠ACB=β,则∠ADB=.【答案】(1)35°;(2)90°-12α;(3)12β【分析】(1)由角平分线的定义得到∠DCG=12∠ACG,∠DBC=12∠ABC,然后根据三角形外角的性质即可得到结论;(2))根据角平分线的定义得到∠DBC=12∠ABC,∠CBE=12∠CBF,于是得到∠DBE=90°,由(1)知∠D=12∠A,根据三角形的内角和得到∠E=90°-12α;(3)根据角平分线的定义可得,∠ABD=12∠ABC,∠DAM=12∠MAC,再利用三角形外角的性质可求解.【详解】解:(1)∵CD平分∠ACG,BD平分∠ABC,∴∠DCG=12∠ACG,∠DBC=12∠ABC,∵∠ACG=∠A+∠ABC,∴2∠DCG=∠ACG=∠A+∠ABC=∠A+2∠DBC,∵∠DCG=∠D+∠DBC,∴2∠DCG=2∠D+2∠DBC,∴∠A+2∠DBC=2∠D+2∠DBC,∴∠D=12∠A=35°;(2)∵BD平分∠ABC,BE平分∠CBF,∴∠DBC=12∠ABC,∠CBE=12∠CBF,∴∠DBC+∠CBE=12(∠ABC+∠CBF)=90°,∴∠DBE=90°,∵∠D=12∠A,∠A=α,∴∠D=12α,∵∠DBE=90°,∴∠E=90°-12α;(3)如图,∵BD平分∠ABC,CD平分∠ACG,∴AD平分∠MAC,∠ABD=12∠ABC,∴∠DAM=12∠MAC,∵∠DAM=∠ABD+∠ADB,∠MAC=∠ABC+∠ACB,∠ACB=β,∴∠ADB=12∠ACB=12β.故答案为:12β.【点睛】本题主要考查三角形的角平分线,三角形外角的性质,灵活运用三角形外角的性质是解题的关键.17(2023·福建泉州·七年级阶段练习)在ΔABC 中,已知∠A =α.(1)如图1,∠ABC 、∠ACB 的平分线相交于点D .①当α=80°时,∠BDC 度数=度(直接写出结果);②∠BDC 的度数为(用含α的代数式表示);(2)如图2,若∠ABC 的平分线与∠ACE 角平分线交于点F ,求∠BFC 的度数(用含α的代数式表示).(3)在(2)的条件下,将ΔFBC 以直线BC 为对称轴翻折得到ΔGBC ,∠GBC 的角平分线与∠GCB 的角平分线交于点M (如图3),求∠BMC 的度数(用含α的代数式表示).【答案】(1)①130°;②90°+12α;(2)∠BFC =12α(3)∠BMC =90°+14α【详解】:(1)①130°;②90°+12α;(2)∵BF 和CF 分别平分∠ABC 和∠ACE ∴∠FBC =12∠ABC ,∠FCE =12∠ACE ∴∠BFC =∠FCE -∠FBC =12∠ACE -∠ABC =12∠A 即∠BFC =12α(3)由轴对称性质知:∠BGC =∠BFC =12α由(1)②可得∠BMC =90°+12∠BGC ∴∠BMC =90°+14α.18(2023·江苏盐城·七年级阶段练习)如图,△ABC 的角平分线相交于P ,∠A =m °,(1)若∠A =40°,求∠BPC 的度数;(2)设△ABC 的外角∠CBD 、∠BCE 的平分线相交于Q ,且∠A =m °,求∠BQC 的度数(3)设△ABC 的外角∠CBD 、∠BCE 的n 等分线相交于R ,且∠A =m °,∠CBR =1n ∠CBD ,∠BCR =1n ∠BCE ,求∠BRC 的度数【答案】(1)110°(2)90°+12m °(3)n -1n ×180°-m n(此结果形式可以不同,只要正确皆可)【详解】试题分析:(1)根据三角形内角和定理和角平分线的性质解答即可;(2)(3)根据三角形内角和定理和三角形外角的性质解答即可.试题解析:解:(1)∵∠A =40°,∴∠ABC +∠ACB =180°-40°=140°.∵BP 、CP 是角平分线,∴∠ABC=2∠PBC ,∠ACB =2∠PCB ,∴∠PBC +∠PCB =12(∠ABC +∠ACB )==12×140°=70°,∴∠P =180°-70°=110°.(2)∵∠DBC =∠A +∠ACB ,∠BCE =∠A +∠ABC ,∴∠DBC +∠BCD =2∠A +∠ABC +∠ACB =∠A +180°=m +180°.∵BQ ,CQ 是角平分线,∴∠DBC =2∠QBC ,∠BCE =2∠BCQ ,∴∠QBC +∠BCQ =12(∠DBC +∠ECB )=12(m +180°)=90°+12m .在△BCQ 中,∠Q =180°-(∠QBC +∠BCQ )=180°-90°+12m =90°-12m .(3)由(2)得:∠DBC +∠BCD =m +180°,∠RBC +∠BCR =1n (∠DBC +∠ECB )=1n (m +180°).在△BCR 中,∠R =180°-(∠RBC +∠BCR )=180°-1n (m +180°)=n -1n ×180-m n.点睛:本题主要考查了三角形内角和定理,角平分线的定义以及三角形外角性质的运用,解题时注意:三角形内角和等于180°.根据角的和差关系进行计算是解决问题的关键.19(2023·江西上饶·八年级校考阶段练习)(1)探究1:如图1,P 是△ABC 的内角∠ABC 与∠ACB 的平分线BP 和CP 的交点,若∠A =70∘,则∠BPC =度;(2)探究2:如图2,P 是△ABC 的外角∠DBC 与外角∠ECB 的平分线BP 和CP 的交点,求∠BPC 与∠A的数量关系?并说明理由.(3)拓展:如图3,P 是四边形ABCD 的外角∠EBC 与∠BCF 的平分线BP 和CP 的交点,设∠A +∠D =α.,直接写出∠BPC 与α的数量关系;【答案】(1)125°;(2)∠BPC =90°-12∠A ,理由见解析;(3)∠BPC =180°-12α【分析】(1)借助角平分线的性质即可得到∠PBC =12∠ABC 以及∠PCB =12∠ACB ,然后在△BPC 中进一步分析可找出∠BPC 与∠A 的关系,进而求出∠BPC 的度数;(2)根据三角形内角和定理可知∠BPC =180°-(∠PBC +∠PCB ),根据角平分线的定义可用12(∠DBC +∠ECB )表示∠PBC +∠PCB ,再利用三角形外角性质得到∠DBC +∠ECB =∠A +∠ACB +∠A +∠ABC ,即可求出∠BPC 与∠A 的关系;(3)延长BA 、CD 相交于点Q ,由(2)的分析可直接得出∠P 与∠Q 的关系,而∠BAD 与∠CDA 是△ADQ 的外角,再结合三角形外角性质即可解答.【详解】(1)解:∠BPC =180°-(∠PBC +∠PCB )=180°-12(∠ABC +∠ACB )=180°-12(180°-∠A )=90°+12∠A =90°+35°=125°故答案为125°(2)∠BPC =90°-12∠A 理由如下:∠BPC =180°-(∠PBC +∠PCB )=180°-12(∠DBC +∠ECB )=180°-12(∠A +∠ACB +∠A +∠ABC )=180°-12(∠A +180°)=90°-12∠A(3)延长BA 、CD 相交于点Q ,如图∠BPC =90°-12∠Q ∴∠Q =180°-2∠BPC ∴∠BAD +∠CDA =180°+∠Q =180°+180°-2∠BPC =360°-2∠BPC∴∠BPC =180°-12α故答案为∠BPC =180°-12α【点睛】本题考查的是三角形内角和与外角的知识,掌握三角形外角性质以及内角和定理是解题关键.20(2023·甘肃天水·七年级统考期末)已知在△ABC 中,图1,图2,图3中的△ABC 的内角平分线或外角平分线交于点O ,(1)如图1,点O 是△ABC 的两个内角平分线的交点,猜想∠O 与∠A 之间的数量关系,并加以证明.(2)请直接写出结果.如图2,若∠A =60°,△ABC 的内角平分线与外角平分线交于点O ,则∠O =;如图3,若∠A =60°,△ABC 的两个外角平分线交于点O ,则∠O =.【答案】(1)∠O =90°+12∠A ,证明见解析;(2)30°;60°.【分析】(1)根据角平分线的性质可以得到∠OBC =12∠ABC ,∠OCB =12∠ACB ,再根据三角形的内角和定理得到△ABC 和△OBC 的三个内角的和是180°,对角度进行等价代换即可;(2)图2中,根据角平分线的性质可以得到∠OBC =12∠ABC ,∠OCM =12∠ACM ,再根据三角形外角的性质得到∠O =∠OCM -∠OBC 和∠A =∠ACM -∠ABC ,最后对角度进行等价代换即可;图3中,根据角平分线的性质可以得到∠OBC =12∠PBC ,∠OCB =12∠QCB ,再根据三角形的内角和定理得到△ABC 和△OBC 的三个内角的和是180°,最后再结合平角的性质对角度进行等价代换即可.【详解】解:(1)∠O =90°+12∠A .证明:∵BO 平分∠ABC ,CO 平分∠ACB ,∴∠OBC =12∠ABC ,∠OCB =12∠ACB ,∴∠O =180°-(∠OBC +∠OCB )=180°-12∠ABC +12∠ACB =180°-12(∠ABC +∠ACB )=180°-12180°-∠A =90°+12∠A .即∠O =90°+12∠A .(2)30°;60°.如图2所示:∵BO平分∠ABC,CO平分∠ACM,∴∠OBC=12∠ABC,∠OCM=12∠ACM,∴∠O=∠OCM-∠OBC=12∠ACM-12∠ABC=12(∠ACM-∠ABC)=12∠A.∵∠A=60°∴∠O=12∠A=12×60°=30°.即∠O=30°.如图3所示:∵BO平分∠PBC,CO平分∠QCB,∴∠OBC=12∠PBC,∠OCB=12∠QCB,∴∠O=180°-(∠OBC+∠OCB)=180°-12∠PBC+12∠QCB=180°-12180°-∠ABC+12180°-∠ACB=12∠ABC+12∠ACB=12∠ABC+∠ACB=1 2180°-∠A.∵∠A=60°∴∠O=12180°-∠A=12×180°-60°=60°.即∠O=60°.故答案为:30°;60°.【点睛】本题考查了角平分线的性质,三角形的内角和定理和三角形外角的性质,熟练掌握这些知识点是解题关键,特别注意等价代换的使用.21。
七年级数学上册角的比较与运算课时练习题
七年级数学上册角的比较与运算课时练习题一、选择题(每题3分)1.如图,O是直线AB上的一点,过点O任意作射线OC, OD平分ZAOC, OE 平分ZBOC,则ZDOEOA.一定是钝角B. 一定是锐角C. 一定是直角D.都有可能【答案】C【解析】试题分析:直接利用角平分线的性质得出ZAOD=ZDOC, ZBOE=ZCOE,进而得出答案.解:TOD 平分ZAOC, OE 平分ZBOC,Λ ZAOD=ZDOC, ZBOE=ZCOE,ΛZD0E=× 180° =90° ,故选:C.考点:角平分线的定义.2.两个锐角的和不可能是()A.锐角B.直角C.钝角D.平角【答案】D【解析】试题分析:因为等于0。
小于90°的角是锐角,所以两个锐角的和不可能是180°,所以D正确,故选:D.考点:锐角3.己知ZAOB=50o , ZCOB=30°,则ZAoC 等于()A. 80oB. 20oC. 80o或20°D.无法确定【答案】C【解析】试题分析:本题需要分两种情况进行讨论:当射线OC在ZAoB 内部时,则ZAoC=50° -30° =20°;当射线OC在ZAOB外部时,则ZAOC=50° +30°=80° .考点:角度的计算4.如图,将一副三角板的直角顶点重合放置于处(两块三角板可以在同一平面内自由转动),则下列结论一定成立的是()A.ZBAE>ZDACB.ZBAE-ZDAC=45°C.ZBAE+ZDAC=180oD.ZBAD≠ZEAC【答案】C.【解析】试题解析:因为是直角三角板,所以ZBAC=ZDAE=90° ,所以ZBAD+ ZDAC+ ZCAE+ ZDAC=ISO o ,即ZBAE+ZDAC二180° .故选C.考点:角的计算.5.如图,己知ZAOB= α , ZBOC= β , OM 平分ZAOC, ON 平分ZBOC,则ZMoN的度数是()A. βB. ( a - β )C. aD. a - β【答案】C.试题分析:,平分,,平分,,故选C.考点:1、角平分线的定义;2、角的计算.6.己知,ZAOC=90°,且ZAOB: ZAOC=2: 3,则ZBOC 的度数为()A. 30oB. 150oC. 30°或150°D. 90°【答案】C.【解析】试题分析:当在内部时,当在外部时,故选C.考点:角的计算.7.用一副三角板可以画出一些指定的角,下列各角中,不能用一副三角板画出的是()A、15o B. 75o C. 85o D. 105°【答案】C【解析】试题分析:一副三角板中的度数有:90°、60°、45°、30° ; 用三角板画出角,无非是用角度加减法,根据选项一一分析,排除错误答案.解:A、15。
(好题)初中数学七年级数学上册第四单元《基本平面图形》检测(有答案解析)(2)
一、选择题1.已知点A ,B ,C 在同一条直线上,线段10AB =,线段8BC =,点M 是线段AB 的中点.则MC 等于( )A .3B .13C .3或者13D .2或者18 2.如图,C 、D 是线段AB 上的两点,且D 是线段AC 的中点.若AB=10cm ,BC=4cm ,则BD 的长为( )A .6cmB .7cmC .8cmD .9cm3.如图,90,50,AOB COD OE ∠=︒∠=平分,AOC OF ∠平分∠BOD ,则EOF ∠的大小为( )A .110B .105C .100D .954.如图,甲、乙两人同时从A 地出发,甲沿北偏东50︒ 方向步行前进,乙沿图示方向步行前进.当甲到达B 地,乙到达C 地时,甲与乙前进方向的夹角∠BAC 为100︒ ,则此时乙位于A 地的( )A .南偏东30︒B .南偏东50︒C .北偏西30︒D .北偏西50︒ 5.将一副直角三角尺按如图所小的不同方式摆放,则图中α∠与β∠互余的是( ) A . B .C .D .6.如图,OC 是∠AOB 的平分线,∠BOD =∠COD ,∠AOD =75°,则∠BOD =( )A .35°B .25°C .20°D .15°7.如图,从8点钟开始,过了20分钟后,分针与时针所夹的度数是( )A .120︒B .130︒C .140︒D .150︒ 8.已知点A ,B ,C 在同一条直线上,线段5AC =,2BC =,则线段AB 的长度为( ) A .7 B .3 C .7或3 D .不能确定 9.点A ,B ,C 在同一条直线上,6cm AB =,2cm BC =,M 为AB 中点,N 为BC 中点,则MN 的长度为( )A .2cmB .4cmC .2cm 或4cmD .不能确定 10.下列图形中,表示南偏东60°的射线是( )A .B .C .D . 11.下列命题中,正确的有( )①两点之间线段最短;②连接两点的线段,叫做两点间的距离;③角的大小与角的两边的长短无关;④射线是直线的一部分,所以射线比直线短.A .1个B .2个C .3个D .4个 12.如图,张明同学设计了四种正多边形的瓷砖图案,在这四种瓷砖图案不能铺满地面的是( ) A . B . C . D .二、填空题13.如图,已如A ,B 两点.(1)画线段AB ;(2)延长线段AB 到点C ,使BC AB =;(3)反向延长线段AB 到点D ,使DA AB =;(4)点A ,B 分别是哪条线段的中点?若3cm AB =,请求出线段CD 的长.14.已知,线段20AB =,M 是线段AB 的中点,P 是线段AB 上任意一点,N 是线段PB 的中点.(1)当P 是线段AM 的中点时,求线段NB 的长;(2)当线段1MP =时,求线段NB 的长;(3)若点P 在线段BA 的延长线上,猜想线段PA 与线段MN 的数量关系,并画图加以证明.15.已知射线OC 在AOB ∠的内部,射线OE 平分AOC ∠,射线OF 平分COB ∠. (1)如图1,若100AOB ∠=︒,30AOC ∠=︒,则EOF ∠=__________度;(2)如图2,若AOB α∠=,AOC β∠=,若射线OC 在AOB ∠的内部绕点O 旋转,求EOF ∠ 的大小;(3)在(2)的条件下,若射线OC 在AOB ∠的外部绕点O 旋转(旋转中AOC ∠、COB ∠均是指小于180︒的角),其余条件不变,请借助图3探究EOF ∠的大小,求EOF ∠的大小.16.如图所示,线段AB =16cm ,E 为线段AB 的中点,点C 为线段EB 上一点,且EC =3cm ,点D 为线段AC 的中点,求线段DE 的长度.17.已知线段AB ,请用尺规按下列要求作图,保留作图痕迹,不写作法:(1)延长线段BA 到C ,使3AC AB =;(2)延长线段AB 到D ,使3AD AB =;(3)在上述作图条件下,若8cm CB =,求BD 的长度.18.如图,已知线段a ,b .(1)任意画一直线,利用尺规作图在直线上从左至右依次截取AB =a ,BC =b ;(2)在(1)的条件下,如果AB =8,BC =6,M 是线段AB 的中点,N 是线段BC 的中点,求MN 的长.19.(1)特例感知:如图1,OC 、OD 是AOB ∠内部的两条射线,若120AOD BOC ∠=∠=︒,30AOC ∠=︒,则BOD ∠= °.(2)知识迁移:如图2,OC 是AOB ∠内部的一条射线,若OM 、ON 分别平分AOC ∠和BOC ∠,且AON BOM ∠≠∠,则MOC NOC AON BOM∠-∠∠-∠的值为 . (3)类比探究:如图3,OC 、OD 是AOB ∠内部的两条射线.若OM 、ON 分别平分AOD ∠和BOC ∠,且AOD BOC ∠≠∠,求的值MOC NOD AOD BOC∠-∠∠-∠.20.把下列解答过程补充完整:如图,已知线段16cm AB =,点C 为线段AB 上的一个动点,点M ,N 分别是AC 和BC 的中点.(1)若点C 恰为AB 的中点,求MN 的长;(2)若6cm AC =,求MN 的长;(3)试猜想:不论AC 取何值(不超过16cm ),MN 的长总等于_______________.三、解答题21.如图,B 、C 是线段AD 上的任意两点,M 是AB 的中点,N 是CD 的中点,如果MN =3cm ,BC =1.5cm ,求AD 的长.22.如图,平面上有三个点A 、B 、C ,根据下列要求画图.(1)画直线AB 、AC ;(2)作射线BC ;(3)在线段AB 上取点E 、在线段AC 上取点F ,连接EF ,并延长EF .23.如图,OD 平分∠AOB ,OE 平分∠BOC ,∠COD =20°,∠AOB =140°.(1)求∠BOC 的度数.(2)求∠DOE 的度数.24.已知线段AC 和线段BC 在同一直线上,若12cm AC =,8cm BC =,线段AC 的中点为M ,线段BC 的中点为N ,试求M 、N 两点之间的距离.25.如图,已知120AOB ∠=︒,30BOC ∠=︒,OD 是AOC ∠的角平分线,求BOD ∠的度数.26.如图,已知数轴上点A 表示的数为8,B 是数轴上一点,且14AB =,动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t (0)t >秒:(1)写出数轴上点B 表示的数为______,点P 表示的数为______ (用含t 的代数式表示);(2)动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由于点C的位置不能确定,故应分点C在线段AB外和点C在线段AB之间两种情况进行解答.【详解】解:当A、B、C的位置如图1所示时,∵线段AB=10,线段BC=8,点M是线段AB的中点,∴BM=12AB=12×10=5,∴MC=BM+BC=5+8=13;当A、B、C的位置如图2所示时,∵线段AB=10,线段BC=8,点M是线段AB的中点,∴BM=12AB=12×10=5,∴MC= BC-BM =8-5=3.综上所述,线段MC的长为3或13.故选:C【点睛】本题考查的是两点间的距离,在解答此题时要注意进行分类讨论,不要漏解.2.B解析:B【分析】利用线段和的定义和线段中点的意义计算即可.【详解】∵AB=AC+BC,且AB=10,BC=4,∴AC=6,∵D是线段AC的中点,∴AD=DC=12AC=3,∴BD=BC+CD=4+3=7,故选B.【点睛】本题考查了线段和的意义和线段中点的意义,熟练掌握两个概念并灵活运用进行线段的计算是解题的关键.3.A解析:A【分析】由OE 平分AOC ∠,OF 平分BOD ∠可知12COE AOC ∠=∠,12DOF BOD ∠=∠.即可求出1122EOF AOC BOD COD ∠=∠+∠-∠,又由360AOC BOD AOB COD ∠+∠=︒-∠+∠,即可求出EOF ∠的大小.【详解】EOF EOD COD COF ∠=∠+∠+∠,()()COE COD COD DOF COD =∠-∠+∠+∠-∠,COE DOF COD =∠+∠-∠.∵OE 平分AOC ∠,OF 平分BOD ∠. ∴12COE AOC ∠=∠,12DOF BOD ∠=∠. ∴1122EOF AOC BOD COD ∠=∠+∠-∠, ∵360AOC BOD AOB COD ∠+∠=︒-∠+∠, ∴1(360)2EOF AOB COD COD ∠=︒-∠+∠-∠,即1(3609050)501102EOF ∠=︒-︒+︒-︒=︒. 故选:A .【点睛】本题考查角平分线的性质.根据题意结合角平分线的性质找出角的等量关系是解答本题的关键.4.A解析:A【分析】直接根据题意得出各角度数,进而结合方向角表示方法得出答案.【详解】解:如图所示:由题意得:∠1=50︒,∠BAC =100︒∴∠2=180°-∠1-∠BAC=180°-50︒-100︒=30︒故乙位于A 地的南偏东30︒.故选:A .【点睛】此题主要考查了方向角,正确掌握方向角的表示方法是解题关键.5.A解析:A【分析】根据直角三角板中各个角的度数、互余、互补的定义逐项判断即可得.【详解】A 、90180αβ∠+∠+︒=︒,90αβ∴∠+∠=︒,即α∠与β∠互余,此项符合题意; B 、90β∠=︒,α∠为锐角, 90αβ∴∠+∠>︒,则α∠与β∠不可能互余,此项不符题意;C 、18045135αβ∠=∠=︒-︒=︒,270αβ∴∠+∠=︒,则α∠与β∠不可能互余,此项不符题意; D 、904545,903060αβ∠=︒-︒=︒∠=︒-︒=︒, 4560105αβ∴∠+∠=︒+︒=︒,则α∠与β∠不可能互余,此项不符题意; 故选:A .【点睛】本题考查了余角、补角、角的运算,熟练掌握角的运算是解题关键.6.B解析:B【分析】根据角平分线的定义和∠BOD =∠COD ,用∠BOD 表示其它的角,再利用∠AOD =75°即可求得∠BOD 的度数.【详解】解:∵∠BOD =∠COD ,∴∠BOC=2∠BOD ,∵OC 是∠AOB 的平分线,∴∠AOC=∠BOC=2∠BOD ,∵∠AOD =75°,∴∠BOD+2∠BOD=75°,即∠BOD=25°,故选:B .【点睛】本题考查了角平分线的定义及角的计算,本题的解题关键是根据已知条件找出角度的关系,即可得出答案.7.B解析:B【分析】此时时针超过8点,分针指向4,根据每2个数字之间相隔30度和时针1分钟走0.5度可得夹角度数.【详解】解:时针超过20分所走的度数为20×0.5=10°,分针与8点之间的夹角为4×30=120°,∴此时时钟面上的时针与分针的夹角是120+10=130°.故选:B .【点睛】本题考查钟面角的计算,用到的知识点为:钟面上每2个数字之间相隔30度;时针1分钟走0.5度.8.C解析:C【分析】分类讨论,点B 在线段AC 上或在线段AC 外,即可得到结果.【详解】解:①如图所示:∵5AC =,2BC =,∴527AB AC BC =+=+=;②如图所示:∵5AC =,2BC =,∴523AB AC BC =-=-=.故选:C.【点睛】本题考查线段的和差问题,解题的关键是进行分类讨论,画出图象,求出线段的和或差.9.C解析:C【分析】分点C在直线AB上和直线AB的延长线上两种情况,分别利用线段中点的定义和线段的和差解答即可.【详解】解:①当点C在直线AB上时∵M为AB中点,N为BC中点∴AM=BM=12AB=3,BN=CN=12BC=1,∴MN=BM-BN=3-1=2;②当点C在直线AB延长上时∵M为AB中点,N为BC中点∴AM=CM=12AB=3,BN=CN=12BC=1,∴MN=BM+BN=3+1=4综上,MN的长度为2cm或4cm.故答案为C.【点睛】本题主要考查了线段中点的定义以及线段的和差运算,掌握分类讨论思想成为解答本题的关键.10.C解析:C【分析】根据方位角的概念,由南向东旋转60度即可.【详解】解:根据方位角的概念,结合题意要求和选项,故选:C.【点睛】考查了方向角,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南)11.B解析:B【分析】根据直线的性质,两点间的距离的定义,线段的性质进行分析.【详解】解:①两点之间线段最短,正确;②连接两点的线段的长度,叫做两点间的距离,故原说法错误;③角的大小与角的两边的长短无关,正确;④直线无限长,射线无限长,射线是直线的一部分,所以射线比直线短的说法是错误的.故选:B【点睛】本题考查了直线、射线、线段,关键是熟悉它们的定义.属于基础题.12.D解析:D【分析】分别计算各正多边形每个内角的度数,看是否能整除360°,即可判断.【详解】解:A.正六边形每个内角为120°,能够整除360°,不合题意;B.正三角形每个内角为60°,能够整除360°,不合题意;C.正方形每个内角为90°,能够整除360°,不合题意;D.正五边形每个内角为108°,不能整除360°,符合题意.故选:D.【点睛】能够铺满地面的图形是看拼在同一顶点的几个角是否构成周角.二、填空题13.(1)见解析;(2)见解析;(3)见解析;(4)点A是线段BD的中点点B是线段AC的中点;CD=9cm【分析】(1)(2)(3)根据线段的定义和几何语言画出对应的几何图形;(4)根据线段的中点的定义解析:(1)见解析;(2)见解析;(3)见解析;(4)点A是线段BD的中点,点B是线段AC的中点;CD=9cm.【分析】(1)(2)(3)根据线段的定义和几何语言画出对应的几何图形;(4)根据线段的中点的定义可判断点A是线段BD的中点;点B是线段AC的中点;然后利用CD=3AB求解.【详解】解:(1)如图,线段AB 为所作; (2)如图,点C 为所作; (3)如图,点D 为所作;(4)点A 是线段BD 的中点;点B 是线段AC 的中点; 所以339CD DA AB BC =++=⨯=(cm ).【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.14.(1)75;(2)45或55;(3)画图证明见解析【分析】(1)画出符合题意的图形先求解再求解可得再利用中点的含义可得答案;(2)分两种情况讨论:当在左边时当在右边时先求解再利用中点的含义可得答案;解析:(1)7.5;(2)4.5或5.5;(3)2PA MN =,画图证明见解析. 【分析】(1)画出符合题意的图形,先求解10AM =, 再求解5AP =, 可得15PB =, 再利用中点的含义可得答案;(2)分两种情况讨论:当P 在M 左边时,当P 在M 右边时,先求解,PB 再利用中点的含义可得答案;(3)当P 在线段BA 延长线上时,如图,设PA t =,求解1102NB t =+,再求解12MN NB MB t =-=,从而可得结论.【详解】解:(1)如图,∵M 是线段AB 的中点,20AB =∴1102MA AB == ∵P 是线段AM 的中点, ∴152AP AM == ∴20515PB AB AP =-=-= ∵N 是线段PB 的中点∴17.52NB PB == (2)∵1MP =,∴当P 在M 左边时,如图,11BP MB MP =+=, ∵N 是线段PB 的中点,∴15.52NB PB ==,如图,当P 在M 右边时,9BP MB MP =-=,∵N 是线段PB 的中点, ∴14.52NB PB ==. (3)线段PA 和线段MN 的数量关系是:2PA MN =,理由如下: 当P 在线段BA 延长线上时,如图,设PA t =,则20PB t =+ ∵N 是线段PB 的中点 ∴111022NB PB t ==+ ∵M 是线段AB 的中点,20AB = ∴1102MB AB == ∴12MN NB MB t =-= 又∵PA t = ∴2PA MN = 【点睛】本题考查的是线段的和差关系,线段的中点的含义,整式的加减运算,分类思想的运用,掌握以上知识是解题的关键.15.(1)50;(2);(3)当射线只有1条在外面时;当射线OEOF 都在∠AOB 外部时【分析】(1)先求解再利用角平分线的性质求解从而可得答案;(2)由射线平分射线平分可得可得从而可得答案;(3)分以下解析:(1)50;(2)12EOF α∠=;(3)当射线OE ,OF 只有1条在AOB ∠外面时,12EOF α∠=;当射线OE ,OF 都在∠AOB 外部时,11802EOF α∠=︒-.【分析】(1)先求解,BOC ∠ 再利用角平分线的性质求解,,EOC FOC ∠∠ 从而可得答案; (2)由射线OE 平分AOC ∠,射线OF 平分COB ∠,可得12EOC AOC ∠=∠,12COF COB ∠=∠,可得()11,22EOF AOC BOC AOB ∠=∠+∠∠=∠ 从而可得答案;(3)分以下两种情况:①当射线OE ,OF 只有1条在AOB ∠外部时,如图3①,②当射线OE ,OF 都在AOB ∠外部时,如图3②,再利用角平分线的性质可得:11,,22COE AOC COF BOC ∠=∠∠=∠ 结合角的和差可得答案.【详解】解:(1) 100AOB ∠=︒,30AOC ∠=︒, 1003070,BOC AOB AOC ∴∠=∠-∠=︒-︒=︒射线OE 平分AOC ∠,射线OF 平分COB ∠,1115,35,22EOC AOC FOC BOC ∴∠=∠=︒∠=∠=︒153550EOF EOC FOC ∴∠=∠+∠=︒+︒=︒, 故答案为:50.(2)∵射线OE 平分AOC ∠,射线OF 平分COB ∠ ∴12EOC AOC ∠=∠,12COF COB ∠=∠ ()12EOF EOC COF AOC BOC ∴∠=∠+∠=∠+∠∠ 1,2AOB =∠ ,AOB α∠= 1.2EOF α∴∠=(3)分以下两种情况:①当射线OE ,OF 只有1条在AOB ∠外部时,如图3①,同理可得:11,,22COE AOC COF BOC ∠=∠∠=∠ ()111,222EOF COF COE BOC AOC AOB α∴∠=∠-∠=∠-∠=∠= ②当射线OE ,OF 都在AOB ∠外部时,如图3②,同理可得:11,,22COE AOC COF BOC ∠=∠∠=∠ ()()111360180,222EOF EOC COF AOC BOC AOB α∴∠=∠+∠=∠+∠=︒-∠=︒- 综上所述:当射线OE ,OF 只有1条在AOB ∠外面时,12EOF α∠=;当射线,OE OF 都在AOB ∠的外部时,11802EOF α∠=︒-. 【点睛】本题考查的是角的和差运算,角平分线的定义,角的动态定义,分类思想的运用,掌握以上知识是解题的关键.16.5cm 【分析】根据线段中点的定义求出AE 的长进而求出AC 的长再根据中点的定义求出CD 的长然后利用线段的和差可得答案【详解】解:∵E 为线段AB 的中点AB =16cm ∴AE =AB =8(cm )∵EC =3cm解析:5cm 【分析】根据线段中点的定义求出AE 的长,进而求出AC 的长,再根据中点的定义求出CD 的长,然后利用线段的和差可得答案. 【详解】解:∵E 为线段AB 的中点,AB =16cm ,∴AE =12AB =8(cm ), ∵EC =3cm ,∴AC =AE+EC =11(cm ), ∵点D 为线段AC 的中点, ∴CD =12AC =5.5(cm ), ∴DE =CD ﹣EC =5.5﹣3=2.5(cm ). 【点睛】本题考查的是两点间的距离,掌握线段中点的定义、线段的有关计算是解题的关键.17.(1)见解析;(2)见解析;(3)【分析】(1)根据画出图形即可;(2)根据画出图形即可;(3)根据线段等分的性质可得AB 的长根据线段的和差可得BD 的长【详解】解:(1)点C 如图所示;(2)点D 如图解析:(1)见解析;(2)见解析;(3)4cm BD = 【分析】(1)根据3AC AB =,画出图形即可; (2)根据3AD AB =,画出图形即可;(3)根据线段等分的性质,可得AB 的长,根据线段的和差,可得BD 的长. 【详解】解:(1)点C 如图所示; (2)点D 如图所示;(3)由题意可得,3AC AB =,则4CB AB =. ∵8cm CB =, ∴2cm AB =. ∵3AD AB =, ∴24cm BD AB ==.【点睛】本题考查作图-复杂作图,线段和差定义等知识,解题的关键是理解题意,属于常考题型.18.(1)见解析;(2)7【分析】(1)根据线段定义即可利用尺规作图在直线上从左至右依次截取AB =aBC =b ;(2)根据AB =8BC =6求出MBBN 即可求MN 的长【详解】解:(1)如图线段AB =aBC =解析:(1)见解析;(2)7 【分析】(1)根据线段定义即可利用尺规作图在直线上从左至右依次截取AB =a ,BC =b ; (2)根据AB =8,BC =6,求出MB 、BN ,即可求MN 的长. 【详解】解:(1)如图,线段AB =a ,BC =b 即为所求;(2)∵AB =8,BC =6,M 是线段AB 的中点,N 是线段BC 的中点, ∴BM =12AB =4,BN =12BC =3, ∴MN =MB +BN =4+3=7.答:MN 的长为7. 【点睛】本题考查了线段和差的画法和求线段长,解题关键是理解中点的意义,准确识图,利用线段的和差求值.19.(1)30;(2)1;(3)【分析】(1)根据可推出即可求出结果(2)根据OMON 分别是和角平分线可得出通过化简计算从而得到进而求出比值结果(3)根据OMON 分别是和角平分线可得到进而求出比值结果【解析:(1)30;(2)1;(3)12【分析】(1)根据AOD BOC ∠=∠,可推出AOC BOD ∠=∠,即可求出结果.(2)根据OM 、ON 分别是AOC ∠和BOC ∠角平分线,可得出2AOC MOC ∠=∠,2BOC NOC ∠=∠,通过化简计算从而得到AON BOM MOC NOC ∠-∠=∠-∠,进而求出比值结果.(3)根据OM 、ON 分别是AOD ∠和BOC ∠角平分线,可得到12MOD AOD ∠=∠,12NOC BOC ∠=∠,()12MOC NOD AOD BOC ∠-∠=∠-∠,进而求出比值结果.【详解】(1)∵120AOD BOC ∠=∠=︒ ∴AOD COD BOC COD ∠∠=∠-∠-, ∴AOC BOD ∠=∠∵30AOC ∠=︒ ∴30BOD ∠=︒(2)∵OM 、ON 分别平分AOC ∠,BOC ∠,2AOC MOC ∴∠=∠,2BOC NOC ∠=∠, AON AOC NOC ∠=∠+∠ BOM BOC MOC ∠=∠+∠()()AON BOM AOC BOC NOC MOC ∴∠-∠=∠-∠+∠-∠ 22MOC NOC NOC MOC =∠-∠+∠-∠ MOC NOC =∠-∠, AON BOM ∠≠∠, 1MOC NOC AON BOM∠-∠∴=∠-∠ (3)∵OM 、ON 分别平分AOD ∠和BOC ∠,12MOD AOD ∴∠=∠,12NOC BOC ∠=∠,又MOC MOD COD ∠=∠-∠, NOD NOC COD ∠=∠-∠,()()MOC NOD MOD COD NOC COD ∴∠-∠=∠-∠-∠-∠,MOD NOC =∠-∠1122AOD BOC =∠-∠ ()12AOD BOC =∠-∠ 12MOC NOD AOD BOC ∠-∠∴=∠-∠;【点睛】本题主要考察角平分线的性质,角的计算,准确找出题目中的等角,利用等角找出它们之间的联系是解题关键.20.(1)8;(2)8;(3)【分析】(1)根据中点的性质求出ACBC 的长根据线段中点的定义计算即可;(2)根据线段的和差求出ACBC 的长根据线段中点的定义计算即可;(3)根据中点的性质求出ACBC 的长解析:(1)8;(2)8;(3)8cm 【分析】(1)根据中点的性质求出AC 、BC 的长,根据线段中点的定义计算即可; (2)根据线段的和差求出AC 、BC 的长,根据线段中点的定义计算即可; (3)根据中点的性质求出AC 、BC 的长,根据线段中点的定义计算即可说明结论. 【详解】解:(1)∵点C 恰为AB 的中点,16cm AB =, ∴18cm 2AC BC AB ===, ∴点M ,N 分别是AC 和BC 的中点, ∴114cm,4cm 22CM AC CN BC ====, ∴8cm MN MC CN =+=; (2)∵16cm AB =,6cm AC =, ∴10cm BC =,∵点M ,N 分别是AC 和BC 的中点 ∴113cm,5cm 22MC AC CN CB ====, ∴8cm MN MC CN =+=;(3)猜想:不论AC 取何值(不超过16cm ),MN 的长总等于8cm . ∵点M 、N 分别是AC 和BC 的中点, ∴MC=12AC ,CN=12BC , ∴MN=12(AC+BC )=12AB=12×16=8cm , ∴不论AC 取何值(不超过16cm ),MN 的长不变 【点睛】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.三、解答题21.AD 的长为4.5cm . 【分析】由已知条件可知,MN =MB+CN+BC ,又因为M 是AB 的中点,N 是CD 中点,则AB+CD =2(MB+CN ),故AD =AB+CD+BC 可求. 【详解】解:∵MN =MB+BC+CN , ∵MN =3cm ,BC =1.5cm , ∴MB+CN =3﹣1.5=1.5cm , ∴AD =AB+BC+CD =2(MB+CN )+BC =2×1.5+1.5 =4.5cm .答:AD 的长为4.5cm .【点睛】本题考查了线段的计算,线段中点的意义,线段和的意义,线段差的意义,熟练掌握线段的中点的意义,灵活运用线段和与线段差表示线段是解题的关键.22.见解析【分析】(1)画直线AB、AC注意两端延伸;(2)以B点为端点,向点C方向延伸;(3)根据几何语言画出对应的几何图形即可.【详解】解:(1)直线AB、AC为所作;(2)射线BC为所作;(3)EF为所作.【点睛】本题考查了直线、线段、射线的画法,解决此类题目的关键是熟悉基本几何图形的性质,能区别直线、线段、射线.23.(1)∠BOC=50°;(2)∠DOE=45°【分析】(1)由角平分线的定义得∠DOB=12∠AOB=70°,再由∠BOC=∠BOD﹣∠COD,即可得出结果;(2)由角平分线的定义得∠COE=12∠BOC=25°,再由∠DOE=∠COE+∠COD,即可得出结果.【详解】解:(1)∵OD平分∠AOB,∴∠DOB=12∠AOB=12×140°=70°,∴∠BOC=∠BOD﹣∠COD=70°﹣20°=50°;(2)∵OE平分∠BOC,∴∠COE=12∠BOC=12×50°=25°,∴∠DOE=∠COE+∠COD=25°+20°=45°.【点睛】本题考查了角平分线的定义、角的计算等知识;熟练掌握角平分线的定义是解题的关键. 24.10cm 或2cm【分析】分两种情况解答:当点B 位于AC 的延长线上,当点B 位于AC 之间,根据线段中点把线段分成相等的两部分,以及线段的和差关系即可解答【详解】解:∵点M 是线段AC 的中点,∴12MC AC =,同理12NC BC =. (1)当点B 位于AC 外,如图1所示,1122MN MC NC AC BC =+=+ ()()()1112810cm 22AC BC =+=+=.(2)当点B 位于AC 之间,如图2所示,1122MN MC NC AC BC =-=- ()()()111282cm 22AC BC =-=⨯-=. 综上,M 、N 两点间的距离为10cm 或2cm .【点睛】本题考查了线段中点的定义,解题关键是分情况确定点B 的位置,进行解答. 25.75°【分析】根据角的和差性质计算,得∠AOC ;根据角平分线的性质计算,得COD ∠;再根据角的和差性质计算,即可得到答案.【详解】∵∠AOB =120°,∠BOC =30°∴∠AOC =∠AOB -∠BOC =90°又∵OD 是∠AOC 的角平分线,∴1452COD AOC ∠=∠=︒ ∴∠BOD =∠COD+∠BOC =45°+30°=75°.【点睛】本题考查了角的和差和角平分线的知识;解题的关键是熟练掌握角的和差和角平分线的性质,从而完成求解.26.(1)-6,84t -;(2)点 P 运动7秒时追上点Q ;(3)线段MN 的长度不发生变化,其值为7【分析】(1)根据点A 表示的数和AB 的长度即可求解;(2)根据题意列出方程4214t t =+,求解即可;(3)分类讨论即可:①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,根据中点的定义即可求解.【详解】(1)解:∵数轴上点A 表示的数为8,且14AB =,∴点B 表示的数为6-,点P 表示的数为84t -,故答案为:-6,84t -;(2)设点P 、Q 同时出发,点P 运动时间t 秒追上Q ,依题意得, 4214t t =+,解得7t =,∴点P 运动7秒时追上点Q ;(3)线段MN 的长度没有发生变化都等于7;理由如下: ①当点P 在点A 、B 两点之间运动时:MN MP NP =+1122AP BP =+1()2AP BP =+12AB =1142=⨯7=, ②当点P 运动到点B 的左侧时:MN MP NP =-1122AP BP =-1()2AP BP =-12AB =7=, ∴线段MN 的长度不发生变化,其值为7.【点睛】本题考查数轴上的动点问题,掌握中点的定义、一元一次方程的应用是解题的关键.。
七年级上角平分线练习题及答案
角平分线相关练习题如图,^AOB=6Q°, CD 丄04 于 D , CE1.OB 于 E,且 CD=CE> 则 ZDOC= ___________A3、如图,已知OE. OD 分别平分厶商 和ZBOC,若 厶OEW ,Z^OZ>=70% 求ZBOC 的度数.3. 如图9F 平分ZAOB,PC 丄O £PD 丄O 乩垂足分别是6D.下列结论中错误的是(4、如图 4,在△ABE 中 ZA=90° , 若AD=m, BCn,求△BDC 的面积.5、(2007浙江义乌课改)如图,点F 是£BAC 的平分线上一点,FE 丄理C 于点E.已知FE3 则点戸到川办的距离是(A. 3B. 4C. 5D. 6A. PC=PDC. ZCPO= ZDPO B. OC = OD D ・ OC=PC区(7 分)如图,ZAOB=ZCOD=903J OC平分ZAOB, ZB0D = 3ZD0E 试求ZCOE的度数.B了如图,已知ZAOB = 90% ZBOC=60°, OD是ZAOC的平分线,求ZBOD的度数•鼠如图,已知/DOE=70°, ZDOB=40\OD平分ZA OB 9OE 平分Z" OG 求Z4 OCA答案:1、/DOC=30 °解析:由角平分线定义:到角两边距离相等的点在角平分线上,得知,点C在角平分线上,即OC为/AOB 的角平分线,因为/ AOB=60 °,所以zDOC= ZEOC=30 °2、/BOC=5O °解析:由题知,/ AOE= ZBOE=? Z AOB=45。
,启OD= ZEOD-Z BOE=70。
-45 °25。
,启OC=2 ZBOD=50 °3、D解析:由角平分线定义和性质得知,角平分线上的点到角两边的距离相等,故A、B、C均正确。
4、S^BDC=? mn解析:通过D点向BC边作垂线段,交BC于点E,贝V DE为ABDC的高线,由于DA丄AB且DE丄BC, BD是角平分线,故得知线段AD=DE=m , S4BDC=? BCXDE=? mn5、A解析:由角平分线性质得知,角平分线上的点到角两边的距离相等,故P到AB的距离=PE=36、"OE=75 °解析:Z AOC= ZBOC= ZBOD=? X 90 ° =45 °,因为Z BOD=3 ZDOE,所以Z BOE=? ZBOD= ? X45 °=30 ° , ZCOE= ZBOC+ ZBOE=45 °+30 °757、/BOD=75 °解析:Z COD=Z AOD=?Z AOC=?(Z AOB-Z BOC)=?(90°-60°)=15°,ZBOD= ZBOC+ ZCOD=60 °+15 °758、/AOC=14O °解析:Z AOC= Z AOB+ Z BOC=2 Z BOD+2 Z BOE=2 Z BOD+2 (Z DOE-Z BOD)=2 Z DOE=2 X70 °=140 °。
七年级7.1.2 三角形的高、中线与角平分线(专题课时练含答案)-
7.1.2 三角形的高、中线与角平分线◆知能点分类训练知能点1 三角形的高、中线与角平分线1.下列说法正确的是().A.直角三角形只有一条高B.如果一个三角形有两条高与这个三角形的两边重合,•那么这个三角形是直角三角形 C.三角形的三条高,可能都在三角形内部,也可能都在三角形外部D.三角形三条高中,在三角形外部的最多只有1条2.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是().A.锐角三角形 B.钝角三角形 C.直角三角形 D.等边三角形3.如图所示,画△ABC的一边上的高,下列画法正确的是().4.三角形的角平分线是().A.直线 B.射线 C.线段 D.以上都不对5.如图所示,AM是△ABC的中线,那么若用S1表示△ABM的面积,用S1表示△ACM的面积,则S1与S2的大小关系是().A.S1>S2B.S1<S2C.S1=S2D.以上三种情况都可能6.下列说法:①三角形的角平分线、中线、高线都是线段;•②直角三角形只有一条高线;③三角形的中线可能在三角形的外部;④三角形的高线都在三角形的内部,并且相交于一点,其中说法正确的有().A.1个 B.2个 C.3个 D.4个7.如图所示,已知△ABC:(1)过A画出中线AD;(2)画出角平分线CE;(3)作AC边上的高.知能点2 三角形的稳定性8.下列四个图形中,具有不稳定性的图形是().9.照相机的支架是三条腿,这是利用了三角形的_________.•现实生活中还有利用三角形的这个特性的例子吗?如果知道,请写出来:________.10.如图所示,建筑工人在安装门窗时,先要把木头门窗固定好,这样搬运和安装起来才不会变形,请你设计一种方法固定木头门窗,这样做依据的数学道理是什么?◆规律方法应用11.如图所示,在△ABC中,AD⊥BC,BE⊥AC,BC=12,AC=8,AD=6,求BE的长.12.在△ABC中,AB=AC,AC边上的中线BD把三角形的周长分为12cm和15cm两部分,求三角形各边的长.◆开放探索创新13.将一个三角形的三边中点顺次连结可得到一个新的三角形,通常称为“中点三角形”,如图①所示,△DEF是△ABC的中点三角形.(1)画出图中另外两个三角形的中点三角形.(2)用量角器和刻度尺量△DEF和△ABC的三个内角和三条边,看看你有什么发现?并通过三个图的重复度量实验,验证你的发现.(3)你知道S△ABC和S△EDF的关系吗?怎样得出来的?(4)根据(2)中的结论,解答下列问题,如图所示,CD是△ABC的中线,DE是△ACD的中线,EF为△ADE的中线,若△AEF的面积为1cm2,求△ABC的面积.①②③④答案:1.B 2.C 3.C 4.C5.C (点拨:等底等高)6.A 7.略 8.D9.稳定性三条腿的凳子等10.可在门(窗)角上钉一根木条,或用木杆顶在门(窗)角上,•这样做根据的数学道理是三角形的稳定性.11.解:∵S△ABC =12BC·AD=12AC·BE,∴BC·AD=AC·BE,∴BE=1268BC ADAC⨯==9.12.解:设AB=x(cm),则AD=DC=12x(cm).(1)若AB+AD=12,即x+12x=12.所以x=8.即AB=AC=8cm,则DC=4cm,故BC=15-4=11cm,此时AB+AC>BC,所以三边长分别为8cm,8cm,11cm.(2)若AB+AD=15,即x+12x=15,所以x=10,则DC=5cm,故BC=12-5=7cm,显然此时三角形存在,所以三边长分别为10cm,10cm,7cm.综上所述,此三角形的三边长分别为:8cm,8cm,11cm或10cm,10cm,7cm.13.(1)略(2)角度相同,中点三角形各边是原三角形各边长度的一半.(3)经度量知中点三角形与原三角形相比,底和高的长度分别是原三角形的底与高的12,所以面积是原三角形面积的14.(4)△ABC面积为8cm2,解略.。
七年级数学三角形的三线(中线、角平分线、高线)(北师版)(基础)(含答案)
三角形的三线(中线、角平分线、高线)(北师版)(基础)一、单选题(共10道,每道10分)1.如图所示,D,E分别是△ABC的边AC,BC的中点,则下列说法不正确的是( )A.DE是△BCD的中线B.BD是△ABC的中线C.AD=DC,BE=ECD.DE是△ABC的中线答案:D解题思路:在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线.D选项中,DE不是连接△ABC的顶点与它对边中点的线段,因此D选项错误.故选D.试题难度:三颗星知识点:三角形的中线2.如图,△ABC的两条中线AM,BN相交于点O,已知△ABO的面积为4,△BOM的面积为2,则四边形MCNO的面积为( )A.4B.3C.4.5D.3.5答案:A解题思路:如图,∵△ABO和△BOM的面积分别为4和2∴S△ABM =6∵AM,BN是△ABC的两条中线∴S△ABM=S△BCN=S△ABC∴S△BCN=6∴S四边形MCNO=S△BCN-S△BOM =4故选A.试题难度:三颗星知识点:等分点转移面积3.已知:如图,△ABC中,AB=AC,BD平分∠ABC,∠BDC=75°,则∠A的度数为( )A.25°B.30°C.40°D.20°答案:C解题思路:如图,题中有角平分线,因此可以考虑设元,设∠ABD=α,则∠C=∠ABC=2α.在△BCD中,由三角形内角和定理可知α+2α+75°=180°,解得α=35°,因此∠C=∠ABC=70°,所以∠A=180°-70°-70°=40°.故选C.试题难度:三颗星知识点:三角形内角和定理4.如图,在△ABC中,BD平分∠ABC,CD平分∠ACB,设∠DCB=α,∠DBC=β,若∠A=40°,则下列说法错误的是( )A. B.C. D.答案:D解题思路:如图,在△BCD中,∠DCB=α,∠DBC=β,则∠D=180°-α-β,因此A选项正确;因为BD平分∠ABC,CD平分∠ACB,则∠ABC=2β,∠ACB=2α,则∠A=180°-2α-2β,因此B选项正确;由∠D=180°-α-β可得α+β=180°-∠D,由∠A=180°-2α-2β,可得α+β=90°-∠A,因此180°-∠D=90°-∠A,整理得∠D=90°+∠A,因此C选项正确;把∠A=40°代入∠D=90°+∠A,得∠D=110°,因此D选项错误.故选D.试题难度:三颗星知识点:三角形内角和定理5.如图,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=40°,∠AEC=35°,则∠ABC 的度数为( )A.30°B.35°C.37.5°D.40°答案:A解题思路:如图,由AD与CE交于点M,得∠ADC+α=∠AEC+β,变形得2∠ADC+2α=2∠AEC+2β,由AD与BC交于点G,得∠ADC+2α=∠ABC+2β,将上述两式消去α和β,可得∠ABC=2∠AEC-∠ADC因为∠ADC=40°,∠AEC=35°,则∠ABC=30°.故选A.试题难度:三颗星知识点:三角形内角和定理6.下列说法正确的是( )A.三角形的三条角平分线有可能在三角形内,也可能在三角形外B.三角形三条高都在三角形内C.三角形的三条高交于一点D.三角形三条中线相交于一点答案:D解题思路:三角形的三条角平分线都在三角形的内部,A选项错误;锐角三角形的三条高都在三角形的内部,直角三角形两条高在直角边上,钝角三角形有两条高在三角形的外部,B选项错误;三角形的三条高所在的直线交于一点,C选项错误;D选项正确,故选D.试题难度:三颗星知识点:三角形的中线7.如图,在△ABC中,AD⊥BC交BC的延长线于D,BE⊥AC交AC的延长线于E,过点C作CF⊥BC交AB于F,下列说法错误的是( )A.FC是△ABC中BC边上的高B.FC是△BCF中BC边上的高C.BE是△ABC中AC边上的高D.BE是△ABE中AE边上的高答案:A解题思路:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线.在△ABC中,过点A向它的对边BC所在直线作垂线,得到高为AD,A选项错误;在△BCF中,过点F向它的对边BC所在直线作垂线,得到高为CF,B选项正确;在△ABC中,过点B向它的对边AC所在直线作垂线,得到高为BE,C选项正确;在△ABE中,过点B向它的对边AE所在直线作垂线,得到高为BE,D选项正确.故选A.试题难度:三颗星知识点:三角形的高8.如图,AB⊥BD于B,AC⊥CD于C,AC与BD交于点E,若AE=5,DE=3,CD=,则AB=( )A.6B.C.3D.答案:C解题思路:如图,因为AB⊥BD,AC⊥CD,所以AB是△ADE的边DE上的高,CD是△ADE的边AE上的高,,把AE=5,DE=3,CD=代入,得到AB=3.故选C.试题难度:三颗星知识点:等积公式9.如图,在△ABC中,AB=20cm,AC=12cm,点D在BC边上,过点D作DE⊥AB于E,DF⊥AC 于F,若DE=5cm,△ABC的面积为122cm2,则DF的长为( )A.9cmB.10cmC.11cmD.12cm答案:D解题思路:如图,连接AD,则△ABC被分成△ABD和△ACD两部分,cm故选D.试题难度:三颗星知识点:等积公式10.如图,∠BAC=90°,AD⊥BC于D,若AB=6,BC=10,则AC:AD=( )A.5:4B.4:5C.5:3D.3:5答案:C解题思路:如图,在△ABC中,∠BAC=90°,所以AB可以看作是AC边上的高,因为AD⊥BC,所以AD可以看作是BC边上的高,所以,把AB=6,BC=10代入,得到AC:AD=5:3.故选C.试题难度:三颗星知识点:等积公式。
2024年七年级数学上册第二章几何图形的初步认识复习题及答案解析微探究小专题4与角平分线有关的计算
°−°
所以∠ BMA1+∠ CMD1=
=75°.
所以∠ BMC =∠ BMA1+∠1+∠ CMD1=30°+75°=105°.
思路点拨
此题主要考查折叠的性质,角平分线的性质,将∠ BMA1+∠ CMD1
看成一个整体求解,运用了整体思想.
(2)受兴趣小组的启发,智慧小组将一个直角三角尺中60°角的顶点放
在点 O 处(如图3),即当∠ COD =60°时,请你求出∠ MOC +∠ DON
的度数;
数学思考:(3)请你在图1中,求∠ MOC +∠ DON 的度数(用含有α的式
第二章
几何图形的初步认识
微探究小专题4
与角平分线有关的计算
微探究小专题4
类型1
与角平分线有关的计算
与角的和差倍分有关的计算
1. 如图,直线 AB , CD 相交于点 O ,∠ DOE =90°, OF 平分
∠ BOD ,∠ AOE =24°,则∠ DOF 的度数是(
A. 24°
B. 33°
1
2
B
)
所以∠ BOD = ∠ AOB =15°.
因为∠ BOC =50°,
所以∠ DOC =∠ BOC -∠ BOD =35°.
综上所述,∠ DOC 的度数为35°或65°.
1
2
3
4
5
6
7
8
9
微探究小专题4
与角平分线有关的计算
4. 在同一平面内,若∠ BOA =50°,∠ BOC =30°, OM 平分
1
2
3
4
5
6
7
8
2022-2023学年人教版七年级数学上册《4-3-2角的比较与运算》知识点分类练习题(附答案)
2022-2023学年人教版七年级数学上册《4.3.2角的比较与运算》知识点分类练习题(附答案)一.角平分线1.如图,下列结论中,不能说明射线OC平分∠AOB的是()A.∠AOC=∠BOC B.∠AOB=2∠BOCC.∠AOB=2∠AOC D.∠AOC+∠BOC=∠BOA2.如图所示,∠AOB=156°,OD是∠AOC的平分线,OE是∠BOC的平分线,那么∠DOE 等于()A.78°B.80°C.88°D.90°3.一个钝角的平分线和这个角的一边形成的角一定是()A.锐角B.钝角C.直角D.平角4.如图,∠AOB是直角,OE平分∠AOC,OD平分∠BOC.求∠EOD的度数.5.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB 和∠AOC的度数.6.如图,点O为直线AB上的一点,∠BOC=42°,∠COE=90°,且OD平分∠AOC,求∠AOE和∠DOE的度数.7.如图,OC是∠AOB的平分线,∠BOD=∠COD,∠BOD=15°,则∠AOD=()A.45°B.55°C.65°D.75°8.如图,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD 的平分线,∠MON等于度.9.如图,OC平分∠AOB,若∠BOC=23°,则∠AOB=度.10.点M,O,N顺次在同一直线上,射线OC,OD在直线MN同侧,且∠MOC=64°,∠DON=46°,则∠MOC的平分线与∠DON的平分线夹角的度数是()A.85°B.105°C.125°D.145°11.如图,∠AOC与∠BOC的度数比为5:2,OD平分∠AOB,若∠COD=15°,求∠AOB 的度数.12.已知在平面内,∠AOB=60°,OD是∠AOB的角平分线,∠BOC=20°,则∠COD 的度数是.二.角的计算13.不能用一副三角板拼出的角是()A.150°B.105°C.15°D.110°14.如图,是一副三角板重叠而成的图形,则∠AOD+∠BOC=°.15.如图,已知∠AOB=90°,OD平分∠AOC,OE平分∠BOC.(1)若∠DOB=15°,求∠DOE的度数;(2)若∠DOB=x,此时∠DOE=.(1)解:∵∠AOB=90°,∠DOB=15°,∴∠1=.又∵OD平分∠AOC,∴.请继续完成求∠DOE度数的推理过程:16.如图,∠DOC=∠BOD,OB平分∠AOC.(1)若∠DOC=20°,求∠BOD和∠AOC的度数;(2)若∠DOC=α,则∠AOD=°.17.如图,已知O是直线AB上的一点,∠COD是直角,OE平分∠AOD.(1)如图1,若∠COE=35°,求∠DOB的度数;(2)若将图1中的∠COD放置到图2所示的位置,其他条件不变,若∠COE=β,求∠DOB的度数.(根据图形中角的关系进行推理和计算,并用含β的代数式表示出∠DOB)18.如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A.36°B.45°C.60°D.72°19.平面内有公共端点的三条射线OA,OB,OC,构成的角∠AOB=30°,∠BOC=70°,OM和ON分别是∠AOB和∠BOC的角平分线,则∠MON的度数是.20.已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为.21.如图:已知直线AB、CD相交于点O,∠COE=90°.(1)若∠AOC=32°,求∠BOE的度数;(2)若∠BOD:∠BOC=2:7,求∠BOD的度数.22.如图,点O为直线AC上任意一点,∠AOB=78°,OD平分∠AOB,OE在∠BOC内,∠BOE=∠EOC.求∠EOC及∠DOC的度数.23.已知:如图,∠AOB=∠AOC,∠COD=∠AOD=120°,求:∠COB的度数.24.如图,OE为∠AOD的平分线,∠EOC,∠COD=18°,求:∠AOD的大小.三.比较角的大小25.将钝角,直角,平角,锐角由小到大依次排列,顺序是.26.比较大小:52°52′52.52°.(填“>”、“<”或“=”)27.如图,正方形网格中每个小正方形的边长都为1,则∠α与∠β的大小关系为()A.∠α<∠βB.∠α=∠βC.∠α>∠βD.无法估测28.把一副三角尺如图所示拼在一起.(1)写出图中∠A、∠B、∠BCD、∠D、∠AED的度数;(2)用小于号“<”将上述各角连接起来.29.如图,数一数以O为顶点且小于180°的角一共有多少个?你能得到解这类问题的一般方法吗?参考答案一.角平分线1.解:A、∵∠AOC=∠BOC,∴OC平分∠AOB,故A正确;B、∵∠AOB=2∠BOC,∠AOB=∠AOC+∠BO,C∴∠AOC=∠BOC,故B正确;C、∵∠AOB=2∠BOC,∠AOB=∠AOC+∠BOC,∴∠AOC=∠BOC,故C正确;D、∵∠AOC+∠BOC=∠AOB,∠AOC不一定等于∠BOC,故D错误;故选:D.2.解:∵OD是∠AOC的平分线,∴∠COD=∠AOC,同理,∠COE=∠BOC,又∵∠AOB=∠AOC+∠BOC,∴∠DOE=∠COD+∠COE=∠AOB=×156°=78°.故选:A.3.解:设这个角的度数是α°,则90<α<180,两边都除以2得:45<α<90,即是锐角.故选:A.4.解:∵OD平分∠BOC,∴∠DOC=∠BOC,∵OE平分∠AOC,∴∠COE=∠COA,∴∠EOD=∠DOC+∠COE=(∠BOC+∠COA)=∠AOB,∵∠AOB是直角,∴∠EOD=45°.5.解:∵∠AOB=90°,OE平分∠AOB∴∠BOE=45°又∵∠EOF=60°∴∠FOB=60°﹣45°=15°∵OF平分∠BOC∴∠COB=2×15°=30°∴∠AOC=∠BOC+∠AOB=30°+90°=120°6.解:∵点O为直线AB上的一点,∠BOC=42°,∴∠AOC=180°﹣42°=138°,∵OD平分∠AOC,∴∠COD=∠AOD=∠AOC=69°,∵∠COE=90°,∴∠DOE=90°﹣69°=21°,∴∠AOE=∠AOD﹣∠DOE=48°.7.解:∵∠BOD=∠COD,∠BOD=15°,∴∠COD=3∠BOD=45°,∴∠BOC=45°﹣15°=30°,∵OC是∠AOB的角平分线,∴∠BOC=∠AOC=30°,∴∠AOD=75°.故选:D.8.解:∵∠AOB是平角,∠AOC=30°,∠BOD=60°,∴∠COD=90°(互为补角)∵OM,ON分别是∠AOC,∠BOD的平分线,∴∠MOC+∠NOD=(30°+60°)=45°(角平分线定义)∴∠MON=90°+45°=135°.故答案为135.9.解:∵OC平分∠AOB,且∠BOC=23°,∴∠AOB=2∠BOC=46°.∴∠AOB=46°.故答案为46.10.解:如图,设∠MOC的平分线为OE,∠DON的平分线为OF,∵∠MOC=64°,∠DON=46°,∴∠MOE=∠MOC=×64°=32°,∠NOF=∠DON=×46°=23°,∴∠EOF=180°﹣∠MOE﹣∠NOF=180°﹣32°﹣23°=125°.故选:C.11.解:设∠AOC=5x,则∠BOC=2x,∠AOB=7x,∵OD平分∠AOB,∴∠BOD=∠AOB=x,∵∠COD=∠BOD﹣∠BOC∴15°=x﹣2x,解得x=10°,∴∠AOB=7×10°=70°.12.解:①OC在∠AOB外,如图1,OD是∠AOB的平分线,∠AOB=60°,∠B0D=∠AOB=30°,∠COD=∠B0D+∠BOC=30°+20°=50°;②OC在∠AOB内,如图2,OD是∠AOB的平分线,∠AOB=60°,∠B0D=∠AOB=30°,∠COD=∠B0D﹣∠BOC=30°﹣20°=10°.故答案为:50°或10°.二.角的计算13.解:A、150°可以用90°与60°角拼出;B、105°可以用60°与45°角拼出;C、15°可以用30°与45°角拼出;D、110°不能拼出.故选:D.14.解:∵∠AOD+∠BOC=∠AOB+∠COB+∠DOC+∠COB+∠COD,∵∠AOC=∠BOD=90°,∴∠AOD+∠BOC=180°.故答案为180.15.解:(1)∵∠AOB=90°,∠DOB=15°,∴∠1=90°﹣∠DOB=90°﹣15°=75°.又∵OD平分∠AOC,∴∠1=∠COD=∠AOC,∴∠AOC=2∠1=150°,∵∠AOB=90°,∴∠BOC=∠AOC﹣∠AOB=150°﹣90°=60°,∵OE平分∠BOC,∴∠3=∠BOC=30°,∴∠DOE=∠DOB+∠3=15°+30°=45°;故答案为:90°﹣∠DOB=90°﹣15°=75°;∠1=∠COD=∠AOC,(2)∵∠AOB=90°,∠DOB=x,∴∠1=90°﹣∠DOB=90°﹣x.又∵OD平分∠AOC,∴∠1=∠COD=∠AOC,∴∠AOC=2∠1=180°﹣2x,∵∠AOB=90°,∴∠BOC=∠AOC﹣∠AOB=180°﹣2x﹣90°=90°﹣2x,∵OE平分∠BOC,∴∠3=∠BOC=45°﹣x,∴∠DOE=∠DOB+∠3=x+45°﹣x=45°.故答案为:45°.16.解:(1)∵∠DOC=∠BOD,∠DOC=20°,∴∠BOD=3∠DOC=60°,∴∠BOC=∠BOD﹣∠DOC=60°﹣20°=40°,∵OB平分∠AOC,∴∠AOC=2∠BOC=80°,答:∠BOD和∠AOC的度数分别为60°,80°;(2)∵∠DOC=∠BOD,∴∠BOD=3∠DOC=3α°,∴∠BOC=∠BOD﹣∠DOC=3α°﹣α°=2α°,∵OB平分∠AOC,∴∠AOC=2∠BOC=4α°,∴∠AOD=∠DOC+∠AOC=5α°,故答案为:5α.17.解:(1)∵∠COE=35°,∠COD是直角,∴∠DOE=∠COD﹣∠COE=55°,∵OE平分∠AOD,∴∠AOD=2∠DOE=110°,∴∠DOB=180°﹣∠AOD=70°;(2)∵∠COD是直角,∠COE=β,∴∠DOE=∠COE﹣∠COD=β﹣90°,∵OE平分∠AOD,∴∠AOD=2∠DOE=2β﹣180°,∴∠DOB=180°﹣∠AOD=360°﹣2β.18.解:∵∠AOB=90°,∠COD=90°,∴∠AOB+∠COD=180°,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD,∴∠AOC+∠BOC+∠BOC+∠BOD=180°,∴∠AOD+∠BOC=180°,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180°,∴∠BOC=36°,∵OE为∠BOC的平分线,∴∠COE=∠BOC=18°,∴∠DOE=∠COD﹣∠COE=90°﹣18°=72°,故选:D.19.解:有两种情况,(1)射线OA在∠BOC的内部,∵∠AOB=30°,∠BOC=70°,OM、ON分别是∠AOB和∠BOC的平分线,∴∠BON=∠BOC=×70°=35°,∠BOM=∠AOB=×30°=15°,∴∠MON=∠BON﹣∠BOM=35°﹣15°=20°.(2)射线OA在∠BOC的外部.∵∠AOB=30°,∠BOC=70°,OM、ON分别是∠AOB和∠BOC的平分线,∴∠BON=∠BOC=×70°=35°,∠BOM=∠AOB=×30°=15°,∴∠MON=∠BON+∠BOM=35°+15°=50°.故答案为:20°或50°.20.解:如图,当点C与点C1重合时,∠BOC=∠AOB﹣∠AOC=70°﹣42°=28°;当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+42°=112°.故答案为:28°或112°.21.解:(1)∵∠COE=90°,∠AOC=32°,∴∠BOE=180°﹣∠AOC﹣∠COE=180°﹣32°﹣90°=58°;(2)∵∠BOD:∠BOC=2:7,∠BOD+∠BOC=180°,∴∠BOD=40°.22.解:∵∠AOB=78°,OD平分∠AOB∴,∴∠DOC=180°﹣∠AOD=180°﹣39°=141°;∵,∴∠EOC====68°.23.解:∵∠COD=∠AOD=120°,∴∠AOC=120°,∵∠AOB=∠AOC,∴∠AOB=40°,∴∠COB=80°.24.解:∵∠COD=∠EOC,∠COD=18°,∴∠EOC=72°;∵OE平分∠AOD,∴∠DOE=∠AOE,∵∠EOC=72°,∠COD=18°,∴∠DOE=54°,则∠AOD=2∠DOE=108°.三.比较角的大小25.解:将钝角,直角,平角,锐角由小到大依次排列,顺序是锐角<直角<钝角<平角,故答案为:锐角<直角<钝角<平角.26.解:∵0.52×60=31.2,0.2×60=12,∴52.52°=52°31′12″,52°52′>52°31′12″,故答案为:>.27.解:将∠α平移,使∠α与∠β两个角的顶点重合,∠α下边的一条边与∠β下边的一条边重合,可得:∠α上面的一条边在∠β的内部,所以∠α<∠β,故选:A.28.解:(1)∠A=30°,∠B=90°,∠BCD=150°,∠D=45°,∠AED=135°;(2)∠A<∠D<∠B<∠AED<∠BCD.29.解:7+6+5+4+3+2+1==28,一般地如果MOG小于180,且图中一共有几条射线,则一共有:(n﹣1)+(n﹣2)+…+2+1=.。
北师大版(2024)七年级上册《4.2_角2》2024年同步练习卷+答案解析
北师大版(2024)七年级上册《4.2角2》2024年同步练习卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若,,,则有()A. B. C. D.2.已知,,则与的大小关系是()A. B. C. D.无法确定3.如图,点C在的OB边上,用尺规作出了,作图痕迹中,是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧4.如图,小明将自己用的一副三角板摆成如图形状,如果,那么等于()A. B. C. D.5.如图,用同样大小的三角板比较和的大小,下列判断正确的是()A.无法确定B.C.D.6.,的顶点和一边重合,另一边都在公共边的同侧,且,那么的另一边落在的()A.另一边上B.内部C.外部D.以上结论都不对7.,,关于两个角的大小,下列正确的是()A. B. C. D.无法确定8.点P在内部,现在有四个等式:①;②;③;④其中,能表示OP为的平分线的有()A.1个B.2个C.3个D.4个9.如图.已知O是直线AB上一点,,OD平分,则的度数是()A.B.C.D.10.如图,,以OA为边作,使,则下列结论成立的是()A.B.C.或D.或11.已知,,OD平分,OM平分,则的度数是()A.或B.或C.或D.或12.如图1,在长方形纸片ABCD中,E点在边AD上,F、G分别在边AB、CD上,分别以EF、EG为折痕进行折叠并压平,点A、D的对应点分别是点和点,如图2,设,则的度数为()A. B. C. D.二、填空题:本题共7小题,每小题3分,共21分。
13.如图,BD平分,BE把分成3:7的两部分,,则的度数为______.14.已知,求作:,使作法:以______为圆心,______为半径画弧.分别交OA,OB于点C,画一条射线,以______为圆心,______长为半径画弧,交于点,以点______为圆心______长为半径画弧,与第2步中所画的弧交于点过点______画射线,则15.如图所示的网格是正方形网格,则______填“>”“<”或“=”16.比较角的大小,另一种方法是使两个角的顶点及一条边重合,另一条边放在重合边的______就可以比较大小.17.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕.则______度.18.从一个角的顶点出发,把它分成两个角的直线叫做这个角的平分线.______填“正确”或“错误”19.已知,在其顶点O处引一条射线OC,且,则______.三、解答题:本题共3小题,共24分。
七年级角的平分线易错题总结(含答案)
七年级角的平分线易错题总结(含答案)一、选择题(本大题共1小题,共3.0分)1.如图,点O是直线AB上的一点,∠AOE=∠FOD=90°,OB平分∠DOC,图中互补的角有()A. 10对B. 11对C. 12对D. 13对【答案】D【解析】解:图中互补的角有:∠AOF与∠BOF,∠AOF与∠COE,∠DOE与∠BOF,∠DOE 与∠COE,∠AOE与∠EOB,∠AOE与∠DOF,∠DOF与∠EOB,∠BOD与∠AOD,∠EOF与∠AOD,∠BOC与∠AOD,∠BOD与∠AOC,∠EOF与∠AOC,∠BOC与∠AOC,有13对.故选:D.根据补角的定义和同角或等角的补角相等解答即可.本题考查了补角的定义,性质:同角或等角的补角相等.二、填空题(本大题共2小题,共6.0分)2.如图,点O在直线AB上,∠AOD=120°,CO⊥AB,OE平分∠BOD,则图中一共有______对互补的角.【答案】6【解析】解:∵∠AOD=120°,CO⊥AB于O,OE平分∠BOD,∴∠COD=∠DOE=∠EOB=30°,∴这三个角都与∠AOE互补.∵∠COE=∠DOB=60°,∴这两个角与∠AOD互补.另外,∠AOC和∠COB都是直角,二者互补.因此一共有6对互补的角.故答案为:6.根据互补的定义进行解答,找到两个角之和为180°角的对数.本题主要考查余角和补角、角平分线的知识点,两角之和为90,两角互余,两角之和为180,两角互补,解答此题的关键是找全互补的角.3.如图,点O在直线AB上,∠AOD=120°,CO⊥AB,OE平分∠BOD,则图中一共有_________对互补的角.【答案】6【解析】【分析】本题主要考查余角和补角、角平分线的知识点,两角之和为90°,两角互余,两角之和为180°,两角互补,解答此题的关键是找全互补的角.根据互补的定义进行解答,找到两个角之和为180°的角的对数.【解答】解:∵∠AOD=120°,CO⊥AB于O,OE平分∠BOD,∴∠COD=∠DOE=∠EOB=30°,∴这三个角都与∠AOE都互补.∵∠COE=∠DOB=60°,∴这两个角与∠AOD都互补.另外,∠AOC和∠COB都是直角,二者互补.因此一共有6对互补的角.故答案为:6.三、解答题(本大题共13小题,共104.0分)4.已知∠AOC和∠BOC是互为邻补角,∠BOC=50∘,将一个三角板的直角顶点放在点O处(注:∠DOE=90∘,∠DEO=30∘).(1)如图1,使三角板的短直角边OD与射线OB重合,则∠COE=______.(2)如图2,将三角板DOE绕点O逆时针方向旋转,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线.∠AOE时,求∠BOD的(3)如图3,将三角板DOE绕点O逆时针转动到使∠COD=14度数.(4)将图1中的三角板绕点O以每秒5∘的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,OE恰好与直线OC重合,求t的值.【答案】(1)40°,(2)∵OE平分∠AOC,∠COA,∴∠COE=∠AOE=12∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=4x°,∵∠DOE=90°,∠BOC=50°,∴5x=40,∴x=8,即∠COD=8°∴∠BOD=58°.(4)如图,分两种情况:在一周之内,当OE与射线OC的反向延长线重合时,三角板绕点O旋转了140°,5t=140,t=28;当OE与射线OC重合时,三角板绕点O旋转了320°,5t=320,t=64.所以当t=28秒或64秒时,OE与直线OC重合.综上所述,t的值为28或64.【解析】【解析】∵∠BOE=∠COE+∠COB=90°,又∵∠BOC=50°,∴∠COE=40°,故答案为:40°;(2)见答案;(3)见答案.(4)见答案.(1)代入∠BOE=∠COE+∠COB求出即可;(2)求出∠AOE=∠COE,根据∠DOE=90°求出∠AOE+∠DOB=90°,∠COE+∠COD= 90°,推出∠COD=∠DOB,即可得出答案;(3)根据平角等于180°求出即可;(4)分两种情况:在一周之内,当OE与射线OC的反向延长线重合时,三角板绕点O 旋转了140°;当OE与射线OC重合时,三角板绕点O旋转了320°;依此列出方程求解即可.本题考查了角平分线定义和角的计算,能根据图形和已知求出各个角的度数是解此题的关键.5.(1)已知∠AOB=25°42′,则∠AOB的余角为____,∠AOB的补角为____;(2)已知∠AOB=α,∠BOC=β,OM平分∠AOB,ON平分∠BOC,用含α,β的代数式表示∠MON的大小;(3)如图,若以OA、OB中的一条为钟表上的时针,另一条为分针,且∠AOB=65°,时针在3点到4点之间,求此刻的时间.【答案】解:(1)64°18′;154°18′;(2)①如图1:∵∠AOB=α,∠BOC=β,∵OM平分∠AOB,ON平分∠BOC,∴∠AOM=∠BOM=12∠AOB=12α,∠CON=∠BON=12∠COB=12β,∴∠MON=∠BOM+∠CON=α+β2;②如图2,∠MON=∠BOM−∠BON=α−β2;③如图3,∠MON =∠BON −∠BOM =β−α2. ∴∠MON 为α+β2或α−β2或β−α2.(3)设在下午3点至4点之间,从下午3点开始,经过x 分钟,时针与分针成65°角. ①当分针在时针上方时,由题意得:(3+x 60)×30−6x =65,解得:x =5011②当分针在时针下方时,由题意得:6x −(3+x 60)×30=65解得:x =31011.∴此刻的时间为3点5011分或3点31011分.【解析】【分析】此题考查了余角和补角,角的计算以及钟面角,解题时注意:分针60分钟转一圈,每分钟转动的角度为:360°÷60=6°;时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°.(1)根据余补角的定义解答;(2)分三种情况,分别画出图形,根据角平分线的定义解答即可;(3)分①当分针在时针上方时②当分针在时针下方时两种情况列出方程解答即可.【解答】解:(1)∵∠AOB =25°42′,∴∠AOB 的余角=90°−25°42′=64°18′,∠AOB 的补角=180°−25°42′=154°18′;故答案为:64°18′,154°18′;(2)见答案;(3)见答案.6.如图所示,射线ON,OE,OS,OW分别表示从点O出发向北、东、南、西四个方向,点A在点O的北偏东45°方向,点B在点O的北偏西30°方向.(1)画出射线OB,若∠BOC与∠AOB互余,请在图中画出∠BOC.(2)在(1)的条件下,若OP是∠AOC的平分线,直接写出∠AOP的度数(不需要计算过程).【答案】解:(1)如图所示,射线OB,∠BOC与∠BOC′即为所求;(2)∵∠AON=45°,∠BON=30°,∴∠AOB=75°,∵∠BOC与∠AOB互余,∴∠BOC=∠BOC′=15°,∴∠AOC=90°,∠AOC′=60°,∵OP是∠AOC的角平分线,∴∠AOP=45°或30°.【解析】此题主要考查了方向角的定义,余角的定义,作出图形,正确掌握方向角的定义是解题关键.(1)根据题意作出图形即可;(2)根据角平分线的定义即可得到结论.【解答】(1)∵∠AON=45°,∠BON=30°,∴∠AOB=75°,∵∠BOC与∠AOB互余,∴∠BOC=∠BOC′=15°,故射线OB,∠BOC与∠BOC′即为所求;(2)见答案.7.如图,OC,OB,OD是∠EOA内三条射线,OB平分∠DOA,OC平分∠EOA.(1)已知∠EOD=80°,∠AOB=20°,求∠BOC的度数.(2)设∠EOD=α,用含α的代数式表示∠BOC.(3)若∠EOD与∠BOC互余,求∠BOC的度数.【答案】解:(1)∵OB平分∠DOA,OC平分∠EOA.∴∠AOB=∠BOD=12∠AOD,∠EOC=∠AOC=12∠EOA,∵∠EOD=80°,∠AOB=20°,∴∠EOA=80°+20°×2=120°,∴∠EOC=∠AOC=12∠EOA=60°,∴∠BOC=∠AOC−∠AOB=60°−20°=40°.(2)∵∠BOC=∠AOC−∠AOB=∠DOE−∠COD−∠BOD=∠DOE−∠BOC,∴2∠BOC=∠DOE,∴∠BOC=12∠DOE=12α,(3)∵∠EOD与∠BOC互余,∴∠EOD+∠BOC=90°,∵∠BOC=12∠DOE,∴∠BOC=13×90°=30°.【解析】本题主要考查角平分线的意义,互余的意义,根据图形直观得出各个角的和或差是得出结论的前提,等量代换起到非常关键的作用.(1)根据角平分线和∠EOD=80°,∠AOB=20°,求出各个角,得出答案;(2)由特殊到一般,根据角平分线的意义,和各个角之间的和差关系,等量代换得出∠EOD 与∠BOC的数量关系,(3)利用(2)中的结论和∠EOD与∠BOC互余,求出∠BOC的度数.8.(1)已知∠1与∠2互为补角,且∠2的13比∠1小15∘,则∠1的余角为多少?(2)已知∠AOB为直角,∠AOC为锐角,且OM平分∠BOC,ON平分∠AOC,求∠MON的度数.【答案】解:(1)设∠1=x°,由题意可得,解得x=2254;(2)若OC在∠AOB内部,则∠MON=12∠AOB=45°,若OC在∠AOB外部,则∠MON=12(∠AOB+∠AOC)−12∠AOC=45°.【解析】本题考查了余角和补角,角平分线的定义以及角的计算,熟练掌握相关概念是解答本题的关键.(1)设∠1=x°,根据题意可列出方程,即可解答;(2)分两种情况:当若OC在∠AOB内部,当若OC在∠AOB外部进行分析.9.已知:∠AOD=156°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当OB绕点O在∠AOD内旋转时,则∠MON的大小为______;(2)如图2,若∠BOC=24°,OM平分∠AOC,ON平分∠BOD.当∠BOC绕点O在∠AOD内旋转时,求∠MON的大小;(3)在(2)的条件下,若∠AOB=30°,当∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒时,∠AOM和∠DON中的一个角的度数恰好是另一个角的度数的两倍,求t的值【答案】解:(1)78°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠COM=12∠AOC,∠BON=12∠BOD,∴∠MON=∠BON+∠COM−∠BOC=12∠AOC+12∠BOD−24°=12(∠AOC+∠BOD)−24°,∴∠MON=12(∠AOD+∠BOC)−24°=12×180°−24°=66°;(3)∵∠BOC在∠AOD内绕着点O以2°/秒的速度逆时针旋转t秒,OM平分∠AOC,ON平分∠BOD,∴∠AOC=(54+2t)°,∠AOM=(27+t)°,∠BOD=(126−2t)°,∠DON=(63−t)°,若∠AOM=2∠DON时,即27+t=2(63−t),∴t=33;若2∠AOM=∠DON,即2(27+t)=63−t,∴t=3;∴当t=3或t=33时,∠AOM和∠DON中的一个角的度数恰好是另一个角的度数的两倍.【解析】【分析】本题考查了角平分线的定义,一元一次方程的应用,分类讨论思想,利用一元一次方程解决问题是本题的关键.(1)由角平分线的定义可得∠BOM=12∠AOB,∠BON=12∠BOD,即可求∠MON的大小;(2)由角平分线的定义可得∠COM=12∠AOC,∠BON=12∠BOD,即可求∠MON的大小;(3)由题意可得∠AOC=(54+2t)°,∠AOM=(27+t)°,∠BOD=(126−2t)°,∠DON=(63−t)°,分∠AOM=2∠DON,∠DON=2∠AOM两种情况讨论,列出方程可求t的值.【解答】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∵∠MON=∠BOM+∠BON=12∠AOD,∴∠MON=78°故答案为:78°(2)见答案;(3)见答案.10.如图,直线EF、CD相交于点O,OA⊥OB,OC平分∠AOF.(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=30°,请直接写出∠BOD的度数;(3)观察(1)(2)的结果,猜想∠AOE和∠BOD的数量关系,并说明理由.【答案】解:(1)∵∠AOE+∠AOF=180°,∠AOE=40°,∴∠AOF=140°;又∵OC平分∠AOF,∴∠FOC=12∠AOF=70°,∴∠EOD=∠FOC=70°;∵OA⊥OB,∴∠AOB=90°,∵∠BOE=∠AOB−∠AOE=50°,∴∠BOD=∠EOD−∠BOE=20°;(2)∵∠AOE+∠AOF=180°,∠AOE=30°,∴∠AOF=150°;又∵OC平分∠AOF,∴∠FOC=12∠AOF=75°,∴∠EOD=∠FOC=75°;∵∠BOE=∠AOB−∠AOE=60°,∴∠BOD=∠EOD−∠BOE=15°;(3)∠BOD=12∠AOE,理由如下:∵∠AOE+∠AOF=180°,∴∠AOF=180°−∠AOE;又∵OC平分∠AOF,∴∠FOC=12∠AOF=90°−12∠AOE,∴∠EOD=∠FOC=90°−12∠AOE;∵OA⊥OB,∴∠AOB=90°,∵∠BOE=∠AOB−∠AOE=90°−∠AOE,∴∠BOD=∠EOD−∠BOE=(90°−12∠AOE)−(90°−∠AOE)=12∠AOE;∴∠BOD=12∠AOE.【解析】本题考查了邻补角、对顶角、角平分线定义等知识点.(1)先求出∠AOF,根据角平分线定义求出∠FOC,根据对顶角相等求出∠EOD=∠FOC,求出∠BOE,即可得出答案;(2)先求出∠AOF,根据角平分线定义求出∠FOC,根据对顶角相等求出∠EOD=∠FOC,求出∠BOE,即可得出答案;(3)先求出∠AOF,根据角平分线定义求出∠FOC,根据对顶角相等求出∠EOD=∠FOC,求出∠BOE,即可得出答案.11.已知直线AB与CD相交于点O,且∠AOD=90°,现将一个直角三角尺的直角顶点放在点O处,把该直角三角尺OEF绕着点O旋转,作射线OH平分∠AOE.(1)如图1所示,当∠DOE=20°时,∠FOH的度数是______.(2)若将直角三角尺OEF绕点O旋转至图2的位置,试判断∠FOH和∠BOE之间的数量关系,并说明理由.(3)若再作射线OG平分∠BOF,试求∠GOH的度数.【答案】解:(1)35°;(2)∠BOE=2∠FOH,理由如下:设∠AOH=x,因为OH平分∠AOE所以∠HOE=∠AOH=x所以∠FOH=90°−∠HOE=90°−x∠BOE=180°−∠AOE=180°−2x所以∠BOE=2∠FOH;(3)如图3,当OE落在∠BOD内时,OF落在∠AOD内因为OH平分∠AOE所以∠HOE=∠AOH=12∠AOE因为OG平分∠BOF∠FOG=∠GOB=12∠BOF所以∠GOH=∠GOF−∠FOH=1∠BOF−(∠AOH−∠AOF)=12(180°−∠AOF)−12∠AOE+∠AOF=90°−12∠AOF−12(90°+∠AOF)+∠AOF=90°−12∠AOF−45°−12∠AOF+∠AOF=45°;所以∠GOH的度数为45°;如图4,当OE落在其他位置时因为OH平分∠AOE所以∠HOE=∠AOH=12∠AOE 因为OG平分∠BOF∠FOG=∠GOB=12∠BOF所以∠GOH=∠GOF+∠FOH=12∠BOF+∠AOH+∠AOF=12(180°−∠AOF)+12∠AOE+∠AOF=90°−12∠AOF+12(90°−∠AOF)+∠AOF=90°−12∠AOF+45°−12∠AOF+∠AOF=135°;所以∠GOH的度数为135°;综上所述:∠GOH的度数为45°或135°.【解析】解:(1)因为∠AOD=90°,∠DOE=20°所以∠AOE=∠AOD+∠DOE=110°因为OH平分∠AOE所以∠HOE=12∠AOE=55°所以∠FOH=90°−∠HOE=35°;故答案为35°;(2)∠BOE=2∠FOH,理由如下:设∠AOH=x,因为OH平分∠AOE所以∠HOE=∠AOH=x所以∠FOH=90°−∠HOE=90°−x∠BOE=180°−∠AOE=180°−2x 所以∠BOE=2∠FOH;(3)如图3,当OE落在∠BOD内时,OF落在∠AOD内因为OH平分∠AOE所以∠HOE=∠AOH=12∠AOE因为OG平分∠BOF∠FOG=∠GOB=1∠BOF所以∠GOH=∠GOF−∠FOH=12∠BOF−(∠AOH−∠AOF)=12(180°−∠AOF)−12∠AOE+∠AOF=90°−12∠AOF−12(90°+∠AOF)+∠AOF=90°−12∠AOF−45°−12∠AOF+∠AOF=45°;所以∠GOH的度数为45°;如图4,当OE落在其他位置时因为OH平分∠AOE所以∠HOE=∠AOH=12∠AOE 因为OG平分∠BOF∠FOG=∠GOB=12∠BOF所以∠GOH=∠GOF+∠FOH=1∠BOF+∠AOH+∠AOF=12(180°−∠AOF)+12∠AOE+∠AOF=90°−12∠AOF+12(90°−∠AOF)+∠AOF=90°−12∠AOF+45°−12∠AOF+∠AOF=135°;所以∠GOH的度数为135°;综上所述:∠GOH的度数为45°或135°.(1)根据∠AOD=90°,∠DOE=20°得∠AOE=∠AOD+∠DOE=110°,再根据OH平分∠AOE,即可求解;(2)可以设∠AOH=x,根据OH平分∠AOE,可得∠HOE=∠AOH=x,进而∠FOH= 90°−∠HOE=90°−x,∠BOE=180°−∠AOE=180°−2x,即可得结论;(3)分两种情况解答:当OE落在∠BOD内时,OF落在∠AOD内,当OE落在其他位置时,根据OH平分∠AOE,OG平分∠BOF即可求解.本题考查了余角和补角、角平分线定义,解决本题的关键是掌握角平分线定义,进行角的和差计算.12.如图,已知∠AOM与∠MOB互为余角,且∠BOC=30°,OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)如果已知∠AOB=80°,其他条件不变,求∠MON的度数;(3)如果已知∠BOC=60°,其他条件不变,求∠MON的度数;(4)从(1)(2)(3)中你能看出什么规律?【答案】解:(1)因为OM平分∠AOC,所以∠MOC=12∠AOC.又ON平分∠BOC,所以∠NOC=12∠BOC.所以∠MON=∠MOC−∠NOC=12∠AOC−12∠BOC=12∠AOB.而∠AOB=90°,所以∠MON=45°;(2)当∠AOB=80°,其他条件不变时,∠MON=12×80°=40°;(3)当∠BOC=60°,其他条件不变时,则∠MON=45°;(4)分析(1)、(2)、(3)的结果和(1)的解答过程可知:∠MON的大小总等于∠AOB的一半,而与锐角∠BOC的大小变化无关.【解析】本题考查角的平分线,难度不大.(1)根据题意,可得∠MON=∠MOC−∠NOC=12∠AOC−12∠BOC=12∠AOB,即可得解;(2)根据题意,即可得解;(3)根据题意,即可得解;(4)分析可知:∠MON的大小总等于∠AOB的一半,而与锐角∠BOC的大小变化无关,即13.(1)如图1所示,将两个正方形的一个顶点重合放置,若∠AOD=40°,则∠COB=_________(2)如图2所示,将三个正方形的一个顶点重合放置,求∠1的度数.(3)如图3所示,将三个正方形的一个顶点重合放置,若OF平分∠DOB,则OE平分∠AOC吗?为什么?【答案】解:(1)140°;(2)如图,由题意知,∠1+∠2=50°①,∠1+∠3=60°②,又∠1+∠2+∠3=90°③,①+②−③得∠1=20°;(3)OE平分∠AOC,理由如下:∵∠COD=∠AOB,∴∠COA=∠DOB(等角的余角相等).同理:∠EOA=∠FOB.∵OF平分∠DOB,∴∠DOF=∠FOB=12∠DOB,∴∠EOA=12∠DOB=12∠COA,∴OE平分∠AOC.【分析】本题考查了角的计算,余角和补角以及正方形的性质,根据所给出的图形,找到角与角的关系是本题的关键.(1)根据正方形各角等于90°,得出∠COD+∠AOB=180°,再根据∠AOD=40°,∠COB=∠COD+∠AOB−∠AOD,即可得出答案;(2)根据已知得出∠1+∠2,∠1+∠3的度数,再根据∠1+∠2+∠3=90°,最后用∠1+∠2+∠1+∠3−(∠1+∠2+∠3),即可求出∠1的度数;(3)根据∠COD=∠AOB和等角的余角相等得出∠COA=∠DOB,∠EOA=∠FOB,再根据角平分线的性质得出∠DOF=∠FOB=12∠DOB和∠EOA=12∠DOB=12∠COA,从而得出答案.【解答】解:(1)∵两个图形是正方形,∴∠COD=90°,∠AOB=90°,∴∠COD+∠AOB=180°,∵∠AOD=40°,∴∠COB=∠COD+∠AOB−∠AOD=140°.故答案为140°;(2)见答案;(3)见答案.14.如图,已知∠AOB=2∠BOC,又OD,OE分别为∠AOB和∠BOC的平分线,若∠DOE=66∘.求∠AOB的度数.【答案】解:∵OE,OD分别是∠BOC、∠AOB的平分线,∴∠BOC=2∠BOE,∠AOB=2∠DOB,∵∠DOE=66°,∴∠AOB+∠BOC=2∠DOB+2∠BOE=2∠DOE=132°,∵∠AOB=2∠BOC,×132°=88°.∴∠AOB=23【解析】本题考查的是角平分线的定义,角的计算有关知识,根据角平分线定义得出∠BOC=2∠BOE,∠AOB=2∠DOB,根据∠DOE=66°求出∠AOB+∠BOC=132°,根据∠AOB=2∠BOC求出即可.15.已知∠AOB是锐角,∠AOC=2∠BOD.(1)如图,射线OC,射线OD在∠AOB的内部(∠AOD>∠AOC),∠AOB与∠COD互余.①若∠AOB=60°,求∠BOD的度数.②若OD平分∠BOC,求∠BOD的度数.(2)若射线OD在∠AOB的内部,射线OC在∠AOB的外部,∠AOB与∠COD互补.方方同学说:∠BOD的度数是确定的;圆圆同学说:这个问题要分类讨论,一种情况下∠BOD的度数是确定的,另一种情况下∠BOD的度数不确定.你认为谁的说法正确?为什么?【答案】解(1)①∵∠AOB=60°,∠AOB与∠COD互余,∴∠COD=30°,∵∠AOC=2∠BOD,∴∠BOD=10°.②设∠BOD=x°,∵OD平分∠BOC,∠AOC=2∠BOD,∴∠BOD=∠COD=1∠BOC,∠AOC=2x°,2∵∠AOB与∠COD互余,∴4x+x=90,解得:x=18,∴∠BOD=18°.(2)设∠BOD=x,∠AOD=y.当射线OD在∠AOC内部时(如图1),由题意,得∠AOB+∠COD=180°,即x+y+2x−y=3x=180°,此时∠BOD=60°,确定.当射线OD在∠AOC外部时(如图2),由题意,得∠AOB+∠COD=180°,即x+y+y+2x=3x+2y=180°,此时∠BOD不确定;∴圆圆的说法正确.【解析】本题考查了角平分线的定义以及角的计算,还用到了方程的思想.注意(2)要根据射线OD的位置不同,分类讨论,分别求出∠BOD的度数.(1)①根据∠AOB=60°,∠AOB与∠COD互余,可得∠COD=30°,再根据∠AOC=2∠BOD,可得∠BOD的度数;②先设∠BOD=x°,则4x+x=90,求出x的值,进而可得出结论;(2)分射线OD在∠AOC的内部与在∠AOC的外部两种情况进行讨论.16.已知,直线AB与直线CD相交于点O,OB平分∠DOF.(1)如图,若∠BOF=40°,求∠AOC的度数;(2)作射线OE,使得∠COE=60°,若∠BOF=x°(0<x<90),求∠AOE的度数.(用含x的代数式表示)【答案】解:(1)∵OB平分∠DOF,∴∠BOD=∠BOF=40°,∴∠AOC=40°;(2)∵OB平分∠DOF,∴∠BOD=∠BOF,∵∠BOF=x°,∴∠BOD=x°,∴∠AOC=∠BOD=x°,如图1,∵∠COE=60°,∴∠AOE=∠AOC+∠COE=(60+x)°(0<x<90);如图2,当0<x≤60时,∵∠COE=60°,∴∠AOE=∠COE−∠AOC=(60−x)°(0<x≤60),当60<x<90时,∵∠COE=60°,∴∠AOE=∠AOC−∠COE=(x−60)°(60<x<90).由图2可得:∠AOE=|x−60|°(0<x<90),综上所述:∠AOE的度数为(60+x)°或|60−x|°.【解析】(1)根据角平分线的定义可得∠BOD的度数,再根据对顶角相等可得答案;(2)此题分两种情况,首先画出图形,再计算角度.此题主要考查了对顶角和角平分线定义,关键是掌握对顶角相等.。
专题06 全等模型-角平分线模型(解析版)
专题06全等模型-角平分线模型角平分线在中考数学中都占据着重要的地位,角平分线常作为压轴题中的常考知识点,需要掌握其各类模型及相应的辅助线作法,且辅助线是大部分学生学习几何内容中的弱点,本专题就角平分线的几类全等模型作相应的总结,需学生反复掌握。
模型1.角平分线垂两边(角平分线+外垂直)【模型解读与图示】条件:如图1,OC 为AOB ∠的角平分线、CA OA ⊥于点A 时,过点C 作CA OB ⊥.结论:CA CB =、OAC ∆≌OBC ∆.图1图2常见模型1(直角三角形型)条件:如图2,在ABC ∆中,90C ∠=︒,AD 为CAB ∠的角平分线,过点D 作DE AB ⊥.结论:DC DE =、DAC ∆≌DAE ∆.(当ABC ∆是等腰直角三角形时,还有AB AC CD =+.)图3常见模型2(邻等对补型)条件:如图3,OC 是∠COB 的角平分线,AC =BC ,过点C 作CD ⊥O A 、CE ⊥OB 。
结论:①180BOA ACB ∠+∠=︒;②AD BE =;③2OA OB AD =+.例1.(2022·北京·中考真题)如图,在ABC ∆中,AD 平分,.BAC DE AB ∠⊥若2,1,AC DE ==则ACD S ∆=____.【答案】1【分析】作DF AC ⊥于点F ,由角平分线的性质推出1DF DE ==,再利用三角形面积公式求解即可.【详解】解:如图,作DF AC ⊥于点F ,∵AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,∴1DF DE ==,∴1121122ACD S AC DF ∆=⋅=⨯⨯=.故答案为:1.【点睛】本题考查角平分线的性质,通过作辅助线求出三角形ACD 中AC 边的高是解题的关键.例2.(2022·山东泰安·中考真题)如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 的平分线BP 交于点P ,若∠BPC =40°,则∠CAP =()A .40°B .45°C .50°D .60°【答案】C 【分析】根据外角与内角性质得出∠BAC 的度数,再利用角平分线的性质以及直角三角形全等的判定,得出∠CAP =∠FAP ,即可得出答案.【详解】解:延长BA ,作PN ⊥BD ,PF ⊥BA ,PM ⊥AC ,设∠PCD =x °,∵CP 平分∠ACD ,∴∠ACP =∠PCD =x °,PM =PN ,∵BP 平分∠ABC ,∴∠ABP =∠PBC ,PF =PN ,∴PF =PM ,∵∠BPC =40°,∴∠ABP =∠PBC =∠PCD ﹣∠BPC =(x ﹣40)°,∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣40°)﹣(x°﹣40°)=80°,∴∠CAF=100°,在Rt△PFA和Rt△PMA中,{PA PA PM PF==,∴Rt△PFA≌Rt△PMA(HL),∴∠FAP=∠PAC=50°.故选C.【点睛】本题考查了角平分线的性质以及三角形外角的性质和直角三角全等的判定等知识,根据角平分线的性质得出PM=PN=PF是解题的关键.例3.(2023·山东·七年级专题练习)如图,∠D=∠C=90°,点E是DC的中点,AE平分∠DAB,∠DEA =28°,求∠ABE的大小.【答案】28°【分析】过点E作EF⊥AB于F,根据角平分线上的点到角的两边距离相等可得DE=EF,根据线段中点的定义可得DE=CE,然后求出CE=EF,再根据到角的两边距离相等的点在角的平分线上证明即可得出BE平分∠ABC,即可求得∠ABE的度数.【详解】如图,过点E作EF⊥AB于F,∵∠D=∠C=90°,AE平分∠DAB,∴DE=EF,∵E是DC的中点,∴DE=CE,∴CE=EF,又∵∠C=90°,∴点E在∠ABC的平分线上,∴BE平分∠ABC,又∵AD∥BC,∴∠ABC+∠BAD=180°,∴∠AEB=90°,(1)填空:角平分线的性质定理:角平分线上的点到.符号语言:∵如图1,OP 为COD ∠上的平分线,且,∴.(2)解答:已知:如图2,60AOB ∠=︒,OP 为AOB ∠的平分线,以点P 为顶点的CPD ∠与角的两边相交于点C 、D ,且120CPD ∠=︒.求证:PC PD =.(3)作图:根据以上种情况,再次寻找其它情况,点P P 为AOB ∠的平分线上的点,请你用尺规作图作PE OA ⊥于E ,作PF OB ⊥于F ,90PEC PFD PEO PFO ∴∠=∠=∠=∠=︒,OP 平分AOB ∠,PE PF ∴=,在四边形EOFP 中,60AOB ∠=︒,90PEO PFO ∠=∠=︒,36060290120EPF ∴∠=︒-︒-⨯︒=︒,120CPD ∠=︒ ,CPD EPF ∴∠=∠,CPD EPD EPF EPD ∴∠-∠=∠-∠,CPE DPF ∴∠=∠,PEC PFD ∴≅ (ASA )PC PD ∴=;(3)证明:如图2,作射线PC ,交OA 于C ,作PCN AOB ∠=∠,反向延长NP ,交OB 于D ,则PC PD =;,(4)解:如图3,当ODP ∠和OCP ∠互补时,PC PD =,理由如下:作PE OA ⊥于E ,作PF OB ⊥于F ,90PEC PFD PEO PFO ∴∠=∠=∠=∠=︒,OP 平分AOB ∠,PE PF ∴=,在四边形EOFP 中,90PEO PFO ∠=∠=︒,360290180EPF AOB ∴∠+∠=︒-⨯︒=︒,180CPD AOB ∠+∠=︒ ,CPD EPF ∴∠=∠,CPD EPD EPF EPD ∴∠-∠=∠-∠,CPE DPF ∴∠=∠,PEC PFD ∴≅ (ASA)PC PD ∴=.【点睛】本题考查全等三角形的判定,角平分线的性质等知识,解决问题的关键是熟练掌握有关基础知识.模型2.角平分线垂中间(角平分线+内垂直)【模型解读与图示】条件:如图1,OC 为AOB ∠的角平分线,AB OC ⊥,结论:△AOC ≌△BOC ,OAB ∆是等腰三角形、OC 是三线合一等。
七年级数学上册第四单元《几何图形初步》-解答题专项基础卷(含答案解析)
一、解答题1.如图,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三点在一条直线上,OE,OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数。
解析:60°【分析】根据∠AOC:∠COD:∠BOD=2:3:4分别设∠AOC=2x,∠COD=3x,∠BOD=4x,根据这三个角之和等于180°,求得三个角的度数,然后根据角平分线的性质即可求得∠EOF的大小.【详解】设∠AOC=2x,∠COD=3x,∠BOD=4x∵∠AOC+∠COD+∠BOD=∠AOB=180°∴2x+3x+4x=180°∴x=20°∴∠AOC=40°∠COD=60°∠BOD=80°∵OE,OF平分∠AOC,∠BOD∴∠EOC=20°,∠DOF=40°∴∠EOF=120°又∵OG平分∠EOF∴∠EOG=∠GOF=60°∴∠GOF=60°.【点睛】本题考查角平分线的性质.角平分线把一个角平分成两部分,它们都等于原来角的1 2 .2.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长.(2)若CE=5cm,求DB的长.解析:(1)AB=18;(2)DB=15.【分析】(1)由线段中点的定义可得CD=12AC,CE=12BC,根据线段的和差关系可得DE=12AB,进而可得答案;(2)根据中点定义可得AC=BC,CE=BE,AD=CD,根据线段的和差关系即可得答案.【详解】(1)∵D是AC的中点,E是BC的中点.∴CD=12AC,CE=12BC,∵DE=CD+CE=9,∴12AC+12BC=12(AC+BC)=9,∵AC+BC=AB,∴AB=18.(2)∵C是AB的中点,D是AC的中点,E是BC的中点,∴AC=BC,CE=BE=12BC,,AD=CD=12AC,∴AD=CD=CE=BE,∴DB=CD+CE+BE=3CE,∵CE=5,∴DB=15.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.3.如图,一个五棱柱的盒子(有盖),有一只蚂蚁在A处发现一只虫子在D处,立刻赶去捕捉,你知道它怎样去的吗请在图中画出它的爬行路线,如果虫子正沿着DI方向爬行,蚂蚁预想在点I处将它捕捉,应沿着什么方向?请在图中画出它的爬行路线.解析:第一问:如图沿线段AD爬行;第二问取线段E J的中点M,连结AM和MI,此路线为蚂蚁爬行的路线.【分析】根据两点之间线段最短,结合图形得出蚂蚁爬行的路线.【详解】解:第一问:如图沿线段AD爬行;第二问取线段E J的中点M,连结AM和MI,此路线为蚂蚁爬行的路线.理由都是:两点之间线段最短.【点睛】本题考查了几何体的展开图与两点之间线段最短,利用展开图的性质得出答案是解题的关键.4.如图所示是一个正方体的表面展开图,请回答下列问题:(1)与面B、面C相对的面分别是和;(2)若A=a3+15a2b+3,B=﹣12a2b+a3,C=a3﹣1,D=﹣15(a2b+15),且相对两个面所表示的代数式的和都相等,求E、F代表的代数式.解析:(1)面F,面E;(2)F=12a2b,E=1【分析】(1)根据“相间Z端是对面”,可得B的对面为F,C的对面是E,(2)根据相对两个面所表示的代数式的和都相等,三组对面为:A与D,B与F,C与E,列式计算即可.【详解】(1)由“相间Z端是对面”,可得B的对面为F,C的对面是E.故答案为:面F,面E.(2)由题意得:A与D相对,B与F相对,C与E相对,A+D=B+F=C+E将A=a315+a2b+3,B12=-a2b+a3,C=a3﹣1,D15=-(a2b+15)代入得:a315+a2b+315-(a2b+15)12=-a2b+a3+F=a3﹣1+E,∴F12=a2b,E=1.【点睛】本题考查了正方体的展开与折叠,整式的加减,掌握正方体展开图的特点和整式加减的计算方法是正确解答的前提.5.如图,点B 、C 在线段AD 上,且::2:3:4AB BC CD =,点M 是线段AC 的中点,点N 是线段CD 上的一点,且9MN =.(1)若点N 是线段CD 的中点,求BD 的长;(2)若点N 是线段CD 的三等分点,求BD 的长.解析:(1)14;(2)37823或37831. 【分析】(1)设AB=2x ,则BC=3x ,CD=4x .根据线段中点的性质求出MC 、CN ,列出方程求出x ,计算即可;(2)分两种情况:①当N 在CD 的第一个三等分点时,根据MN=9,求出x 的值,再根据BD=BC+CD 求出结果即可;②当N 在CD 的第二个三等分点时,方法同①.【详解】设AB=2x ,则BC=3x ,CD=4x .∴AC=AB+BC=5x ,∵点M 是线段AC 的中点,∴MC=2.5x ,∵点N 是线段CD 的中点,∴CN=2x ,∴MN=MC+CN=2.5x+2x=4.5x∵MN=9,∴4.5x=9,解得x=2,∴BD=BC+CD=3x+4x=7x=14.(2)情形1:当N 在CD 的第一个三等分点时,CN=43x , ∴MN=MC+CN=54239236x x x +== 解得,5423x =, ∴BD=BC+CD=3x+4x=7x=37823; 情形2:当当N 在CD 的第二个三等分点时,CN=83x ,∴MN=MC+CN=58319236x x x +== 解得,5431x =, ∴BD=BC+CD=3x+4x=7x=37831; 故BD 的长为37823或37831. 【点睛】 本题考查的是两点间的距离的计算,掌握线段中点和三等分点的性质、灵活运用数形结合思想是解题的关键.6.如图,以直线AB 上一点O 为端点作射线OC ,使70AOC ∠=︒,在同一个平面内将一个直角三角板的直角顶点放在点O 处.(注:90DOE ∠=︒)(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,那么COE ∠的度数为______;(2)如图2,将直角三角板DOE 绕点O 按顺时针方向转动到某个位置,如果OC 恰好平分AOE ∠,求COD ∠的度数;(3)如图3,将直角三角板DOE 绕点O 任意转动,如果OD 始终在AOC ∠的内部,请直接用等式表示AOD ∠和COE ∠之间的数量关系.解析:(1)20︒;(2)20︒;(3)20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.【分析】(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,则∠COE =20°; (2)由角平分线可得70COE AOC ∠=∠=︒,再利用角的和差进行计算即可; (3)分别用∠COE 及∠AOD 的式子表达∠COD ,进行列式即可.【详解】解:(1)∵90DOE ∠=︒,70AOC ∠=︒∴907020COE DOE AOC =∠-∠=︒-︒=︒∠故答案为:20︒(2)∵OC 平分AOE ∠,70AOC ∠=︒,∴70COE AOC ∠=∠=︒,∵90DOE ∠=︒,∴907020COD DOE COE ∠=∠-∠=︒-︒=︒.(3)∵90COD DOE COE COE =∠-∠=︒-∠∠,70COD AOC AOD AOD =∠-∠=︒-∠∠∴9070COE AOD ︒-∠=︒-∠∴20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.故答案为:20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.【点睛】本题考查了角的和差关系,准确表达出角的和差关系是解题的关键.7.已知AOB m ∠=,与AOC ∠互为余角,与BOD ∠互为补角,OM 平分AOC ∠,ON 平分BOD ∠,(1)如图,当35m =时,求AOM ∠的度数;(2)在(1)的条件下,请你补全图形,并求MON ∠的度数;(3)当AOB ∠为大于30的锐角,且AOC ∠与AOB ∠有重合部分时,请求出MON ∠的度数.(写出说理过程,用含m 的代数式表示)解析:(1)27.5°;(2) 135°或10°;(3) 2135︒-︒m 或45+︒︒m 或1352︒-︒m .【分析】(1)根据题目已知条件OM 平分AOC ∠,得出∠COM=∠MOA ,因35m =即可求出.(2)∠AOB 和∠BOD 互补,分两种情况讨论,第一种情况是∠AOB 和∠BOD 没有重合部分时,第二种情况是∠AOB 和∠BOD 有重合部分时,再根据题目已知条件求解.(3)根据题目要求画出符合题目的图,在根据题目给出的已知条件求解.【详解】解:(1)∠AOB=35°∵OM 平分AOC ∠∴∠COM=∠MOA=()9035227.5︒-︒÷=︒(2)当∠AOB 和∠BOD 没有重合部分时如图所示∵∠AOB=35°,∠AOB 与∠BOD 互补∴∠AOB+∠BOD=180°∵ON 平分BOD ∠∴∠BON=∠NOD=()18035272.5︒-︒÷=︒∴∠MON=∠NOB+∠BOA+∠AOM=72.5+35+27.5=135︒︒︒︒当∠AOB 和∠BOD 有重合部分时由(1)知∠MOA=27.5°,∠AOB=35°∠AOB 与∠BOD 互补∴∠AOB+∠BOD=180°∠BOD=180°-35°=145°同理可得:∠NOB=72.5°∠MON=72.5°-27.5°-35°=10°∴∠MON=135°或10°(3)如图所示因为∠AOB ∠AOC 互余,AOB m ∠=∴∠AOC=90︒-m∵OM 平分AOC ∠∴∠COM=∠MOA=()902=452︒︒-÷︒-m m ∵∠OB 与∠BOD 互补∴∠AOB+∠BOD=180°ON 平分BOD ∠ ∴∠CON=∠NOD=()1802902︒︒-÷=︒-m m ∴∠NAO=3909022︒︒--︒=︒-m m m ∴∠MON=390+45135222︒-︒-=︒-︒m m m同理可得∠MON=45+︒︒m同理可得∠MON=2135︒-︒m∴∠MON=2135︒-︒m 或45+︒︒m 或1352︒-︒m【点睛】本题主要考查的是余角和补角的定义以及角平分线的应用,再做题之前一定要思考清楚需要分几个情况,再根据已知条件解出每种情况.8.[阅读理解]射线OC 是AOB ∠内部的一条射线,若1,2COA BOC ∠=∠则我们称射线OC 是射线OA 的伴随线.例如,如图1,60 20AOB AOC COD BOD ∠=∠=∠=∠=,,则12AOC BOC ∠=∠,称射线OC 是射线OA 的伴随线:同时,由于12BOD AOD ∠=∠,称射线OD 是射线OB 的伴随线.[知识运用](1)如图2,120AOB ∠=,射线OM 是射线OA 的伴随线,则AOM ∠= ,若AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线,则NOC ∠的度数是 .(用含α的代数式表示)(2)如图,如180AOB ∠=,射线OC 与射线OA 重合,并绕点O 以每秒3的速度逆时针旋转,射线OD 与射线OB 重合,并绕点O 以每秒5的速度顺时针旋转,当射线OD 与射线OA 重合时,运动停止,现在两射线同时开始旋转.①是否存在某个时刻t (秒),使得COD ∠的度数是20,若存在,求出t 的值,若不存在,请说明理由;②当t 为多少秒时,射线OC OD OA 、、中恰好有一条射线是其余两条射线的伴随线. 解析:(1)40︒,16α;(2)①存在,当20t =秒或25秒时,∠COD 的度数是20︒;②当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线.【分析】(1)根据伴随线定义即可求解;(2)①利用分类讨论思想,分相遇之前和之后进行列式计算即可; ②利用分类讨论思想,分相遇之前和之后四个图形进行计算即可.【详解】(1)∵120AOB ∠=,射线OM 是射线OA 的伴随线, 根据题意,12AOM BOM ∠=∠,则111204033AOM AOB ∠=∠=⨯︒=︒; ∵AOB ∠的度数是α,射线ON 是射线OB 的伴随线,射线OC 是AOB ∠的平分线, ∴111233BON AON AOB α∠=∠=∠=,1122BOC AOB α∠=∠=, ∴111236NOC BOC BON ααα∠=∠-∠=-=; 故答案为:40︒,16α; (2)射线OD 与OA 重合时,180365t ==(秒), ①当∠COD 的度数是20°时,有两种可能: 若在相遇之前,则1805320t t --=,∴20t =;若在相遇之后,则5318020t t +-=,∴25t =;所以,综上所述,当20t =秒或25秒时,∠COD 的度数是20°; ②相遇之前:(i )如图1,OC 是OA 的伴随线时,则12AOC COD ∠=∠, 即()13180532t t t =--, ∴907t =; (ii )如图2,OC 是OD 的伴随线时,则12COD AOC ∠=∠, 即11805332t t t --=⨯, ∴36019t =; 相遇之后: (iii )如图3,OD 是OC 的伴随线时,则12COD AOD ∠=∠,即()153********t t t +-=-, ∴1807t =; (iv )如图4,OD 是OA 的伴随线时,则12AOD COD ∠=∠, 即()118053t 5t 1802t -=+-, ∴30t =;所以,综上所述,当907t =,36019,1807,30时,OC 、OD 、OA 中恰好有一条射线是其余两条射线的伴随线.【点睛】 本题是几何变换综合题,考查了角的计算,考查了动点问题,解题的关键是理解题意,学会用分类讨论的思想思考问题.9.将一副三角尺叠放在一起:(1)如图①,若∠1=4∠2,请计算出∠CAE 的度数;(2)如图②,若∠ACE =2∠BCD ,请求出∠ACD 的度数.解析:(1)∠CAE =18°;(2)∠ACD =120°.【分析】(1)由题意根据∠BAC =90°列出关于∠1、∠2的方程求解即可得到∠2的度数,再根据同角的余角相等求出∠CAE =∠2,从而得解;(2)根据∠ACB 和∠DCE 的度数列出等式求出∠ACE ﹣∠BCD =30°,再结合已知条件求出∠BCD ,然后由∠ACD =∠ACB+∠BCD 并代入数据计算即可得解.【详解】解:(1)∵∠BAC =90°,∴∠1+∠2=90°,∵∠1=4∠2,∴4∠2+∠2=90°,∴∠2=18°,又∵∠DAE =90°,∴∠1+∠CAE =∠2+∠1=90°,∴∠CAE =∠2=18°;(2)∵∠ACE+∠BCE =90°,∠BCD+∠BCE =60°,∴∠ACE ﹣∠BCD =30°,又∠ACE =2∠BCD ,∴2∠BCD ﹣∠BCD =30°,∠BCD =30°,∴∠ACD =∠ACB+∠BCD =90°+30°=120°.【点睛】本题考查三角形的外角性质,三角形的内角和定理,准确识图理清图中各角度之间的关系是解题的关键.10.如图,点C 在线段AB 上,点,M N 分别是AC BC 、的中点.(1)若9,6AC cm CB cm ==,求线段MN 的长;(2)若C 为线段AB 上任一点,满足AC CB acm +=,其它条件不变,你能求出MN 的长度吗?请说明理由.(3)若C 在线段AB 的延长线上,且满足,,AC BC bcm M N -=分别为 AC 、BC 的中点,你能求出MN 的长度吗?请画出图形,写出你的结论,并说明理由.解析:(1)7.5;(2)12a ,理由见解析;(3)能,MN=12b ,画图和理由见解析 【分析】(1)据“点M 、N 分别是AC 、BC 的中点”,先求出MC 、CN 的长度,再利用MN=CM+CN 即可求出MN 的长度即可.(2)据题意画出图形,利用MN=MC+CN 即可得出答案.(3)据题意画出图形,利用MN=MC-NC 即可得出答案.【详解】解:(1)点M 、N 分别是AC 、BC 的中点,∴CM=12AC=4.5cm , CN=12BC=3cm , ∴MN=CM+CN=4.5+3=7.5cm .所以线段MN 的长为7.5cm .(2)MN的长度等于12 a,根据图形和题意可得:MN=MC+CN=12AC+12BC=12(AC+BC)=12a;(3)MN的长度等于12 b,根据图形和题意可得:MN=MC-NC=12AC-12BC=12(AC-BC)=12b.【点睛】本题主要考查了两点间的距离,关键是掌握线段的中点把线段分成两条相等的线段,注意根据题意画出图形也是关键.11.小刚和小强在争论一道几何问题,问题是射击时为什么枪管上有准星.小刚说:“过两点有且只有一条直线,所以枪管上才有准星.”小强说:“过两点有且只有一条直线我当然知道,可是若将人眼看成一点,准星看成一点,目标看成一点,这样不是有三点了吗?既然过两点有且只有一条直线,那弄出第三点是为什么呢?”聪明的你能回答小强的疑问吗?解析:见解析【分析】根据直线的性质,结合实际意义,易得答案.【详解】解:如果将人眼看成一点,准星看成一点,目标看成一点,那么要想射中目标,人眼与目标确定的这条直线应与子弹所走的直线重合,即与准星和目标所确定的这条直线重合,即可看到哪儿打到哪儿.换句话说要想射中目标就必须使准星在人眼与目标所确定的直线上.【点睛】题考查直线的性质,无限延伸性即没有端点;同时结合生活中的射击场景,立意新颖,熟练掌握直线的性质是解题的关键.12.如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点.(1)用1个单位长度表示1cm,请你在数轴上表示出A,B, C三点的位置;(2)把点C到点A的距离记为CA,则CA=______cm.(3)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,试探索:CA−AB的值是否会随着t的变化而改变?请说明理由.解析:(1)数轴见解析;(2)6;(3)CA−AB的值不会随着t的变化而改变,理由见解析;【分析】(1)在数轴上表示出A,B,C的位置即可;(2)求出CA的长即可;(3)不变,理由如下:当移动时间为t秒时,表示出A,B,C表示的数,求出CA-AB的值即可做出判断.【详解】(1)如图:(2)CA=4−(−2)=4+2=6cm,(3)不变,理由如下:当移动时间为t秒时,点A. B. C分别表示的数为−2+t、−5−2t、4+4t,则CA=(4+4t)−(−2+t)=6+3t,AB=(−2+t)−(−5−2t)=3+3t,∵CA−AB=(6+3t)−(3+3t)=3∴CA−AB的值不会随着t的变化而改变.【点睛】此题考查数轴,两点间的距离,整式的加减,列代数式,解题关键在于结合数轴进行解答. 13.如图是由7个相同的小立方体组成的几何体,请画出从正面看、从左面看、从上面看的平面图形.解析:画图见详解.【分析】分别画出从正面看、左面看、上面看的图形,注意所有看到的棱都要表示到三视图中.【详解】如图所示:【点睛】本题主要考查了三视图的画法,所有看到的棱都要在三视图中表示出来是画图的关键.14.如图,已知线段a和b,直线AB和CD相交于点O.利用尺规,按下列要求作图(只保留作图痕迹即可):(1)在射线OA,OB,OC上作线段OA′,OB′,OC′,使它们分别与线段a相等;(2)在射线OD上作线段OD′,使OD′与线段b相等;(3)连接A′C′,C′B′,B′D′,D′A′.解析:详见解析【解析】【分析】(1)以点O为圆心,a为半径作圆,分别交射线OA,OB,OC于A′、B′、C′;、(2)以点O为圆心,b为半径作圆,分别交射线OD,于D′.(3)依次连接A′C′B′D′,即可解答.【详解】解:(1)如图所示OA′、OB′、OC′.(2)如图所示OD′.(3)如图所示A′C′B′D′.【点睛】此题考查作图—复杂作图,解题关键在于掌握尺规作图.15.线段AD=6cm,线段AC=BD=4cm ,E、F分别是线段AB、CD中点,求EF.解析:【分析】根据题意和图形可以求得线段EB、BC、CF的长,从而可以得到线段EF的长.【详解】∵E,F分别是线段AB,CD的中点,∴AB=2EB=2AE,CD=2CF=2FD,∵AD=AB+BC+CD=2EB+BC+2CF=6,AC=2EB+BC=4,∴AC+2CF=6,解得,CF=1,同理可得:EB=1,∴BC=2,∴EF=EB+BC+CF=1+2+1=4.【点睛】此题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.计算(1)34°41′25″×5;(2)72°35′÷2+18°33′×4.解析:(1)173°27′5″;(2)110°29′30″.【分析】(1)根据角度与整数的乘法法则计算即可;(2)根据角度的四则混合运算法则计算即可.【详解】(1)34°41′25″×5=(34°+41′+25″)×5=34°×5+41′×5+25″×5=170°+205′+125″=173°27′5″;(2)72°35′÷2+18°33′×4=36°17′30″+72°132′=110°29′30″.【点睛】本题主要考查了角度的运算,正确理解角度的60进制是解答本题的关键.17.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=度.(直接写出结果)(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON的度数是多少?为什么?解析:(1)45°,理由见解析;(2)35;(3)12α,理由见解析【分析】(1)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可;(2)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可;(3)表示出∠AOC度数,表示出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC 求出即可.【详解】解:(1)如图1,∵∠AOB=90°,∠BOC=60°,∴∠AOC=∠AOB+∠BOC=90°+60°=150°,∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=12∠AOC=75°,∠NOC=12∠BOC=30°,∴∠MON=∠MOC﹣∠NOC=75°﹣30°=45°;(2)如图2,∵∠AOB=70°,∠BOC=60°,∴∠AOC=70°+60°=130°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC=65°,∠NOC=12∠BOC=30°,∴∠MON=∠MOC﹣∠NOC=65°﹣30°=35°.故答案为:35.(3)如图3,∵∠AOB=α,∠BOC=β,∴∠AOC=∠AOB+∠BOC=α+β,∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=12∠AOC=12(α+β),∠NOC=12∠BOC=12β,∴∠MON=∠MOC﹣∠NOC=12(α+β)﹣12β=12α.【点睛】本题考查了角平分线定义和角的有关计算,关键是求出∠AOC 、∠MOC 、∠NOC 的度数和得出∠MON=∠MOC-∠NOC.18.P 是线段AB 上任一点,12AB cm =,C D 、两点分别从P B 、同时向A 点运动,且C 点的运动速度为2/cm s ,D 点的运动速度为3/cm s ,运动的时间为t s .(1)若8AP cm =,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =;(2)如果2t s =时,1CD cm =,试探索AP 的值.解析:(1)①3cm ;②见解析;(2)9AP =或11cm.【分析】(1)①先求出PB 、CP 与DB 的长度,然后利用CD=CP+PB-DP 即可求出答案;②用t 表示出AC 、DP 、CD 的长度即可求证AC=2CD ;(2)t=2时,求出CP 、DB 的长度,由于没有说明点D 再C 点的左边还是右边,故需要分情况讨论.【详解】解:(1)①由题意可知:212,313CP cm DB cm =⨯==⨯=,∵8,12AP cm AB cm ==,∴4PB AB AP cm =-=,∴2433CD CP PB DB cm =+-=+-=;②∵8,12AP AB ==,∴4,82BP AC t ==-,∴43DP t =-,∴2434CD DP CP t t t =+=+-=-,∴2AC CD =;(2)当2t =时,224,326CP cm DB cm =⨯==⨯=,当点D 在C 的右边时,如图所示:由于1CD cm =,∴7CB CD DB cm =+=,∴5AC AB CB cm =-=,∴9AP AC CP cm =+=,当点D 在C 的左边时,如图所示:∴6AD AB DB cm =-=,∴11AP AD CD CP cm =++=,综上所述,9AP =或11cm.【点睛】本题考查的知识点是线段的简单计算以及线段中动点的有关计算.此题的难点在于根据题目画出各线段.19.已知90AOB ∠=︒,OC 为一条射线,OE ,OF 分别平分AOC ∠,BOC ∠,求EOF ∠的度数.解析:45︒【分析】本题需要分类讨论,当OC 在AOB ∠内部时,根据OE ,OF 分别平分AOC ∠和BOC ∠,所以12COE AOC ∠=∠,12COF BOC ∠=∠,即可求出EOF ∠的度数;当OC 在AOB ∠外部时,OE ,OF 分别平分AOC ∠和BOC ∠,所以12EOC AOC ∠=∠,12FOC BOC ∠=∠,所以1122EOF FOC EOC BOC AOC ∠=∠-∠=∠-∠,即可解决. 【详解】解:①如图,当OC 在AOB ∠内部时.因为OE ,OF 分别平分AOC ∠和BOC ∠,所以12COE AOC ∠=∠,12COF BOC ∠=∠, 所以1122COE COF AOC BOC ∠+∠=∠+∠, 即12EOF AOB =∠∠.又因为90AOB ︒∠=,所以45EOF ︒∠=.②如图,当OC 在AOB ∠外部时.因为OE ,OF 分别平分AOC ∠和BOC ∠, 所以12EOC AOC ∠=∠,12FOC BOC ∠=∠, 所以1111()452222EOF FOC EOC BOC AOC BOC AOC AOB ︒∠=∠-∠=∠-∠=∠-∠=∠=.综上所述,45EOF ︒∠=.【点睛】本题主要考查了角度的计算和角平分线的定义,熟练分类讨论思想,并且画出图形是解决本题的关键.20.如图,已知点C 为线段AB 上一点,15cm AC =,35CB AC =,D ,E 分别为线段AC ,AB 的中点,求线段DE 的长.解析:5cm【分析】根据线段的中点定义即可求解.【详解】解:因为15cm AC =,35CB AC =, 所以3159(cm)5CB =⨯=, 所以15924(cm)AB =+=.因为D ,E 分别为线段AC ,AB 的中点,所以112cm 2AE BE AB ===,17.5cm 2DC AD AC ===. 所以127.5 4.5(cm)DE AE AD =-=-=. 【点睛】本题考查了两点间的距离,解决本题的关键是利用线段的中点定义.21.如图,点C 为线段AD 上一点,点B 为CD 的中点,且6cm AC =,2cm BD =.(1)图中共有多少条线段?(2)求AD 的长.解析:(1)6条;(2)10cm【分析】(1)根据线段的定义,即可得到答案;(2)由点B 为CD 的中点,即可求出CD 的长度,然后求出AD 的长度.【详解】解:(1)根据题意,图中共有6条线段,分别是AC ,AB ,AD ,CB ,CD ,BD . (2)因为点B 是CD 的中点,2cm BD =,所以24cm CD BD ==,所以10cm AD AC CD =+=.【点睛】本题考查了线段中点的有关计算,以及线段的定义,解题的关键是熟练掌握线段有关的计算问题.22.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示,设点A ,B ,C 所对应数的和是p .(1)若以B 为原点,写出点A ,C 所对应的数,并计算p 的值;若以C 为原点,p 又是多少?(2)若原点O 在图中数轴上点C 的右边,且28CO =,求p .解析:(1)-4;(2)-88【分析】(1)根据以B 为原点,则C 表示1,A 表示-2,进而得到p 的值;根据以C 为原点,则A 表示-3,B 表示-1,进而得到p 的值;(2)根据原点O 在图中数轴上点C 的右边,且CO=28,可得C 表示-28,B 表示-29,A 表示-31,据此可得p 的值.【详解】(1)若以B 为原点,则点C 对应1,点A 对应2-,所以1021p =+-=-;若以C 为原点,则点A 对应3-,点B 对应1-,所以3104p =--+=-.(2)若原点O 在题图中数轴上点C 的右边,且28CO =,则点C 对应28-,点B 对应29-,点A 对应31-,所以31292888p =---=-.【点睛】本题考查了两点间的距离以及数轴的运用,解题时注意:连接两点间的线段的长度叫两点间的距离.23.如图,C ,D 两点将线段AB 分成2:3:4三部分,E 为线段AB 的中点,6cm AD =.求:(1)线段AB 的长;(2)线段DE 的长.解析:(1)10.8cm ;(2)0.6cm【分析】(1)设2cm AC x =,3cm CD x =,4cm BD x =,则根据6cm AD =列式计算即可. (2)由E 为线段AB 的中点,且根据(1)知AB 的长为10.8cm ,即可求出DE 的长.【详解】(1)设2cm AC x =,3cm CD x =,4cm BD x =.则有236x x +=,解得 1.2x =.则234910.8x x x x ++==.所以AB 的长为10.8cm .(2)因为E 为线段AB 的中点, 所以1 5.4cm 2AE AB ==. 所以6 5.40.6cm DE AD AE =-=-=【点睛】本题考查的是两点之间的距离,熟知各线段之间的和及倍数关系是解答此题的关键. 24.如图,点O 是直线AB 上一点,OC 为任一条射线,OD 平分∠AOC ,OE 平分∠BOC . (1)分别写出图中∠AOD 和∠AOC 的补角(2)求∠DOE 的度数.解析:(1)∠BOD ,∠BOC ;(2)90°.【分析】(1)由题意根据补角的定义即和是180度的两个角互补,一个角是另一个角的补角进行分析;(2)根据角平分线的性质,可得∠COE ,∠COD ,再根据角的和差即可得出答案.【详解】解:(1)根据补角的定义可知,∠AOD 的补角是∠BOD ;∠AOC 的补角是∠BOC ;(2)∵OD 平分∠AOC ,OE 平分∠BOC ,∴∠COD= 12∠AOC,∠COE=12∠BOC.由角的和差得∠DOE=∠COD+∠COE=12∠AOC+12∠BOC=12∠AOB=90°.【点睛】本题考查余角和补角,利用了补角的定义和角的和差以及角平分线的性质进行分析求解.25.把一副三角板的直角顶点O重叠在一起.(1)问题发现:如图①,当OB平分∠COD时,∠AOD+∠BOC的度数是;(2)拓展探究:如图②,当OB不平分∠COD时,∠AOD+∠BOC的度数是多少?(3)问题解决:当∠BOC的余角的4倍等于∠AOD时,求∠BOC的度数.解析:(1)180°;(2)180°;(3)60°.【解析】试题分析:(1)先根据OB平分∠COD得出∠BOC及∠AOC的度数,进而可得出结论;(2)根据直角三角板的性质得出∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°进而可得出结论;(3)根据(1)、(2)的结论可知∠AOD+∠BOC=180°,故可得出∠AOD=180°﹣∠BOC,根据∠BOC的余角的4倍等于∠AOD即可得出结论.解:(1)∵OB平分∠COD,∴∠BOC=∠BOD=45°.∵∠AOC+∠BOC=45°,∴∠AOC=45°,∴∠AOD+∠BOC=∠AOC+∠COD+∠BOC=45°+90°+45°=180°.故答案为180°;(2)∵∠AOB=∠AOC+∠BOC=90°,∠COD=∠BOD+∠BOC=90°,∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=90°+90°=180°;(3)∵由(1)、(2)得,∠AOD+∠BOC=180°,∴∠AOD=180°﹣∠BOC.∵∠AOD=4(90°﹣∠BOC),∴180°﹣∠BOC=4(90°﹣∠BOC),∴∠BOC=60°.考点:余角和补角;角平分线的定义.26.如图,将一个长方形沿它的长或宽所在的直线旋转一周,回答下列问题:(1)得到什么几何体?(2)长方形的长和宽分别为6cm 和4cm ,分别绕它的长和宽所在直线旋转一周,得到不同的几何体,它们的体积分别为多少?(结果保留π)解析:(1)圆柱;(2)它们的体积分别为3144cm π,396cm π【分析】(1)矩形旋转一周得到圆柱;(2)绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,从而可以计算出体积.【详解】解:(1)圆柱(2) 绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,21V r h π=264π=⨯⨯144π=绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,2246V π=⨯⨯96π=∴它们的体积分别为3144cm π,396cm π【点睛】本题主要考查的是圆柱的体积,熟记圆柱的体积公式是解题的关键.27.已知:如图AB ∥CD ,EF 交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE =50°,求:∠BHF 的度数.解析:∠BHF=115° .【分析】由AB ∥CD 得到∠AGE=∠CFG ,由此根据邻补角定义可得∠GFD 的度数,又FH 平分∠EFD ,由此可以先后求出∠GFD ,∠HFD ,继而可求得∠BHF 的度数.【详解】∵AB ∥CD ,∴∠CFG=∠AGE=50°,∴∠GFD=130°;又FH 平分∠EFD ,∴∠HFD=12∠EFD=65°; ∵AB ∥CD ,∴∠BHF=180°-∠HFD=115°.【点睛】本题考查了平行线的性质,角平分线的定义,邻补角等知识,两直线平行时,应该想到它们的性质;由两直线平行的关系可以得到角之间的数量关系,从而达到解决问题的目的. 28.已知:点O 为直线AB 上一点,过点O 作射线OC ,100BOC ∠=︒.(1)如图1,求AOC ∠的度数;(2)如图2,过点O 作射线OD ,使90COD ∠=︒,作AOC ∠的平分线OM ,求MOD ∠的度数;(3)如图3,在(2)的条件下,作射线OP ,若BOP ∠与AOM ∠互余,请画出图形,并求COP ∠的度数.解析:(1)80°;(2)50°;(3)50︒或150︒,图见解析【分析】(1)直接根据邻补角的概念即可求解;(2)直接根据角平分线的性质即可求解; (3)根据P BO ∠与M AO ∠互余,可得50BOP ∠=︒,分①当射线P O 在C BO ∠内部时;②当射线P O 在C BO ∠外部时,两种情况进行讨论即可.【详解】解:(1)180********∠=︒-∠=︒-︒=︒AOC BOC ;(2)由(1)得80AOC ∠=︒,90COD ∠=︒,10AOD COD AOC ∴∠=∠-∠=︒,OM 是AOC ∠的平分线,11804022AOM AOC ∴∠=∠=⨯︒=︒, 401050MOD AOM AOD ∴∠=∠+∠=︒+︒=︒;(3)由(2)得40AOM ∠=︒,BOP∠与AOM∠互余,90BOP AOM∴∠+∠=︒,90904050BOP AOM∴∠=︒-∠=︒-︒=︒,①当射线OP在BOC∠内部时(如图3-1),1005050COP BOC BOP∠=∠-∠=︒-︒=︒;②当射线OP在BOC∠外部时(如图3-2),10050150COP BOC BOP∠=∠+∠=︒+︒=︒.综上所述,COP∠的度数为50︒或150︒.【点睛】此题主要考查邻补角的概念、角平分线的性质、余角的概念,熟练进行逻辑推理是解题关键.29.如图,已知线段AB和CD的公共部分1134BD AB CD==,线段AB、CD的中点E、F之间的间距是10cm,求AB、CD的长.解析:AB=12cm,CD=16cm【分析】先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE=1.5xcm和CF=2xcm,再根据EF=AC-AE-CF=2.5xcm,且E、F之间距离是EF=10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.【详解】设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=12AB=1.5xcm,CF=12CD=2xcm.∴EF=AC-AE-CF=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.【点睛】本题考查了线段中点的性质,设好未知数,用含x的式子表示出各线段的长度是解题关键.30.如图,∠AOB=∠DOC=90°,OE 平分∠AOD ,反向延长射线OE 至F.(1)∠AOD 和∠BOC 是否互补?说明理由;(2)射线OF 是∠BOC 的平分线吗?说明理由;(3)反向延长射线OA 至点G ,射线OG 将∠COF 分成了4:3的两个角,求∠AOD .解析:(1)互补;理由见解析;(2)是;理由见解析;(3)54°或720()11 【分析】(1)根据和等于180°的两个角互补即可求解;(2)通过求解得到∠COF =∠BOF ,根据角平分线的定义即可得出结论;(3)分两种情况:①当∠COG :∠GOF =4:3时;②当∠COG :∠GOF =3:4时;进行讨论即可求解.【详解】(1)因为∠AOD +∠BOC =360°﹣∠AOB ﹣∠DOC =360°﹣90°﹣90°=180°,所以∠AOD 和∠BOC 互补.(2)因为OE 平分∠AOD ,所以∠AOE =∠DOE ,因为∠COF =180°﹣∠DOC ﹣∠DOE =90°﹣∠DOE ,∠BOF =180°﹣∠AOB ﹣∠AOE =90°﹣∠AOE ,所以∠COF =∠BOF ,即OF 是∠BOC 的平分线.(3)因为OG 将∠COF 分成了4:3的两个部分,所以∠COG :∠GOF =4:3或者∠COG :∠GOF =3:4.①当∠COG :∠GOF =4:3时,设∠COG =4x °,则∠GOF =3x °,由(2)得:∠BOF =∠COF =7x °因为∠AOB +∠BOF +∠FOG =180°,所以90°+7x +3x =180°,解方程得:x =9°,所以∠AOD =180°﹣∠BOC =180°﹣14x =54°.②当∠COG :∠GOF =3:4时,设∠COG =3x °,∠GOF =4x °,同理可列出方程:90°+7x +4x =180°,解得:x = 90()11, 所以∠AOD =180°﹣∠BOC =180°﹣14x 720()11 .综上所述:∠AOD的度数是54°或720 () 11.【点睛】本题考查了余角和补角,角平分线的定义,同时涉及到分类思想的综合运用.。
七年级数学角的平分线定理、逆定理及运用四年制知识精讲 试题
七年级数学角的平分线定理、逆定理及运用人教四年制【同步教育信息】一. 本周教学内容:角的平分线定理、逆定理及运用二. 教学重点、难点:1. 重点:角平分线定理理解2. 难点:〔1〕角平分线定理与逆定理之间的关系〔2〕证明时如何正确选择哪一个定理三. 教学知识要点:1. 定理1:在角的平分线上的点到这个角两边的间隔相等。
2. 定理2:到一个角的两边的间隔相等的点在这个角的平分线上。
3. 角的平分线是到角两边间隔相等的所有点的集合。
【典型例题】Array [例1] OC是∠证:PD=PE。
证明:∵在PDO ∆和PEO ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠OP OP BOC AOC PEO PDO ∴ PEO PDO ∆≅∆〔AAS 〕∴[例2] PD ⊥OA ,证明:∵ 在Rt ∴ ∠ ∴ OC 是∠AOB 的平分线 就是说点P 在∠AOB 的平分线上[例4] 在∠∴ FN=FH FM=FH 〔角平分线上的点到这个角两边的间隔 相等〕 ∴ AE=AF 〔全等三角形的对应边相等〕[例6] 如图ABC ∆中,AD 是BAC ∠的平分线,CE ⊥AD 交AB 于E ,EF ∥BC 交AC 于F 。
求证:FEC DEC ∠=∠。
⎪⎩∠=∠AGC AGE ∴ AE=AC 〔全等三角形的对应边相等〕在AED ∆和ACD ∆中,⎪⎩⎪⎨⎧=∠=∠=AD AD AC AE 21 ∴ ACD AED ∆≅∆〔SAS 〕∴ ED=DC 〔全等三角形的对应边相等〕 在EDG Rt ∆和CDG Rt ∆中,⎩⎨⎧==GDGD DCED ∴ CDG Rt EDG Rt ∆≅∆〔HL 〕∴ DCE DEC ∠=∠〔全等三角形的对应角相等〕又 ∵ EF ∥BC ∴ DCE FEC ∠=∠ ∴ FEC DEC ∠=∠【模拟试题】一. 填空题:1. 在ABC ∆中,︒=∠90C ,AD 平分BAC ∠交BC 于D ,假设BC=32,且CD BD :7:9=,那么D 到AB 的间隔 为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
角平分线相关练习题
答案:
1、∠DOC=30°
解析:由角平分线定义:到角两边距离相等的点在角平分线上,得知,点C在角平分线上,即OC为∠AOB 的角平分线,因为∠AOB=60°,所以∠DOC=∠EOC=30°
2、∠BOC=50°
解析:由题知,∠AOE=∠BOE=½∠AOB=45°,∠BOD=∠EOD-∠BOE=70°-45°=25°,∠BOC=2∠BOD=50°3、D
解析:由角平分线定义和性质得知,角平分线上的点到角两边的距离相等,故A、B、C均正确。
4、S△BDC=½mn
解析:通过D点向BC边作垂线段,交BC于点E,则DE为△BDC的高线,由于DA⊥AB且DE⊥BC,BD是角平分线,故得知线段AD=DE=m,S△BDC=½BC×DE=½mn
5、A
解析:由角平分线性质得知,角平分线上的点到角两边的距离相等,故P到AB的距离=PE=3
6、∠COE=75°
解析:∠AOC=∠BOC=∠BOD=½×90°=45°,因为∠BOD=3∠DOE,所以∠BOE=⅔∠BOD=⅔×45°=30°,
∠COE=∠BOC+∠BOE=45°+30°=75°
7、∠BOD=75°
解析:∠COD=∠AOD=½∠AOC=½(∠AOB-∠BOC)=½(90°-60°)=15°,
∠BOD=∠BOC+∠COD=60°+15°=75°
8、∠AOC=140°
解析:∠AOC=∠AOB+∠BOC=2∠BOD+2∠BOE=2∠BOD+2(∠DOE-∠BOD)=2∠DOE=2×70°=140°。