定积分习题及答案
定积分习题与答案
第五章 定积分(A)1.利用定积分定义计算由抛物线12+=x y ,两直线)(,a b b x a x >==与横轴所围成的图形的面积。
2.利用定积分的几何意义,证明下列等式: 3.估计下列各积分的值4.根据定积分的性质比较下列各对积分值的大小 ⎰21ln )1xdx 与dx x ⎰212)(ln dx e x⎰10)2与⎰+10)1(dx x5.计算下列各导数 6.计算下列极限7.当x 为何值时,函数⎰-=xt dt te x I 02)(有极值?8.计算下列各积分⎰2)()8dx x f ,其中⎪⎩⎪⎨⎧+=2211)(x x x f11>≤x x9.设k ,l 为正整数,且l k ≠,试证下列各题: 10.计算下列定积分11.利用函数的奇偶性计算下列积分12.设f (x )在[]b a ,上连续,证明:⎰⎰-+=ba ba dx xb a f dx x f )()(13.证明:)0(1111212>+=+⎰⎰x x dx x dx x x14.计算下列定积分15.判定下列反常积分的收敛性,如果收敛,计算反常积分的值。
1)⎰∞+14xdx2)⎰+∞-0dx e ax ()0>a3)dx ee x x ⎰∞+-+014)⎰+∞->>0)0,0(sin ωωp tdt e pt5)⎰-121x xdx 6)⎰-211x xdx7)⎰∞+∞-++222x x dx8)()⎰-e x x dx 12ln 1 (B)1.填空: 1)________)12111(lim =++++++∞→nn n n n 。
2)估计定积分的值:_____sin 1____342≤+≤⎰ππx dx。
3)运用积分中值定理可得:⎰-→xa a x x f dt t f a x )(()(1lim 是连续函数)=________,______)0(sin lim =>⎰+∞→a dx xxa n n n 。
定积分复习题答案
定积分复习题一、单项选择题。
1.广义积分dx x ⎰-20211的奇点的是( B )。
A .0 B .1 C .2 D .1±2.设dx x xa ⎰+=1031,dx x xb ⎰+=10321,则b a ,的大小关系为( B )。
A .b a < B .b a > C .b a = D .无法比较3.下列关于定积分的说法正确的是( B )。
A .函数)(x f 在[]b a ,有界,则)(x f 在[]b a ,一定可积;B .函数)(x f 在[]b a ,可积,则)(x f 在[]b a ,一定有界;C .函数)(x f 在[]b a ,可积,则)(x f 在[]b a ,不一定有界;D .函数)(x f 在[]b a ,无界,则)(x f 在[]b a ,可能可积。
4.下列各函数中在[]1,0中定积分存在的是( D )A .x lnB .x 1 C .x -11 D .x +11 5.()⎰b xdt t f dx d =( C )。
A .()t f B .()x f C .()x f - D .()x f -6.由抛物线322--=x x y 与x 轴围成图形的面积为( C )A .332B .332-C .334 D .334- 7. 定积分()⎰ba dx x f 存在是函数()x f 在闭区间[]b a ,连续的__B__条件。
A .充分非必要B .必要非充分C .充分必要D .即不充分,又非必要8. 关于广义积分⎰+∞1p xdx 的收敛性,下列结论不正确的是( B ) A .当1>p 时一定收敛 B .当1≥p 时一定收敛C .当1<p 时一定发散D .当1≤p 时一定发散9. x y sin =在[]π2,0上的图像与x 轴围成图形的面积为( D )A .0B .1C .2D .410. 设dx e a x ⎰-=10,dx e a x ⎰-=102,则b a ,的大小关系为( A )。
习题课_定积分的应用(解答)
中的 x0 唯一。
证明: (1)构造函数 g( x ) x f (t )dt ,对 g ( x ) 用罗尔定理即 可得证 。
x 1
(2) 考虑 g '( x) 的单调性来证明。
11
dx dx dx 2 2 2 2 0 1 2cos x 1 2cos x 2 1 2cos x
令 tan x t dx d tan x dt 2 2 而 ; 0 1 2cos 2 x 0 3 tan 2 x 0 3 t2 2 3
S S1 S2 (2 x x )dx ( x 2 2 x )dx 2
y x2 2 x
V y [(1 1 y )2 12 ]dy
1
0
[33 (1 1 y )2 ]dy 9
0
3 2 2 1 1
3
S2
1
o
3 2
d tan x 令 tan x t 0 dx dt 2 1 2cos2 x 2 3 tan2 x 3 t 2 2 3 ;
故原式
3
15
定积分的物理应用:
常 数 ,长度为 L 的细杆, 1.如图,x 轴上有一线密度为
有一质量为 m 的质点到杆右端的距离为 a ,已知引力 系数为 k,则质点和细杆之间引力的大小为( A ) (A) L
3
5. 设曲线 y f ( x ) 在 x 轴的上方,并过点 (1,1) ,该曲线与直线
x 1 , y 0 及动直线 x b(b 1) 所围图形绕 y 轴旋转所得的旋
定积分典型例题及习题答案
04 定积分习题答案及解析
习题一答案及解析
要点一
答案
$frac{1}{2}$
要点二
解析
根据定积分的几何意义,该积分表示一个半圆的面积,半径 为1,因此结果为半圆的面积,即$frac{1}{2}$。
习题二答案及解析
答案:$0$
解析:由于函数$f(x) = x$在区间$[-1, 1]$上为奇函数,根据定积分的性质,奇函数在对称区间上的积 分为0。
定积分的分部积分法
总结词
分Hale Waihona Puke 积分法是一种通过将两个函数的乘积进行求导来计算定积分的方法。
详细描述
分部积分法是通过将两个函数的乘积进行求导来找到一个函数的定积分。具体来说,对于两 个函数u(x)和v'(x),其乘积的导数为u'v+uv',其中u'表示u对x的导数。分部积分法可以表示 为∫bau(x)v'(x)dx=∫bau'(x)v(x)dx+∫bau(x)v(x)dx,其中u'(x)和u(x)分别是u对x的导数和函
定积分典型例题及习题答案
目录
• 定积分的基本概念 • 定积分的计算方法 • 定积分典型例题解析 • 定积分习题答案及解析
01 定积分的基本概念
定积分的定义
总结词
定积分的定义是通过对函数进行分割、 近似、求和、取极限等步骤来得到的。
详细描述
定积分定义为对于一个给定的函数f(x),选择一 个区间[a,b],并将其分割为n个小区间,在每 个小区间上选择一个代表点,并求出函数在这 些点的近似值,然后将这些近似值进行求和, 最后取这个和的极限。
数值。通过分部积分法,可以将复杂的定积分转换为更简单的形式进行计算。
微积分习题答案第七章定积分
4
cos
3 2
3
x
2 0
4 3
(12)
2 dx 1 x x3
21 ( 1x
x
x2
)dx 1
[ln
x
1 2
ln(1
x2 )]
2 1
1 2
ln
8 5
4 dx t
2. (1) 1 1 x
x
2 1 2tdt 1 1t
2
2
(1
1
)dt
1 1t
2[t ln(t 1)]
2 1
2(1 ln 2) 3
0
1
(x 2
0
1 0
f (t)dt) 0
1
xdx 2
0
1
f (t)dt
0
1
dx
0
1 x2 2
1 0
2
1
f (x)dx
0
.
1 f (x)dx 1x2
0
2
1 0
1 2
1
f (t)dt
0
练习 7.4
1
f (x) x 2 2 f (t)dt x 1. 0
1.(1)
2 cos5 x sin2 xdx 2 (1 sin2 )4 sin2 xd sin x
22 3 3
1 x2
0 (1 x 2 )2
dx
4 0
tan 2 sec4
t t
sec2
tdt
4 sin 2 tdt
0
4 0
1
cos 2t 2
dt
1 2
(t
1 2
sin t)
4 0
1 ( 2) 8
(8)
(完整版)定积分应用题附答案
《定积分的应用》复习题一.填空:1.曲线ln ,ln ,ln (0)y x y a y b a b y ===<<及轴所围成的平面图形的面积为A =ln ln by ae dy ⎰=b-a______2.2y x y ==曲线和 ____13____二.计算题:1.求由抛物线 y 2 = 2x 与直线 2x + y – 2 = 0 所围成的图形的面积。
解:(1)确定积分变量为y ,解方程组2222y x y x ⎧=⎨=-+⎩ 得12121/22,12x x y y ==⎧⎧⎨⎨==-⎩⎩ 即抛物线与直线的交点为(21,1)和( 2 , - 2 ).故所求图形在直线y = 1和y = - 2 之间,即积分区间为[-2,1 ]。
(2)在区间[-2,1]上,任取一小区间为[ y , y + dy ],对应的窄条面积近似于高为[(1-21y )-21y 2 ],底为dy 的矩形面积,从而得到面积元素 dA = [(1-21y)- 21y 2 ]dy (3)所求图形面积 A =⎰-12[(1- 21y )-21y 2 ]dy = [y - 41y 2 – 61y 3]12-= 942.求抛物线 y = - x 2 + 4x - 3 及其在点(0,- 3)和(3,0)处的切线所围成的图形的面积。
解:由y = - x 2 + 4x – 3 得 '24,'(0)4,'(3)2y x y y =-+==-。
抛物线在点(0,- 3)处的切线方程为 y = 4x – 3 ;在点(3,0)处的切线方程为 y = - 2x + 6 ; 两切线的交点坐标为 ( 32,3 )。
故 面积A =332223029[(43)(43)][(26)(43)]4x x x dx x x x dx --+-+-+-+-=⎰⎰3.求由摆线 x = a (t – sint) , y = a( 1- cost) 的一拱(02t π≤≤)与横轴所围成的图形的面积。
第6章定积分的应用习题集及答案
第六章 习题 定积分的应用一.选择题1.曲线x y ln =、a y ln =、b y ln =(b a <<0)和y 轴所围图形的面积为( C ) (A )⎰ba xdx ln ln ln ; (B )⎰be a e xdx e ; (C )⎰ba ydy e ln ln ; (D )⎰ae b e xdx ln .2.曲线x e y =下方与该曲线过原点的切线左方和y 轴右方所围图形的面积为(a )(A )⎰-10)(dx ex e x ; (B )⎰-edy y y y 1)ln (ln ; (C )⎰-e x x dx x e e 1)(; (D )⎰-10)ln (ln dy y y y .3.摆线)sin (t t a x -=、)cos 1(t a y -=(0>a )的一拱(π20≤≤t )与x 轴所围图形绕x 轴旋转一周所成旋转体的体积为( D )(A )⎰-ππ2022)cos 1(dt t a ; (B )⎰--at t a d t a ππ2022)]sin ([)cos 1(; (C )⎰-a dt t a ππ2022)cos 1(; (D )⎰--ππ2022)]sin ([)cos 1(t t a d t a . 4.曲线θρcos 2a =(0>a )所围图形的面积为( D )(A )⎰22)cos 2(21πθθd a ; (B )⎰-ππθθd a 2)cos 2(21;(C )⎰πθθ202)cos 2(21d a ; (D )⎰202)cos 2(212πθθd a .5.连续曲线)(x f y =与直线a x =、b x =(b a <≤0)及x 轴围成的图形绕y 轴旋转一周生成的旋转体体积为( B )(A )⎰ba dx x xf )(2π;(B )⎰ba dx x f x )(2π;(C )⎰ba dx x xf )(22π;(D )⎰ba dx x f x )(22π. 6.半径为R 的半球形水池已装满水.要将水全部吸出水池,需做功的为 ( C )(A )⎰-Rdy y R 022)(π;(B )⎰Rdy y 02π;(C )⎰-Rdy y R y 022)(π;(D )⎰Rdy y 03π.二.计算题1.求曲线221x y =与822=+y x 所围图形(上半平面部分)的面积.解:易知:曲线221x y =与822=+y x 的交点为(2,2)±。
数学选修2-2定积分的简单应用练习题含答案
数学选修2-2定积分的简单应用练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 曲线y=sin x与x轴在区间[0, 2π]上所围成阴影部分的面积为()A.−4B.−2C.2D.42. 由直线x=0,x=2,y=0和抛物线x=√1−y所围成的平面图形绕x轴旋转所得几何体的体积为()A.46 15πB.43π C.1615π D.83π3. 由直线x=1,x=2,y=0与抛物线y=x2所围成的曲边梯形的面积为()A.1 3B.53C.73D.1134. 由曲线y=x2+2与y=3x,x=0,x=1所围成的平面图形的面积为()A.5 6B.1C.53D.25. 曲线y=x2和y2=x所围成的平面图形绕x轴旋转一周后,所形成的旋转体的体积为()A.3π10B.π2C.π5D.7π106. 函数y=sin x,y=cos x在区间(π4,5π4)内围成图形的面积为()A.√2B.2√2C.3√2D.4√27. 一物体在力F(x)=3+e2x(x的单位:m,F的单位:N)的作用下,沿着与力F相同的方向,从x=0处运动到x=1处,力F(x)所做的功为()A.(3+e2)JB.(3+12e2)J C.(52+12e2)J D.(2+e2)J8. 由曲线y=√x,y=x−2及x轴所围成的封闭图形的面积是()A.4B.103C.163D.1549. 下列表示图中f(x)在区间[a, b]上的图象与x 轴围成的面积总和的式子中,正确的是( )A.∫f ba (x)dx B.|∫f ba (x)dx|C.∫f c 1a (x)dx +∫f c 2c 1(x)dx +∫f cc 2(x)dxD.∫f c 1a (x)dx −∫f c 2c 1(x)dx +∫f cc2(x)dx10. 直线y =x 与曲线y =√x 3围成的平面图形的面积是.( ) A.14 B.2 C.1D.1211. 设函数f(x)=ax 2+c(a ≠0),若∫f 10(x)dx =f(x 0),0≤x 0≤1,则x 0的值为________.12. y =cos x 与直线x =0,x =π及x 轴围成平面区域面积为________.13. 由曲线y =|x|,y =−|x|,x =2,x =−2合成的封闭图形绕y 轴旋转一周所得的旋转体的体积为V ,则V =________.14. 两曲线x −y =0,y =x 2−2x 所围成的图形的面积是________.15. 由曲线y =x 2和直线x =0,x =1,以及y =0所围成的图形面积是________. 16.若在平面直角坐标系xOy 中将直线y =x 2与直线x =1及x 轴所围成的图形绕x 轴旋转一周得到一个圆锥,则该圆锥的体积V 圆锥=∫π10(x 2)2dx =π12x 3|10=π12据此类比:将曲线y =x 2与直线y =9所围成的图形绕y 轴旋转一周得到一个旋转体,则该旋转体的体积V =________.17. 在直角坐标平面内,由直线x=1,x=2,y=0和曲线y=1所围成的平面区域的x面积是________.18. 在xOy平面上,将抛物线弧y=1−x2(0≤x≤1)、x轴、y轴围成的封闭图形记为D,如图中曲边三角形OAB及内部.记D绕y轴旋转一周而成的几何体为Ω,过点(0, y)(0≤y≤1)作Ω的水平截面,所得截面面积为(1−y)π,试构造一个平放的直三棱柱,利用祖暅原理得出Ω的体积值为________.19. 函数f(x)=x3−x2+x+1在点(1, 2)处的切线与函数g(x)=x2−x围成的图形的面积等于________.2ax2−a2x)dx,则f(a)的最大值为________.20. 已知f(a)=∫(1x2在第一象限内的交点为P.21. 已知曲线C1:y2=2x与C2:y=12(1)求曲线C2在点P处的切线方程;(2)求两条曲线所围成图形的面积S.22. 求由曲线y=x2+2与y=3x,x=0,x=2所围成的平面图形的面积.23. 已知曲线C:y=x2(x≥0),直线l为曲线C在点A(1, 1)处的切线.(1)求直线l的方程;(2)求直线l与曲线C以及x轴所围成的图形的面积.24. 如图一是火力发电厂烟囱示意图.它是双曲线绕其一条对称轴旋转一周形成的几何体,烟囱最细处的直径为10m,最下端的直径为12m,最细处离地面6m,烟囱高14m,试求该烟囱占有空间的大小.(精确到0.1m3)25.(1)已知复数z的共轭复数是z¯,且z⋅z¯−3iz=10,求z;1−3ix所围成的平面图形的面积.(2)求曲线y=√x与直线x+y=2,y=−1326.(1)已知(√x +2√x4)n 展开式的前三项系数成等差数列.求n .(2)如图所示,在一个边长为1的正方形AOBC 内,曲线y =x 2和曲线y =√x 围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),求所投的点落在叶形图内部的概率.27. 求由下列给出的边界所围成的区域的面积: (1)y =sin x(π4≤x ≤π),x =π4,y =0;(2)y =x 2,y =2x 2,x =1;(3)y =x 2,y =√x .28. 求由y =4−x 2与直线y =2x −4所围成图形的面积.29. 已知曲线y =sin x 和直线x =0,x =π,及y =0所围成图形的面积为S 0. (1)求S 0.(2)求所围成图形绕ox 轴旋转所成旋转体的体积.30. 已知函数y =f(x)的图形如图所示,给出y =f(x)与x =10和x 轴所围成图形的面积估计值;要想得到误差不超过1的面积估计值,可以怎么做?31. 已知曲线C:y =√x 和直线:x −2y =0由C 与围成封闭图形记为M . (1)求M 的面积;(2)若M 绕x 轴旋转一周,求由M 围成的体积.32. 已知f(x)为一次函数,且f(x)=x ∫f 20(t)dt +1, (1)求函数f(x)的解析式;(2)若g(x)=x ⋅f(x),求曲线y =g(x)与x 轴所围成的区域绕x 轴旋转一周所得到的旋转体的体积.33. 已知圆锥的高为ℎ,底半径为r ,用我们计算抛物线下曲边梯形面积的思路,推导圆锥体积的计算公式. [提示:(1)用若干张平行于圆锥底面的平面把它切成n 块厚度相等的薄片;(2)用一系列圆柱的体积近似地代替对应的薄片,圆柱的高为ℎn ,底半径顺次为:rn ,2r n,3r n…,(n−1)r n,r ;(3)问题归结为计算和式V(n)=ℎn ×(12+22+...+n 2)×πr 2n 2,当n 越来越大时所趋向的值.].34. 求曲线y =√x(0≤x ≤4)上的一条切线,使此切线与直线x =0,x =4以及曲线y =√x 所围成的平面图形的面积最小.35. 过点(0, 1)作曲线L:y =ln x 的切线,切点为A .又L 与x 轴交于B 点,区城D 由L 、x 轴与直线AB 围成,求区域D 的面积及D 绕x 轴旋转一周所得旋转体的体积.36. 求曲线y =2x −x 2,y =2x 2−4x 所围成图形的面积.37. 已知∫(103ax +1)(x +b)dx =0,a ,b ∈R ,试求ab 的取值范围.38. 求下列曲线所围成图形的面积:曲线y=cos x,x=π2,x=3π2,y=0.39. 求曲线y=sin x与直线x=−π2,x=5π4,y=0所围成的平面图形的面积.40. 如图,直线y=kx分抛物线y=x−x2与x轴所围图形为面积相等的两部分,求k的值.参考答案与试题解析数学选修2-2定积分的简单应用练习题含答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 1.【答案】 D【考点】定积分在求面积中的应用 【解析】由积分的几何意义可得,S =2∫sin π0xdx ,即可得出结论. 【解答】解:由积分的几何意义可得,S =2∫sin π0xdx =(−cos x)|0π=4. 故选:D . 2.【答案】 A【考点】用定积分求简单几何体的体积 【解析】由题意此几何体的体积可以看作是∫π20(1−x 2)2dx ,求出积分即得所求体积. 【解答】解:由题意几何体的体积; ∫π20(1−x 2)2dx=π(x −23x 3+15x 5)|02=π(2−23×23+15×25) =4615π 故选A . 3. 【答案】 C【考点】定积分在求面积中的应用 【解析】先根据题意画出区域,然后依据图形利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可. 【解答】解:直线x =1,x =2,y =0与抛物线y =x 2所围成的曲边梯形的面积为S =∫x 221dx =13x 3|12=83−13=73,故选:C .4.【答案】 A【考点】定积分的简单应用 【解析】因为所求区域均为曲边梯形,所以使用定积分方可求解,然后求出曲线y =x 2+2与y =3x 的交点坐标,然后利用定积分表示所围成的平面图形的面积,根据定积分的定义解之即可. 【解答】解:联立{y =x 2+2y =3x,解得x 1=1,x 2=2∴ S =∫(10x 2+2−3x)d x =[13X 3+2X −32X 2]01=56 故选:A 5.【答案】 A【考点】用定积分求简单几何体的体积 【解析】欲求曲线y =x 2和y 2=x 所围成的平面图形绕x 轴旋转一周后所形成的旋转体的体积,可利用定积分计算,即求出被积函数y =π(x −x 4)在0→1上的积分即可. 【解答】解:设旋转体的体积为V ,则v =∫π10(x −x 4)dx =π(12x 2−15x 5)|01=3π10.故旋转体的体积为:3π10. 故选A . 6. 【答案】 B【考点】定积分在求面积中的应用 【解析】根据定积分的几何意义,所求面积为S =∫(5π4π4sin x −cos x)dx ,然后利用公式求出sin x −cos x 的原函数F(x),算出F(5π4)−F(π4)的值,即为所求图形的面积. 【解答】解:根据题意,所求面积为S =∫(5π4π4sin x −cos x)dx =(−cos x −sin x +C)|π45π4 (其中C 为常数) ∴ S =(−cos 5π4−sin5π4+C)−(−cos π4−sin π4+C)=(√22+√22+C)−(−√22−√22+C)=2√2 故选B 7.【答案】 C【考点】定积分的简单应用 【解析】先根据题意建立关系式∫(103+e 2x )dx ,然后根据定积分的计算法则求出定积分的值即可. 【解答】解:根据题意可知F(x)所做的功为∫(103+e 2x )dx =(3x +12e 2x )|01=3+12e 2−12=52+12e 2故选C .8.【答案】 B【考点】定积分在求面积中的应用 【解析】根据定积分的几何意义,先求出积分的上下限,即可求出所围成的图形的面积 【解答】解:联立直线y =x −2,曲线y =√x 构成方程组,解得{x =4,y =2,联立直线y =x −2,y =0构成方程组,解得{x =2,y =0,如图所示:∴曲线y=√x,y=x−2及x轴所围成的封闭图形的面积S=∫√x40dx−∫(42x−2)dx=2x32|04 −(1x2−2x)|24=163−2=103.故选B.9.【答案】D【考点】定积分在求面积中的应用定积分定积分的简单应用【解析】先根据定积分的几何意义可知将区间[a, b]分成三段,然后利用上方曲线方程减下方的曲线方程,求积分即为面积,从而求出所求.【解答】解:根据定积分的几何意义可知将区间[a, b]分成三段利用上方曲线方程减下方的曲线方程,求积分即为面积S=∫fc1a (x)dx−∫fc2c1(x)dx+∫fcc2(x)dx故选:D10.【答案】D【考点】定积分在求面积中的应用【解析】先画出画出直线y=x与曲线y=√x3围成的平面图形,然后求出交点横坐标得到积分上下限,然后利用定积分表示出图形的面积,根据定积分的运算法则进行求解即可.【解答】解:画出直线y=x与曲线y=√x3围成的平面图形图形关于原点对称,交点的横坐标为−1,1∴直线y=x与曲线y=√x3围成的平面图形的面积是∫(1−1√x3−x)dx=2∫(1√x3−x)dx=2(34x43−12x2)|01=2(34−12−0)=12故选D .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 11.【答案】 √33【考点】定积分的简单应用 【解析】求出定积分∫f 10(x)dx ,根据方程ax 02+c =∫f 10(x)dx 即可求解.【解答】解:∵ f(x)=ax 2+c(a ≠0),∴ f(x 0)=∫f 10(x)dx =[ax 33+cx]01=a3+c .又∵f(x 0)=ax 02+c .∴ x 02=13,∵ x 0∈[0, 1]∴ x 0=√33. 12.【答案】2【考点】定积分在求面积中的应用 【解析】本题利用直接法求解,根据三角函数的对称性知,曲线y =cos x 与直线x =0,x =π所围成的平面区域的面积S 为:曲线y =cos x 与直线x =0,x =π2所围成的平面区域的面积的两倍,最后结合定积分计算面积即可. 【解答】解:根据对称性,得:曲线y =cos x 与直线x =0,x =π所围成的平面区域的面积S 为:曲线y =cos x 与直线x =0,x =π2所围成的平面区域的面积的两倍, ∴ S =2∫cos π20xdx =2 故答案为2.13.【答案】323π【考点】旋转体(圆柱、圆锥、圆台)用定积分求简单几何体的体积【解析】作出曲线围成的封闭图象,根据旋转得到旋转体的结构即可得到结论.【解答】解:曲线y=|x|,y=−|x|,x=2,x=−2合成的封闭图形绕y轴旋转一周所得的旋转体为底面半径为2,高为4的圆柱,去掉2个底面半径为2,高为2的圆锥,则对应的体积为π×42−2×13π×22×2=16π−16π3=323π,故答案为:323π14.【答案】92【考点】定积分在求面积中的应用【解析】先根据题意画出区域,然后依据图形得到积分上限为3,积分下限为0,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.【解答】解:先根据题意画出图形,得到积分上限为3,积分下限为0;两曲线x−y=0,y=x2−2x所围成的图形的面积是∫(33x−x2)dx而∫(303x−x2)dx=(32x2−13x3)|03=272−9=92∴曲边梯形的面积是92故答案为92.15. 【答案】13【考点】定积分在求面积中的应用 【解析】作出两个曲线的图象,求出它们的交点,由此可得所求面积为函数y =x 2在区间[0, 1]上的定积分的值,再用定积分计算公式加以运算即可得到本题答案. 【解答】解:∵ 曲线y =x 2和直线L:x =1的交点为A(1, 1),∴ 曲线C:y =x 2、直线L:x =1与x 轴所围成的图形面积为 S =∫x 210dx =13x 3|01=13.故答案为:13.16. 【答案】81π2【考点】用定积分求简单几何体的体积 【解析】根据类比推理,结合定积分的应用,即可求出旋转体的体积. 【解答】解:根据类比推理得体积V =∫π90(√y)2dy =∫π90ydy =12πy 2|09=81π2,故答案为:81π2.17.【答案】 ln 2【考点】定积分在求面积中的应用 【解析】先根据所围成图形的面积利用定积分表示出来,然后根据定积分的定义求出面积即可. 【解答】解:由题意,S =∫1x 21dx =ln x|12=ln 2.故答案为:ln 2. 18. 【答案】√34π 【考点】用定积分求简单几何体的体积 【解析】(1−y)π看作是把一个底面边长为1,高为π的直三棱柱平放得到的,根据祖暅原理,每个平行水平面的截面积相等,故它们的体积相等,即可得出结论. 【解答】解:(1−y)π看作是把一个底面边长为1,高为π的直三棱柱平放得到的, 根据祖暅原理,每个平行水平面的截面积相等,故它们的体积相等, 即Ω的体积为π⋅√34=√34π. 故答案为√34π. 19. 【答案】92【考点】定积分在求面积中的应用 【解析】求出函数的切线方程,利用积分的几何意义即可求出区域的面积. 【解答】解:函数的导数为f′(x)=3x 2−2x +1,则在(1, 2)处的切线斜率k =f′(1)=3−2+1=2, 则对应的切线方程为y −2=2(x −1),即y =2x , 由{y =x 2−x y =2x,解得x =3或x =0,则由积分的几何意义可得阴影部分的面积S =∫(302x −x 2+x)dx =(32x 2−13x 3)| 30 =92,故答案为:92.20. 【答案】29【考点】定积分的简单应用 【解析】先根据定积分的运算公式求出f(a)的解析式,然后利用二次函数的图象和性质即可求出f(a)的最大值. 【解答】解:f(a)=∫(102ax 2−a 2x)dx =(23ax 3−12a 2x 2)|01=23a −12a 2∴ 当a =23时,f(a)取最大值,最大值为29 故答案为:29三、 解答题 (本题共计 20 小题 ,每题 10 分 ,共计200分 ) 21.【答案】解:(1)∵ 交点为P(2,2),∴ 曲线C 2的导函数为:y ′=x ∴ 切点坐标为(2,2),故该点的切线方程为:2x −y −2=0. (2)两曲线交点坐标(0,0),(2,2), S ∈∫(√2x −12x 2)20dx =43.【考点】定积分在求面积中的应用利用导数研究曲线上某点切线方程 【解析】 此题暂无解析 【解答】解:(1)∵ 交点为P(2,2),∴ 曲线C 2的导函数为:y ′=x ∴ 切点坐标为(2,2),故该点的切线方程为:2x −y −2=0. (2)两曲线交点坐标(0,0),(2,2), S ∈∫(√2x −12x 2)20dx =43. 22. 【答案】解:联立{y =x 2+2y =3x,解得x 1=1,x 2=2∴ S =∫(10x 2+2−3x)d x +∫(213x −x 2−2)d x =[13X 3+2X −32X 2]01+[32X 2−13X 3−2X]12=1【考点】定积分的简单应用 【解析】因为所求区域均为曲边梯形,所以使用定积分方可求解. 【解答】解:联立{y =x 2+2y =3x,解得x 1=1,x 2=2∴ S =∫(10x 2+2−3x)d x +∫(213x −x 2−2)d x =[13X 3+2X −32X 2]01+[32X 2−13X 3−2X]12=1 23. 【答案】解:(1)由y′=2x ,则切线l 的斜率k =y′|x=1=2×1=2,切线l 的方程为y −1=2(x −1)即2x −y −1=0;(2)如图,所求的图形的面积s =∫x 2120dx +∫[112x 2−(2x −1)]dx =112.【考点】定积分在求面积中的应用利用导数研究曲线上某点切线方程【解析】(1)根据导数的几何意义即可求出切线方程;(2)根据定积分的几何意义即可求出所围成的图形的面积. 【解答】解:(1)由y′=2x ,则切线l 的斜率k =y′|x=1=2×1=2,切线l 的方程为y −1=2(x −1)即2x −y −1=0;(2)如图,所求的图形的面积s =∫x 2120dx +∫[112x 2−(2x −1)]dx =112.24.【答案】解:由题意,将烟囱横截面按照如图放置,建立坐标系如图,双曲线的短轴长为2A =10,并且过(−6, 6),所以双曲线方程为y 225−11x 225×36=1,所以V =π∫(8−611x 236+25)dx =1659.2m 3【考点】用定积分求简单几何体的体积 双曲线的特性【解析】由题意建立坐标系,得到如图的双曲线,烟囱最细处的直径为10m 即2a =10,最下端的直径为12m ,最细处离地面6m ,即双曲线经过(−6, 6),烟囱高14m ,即自变量范围为−6到8,由此利用定积分的值得到体积. 【解答】解:由题意,将烟囱横截面按照如图放置,建立坐标系如图,双曲线的短轴长为2A =10,并且过(−6, 6), 所以双曲线方程为y 225−11x 225×36=1,所以V =π∫(8−611x 236+25)dx =1659.2m 325.【答案】解:(1)设z =a +bi (a,b ∈R ), 则z ¯=a −bi ,∴ z ⋅z ¯−3iz =a 2+b 2+3b −3ai . 又∵ z ⋅z ¯−3iz =101−3i =1+3i , ∴ {a 2+b 2+3b =1,−3a =3,解得 {a =−1,b =0,或{a =−1,b =−3,∴ z =−1或z =−1−3i . (2)由{y =√x ,x +y =2,解得{x =1,y =1,即曲线y =√x 与直线x +y =2的交点坐标为(1,1), 同理可得,曲线y =√x 与直线y =−13x 的交点坐标为(0,0),直线x +y =2与直线y =−13x 的交点坐标为(3,−1),所以围成的平面图形的面积为: S =∫(√x +13x)10dx +∫(2−x +13x)31dx=(23x 32+16x 2)|01+(2x −13x 2)|13=136.【考点】 复数的运算 共轭复数复数代数形式的混合运算 定积分在求面积中的应用 【解析】 此题暂无解析 【解答】解:(1)设z =a +bi (a,b ∈R ), 则z ¯=a −bi ,∴ z ⋅z ¯−3iz =a 2+b 2+3b −3ai . 又∵ z ⋅z ¯−3iz =101−3i =1+3i , ∴ {a 2+b 2+3b =1,−3a =3,解得 {a =−1,b =0,或{a =−1,b =−3,∴ z =−1或z =−1−3i . (2)由{y =√x ,x +y =2,解得{x =1,y =1,即曲线y =√x 与直线x +y =2的交点坐标为(1,1), 同理可得,曲线y =√x 与直线y =−13x 的交点坐标为(0,0), 直线x +y =2与直线y =−13x 的交点坐标为(3,−1),所以围成的平面图形的面积为: S =∫(√x +13x)10dx +∫(2−x +13x)31dx=(23x 32+16x 2)|01+(2x −13x 2)|13=136.26. 【答案】解:(1)∵ (√x 2x4)n 展开式的前三项系数成等差数列,∴ C n 0+C n 2(12)2=2C n 1⋅12…∴ 1+n(n−1)2×14=n ,整理得n 2−9n +8=0,n 1=1(舍) n 2=8…(2)所投的点落在叶形图内记为事件A ,由几何概型的概率公式得: P(A)=叶形图面积AOBC 的面积=∫(10√x−x 2)dx1=(23x 32−13x 3)|01=13…【考点】二项式定理的应用定积分在求面积中的应用 等差数列的性质几何概型计算(与长度、角度、面积、体积有关的几何概型) 【解析】(1)由题意可得,C n 0+C n 2(12)2=2C n 1⋅12,解关于n 的方程即可;(2)由几何概型的概率公式可知,需求叶形图的面积,利用定积分∫(10√x −x 2)dx 可求叶形图的面积,从而使问题解决. 【解答】解:(1)∵ (√x 2√x4)n 展开式的前三项系数成等差数列,∴ C n 0+C n 2(12)2=2C n 1⋅12…∴1+n(n−1)2×14=n,整理得n2−9n+8=0,n1=1(舍)n2=8…(2)所投的点落在叶形图内记为事件A,由几何概型的概率公式得:P(A)=叶形图面积AOBC的面积=∫(1√x−x2)dx1=(23x32−13x3)|01=13…27.【答案】利用S=∫ππ4sin xdx=(−cos x)|π4π=1+√22.利用S=∫10(2x2−x2)dx=23x3|01−13x3|01=13.由于{y=x2y=√x,解得{x=0y=0或{x=1y=1,所以S=∫10(√x−x2)dx=23x32|01−13x3|01=23−13=13.【考点】定积分的简单应用【解析】首先求出被积函数的原函数,进一步利用定积分知识求出结果.【解答】利用S=∫ππ4sin xdx=(−cos x)|π4π=1+√22.利用S=∫10(2x2−x2)dx=23x3|01−13x3|01=13.由于{y=x2y=√x,解得{x=0y=0或{x=1y=1,所以S=∫10(√x−x2)dx=23x32|01−13x3|01=23−13=13.28.【答案】解:由y=4−x2与直线y=2x−4联立,可得交点(−4, −12),(2, 0),∴y=4−x2与直线y=2x−4所围成图形的面积S=∫(2−44−x2−2x+4)dx=(−13x3−x2+8x)|−42=36.【考点】定积分在求面积中的应用【解析】先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出y=4−x2与直线y=2x−4所围成图形的面积,即可求得结论.【解答】解:由y=4−x2与直线y=2x−4联立,可得交点(−4, −12),(2, 0),∴y=4−x2与直线y=2x−4所围成图形的面积S=∫(2−44−x2−2x+4)dx=(−13x 3−x 2+8x)|−42=36.29. 【答案】解:(1)S 0=∫sin π0xdx =[−cos x]0π=(−cos π)−(−cos 0)=1+1=2 (2)V =π∫sin 2π0xdx =π[x2−14sin 2x]0π=π(π2−14×0)=π22【考点】用定积分求简单几何体的体积 定积分在求面积中的应用【解析】(1)根据题意可知曲线y =sin x 和直线x =0,x =π,及y =0所围成图形的面积为S 0=∫sin π0xdx ,解之即可;(2)所围成图形绕ox 轴旋转所成旋转体的体积为V =π∫sin 2π0xdx ,根据定积分的定义解之即可. 【解答】解:(1)S 0=∫sin π0xdx =[−cos x]0π=(−cos π)−(−cos 0)=1+1=2 (2)V =π∫sin 2π0xdx=π[x 2−14sin 2x]0π=π(π2−14×0)=π2230.【答案】解:设f(x)=ax 3+bx 2+cx +d ,则f′(x)=3ax 2+2bx +c , 由图象可知{ f(0)=0f(1)=1f′(4)=0f′(7)=0,即{ d =0a +b +c =0c 3a =28−2b 3a =11,解得{ a =2137b =−33137c =168137d =0, ∴ f(x)=2137x 3−33137x 2+168137x . ∴ S =∫f 100(x)dx =(2137×x 44−33137×x 33+168137×x 22)|10≈17.5. 若要想得到误差不超过1的面积估计值,可使用分段函数求出f(x)的解析式,然后使用定积分求出面积. 【考点】定积分在求面积中的应用 【解析】设f(x)=ax 3+bx 2+cx +d ,利用待定系数法确定函数关系式,利用定积分求出面积估计值;若要误差小可分段求出f(x)的解析式,然后使用定积分求出面积. 【解答】解:设f(x)=ax 3+bx 2+cx +d ,则f′(x)=3ax 2+2bx +c ,由图象可知{ f(0)=0f(1)=1f′(4)=0f′(7)=0,即{ d =0a +b +c =0c 3a =28−2b 3a =11,解得{ a =2137b =−33137c =168137d =0, ∴ f(x)=2137x 3−33137x 2+168137x . ∴ S =∫f 100(x)dx=(2137×x 44−33137×x 33+168137×x 22)|10≈17.5. 若要想得到误差不超过1的面积估计值,可使用分段函数求出f(x)的解析式,然后使用定积分求出面积. 31. 【答案】解:(1)曲线C:y =√x 和直线:x −2y =0联立,可得交点坐标为(4, 2),则 S =∫(40√x −12x)dx =(23x 32−x 24)|04=43;(2)V =∫[40π(√x)2−π(x2)2]dx =π(x 22−x 312)|04=8π3.【考点】用定积分求简单几何体的体积 旋转体(圆柱、圆锥、圆台)【解析】(1)求得交点坐标,可得积分区间,即可求M 的面积; (2)旋转一周所得旋转体的体积应该用定积分来求.【解答】 解:(1)曲线C:y =√x 和直线:x −2y =0联立,可得交点坐标为(4, 2),则 S =∫(40√x −12x)dx =(23x 32−x 24)|04=43; (2)V =∫[40π(√x)2−π(x2)2]dx=π(x 22−x 312)|04=8π3.32.【答案】 解:(1)设f(x)=kx +b , ∵ f(x)=x ∫f 20(t)dt +1, ∴ kx +b =x •(kt 22+bt)|02+1,∴ kx +b =(2k +2b)x +1,∴ k =−2,b =1, ∴ f(x)=−2x +1,;2)g(x)=xf(x)=−2x 2+x , ∴ V =π∫[120xf(x)]2dx =π240. 【考点】用定积分求简单几何体的体积定积分【解析】(1)利用待定系数法,结合定积分的定义求函数f(x)的解析式;(2)求出g(x),应用定积分来求旋转体的体积.【解答】解:(1)设f(x)=kx+b,∵f(x)=x∫f2(t)dt+1,∴kx+b=x•(kt22+bt)|02+1,∴kx+b=(2k+2b)x+1,∴k=−2,b=1,∴f(x)=−2x+1,;2)g(x)=xf(x)=−2x2+x,∴V=π∫[120xf(x)]2dx=π240.33.【答案】解:(1)若干张平行于圆锥底面的平面把它切成n块厚度相等的薄片;(2)用一系列圆柱的体积近似地代替对应的薄片,圆柱的高为ℎn ,底半径顺次为:rn,2r n ,3rn…,(n−1)rn,r;(3)问题归结为计算和式V(n)=ℎn ×(12+22+...+n2)×πr2n2,当n越来越大时所趋向的值.(对V求极限V=limn→∞ℎn×(12+22+...+n2)×πr2n2=lim n→∞ℎn⋅16n(n+1)(2n+1)⋅πr2n2=ℎπr26limn→∞2n2+3n+1n2=πr2ℎ3=13S底ℎ故圆锥的体积等于13的圆柱体的体积【考点】用定积分求简单几何体的体积【解析】利用极限的定义进行分割、近似代换和求极限的方法,进行推到【解答】解:(1)若干张平行于圆锥底面的平面把它切成n块厚度相等的薄片;(2)用一系列圆柱的体积近似地代替对应的薄片,圆柱的高为ℎn ,底半径顺次为:rn,2r n ,3rn…,(n−1)rn,r;(3)问题归结为计算和式V(n)=ℎn ×(12+22+...+n2)×πr2n2,当n越来越大时所趋向的值.(对V求极限V=limn→∞ℎn×(12+22+...+n2)×πr2n2=lim n→∞ℎ⋅1n(n+1)(2n+1)⋅πr22=ℎπr26limn→∞2n2+3n+1n2=πr2ℎ3=13S底ℎ故圆锥的体积等于13的圆柱体的体积34.【答案】解:设(x0, y0)为曲线y=√x(0≤x≤4)上任一点,得曲线于该点处的切线方程为:y−y0=2√x −x0)即y=y02+2√x.得其与x=0,x=4的交点分别为(0,y02),(4,y02+2y0)于是由此切线与直线x=0,x=4以及曲线y=√x所围的平面图形面积为:S=∫(4 0y022x√x)dx=2y0+x−163=2√x0x−163应用均值不等式求得x0=2时,S取得最小值.即所求切线即为:y=22+√22.【考点】定积分在求面积中的应用【解析】先根据导数的几何意义求出曲线y=√x(0≤x≤4)上任一点处的切线方程,再求出积分的上下限,然后利用定积分表示出图形面积,最后利用定积分的定义进行求解即可.【解答】解:设(x0, y0)为曲线y=√x(0≤x≤4)上任一点,得曲线于该点处的切线方程为:y−y0=2x −x0)即y=y02+2x.得其与x=0,x=4的交点分别为(0,y02),(4,y02+2y0)于是由此切线与直线x=0,x=4以及曲线y=√x所围的平面图形面积为:S=∫(4 0y022√x√x)dx=2y0+√x−163=2√x0√x−163应用均值不等式求得x0=2时,S取得最小值.即所求切线即为:y=2√2+√22.35.【答案】解:设切线方程为y =kx +1,切点坐标为(a, b), 则{k =1aka +1=b ln a =b ,解得a =e 2,b =2,∴ 切线方程为y =1e 2x +1.将y =0代入y =1e 2x +1得x =−e 2,∴ B(−e 2, 0). ∴区域D 的面积为∫(e 2−e 21e 2x+1)dx −∫ln e 21xdx=x 22e 2+x|e 2−e 2−x(ln x −1)|e 21=2e 2+e 2=3e 2.区域D 绕x 轴旋转一周所得几何体体积为13⋅π⋅22⋅2e 2−π⋅∫(e 21ln x)2dx =8πe 23−π⋅x[(ln x)2−2ln x +2]|e 21=8πe 23−(2e 2−2)⋅π=2πe 23+2π.【考点】用定积分求简单几何体的体积 【解析】求出A 的坐标和切线方程,则所求面积和体积均可用两个定积分的差来表示. 【解答】解:设切线方程为y =kx +1,切点坐标为(a, b), 则{k =1aka +1=b ln a =b,解得a =e 2,b =2,∴ 切线方程为y =1e 2x +1.将y =0代入y =1e 2x +1得x =−e 2,∴ B(−e 2, 0). ∴区域D 的面积为∫(e 2−e 21e 2x+1)dx −∫ln e 21xdx=x 22e 2+x|e 2−e 2−x(ln x −1)|e 21=2e 2+e 2=3e 2.区域D 绕x 轴旋转一周所得几何体体积为13⋅π⋅22⋅2e 2−π⋅∫(e 21ln x)2dx=8πe 23−π⋅x[(ln x)2−2ln x +2]|e 21=8πe 23−(2e 2−2)⋅π=2πe 23+2π.36. 【答案】解:由{y =2x −x 2y =2x 2−4x ,得{x =0y =0或{x =2y =0, ∴ 所求图象的面积为:∫[20(2x −x 2)−(2x 2−4x)]dx =∫(206x −3x 2)dx =(3x 2−x 3)|02=3×22−23=12−8=4. 【考点】定积分在求面积中的应用 【解析】先求出两曲线的交点坐标,利用定积分的应用即可求出对应图形的面积. 【解答】解:由{y =2x −x 2y =2x 2−4x ,得{x =0y =0或{x =2y =0, ∴ 所求图象的面积为:∫[20(2x −x 2)−(2x 2−4x)]dx =∫(206x −3x 2)dx =(3x 2−x 3)|02=3×22−23=12−8=4. 37. 【答案】解:∫(103ax +1)(x +b)dx =∫[103ax 2+(3ab +1)x +b]dx=[ax 3+12(3ab +1)x 2+bx]|01 =a +12(3ab +1)+b =0即3ab +2(a +b)+1=0 设ab =t ∴ a +b =−3t+12则a ,b 为方程x 2+3t+12x +t =0两根△=(3t+1)24−4t ≥0∴ t ≤19或t ≥1∴ a ⋅b ∈(−∞, 19]∪[1, +∞) 【考点】定积分的简单应用 【解析】先根据定积分的运算法则建立a 与b 的等量关系,然后设ab =t 则a +b =−3t+12,再利用构造法构造a ,b 为方程x 2+3t+12x +t =0两根,然后利用判别式可求出a .b 的取值范围. 【解答】解:∫(103ax +1)(x +b)dx =∫[103ax 2+(3ab +1)x +b]dx=[ax 3+12(3ab +1)x 2+bx]|01 =a +12(3ab +1)+b =0即3ab +2(a +b)+1=0 设ab =t ∴ a +b =−3t+12则a ,b 为方程x 2+3t+12x +t =0两根△=(3t+1)24−4t ≥0∴ t ≤19或t ≥1∴ a ⋅b ∈(−∞, 19]∪[1, +∞) 38.【答案】解:根据对称性,得: 曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的平面区域的面积S 为:曲线y =cos x与直线x =π2,x =π所围成的平面区域的面积的二倍, ∴ S =−2∫cos ππ2xdx =−2sin x =2.故曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的面积为2.【考点】定积分在求面积中的应用 【解析】本题利用直接法求解,根据三角函数的对称性知,曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的平面区域的面积S 为:曲线y =cos x 与直线x =π2,x =π所围成的平面区域的面积的二倍,最后结合定积分计算面积即可. 【解答】解:根据对称性,得: 曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的平面区域的面积S 为:曲线y =cos x与直线x =π2,x =π所围成的平面区域的面积的二倍, ∴ S =−2∫cos ππ2xdx =−2sin x =2.故曲线y =cos x 与直线x =π2、x =3π2、y =0所围成的面积为2.39. 【答案】解:s =∫|5π4−π2sin x|dx =−∫sin 0−π2xdx+∫sin π0xdx−∫sin 5π4πxdx=cos x|−π20−cos x|0π+cos x|π5π4=1+2+(−√22+1)=4−√22. 【考点】定积分在求面积中的应用 【解析】求曲线y =sin x 与直线x =−π2,x =5π4,y =0所围成的平面图形的面积【解答】解:s =∫|5π4−π2sin x|dx =−∫sin 0−π2xdx+∫sin π0xdx−∫sin 5π4πxdx=cos x|−π20−cos x|0π+cos x|π5π4=1+2+(−√22+1)=4−√22. 40.【答案】 由 {y =kx y =x −x2 得 {x =1−k y =k −k 2 (0<k <1). 由题设得∫10−k[(x −x 2)−kx]dx =12∫(10x −x 2)dx 即∫10−k[(x −x 2)−kx]dx =12( 12x 2−13x 3)|01=112 ∴ (1−k)3=12 ∴ k =1−√432∴ 直线方程为y =(1−√432)x . 故k 的值为:k =1−√432.【考点】定积分的简单应用 【解析】先由 {y =kx y =x −x 2 得 {x =1−k y =k −k 2 ,根据直线y =kx 分抛物线y =x −x 2与x 轴所围成图形为面积相等的两个部分得∫10−k[(x −x 2)−kx]dx =12∫(10x −x 2)dx 下面利用定积分的计算公式即可求得k 值. 【解答】由 {y =kx y =x −x 2得 {x =1−k y =k −k 2 (0<k <1).由题设得∫10−k[(x −x 2)−kx]dx =12∫(10x −x 2)dx 即∫10−k[(x −x 2)−kx]dx =12( 12x 2−13x 3)|01=112试卷第31页,总31页 ∴ (1−k)3=12 ∴k =1−√432∴ 直线方程为y =(1−√432)x . 故k 的值为:k =1−√432.。
定积分习题答案
定积分习题答案定积分习题答案定积分是高等数学中的一个重要概念,它是对函数在一定区间上的面积进行求解的方法。
在学习定积分的过程中,我们经常会遇到各种各样的习题,需要通过计算来求解。
本文将为大家提供一些定积分习题的答案,希望能够帮助大家更好地理解和掌握这一知识点。
1. 计算定积分∫(0, 1) x^2 dx。
解:根据定积分的定义,我们需要求解函数x^2在区间[0, 1]上的面积。
由于函数x^2是一个二次函数,它在[0, 1]上是单调递增的,因此可以直接使用定积分的公式进行计算。
∫(0, 1) x^2 dx = [x^3/3] (0, 1) = 1/3 - 0 = 1/3。
所以,定积分∫(0, 1) x^2 dx的结果为1/3。
2. 计算定积分∫(1, 2) 2x dx。
解:根据定积分的定义,我们需要求解函数2x在区间[1, 2]上的面积。
由于函数2x是一个一次函数,它在[1, 2]上是单调递增的,因此可以直接使用定积分的公式进行计算。
∫(1, 2) 2x dx = [x^2] (1, 2) = 4 - 1 = 3。
所以,定积分∫(1, 2) 2x dx的结果为3。
3. 计算定积分∫(0, π/2) sin(x) dx。
解:根据定积分的定义,我们需要求解函数sin(x)在区间[0, π/2]上的面积。
由于函数sin(x)是一个周期为2π的函数,且在[0, π/2]上是单调递增的,因此可以直接使用定积分的公式进行计算。
∫(0, π/2) sin(x) dx = [-cos(x)] (0, π/2) = -cos(π/2) + cos(0) = -1 + 1 = 0。
所以,定积分∫(0, π/2) sin(x) dx的结果为0。
4. 计算定积分∫(0, 1) x^3 - 2x^2 + x dx。
解:根据定积分的定义,我们需要求解函数x^3 - 2x^2 + x在区间[0, 1]上的面积。
由于函数x^3 - 2x^2 + x是一个三次函数,它在[0, 1]上是单调递增的,因此可以直接使用定积分的公式进行计算。
(完整版)定积分习题及答案
第五章定积分(A 层次)1.203cos sin xdx x ;2.a dx x ax222;3.31221xxdx ;4.1145x xdx ;5.411xdx ;6.14311xdx ;7.21ln 1e xx dx ;8.02222xxdx ;9.dx x 02cos 1;10.dx x x sin 4;11.dx x 224cos 4;12.55242312sin dx xxx x ;13.342sin dx xx ;14.41ln dx xx ;15.1xarctgxdx ;16.202cosxdx e x ;17.dx x x 02sin ;18.dx x e 1ln sin ;19.243cos cos dx x x ;20.40sin 1sin dx x x ;21.dx xxx 02cos 1sin ;22.2111lndx xx x ;23.dx xx 4211;24.20sin ln xdx ;25.211dx xxdx0。
(B 层次)1.求由0cos 0x y ttdtdte 所决定的隐函数y 对x 的导数dxdy 。
2.当x 为何值时,函数x tdt tex I 02有极值?3.x xdt t dxd cos sin 2cos 。
4.设1,211,12xx x x xf ,求20dx x f 。
5.1lim22xdtarctgt xx 。
6.设其它,00,sin 21xx xf ,求x dt t f x。
7.设时当时当0,110,11xex xxf x,求201dx xf 。
8.2221limnn nnn。
9.求nk nknknnen e 12lim 。
10.设x f 是连续函数,且12dt t f x x f ,求x f 。
11.若2ln 261xtedt ,求x 。
12.证明:212121222dxeex。
13.已知axxx dx ex axa x 224lim,求常数a 。
定积分习题及答案
(A层次)1. 4.7. 兀f 。
2 s in x cos3 xdx ; r xdx -1✓5-4x ,e 2dx f 1 x ✓l +I n x ;10. f 一冗九x 4s in 汕; 冗13. f f-�dx; 4 Sill X 冗16. f 。
2产co sx dx ;冗第五章定积分2. f 。
a x 2✓a 2—x 2dx; 5.「I✓x dx +l ;8. f -o 2 x 2 + d 2xx + 2 ; 冗11. f� 冗4c os 4xdx ;14. 17. 2f14 Jn X`dx ;f 。
兀(xsinx)2dx ;冗19. f� ✓cosx-cos 3 xdx;20. f 。
4 smx dx · 1 + S lll . X , 22. 4If 0 2 xln l +x dx ; l -x25. f +00dx0 (1 + x 2 XI + xa \ (B层次)23. f +oo l +x 2 dx · -oo 1 +X 4' 心(a�o )。
3. 6.9. 厂dx1 X 飞l +x2 r dx`3 斤言-1;f。
冗✓1+ c os2xdx;3· 212 fs x sm xdx · ·-5 x 4 + 2x 2 + 1' 15. f 。
1 xa rct gxdx ; 18. {es in(lnx 雇21. 24. f 。
冗xs mx dx .1 +C OS 2X 冗f 。
2 ln sin x dx ;d y 1. 求由f 。
:e r dt+f x costd t=O所确定的隐函数对x 的导数odx 2. 当x 为何值时,函数I(x)= f x t e -t 2dt有极值?。
3.d厂cos矿t。
dx si n x(}Ix+l, x�14. 设八x )�{归,X > 1'求l。
勹(x )dx 。
2f x(a rc tg t) 2d t5. lirn 。
定积分习题及答案
定积分习题及答案定积分习题及答案定积分是微积分中的重要概念之一,广泛应用于数学、物理、工程等领域。
掌握定积分的计算方法和应用是学习微积分的关键。
在本文中,我们将介绍一些常见的定积分习题,并给出详细的解答。
1. 计算定积分∫(0 to 1) x^2 dx。
解答:根据定积分的定义,我们可以先求出x^2的不定积分,然后再进行定积分的计算。
x^2的不定积分为(1/3)x^3,所以∫(0 to 1) x^2 dx = (1/3)x^3 |(0 to1) = (1/3)(1^3 - 0^3) = 1/3。
2. 计算定积分∫(1 to 2) (2x + 1) dx。
解答:根据定积分的性质,我们可以将定积分拆分为两个部分:∫(1 to 2) 2x dx + ∫(1 to 2) 1 dx。
第一个部分的不定积分为x^2,第二个部分的不定积分为x。
所以∫(1 to 2) (2x + 1) dx = (x^2) |(1 to 2) + (x) |(1 to 2) = (2^2 - 1^2) + (2 - 1)= 4 - 1 + 1 = 4。
3. 计算定积分∫(0 to π) sin(x) dx。
解答:sin(x)的不定积分为-cos(x),所以∫(0 to π) sin(x) dx = (-cos(x)) |(0 to π) = -cos(π) - (-cos(0)) = 1 - (-1) = 2。
4. 计算定积分∫(0 to 1) e^x dx。
解答:e^x的不定积分为e^x,所以∫(0 to 1) e^x dx = (e^x) |(0 to 1) = e^1 -e^0 = e - 1。
5. 计算定积分∫(0 to 2π) cos(x) dx。
解答:cos(x)的不定积分为sin(x),所以∫(0 to 2π) cos(x) dx = (sin(x)) |(0 to 2π)= sin(2π) - sin(0) = 0。
(完整版)§定积分的应用习题与答案
第六章 定积分的应用(A )1、求由下列各曲线所围成的图形的面积 1)221x y =与822=+y x (两部分都要计算)2)xy 1=与直线x y =及2=x3)xe y =,xe y -=与直线1=x4)θρcos 2a =5)t a x 3cos =,t a y 3sin =1、求由摆线()t t a x sin -=,()t a y cos 1-=的一拱()π20≤≤t 与横轴所围成的图形的面积2、求对数螺线θρae=()πθπ≤≤-及射线πθ=所围成的图形的面积3、求由曲线x y sin =和它在2π=x 处的切线以及直线π=x 所围成的图形的面积和它绕x 轴旋转而成的旋转体的体积4、由3x y =,2=x ,0=y 所围成的图形,分别绕x 轴及y 轴旋转,计算所得两旋转体的体积5、计算底面是半径为R 的圆,而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积6、计算曲线()x y -=333上对应于31≤≤x 的一段弧的长度7、计算星形线t a x 3cos =,t a y 3sin =的全长8、由实验知道,弹簧在拉伸过程中,需要的力→F (单位:N )与伸长量S (单位:cm )成正比,即:kS =→F (k 是比例常数),如果把弹簧内原长拉伸6cm , 计算所作的功9、一物体按规律3ct x =作直线运动,介质的阻力与速度的平方成正比,计算物体由0=x 移到a x =时,克服介质阻力所作的功10、 设一锥形储水池,深15m ,口径20m ,盛满水,将水吸尽,问要作多少功?11、 有一等腰梯形闸门,它的两条底边各长10cm 和6cm ,高为20cm ,较长的底边与水面相齐,计算闸门的一侧所受的水压力12、 设有一长度为λ,线密度为u 的均匀的直棒,在与棒的一端垂直距离为a 单位处有一质量为m 的质点M ,试求这细棒对质点M 的引力(B)1、设由抛物线()022>=p px y 与直线p y x 23=+ 所围成的平面图形为D 1) 求D 的面积S ;2)将D 绕y 轴旋转一周所得旋转体的体积2、求由抛物线2x y =及x y =2所围成图形的面积,并求该图形绕x 轴旋转所成旋转体的体积3、求由x y sin =,x y cos =,0=x ,2π=x 所围成的图形的面积,并求该图形绕x 轴旋转所成旋转体的体积4、求抛物线px y 22=及其在点⎪⎭⎫⎝⎛p p ,2处的法线所围成的图形的面积5、求曲线422+-=x x y 在点()4,0M 处的切线MT 与曲线()122-=x y 所围成图形的面积6、求由抛物线ax y 42=与过焦点的弦所围成的图形面积的最小值7、求由下列曲线所围成图形的公共部分的面积 1)θρcos 3=,θρcos 1+=2)θρsin a =,()θθρsin cos +=a ,0>a8、由曲线()16522=-+y x 所围成图形绕x 轴旋转所成旋转体的体积9、求圆心在()b ,0半径为a ,()0>>a b 的圆,绕x 轴旋转而成的环状体的体积10、计算半立方抛物线()32132-=x y 被抛物线32x y =截得的一段弧的长度(C)1、用积分方法证明半径为R 的球的高为H 的球缺的的体积为⎪⎭⎫ ⎝⎛-=32H R H V π2、分别讨论函数x y sin =⎪⎭⎫⎝⎛≤≤20πx 在取何值时,阴影部分的面积1S ,2S 的和21S S S +=取最大值和最小值3、求曲线x y =()40≤≤x 上的一条切线,使此切线与直线0=x , 4=x 以及曲线x y =所围成的平面图形的面积最小4、半径为r 的球沉入水中,球的上部与水面相切,球的密度与水相同,现将球从水中取出,需作多少功?第六章 定积分应用 习 题 答 案(A )1、1)342+π,346-π 2)2ln 23- 3)21-+ee 4)2a π 5)283a π2、23a π 3、()ππ2224--e e a 4、12-π,42π 5、7128π,564π 6、3334R 7、3432- 8、a 6 9、kJ 18.0 10、3732727a kc (其中k 为比例常数)11、()kJ 5.57697 12、()kN 14373 13、取y 轴经过细直棒⎪⎪⎭⎫⎝⎛+-=2211t a aGmu F y 22t a a Gmu F x +-=λ(B)1、1)⎰-=⎪⎪⎭⎫ ⎝⎛--=pp p dy p y y p S 322316223 或()⎰⎰=⎪⎭⎫⎝⎛+-++=20229231622322pp p p dx px x p dx px px S2)⎰⎰--=⎪⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛-=pp p p p dy p y dy y p V 33322215272223πππ 2、()⎰=-=10231dx x x A ()()ππ⎰=⎪⎭⎫⎝⎛-=10222103dx x x V3、()()⎰⎰-=-+-=244222cos sin sin cos πππdx x x dx x x A()()()()()()⎰⎰=-+-=24224022cos sin sin cos πππππdx x x dx x x V4、抛物线在点⎪⎭⎫⎝⎛p p ,2处的法线方程为: p y x 23=+,以下解法同第一题2316p A = 5、MT :x y 24-=,切线MT 与曲线()122-=x y 的交点坐标为⎪⎭⎫⎝⎛1,23,()2,3- ⎰-=⎪⎪⎭⎫ ⎝⎛---=122491224dy y y A 6、提示:设过焦点()0,a 的弦的倾角为α则弦所在直线的方程为()a x y -=αtan由()a x y -=αtan ,ax y 42=得两交点纵坐标为()()21csc 2csc 2y ctg a ctg a y =+<-=αααα所以()()dy a y yctg a A y y ⎰⎥⎦⎤⎢⎣⎡-+=2142αα ()()32222csc 34csc 4csc 4ααααa ctg a a -+=()()3232csc 34csc 4ααa a -=()32csc 38αa =因为πα<<0 当2πα=时 ()3csc α取得最小值为1所以 当2πα=时 过焦点的弦与抛物线ax y 42=所围成的图形面积()32csc 382απa A =⎪⎭⎫ ⎝⎛最小7、1)()()πθθθθπππ45cos 321cos 1212232302=⎥⎦⎤⎢⎣⎡++=⎰⎰d d A2)()()[]⎰⎰-=++=ππππθθθθθ22220241cos sin 21sin 21a d a d a A 8、()()⎰⎰------+=44442222165165dx xdx xV ππ()()⎰-=⎭⎬⎫⎩⎨⎧----+=4422222160165165ππdx xx9、解法同题810、提示:()32132-=x y ,32x y = 联立得交点⎪⎪⎭⎫ ⎝⎛36,2,⎪⎪⎭⎫ ⎝⎛-36,2 所求弧长()⎰+=212'12dx y s由()32132-=x y 得()yx y 2'1-=于是()()()()()1231321134222'-=--=⎪⎪⎭⎫ ⎝⎛-=x x x y x y于是得()⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡-+=⎰12598123122321221dx x S(C)1、证明:此处球缺可看作由如图阴影(图222R y x =+的一部分)绕y 轴旋转而成所以()⎰⎰---==RHR RHR dy y R dy x V 222ππR HR R HR y yR ---=332ππ()[]()[]3323H R R H R R R -----=ππ⎪⎭⎫ ⎝⎛-=32H R H π2、解:()⎰-=tdx x t S 11sin sin ()⎰-=22sin sin πtdx t x S()()⎰-=tdx x t t S 1sin sin +()⎰-2sin sin πtdx t x=⎪⎭⎫ ⎝⎛≤≤-⎪⎭⎫⎝⎛-+201sin 22cos 2ππt t t t ()0cos 22'=⎪⎭⎫⎝⎛-=t t t S π,得驻点2421ππ==t t易知()()002''1''<>t S t S122max -=⎪⎭⎫ ⎝⎛=∴ππS S ,124min -=⎪⎭⎫⎝⎛=πS S3、解:设()00,y x 为曲线x y =()40≤≤x 上任一点,易得曲线于该点处的切线方程为:()00021x x x y y -=- 即0022x x y y +=得其与0=x , 4=x 的交点分别为⎪⎭⎫ ⎝⎛2,00y ,⎪⎪⎭⎫⎝⎛+0022,4y y 于是由此切线与直线0=x , 4=x 以及曲线x y =所围的平面图形面积为:3164222004000-+=⎪⎪⎭⎫ ⎝⎛-+=⎰x y dx x x x y S3164200-+=x x 问题即求31642-+=xx S ()40≤≤x 的最小值 令022321=+=--xxS 得唯一驻点2=x 且为唯一极小值所以 当2=x 时,S 最小 即所求切线即为:2222+=x y 4、如图:以水中的球心为原点,上提方向作为坐标轴建立坐标系易知任意[]dx x x +,段薄片在提升过程中在水中行程为r -x ,而在水上的行程为2r -(r -x )=r +x因为求的密度与水相同,所以在水中提升过程中浮力与重力的合力为零,不做功,而在水面上提升时,做功微元为()()dx x r x r g dW +-=22π()()g r dx x r x r g dW W r r r r 42234ππ⎰⎰--=+-==。
定积分与微积分基本定理练习题与答案
-----定积分与微积分基本定理练习题及答案1.4所围成图形的面积,其中正确的是x y=1.(2011 宁·夏银川一中月考)求曲线y=x2 与)(x2)dx 1(x-A.S=1(x2-x)dxB .S=00y)dy-C.S=1(y2-y)dyD .S=1(y00]答案[B][分析根据定积分的几何意义,确定积分上、下限和被积函数.[0,1][解读](0,0) ,(1,1),故积分上限是1,下限是0,由于在两函数图象的交点坐标是x2)dx.-=(x与y=x 所围成图形的面积S1 x2,故函数y=x2上,x≥的大小关系、c ,则=sinxdx a、b=2.(2010 山·东日照模考)a xdx ,b=exdx,c222000(是)a<b<cA .a<c<bB.c<a<b..c<b<aD C][答案D1cosx|02,b=2exdx=ex|02=e2-1>2,c=2sinxdx [解读]a==-2=x2|02=2xdx2000(1,2) ,=1-cos2∈c<a<b.∴)( x3 围成的封闭图形面积为,.3 (2010 山·东理,7)由曲线y=x2 y=11 1 7C.B. A.412] A[D.答案123x2y=]解读[.(1,1)由得交点为(0,0) ,x3y=11=x3)dx (x2 -11 .=∴=01 S x3 x4-12340]点评[图形是由两条曲线围成的时,其面积是上方曲线对应函数表达式减去下方曲线对应函数表达式的积分,请再做下题:A(2,4)y P )(2010 ·南师大附中湖设点在曲线=x2 上从原点到,移动,如果把由直线OP如图所示,当=及直线=直线y x2 x 2 1S所围成的面积分别记作,S2.的坐S1=时,点S2 P)(标是1/13--------4 164 16,,A. B. 5399 415413,,C. D. 5377 [答案]At3=S2;=x2)dx tx,∴S1=(tx-直线]设P(t,t2)(0≤t ,≤则2) OP:y=[解读(x2t26t0t384416,∴P ,2ttx)dx =-+,若S1=S2,则t =-. 36339()4.由三条直线x=0、x=2、y=0 和曲线y=x3 所围成的图形的面积为4186 D.B.C. 53A .4[答案]Ax4x3dx S==]02=4.[解读240) -1(sinx+1)dx 的值为()1湖·南省考试院调研.(2010 5A.0B.2C.2+2cos1D .2-2cos1[答案]B-][解读1)=-cos(-(-2.cos11(sinx++1)dx-=1)(-+cosx1)x)|(--11=1()6.曲线y=cosx(0≤x≤2与π)直线y=1 所围成的图形面积是A .2πB.3ππ3C. D .π2[答案]A][解读如右图,S=∫02π-(1cosx)dx=(x-sinx)|02 =π2π.[ 点评]此题可利用余弦函数的对称性①②③④面积相等解决,但若把积分区间改为π,,则对称性就无能为力了.π67.函数F(x) =xt(t -4)dt 在[-1,5] 上()0,无最小值0A .有最大值32320 和最小值-B.有最大值3C.有最小值-,无最大值2/13--------D.既无最大值也无最小值[答案]B[解读],,x2=4 (x)=0,得x1=0F′(x)=x(x -4),令F′73225∵F(-1) =-,F(0)=0,F(4)=-,F(5)=- . 33332∴最大值为0,最小值为-.[点评]一般地,F(x) =xφ(t)dt的导数F′(x)=φ(x).01dt,若f(x)<a3 ,则n,函数f(x) =x 的8.已知等差数列{an} 的前n 项和Sn=2n2+x t1取值范围是()3,+∞B .A.(0,e21)6D .(0 ,e11)C.(e-11,e)[答案]D1f(x) =dt=lnt|1x =lnx ,a3=S3-S2=][解读21-10=11,由lnx<11 得,0<x<e11.x t19.(2010 福·建厦门一中)如图所示,在一个长为π,宽为 2 的矩形OABC内,曲线y=sinx(0 ≤x≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形()OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是π31 2 A. B. C. D.πππ4][答案AS=π[解读]由图可知阴影部分是曲边图形,考虑用定积分求出其面积.由题意得sinxdx =-cosx|0=π-(cos π-cos0) =2 ,再根据几何概型的算法易知所求概率P =S21= .=S矩形2ππOABCx+2 -2≤x<0S轴所围成的图形面积的图象与x=函数.10(2010 吉·林质检) f(x) π2cos0≤x≤2为()3/13--------31A.B.2D. 21 C.4[答案]Cππ2)dx-解读] 2(x +[ 4.+2=∫-面积S=2f(x)dx =+∫02cosxdx =222011.(2010 ·沈阳二十中)设函数f(x) =x-[x] ,其中[x] 表示不超过x 的最大整数,如[ -1.2]x,f(x) 在区间(0,2)上零点的个数记为3m,f(x) =-与g(x)=-2,[1.2] =1,[1] =1.又函数g(x)(,则的值是n的图象交点的个数记为)n g(x)dxm45.-A .-B3275 DC.-.-64[答案]A由题意可得,当0<x<1时,[x] =0,f(x) =x[解读],当1≤x<2时,[x] =1,f(x) =x-1,所以当x∈(0,2)时,函数f(x) 有一个零点,由函数f(x) 与g(x) 的图象可知两个函数有4 个交x5 x2. =14=-=-dx 点,所以m=1,n=4,则g(x)dx 4n-2361m11.(2010 江·苏盐城调研)甲、乙两人进行一项游戏比赛,比赛规则如下:甲从区间[0,1]b,乙从区间[0,1]c(b、上随机等可能地抽取一个实数记为上随机等可能地抽取一个实数记为c 可以相等),若关于x 的方程x2 +2bx+c=0 有实根,则甲获胜,否则乙获胜,则在一场比赛中甲获胜的概率为()1 2 13A. B. C.D.4332[答案]A方程x2+2bx+c=0有实根的充要条件为[解读]=4b2-4c≥0,即b2≥c,1b2db01=由题意知,每场比赛中甲获胜的概率为p.=1×1312.(2010 ·林省调研吉)已知正方形四个顶点分别为O(0,0) ,A(1,0) ,B(1,1) ,C(0,1),曲线y=x2( x≥0)与x 轴,直线x=1 构成区域M ,现将一个质点随机地投入正方形中,则质点落在区域M 内的概率是()11A. B. 4212C.D. 53[答案] C4/13--------1p,故所求概率=1x2dx =x3|011[解读],区域M 的面积为S=如图,正方形面积13301= .32.如图,阴影部分面积等于()A.2 3B.2-33235C.D. 33]答案[C[解读]图中阴影部分面积为1321S= .=x2)|1--2x)dx =(3x -x3 3-(3-x233-33. 24-x2dx =()A .4πB.2ππC.π D.2[答案] C令解读[ ]y=4-x2,则x2+y2=4(y ≥,0)由定积分的几何意义知所求积分为图中阴影部分的面积,1S=∴×π×=22π.45/13--------4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的t0 和t1,下列判断中一定正确速度曲线分别为v 甲和v 乙(如图所示).那么对于图中给定的的是()A .在t1 时刻,甲车在乙车前面B.在t1 时刻,甲车在乙车后面C.在t0 时刻,两车的位置相同D.t0 时刻后,乙车在甲车前面[答案]A[解读]判断甲、乙两车谁在前,谁在后的问题,实际上是判断在t0,t1 时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间内行驶的路程就是该时v(t) 的图象与间段内速度函数的定积分,即速度函数t 轴以及时间段围成区域的面积.从图v 乙的图象与象知:在t0 时刻,v 甲的图象与t 轴和t=0,t=t0 围成区域的面积大于轴和tt=0,t =t0 围成区域的面积,因此,在t0 时刻,甲车在乙车的前面,而且此时乙车的速度刚刚赶上甲车的速度,所以选项C,D 错误;同样,在t1 时刻,v 甲的图象与t 轴和t=t1 围成区域的面积,仍然大于v 乙的图象与t 轴和t=t1 围成区域的面积,所以,可以断定:6/13--------在t1 时刻,甲车还是在乙车的前面.所以选A.ππ内随机投掷一点,该≤1} 0≤y,≤≤x5.(2012 山·东日照模拟)向平面区域Ω={(x ,y)|-44(=cos2x 下方的概率是点落在曲线y)1πB. A. 24π D.21C. -π2][答案Dπ,在这个区平面区域Ω是矩形区域,其面积是2]解读[6.(sinx-cosx)dx 的值是()πB. 4C.2D.-2A .0]答案[D[解读](sinx-cosx)dx =(-cosx-sinx)=-2. 7.(2010 惠·州模拟)2(2-|1-x|)dx =________. 0[答案]31+x0≤x≤1]解读[∵y=,3-x 1<x ≤2(2-|1-x|)dx =(1+x)dx +(3-x)dx∴21003113 3.==+x2)|21=(3x (x+x2)|10+-2222-1f(x)dx =2f(a) 成立,则1a 1+,若=2x 3x2 f(x) 已知函数芜·湖十二中.8 (2010 )=+________.7/13--------1或[答案]1 -3-1f(x)dx =-1(3x2 +2x+1)dx =(x3 +x2+x)|1-1=4,-1f(x)dx =111 ]解读[∵2f(a) ,∴6a2+4a+2=4,1∴a=-1 或 .31π的展开式中含)6 x-x2 项的系数是9.已知(a,则二项式=a ∫0(sinx +cosx)dx2x________.[答案]-192ππππ-[解读]cos0)由已知得(sin0 cos )-+cosx)dx=(-cosx+sinx)|=(sin -0a=∫0(sinx2222=2,1x-)6 的展开式中第r+1 项是Tr +1=(-1)r ×Cr6×26(2-r ×x3-r,令3-r=2 得,r x=1,故其系数为(-1)1 ×C16×25=-192.10.有一条直线与抛物线y=x2 相交于 A 、B 两点,线段AB 与抛物线所围成图形的面4积恒等于,求线段AB 的中点P 的轨迹方程.[解读]设直线与抛物线的两个交点分别为A(a ,a2),B(b ,b2),不妨设a<b,a2b2-则直线AB 的方程为y-a2=(x-a),ab-即y=(a+b)x-ab.a+b b[(a+b)x -ab-x2]dx =AB 与抛物线围成图形的面积为S=(x2-abx-则直线2ax31)|ba=(b-a)3,6341∴(b-a)3=,36解得b-a=2.设线段AB 的中点坐标为P(x,y),a+b,x=a+1,x=2将b-a=2 代入得其中a2+b2y=a2+2a+2.=y.2消去 a 得y=x2+1.y=x2+P ∴线段AB 的中点的轨迹方程为1.能力拓展提升8/13--------11.(2012 郑·州二测)等比数列{an} 中,a3=6,前三项和S3=34xdx,则公比q 的值为()1.-B2 1A .11C.1 或-D.-1 或-22[答案]C66,化简得18 6=++,解18,所以0 1=2q2-q[解读]-34xdx因为S3==2x2|30=q2q01C.或 1 q=-,故选得q=212.(2012 ·原模拟太)已知(xlnx) =′lnx +1,则elnxdx =()11-.1 B.e C.eA 1+D .e[答案]A lnxdx ,于是lnx1)-1=-1,联想到(xlnx x)=′(lnx+[解读]由(xlnx)=′lnx+=e(xlnx1-x)|e1=(elne -e)-(1 ×ln1 -1) =1.13.抛物线y2=2x与直线y=4-x 围成的平面图形的面积为________.][答案18y2,2xy2==x作为积分变量y ,选A(2,2) 、B(8[解读],-4)、解得两交点由方程组,x 4y=-2x=4-y,y2y2y3-)|2-4=18.-=]dy y) [(4 S∴=--(4y 2226-49/13--------14.已知函数f(x) =ex-1,直线l1:x=1,l2:y=et-1(t 为常数,且0≤t ≤.1)直线l1 ,l2与函数f(x) 的图象围成的封闭图形如图中区域Ⅱ所示,其面积用S2 表示.直线l2,y 轴与S1 表示.当t 变化时,阴影函数f(x) 的图象围成的封闭图形如图中区域Ⅰ所示,其面积用部分的面积的最小值为________.[答案] (e-1)2[解读]由题意得S1+S2=t (et-1-ex+1)dx +1(ex -1-et+1)dx =t (et-ex)dx0t0+1(ex-et)dx=(xet-ex)|t0+(ex-xet)|1=(2t-3)et +e+1,令g(t) =(2t-3)et+e+1(0 ≤t≤,1) t11,,∴当t∈[0′g(t)=0,得t=-3)et=(2t -1)et,令是+(2tg(t) g′(t)<0,)时,g则′(t)=2et22111( eg(t)的最小值为=时,g′(t)>0,g(t) 是增函数,因此,1]减函数,当g( 2e) 1-=et ∈(+222-1)2.故阴影部分的面积的最小值为(e-1)2..求下列定积分.15x-(1);。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 定积分(A 层次)1.⎰203cos sin πxdx x ; 2.⎰-adx x a x222; 3.⎰+31221xxdx ;4.⎰--1145x xdx ; 5.⎰+411x dx ; 6.⎰--14311x dx ;7.⎰+21ln 1e xx dx; 8.⎰-++02222x x dx; 9.dx x ⎰+π02cos 1; 10.dx x x ⎰-ππsin 4; 11.dx x ⎰-224cos 4ππ; 12.⎰-++55242312sin dx x x xx ;13.⎰342sin ππdx x x; 14.⎰41ln dx x x ; 15.⎰10xarctgxdx ; 16.⎰202cos πxdx e x ; 17.()dx x x ⎰π2sin ; 18.()dx x e⎰1ln sin ;19.⎰--243cos cos ππdx x x ; 20.⎰+4sin 1sin πdx xx ; 21.dx x xx ⎰+π02cos 1sin ; 22.⎰-+2111ln dx xxx ; 23.⎰∞+∞-++dx x x 4211; 24.⎰20sin ln πxdx ; 25.()()⎰∞+++0211dx x x dxα()0≥α。
(B 层次)1.求由0cos 0=+⎰⎰xyttdt dt e 所决定的隐函数y 对x 的导数dxdy 。
2.当x 为何值时,函数()⎰-=xt dt te x I 02有极值?3.()⎰x xdt t dx d cos sin 2cos π。
4.设()⎪⎩⎪⎨⎧>≤+=1,211,12x x x x x f ,求()⎰20dx x f 。
5.()1lim22+⎰+∞→x dt arctgt xx 。
6.设()⎪⎩⎪⎨⎧≤≤=其它,00,sin 21πx x x f ,求()()⎰=x dt t f x 0ϕ。
7.设()⎪⎪⎩⎪⎪⎨⎧<+≥+=时当时当0,110,11x e x xx f x,求()⎰-21dx x f 。
8.()2221limn n n n n +++∞→ 。
9.求∑=∞→+nk nk n k n nen e12lim 。
10.设()x f 是连续函数,且()()⎰+=12dt t f x x f ,求()x f 。
11.若⎰=-2ln 261xte dt π,求x 。
12.证明:⎰---<<212121222dx e ex 。
13.已知⎰∞+-+∞→=⎪⎭⎫ ⎝⎛+-a xxx dx e x a x a x 224lim ,求常数a 。
14.设()⎪⎩⎪⎨⎧≥<+=-0,0,12x e x x x f x,求()⎰-312dx x f 。
15.设()x f 有一个原函数为x 2sin 1+,求()⎰'202πdx x f x 。
16.设()x b ax x f ln -+=,在[]3,1上()0≥x f ,求出常数a ,b 使()⎰31dx x f 最小。
17.已知()2x ex f -=,求()()⎰'''1dx x f x f 。
18.设()()()⎰⎰+-=1222dx x f dx x f x x x f ,求()x f 。
19.()()[]⎰'-π2sin cos cos cos dx x x f x x f 。
20.设0→x 时,()()()dt t f t x x F x''-=⎰022的导数与2x 是等价无穷小,试求()0f ''。
(C 层次)1.设()x f 是任意的二次多项式,()x g 是某个二次多项式,已知()()()⎥⎦⎤⎢⎣⎡+⎪⎭⎫⎝⎛+=⎰12140611f f f dx x f ,求()dx xg b a ⎰。
2.设函数()x f 在闭区间[]b a ,上具有连续的二阶导数,则在()b a ,内存在ξ,使得()()()()ξf a b b a f a b dx x f b a''-+⎪⎭⎫ ⎝⎛+-=⎰32412。
3.()x f 在[]b a ,上二次可微,且()0>'x f ,()0>''x f 。
试证()()()()()()2a fb f a b dx x f a f a b ba +-<<-⎰。
4.设函数()x f 在[]b a ,上连续,()x f '在[]b a ,上存在且可积,()()0==b f a f ,试证()()dx x f x f ba ⎰'≤21(b x a <<)。
5.设()x f 在[]1,0上连续,()01=⎰dx x f ,()11=⎰dx x xf ,求证存在一点x ,10≤≤x ,使()4>x f 。
6.设()x f 可微,()00=f ,()10='f ,()()d t t x tf x F x⎰-=022,求()4limxx F x →。
7.设()x f 在[]b a ,上连续可微,若()()0==b f a f ,则()()()x f dx x f a b bx a ba'≤-≤≤⎰max 42。
8.设()x f 在[]B A ,上连续,B b a A <<<,求证()()dx kx f k x f b ak ⎰-+→0lim()()a f b f -=。
9.设()x f 为奇函数,在()+∞∞-,内连续且单调增加,()()()dt t f t x x F x⎰-=03,证明:(1)()x F 为奇函数;(2)()x F 在[)+∞,0上单调减少。
10.设()x f 可微且积分()()[]dt xt xf x f ⎰+1的结果与x 无关,试求()x f 。
11.若()x f ''在[]π,0连续,()20=f ,()1=πf ,证明:()()[]⎰=''+π3sin xdx x f x f 。
12.求曲线()()⎰--=xdt t t y 021在点(0,0)处的切线方程。
13.设()x f 为连续函数,对任意实数a 有()⎰+-=aadx x xf ππ0sin ,求证()()x f x f =-π2。
14.设方程()⎰-=--yx tdt y x tg x 02sec 2,求22dxyd 。
15.设()x f 在[]b a ,上连续,求证:()()[]()()a f x f dt t f h t f h xah -=-+⎰+→1lim 0(b x a <<) 16.当0≥x 时,()x f 连续,且满足()()x dt t f x x =⎰+102,求()2f 。
17.设()x f 在[]1,0连续且递减,证明()()⎰⎰≤λλ010dx x f dx x f ,其中()1,0∈λ。
18.设()x f '连续,()()()dt t a f t f x F x-'=⎰20,()00=f ,()1=a f ,试证:()()122=-a F a F 。
19.设()x g 是[]b a ,上的连续函数,()()dt t g x f xa ⎰=,试证在()b a ,内方程()()0=--ab b f x g 至少有一个根。
20.设()x f 在[]b a ,连续,且()0>x f ,又()()()dt t f dt t f x F xbxa⎰⎰+=1,证明:(1)()2≥'x F (2)()0=x F 在()b a ,内有且仅有一个根。
21.设()x f 在[]a 2,0上连续,则()()()[]⎰⎰-+=aa dx x a f x f dx x f 0202。
22.设()x f 是以π为周期的连续函数,证明:()()()()⎰⎰+=+πππ0202sin dx x f x dx x f x x 。
23.设()x f 在[]b a ,上正值,连续,则在[)b a ,内至少存在一点ξ,使()()()⎰⎰⎰==ba badx x f dx x f dx x f 21ξξ。
24.证明()()()()⎰⎰⎰++=+10010ln 1ln ln du u f du u f u f dt t x f x。
25.设()x f 在[]b a ,上连续且严格单调增加,则()()()⎰⎰<+bab adx x xf dx x f b a 2。
26.设()x f 在[]b a ,上可导,且()M x f ≤',()0=a f ,则()()22a b Mdx x f ba-≤⎰。
27.设()x f 处处二阶可导,且()0≥''x f ,又()t u 为任一连续函数,则()()()⎪⎭⎫⎝⎛≥⎰⎰a adt t u a f dt t u f a0011,()0>a 。
28.设()x f 在[]b a ,上二阶可导,且()0<''x f ,则()()⎪⎭⎫⎝⎛+-≤⎰2b a f a b dx x f b a。
29.设()x f 在[]b a ,上连续,且()0≥x f ,()0≤⎰badx x f ,证明在[]b a ,上必有()0≡x f 。
30.()x f 在[]b a ,上连续,且对任何区间[][]b a ,,⊂βα有不等式()δβααβ+-≤⎰1M dx x f (M ,δ为正常数),试证在[]b a ,上()0≡x f 。
第五章 定积分(A)1.⎰203cos sin πxdx x解:原式41cos 41cos 204203=-=-=⎰ππx xdx2.⎰-a dx x a x 0222解:令t a x sin =,则tdt a dx cos = 当0=x 时0=t ,当a x =时2π=t原式⎰⋅⋅=2022cos cos sin πtdt a t a t a()⎰⎰-==2420244c o s 182s i n 4ππdt t atdt a 42044164sin 41828a t a a πππ=-=3.⎰+31221xxdx解:令θtg x =,则θθd dx 2sec = 当1=x ,3时θ分别为4π,3π原式θθθθππd tg ⎰=3422sec sec()⎰-=342s i n s i n ππθθd3322-= 4.⎰--1145xxdx解:令u x =-45,则24145u x -=,udu dx 21-= 当1-=x ,1时,1,3=u 原式()61581132=-=⎰du u 5.⎰+411x dx解:令t x =,tdt dx 2=当1=x 时,1=t ;当4=x 时,2=t 原式⎥⎦⎤⎢⎣⎡+-=+=⎰⎰⎰2121211212t dt dt t tdt ()[]32ln 221ln 22121+=+-=t t6.⎰--14311x dx解:令u x =-1,则21u x -=,udu dx 2-= 当1,43=x 时0,21=u 原式2ln 21111212210021-=-+-=--=⎰⎰du u u du u u7.⎰+21ln 1e xx dx解:原式()⎰⎰++=+=2211ln 1ln 11ln ln 11e e x d xx d x232ln 1221-=+=e x8.⎰-++02222x x dx解:原式()()⎰--+=++=0222111x arctg x dx()24411πππ=+=--=a r c t g a r c t g9.dx x ⎰+π2cos 1解:原式⎰⎰==ππ2cos 2cos 2dx x dx x()⎰⎰-+=πππ220c o s 2c o s 2dx x xdx22s i n s i n 2220=⎥⎦⎤⎢⎣⎡-=πππx x 10.dx x x ⎰-ππsin 4解:∵x x sin 4为奇函数∴⎰-=ππ0sin 4xdx x11.dx x ⎰-224cos 4ππ解:原式()⎰⎰=⋅=222204cos 22cos 24ππdx x xdx()()⎰⎰++=+=2022022cos 2cos 2122cos 12ππdx x x dx x()⎰⎰+++=2020204cos 12cos 22πππdx x xdx x⎰+++=202044cos 4122sin 2ππππx xd x πππ234sin 412320=+=x12.⎰-++55242312sin dx x x xx 解:∵12sin 2423++x x xx 为奇函数∴012sin 552423=++⎰-dx x x xx 13.⎰342sin ππdx x x解:原式⎰-=34ππxdctgx⎰+-=3434ππππc t g x d xx c t g x 34s i n ln 9341πππx +⎪⎪⎭⎫ ⎝⎛-= 22ln 23ln 9341-+⎪⎪⎭⎫ ⎝⎛-=π 23ln 219341+⎪⎪⎭⎫ ⎝⎛-=π 14.⎰41ln dx xx解:原式⎰=41ln 2x xd⎥⎦⎤⎢⎣⎡-=⎰4141ln ln 2x d x x x⎥⎦⎤⎢⎣⎡-=⎰4112ln 42dx x x⎰--=412122ln 8dx x42ln 8-= 15.⎰10xarctgxdx解:原式⎰=1221arctgxdx⎥⎦⎤⎢⎣⎡+-=⎰1022102121dx x x arctgx x ⎰⎰++-=10210121218x dxdx π101021218a r c t g xx +-=π214-=π16.⎰202cos πxdx e x解:原式⎰=202sin πx d e x⎰⋅-=2022022s i n s i nππdx e x x e x x⎰+=202c o s2ππx d e e x ⎰⋅-+=2022022c o s 2c o s 2πππdx e x x e e x x⎰--=202c o s 42ππx d x e e x故()251cos 202-=⎰ππe xdx e x 17.()dx x x ⎰π2sin解:原式()⎰⎰-==ππ2222cos 1sin dx xx dx x x ⎰⎰-=ππ02022c o s 2121x d x x dx x ⎰-=ππ0232s i n 4161x d x x ⎥⎦⎤⎢⎣⎡⋅--=⎰πππ002322s i n 2s i n 416x d x x x x ⎰-=ππ032c o s 416x xd 462c o s 2c o s 4163003πππππ-=⎥⎦⎤⎢⎣⎡--=⎰x d x x x 18.()dx x e⎰1ln sin解:原式()()⎰⋅-=e edx xx x x x 111ln cos ln sin()⎰-=edx x e 1ln cos 1sin()()⎥⎦⎤⎢⎣⎡⋅+-=⎰e e dx x x x x x e 111ln sin ln cos 1sin()⎰-+-=edx x e e 1ln sin 11cos 1sin故()()11cos 1sin 2ln sin 1+-=⎰edx x e19.⎰--243cos cos ππdx x x解:原式()⎰--=242cos 1cos ππdx x x()⎰⎰+-=-2004s i n c o s s i n c o s ππx d xx dx x x ()()223423c o s 32c o s 32ππ⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡=-x x32344-=20.⎰+4sin 1sin πdx xx解:原式()⎰--=42sin 1sin 1sin πdx xx x ⎰⎪⎭⎫ ⎝⎛-=4022c o s s i n πdx x tg x x ()⎰⎰---=402421s e c c o s c o s ππdx x xx d ()242c o s 14040-+=--=πππx t g x x 21.dx xxx ⎰+π02cos 1sin 解:令t x -=2π,则原式⎰-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=2222cos 12sin 2πππππdt t t t⎰-+-+-=2222s i n 1c o s s i n 1c o s2πππdt t t t t t ()4s i n s i n 1c o s 220202πππππ==+=⎰t a r c t g dt tt 22.⎰-+2111lndx xxx 解:原式⎰⎪⎪⎭⎫⎝⎛-+=2102211ln x d x x ()()()⎰--+--⋅+-⋅--+=210222102111111211ln 2dx x x x x x x x x x ⎰-+=210221l n 3l n 81dx x x⎰⎰-++=210221013ln 81x dxdx21011ln 21213ln 81+-++=x x3ln 8321-=23.⎰∞+∞-++dx x x 4211 解:原式⎰⎰∞+∞+++=++=0222042111211dx x xx dx x x ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=⎰∞+x x d x x 1211202π221220=-=+∞+x x arctg24.⎰20sin ln πxdx解:原式()⎰⎰++⎪⎭⎫ ⎝⎛-==40220cos ln sin ln 2ln 22cos 2sin 2ln ππdt t t dx x x t x 令⎥⎦⎤⎢⎣⎡++=⎰⎰4040c o s ln sin ln 22ln 2πππtdt tdt⎥⎦⎤⎢⎣⎡++⎰⎰-=24402s i n ln sin ln 22ln 2πππππudu tdt ut⎰+=20s i n ln 22ln 2ππtdt故2ln 2sin ln 20ππ-=⎰xdx25.()()⎰∞+++0211αx x dx()0≥α解:令t x 1=,则dt tdx 21-=原式()()⎰⎰∞+∞+++=+⋅+-=020********ααααt t dt t tt t t dt t ∴()()()()()()⎰⎰⎰∞+∞+∞++++++=++0202021111112ααααxx dxx x x dx x x dx 21102π==+=∞+∞+⎰a r c t g x dx x故()()41102πα=++⎰∞+xx dx(B)1.求由0cos 0=+⎰⎰xyt tdt dt e 所决定的隐函数y 对x 的导数dxdy。