资产定价模型缺陷综述

合集下载

资本资产定价模型的不足之处的财务分析

资本资产定价模型的不足之处的财务分析

资本资产定价模型的不足之处的财务分析
(1)某些资产或企业的β值难以估计,特别是对一些缺乏历史数据的新兴行业【历史数据】。

(2)经济环境的不确定性和不断变化,使得依据历史数据估算出来的β值对未来的指导作用必然要打折扣。

(3)资本资产定价模型是建立在一系列假设之上的,其中一些假设与实际情况有较大偏差,使得资本资产定价模型的有效性受到质疑。

这些假设包括:市场是均衡的、市场不存在摩擦、市场参与者都是理性的、不存在交易费用、税收不影响资产的选择和交易等。

资本资产定价模型反映股票的必要收益率与β值(系统性风险)的线性关系。

资本资产定价模型是“必要收益率=无风险收益率+风险收
益率”的具体化,资本资产定价模型的一个主要贡献是解释了风险收益率的决定因素和度量方法,资本资产定价模型中,某资产或资产组合的风险收益率=β×(Rm-Rf)。

功能:
资本资产定价模型的主要内容是分析风险收益率的决定因素和度量方法
计算公式:
R=Rf+β×(Rm-Rf)
其中:(Rm-Rf)称为市场风险溢价,它反映的是市场作为整体对风险的平均“容忍”程度。

对风险的平均容忍程度越低,越厌恶风险,要求的收益率就越高,市场风险溢价就越大;反之,市场风险溢价则越小。

某项资产的风险收益率是该资产的β系数与市场风险溢价的乘积。

即:该项资产风险收益率=β×(Rm-Rf)。

有效性:
资本资产定价模型最大的贡献在于它提供了对风险和收益之间的一种实质性的表述,资本资产定价模型首次将“高收益伴随着高风险”这样一种直观认识,用这样简单的关系式表达出来。

到目前为止,资本资产定价模型是对现实中风险与收益关系最为贴切的表述。

资产定价理论文献综述

资产定价理论文献综述

金融资产定价理论的发展李忠071014030本文对金融资产定价理论的发展历程与其方法论、主要成果和前沿问题进行了总结,主要综述了有关资产定价理论的内在发展思路及理论的局限性及其现实性的一些文献,按时间的先后顺序,整理了不同时期的金融资产定价理论的主流学说。

下面将有关的资产定价理论进行一个比较详尽的总结。

1. 现金流贴现模型20 世纪50 年代之前的金融学,被Haugen (1999) 称为金融理论的发展的“旧时代金融”(old Finance) ,是经济学中非常不起眼的一个领域,典范著作是本杰明·格雷厄姆和大卫·多德的《证券分析》以及亚瑟. 斯通. 丢寅的《公司金融政策》,其基本的析范式就是用会计和法律工具来分析公司的财务报表以及金融要求权的性质。

格雷厄姆和多德在1934 年《证券分析》一书中认为股票价格的波动是建立在股票“内在价值”基础上的,股票的“内在价值”取决于公司未来盈利能力。

很多学者如希尔法登、格莱姆、沃尔特、戈登与威廉姆斯等都对股票“内在价值”的确定有过深入的研究, 威廉姆斯1938 年给出的股票“内在价值”公式为:P =D1(1 + r1) +D2(1 + r2) 2 + ⋯+Dn(1 + r n) n +pn(1 + rt) n其中, P = 普通股的公平价值或理论价值。

D. 表示第t 年的预期股利,Pt = n 年时的预期售价(或最终价格) ,n = 水平年数,rt 表示第t 年的适当贴现率或资本化比率。

通过内在价值法的计算似乎可以得出股票的精确值,但根据国外长期的实证研究结果表明,它存在以下几个致命的弱点: 首先,要确定股票的“内在价值”,最关键的就是要确定其未来的现金流,在大多数情况下,未来现金流的确定涉及到整个市场的预期,通常很难确定。

为此,关于金融资产定价的早期研究集中在确定公司未来收益的现金流。

另外,第t 年的适当贴现率或资本化比率r ,也是难以确定的,从经济学的角度讲,贴现率应该等于资金使用的机会成本或投资者要求的回报率,贴现率构成要素如下: (1) 无风险回报率; (2) 风险补偿率。

资产定价模型在中国股市的应用分析

资产定价模型在中国股市的应用分析

资产定价模型在中国股市的应用分析近年来,中国股市风起云涌,成为全球投资者关注的焦点。

而资产定价模型作为衡量股市价值的重要工具,对于投资者来说具有重要的参考价值。

本文将对资产定价模型在中国股市的应用进行分析,并探讨其优点和局限性。

1. 传统资产定价模型在中国股市的应用传统资产定价模型主要包括CAPM(资本资产定价模型)和DDM(股利贴现模型)。

在中国股市,这些模型被广泛应用于估计股票的合理价格。

CAPM模型基于风险和预期回报的权衡,通过衡量股票相对市场的系统风险来确定预期回报率。

然而,中国股市存在许多市场失灵和非理性行为的情况,导致CAPM模型的应用存在较大的局限性。

例如,中国股市的投机性偏好和信息不对称问题,使得CAPM模型对于预测实际回报率的准确性较低。

DDM模型则通过估计公司未来的股利和增长率来计算股票的内在价值。

然而,在中国股市中,许多公司的股利支付不稳定,且公司信息披露不透明,这使得DDM模型的应用受到限制。

此外,对于成长型公司,DDM模型无法很好地估计其内在价值,因为这些公司的价值主要来自于未来的盈利能力而非股利。

2. 基于市场规模的资产定价模型的应用近年来,一些学者提出了基于市场规模的资产定价模型,如Fama-French三因子模型和Carhart四因子模型。

这些模型旨在纠正CAPM模型在解释股票回报方面的一些缺陷,并提供更准确的预测。

Fama-French三因子模型在CAPM模型的基础上,引入了市场规模和账面市值比两个额外因子,可以解释中国股市中普遍存在的小市值股票和价值股票的超额收益。

该模型的应用相对较广,但仍然存在一些问题,如因子选取的主观性和样本数据的限制。

Carhart四因子模型在Fama-French模型的基础上,进一步引入了市场流通性因子。

该模型在中国股市的应用相对较新,但已经显示出较好的预测能力。

该模型在解释股票回报方面更全面,在一定程度上弥补了传统模型的局限性。

3. 资产定价模型的局限性与展望尽管资产定价模型在中国股市的应用已经取得了一定的进展,但仍然存在一些局限性和挑战。

证券市场的资产定价理论和模型

证券市场的资产定价理论和模型

证券市场的资产定价理论和模型在现代金融领域中,证券市场的资产定价理论和模型是非常重要的研究方向之一。

这些理论和模型的发展不仅为投资者和金融从业者提供了重要的参考和分析工具,而且对于金融市场的稳定性和有效性也起到了至关重要的作用。

本文将着重介绍资产定价理论的几个主要模型,并对其优缺点进行评述。

一、马克维茨资产组合理论马克维茨资产组合理论是资产定价领域的经典模型之一。

该理论认为,投资者在构建投资组合时,应该将风险与收益进行有效的平衡。

其核心思想是通过分散投资降低非系统性风险,从而使投资组合获得最佳的收益。

马克维茨模型以风险和回报之间的关系为基础,通过数学模型构建了一个投资组合的有效前沿,帮助投资者决策权衡风险和收益。

马克维茨资产组合理论的优点是提供了一个结构化的方法来管理投资组合,可以帮助投资者在风险控制和收益优化之间做出权衡。

然而,该理论在实际应用中也存在一些问题。

首先,它基于一些经济假设,比如假设市场是完全有效的,投资者拥有相同的信息等,这在真实的市场环境中并不一定成立。

其次,该模型对于投资者的风险偏好和时间偏好等因素未能充分考虑,有时无法满足实际需求。

二、资本资产定价模型(CAPM)资本资产定价模型(CAPM)是另一个重要的资产定价模型。

该模型通过建立资产收益与市场风险之间的关系,以市场风险溢价作为资产的预期回报进行定价。

CAPM模型认为,资产的回报应该由市场风险决定,而非系统性风险无法获得额外回报。

CAPM模型的优点在于其简洁性和易于应用性。

它的基本假设较少,使用起来较为方便,可以用于估计各种资产的预期回报。

然而,CAPM 模型的局限性也不能忽视。

首先,该模型假设市场是完全有效的,这在现实市场中并不成立。

其次,CAPM模型没有考虑到其他非市场因素对资产回报的影响,可能存在潜在误差。

三、套利定价理论(APT)套利定价理论(APT)是一种相对较新的资产定价模型,与CAPM模型相比,APT模型的假设更加灵活。

《2024年资本资产定价模型的实证研究》范文

《2024年资本资产定价模型的实证研究》范文

《资本资产定价模型的实证研究》篇一一、引言资本资产定价模型(Capital Asset Pricing Model,简称CAPM)是现代金融理论中的基石之一,用于衡量资产预期收益率与风险之间的关系。

该模型为投资者提供了在给定风险水平下如何选择最优投资组合的理论框架。

本文旨在通过实证研究,深入探讨CAPM在中国资本市场的适用性及其实践效果。

二、文献综述前人关于CAPM的研究主要集中在其理论框架的完善和实证检验。

国内外学者通过不同国家和地区的资本市场数据,对CAPM的有效性进行了广泛探讨。

总体来看,CAPM在发达国家市场表现出了较好的解释力,但在新兴市场和转型经济体中,其适用性尚存在争议。

因此,本文选择中国资本市场作为研究对象,以期为CAPM的进一步发展提供实证支持。

三、研究方法本研究采用实证研究方法,以中国A股市场为研究对象,选取具有代表性的股票数据作为样本。

通过计算各股票的β系数、市场风险溢价等因素,对CAPM进行实证检验。

在数据处理和分析过程中,采用SPSS等统计软件进行数据处理和描述性统计分析。

四、数据来源与处理本研究数据主要来源于万得(Wind)数据库,包括各股票的历史收益率、市场收益率、β系数等数据。

在数据处理过程中,首先对数据进行清洗和整理,确保数据的准确性和完整性。

然后,根据CAPM模型的要求,计算各股票的预期收益率、β系数和市场风险溢价等指标。

五、实证结果与分析1. β系数的计算与分析通过计算样本股票的β系数,我们发现大部分股票的β系数均大于零,表明这些股票的市场风险较高。

同时,我们还发现不同股票的β系数存在较大差异,这表明各股票对市场风险的敏感度不同。

2. CAPM的实证检验根据CAPM模型,我们计算了各股票的预期收益率,并将其与实际收益率进行比较。

通过对比分析,我们发现CAPM在一定程度上能够解释股票的预期收益率与风险之间的关系。

然而,在实际应用中,CAPM的解释力受到一定限制,可能受到市场环境、政策因素、投资者心理等多种因素的影响。

投资学中的资产定价误差分析

投资学中的资产定价误差分析

投资学中的资产定价误差分析在投资学中,资产定价是一个关键的概念。

它涉及到确定资产的合理价格,以及评估投资组合的风险和收益。

然而,由于市场的不确定性和信息的不对称,资产定价往往存在一定的误差。

本文将探讨资产定价误差的原因、影响以及如何分析和应对这些误差。

资产定价误差的原因可以归结为两个方面:市场因素和个体因素。

市场因素包括市场波动性、投资者情绪等。

市场波动性是指市场价格的波动程度,而投资者情绪则是指投资者对市场的情感和态度。

这些因素会导致市场价格的波动,从而影响资产的定价。

个体因素包括公司盈利能力、财务状况等。

公司的盈利能力和财务状况会直接影响公司的价值,进而影响股票等资产的定价。

资产定价误差的影响主要体现在两个方面:风险和收益。

首先,资产定价误差会增加投资组合的风险。

由于资产定价的不确定性,投资者很难准确地评估投资组合的风险水平。

这可能导致投资者低估了风险,从而承担了更大的风险。

其次,资产定价误差也会影响投资组合的收益。

如果投资者在资产定价上犯了误差,他们可能会错过一些低估的投资机会,从而导致收益的损失。

针对资产定价误差,投资学提出了一些分析方法和应对策略。

首先,投资者可以利用历史数据和统计模型来分析资产定价误差。

通过对历史数据的回归分析和模型建立,投资者可以估计资产的合理价格,并评估定价误差的大小。

其次,投资者可以采取多样化的投资策略来应对资产定价误差。

多样化的投资策略包括分散投资、动态调整投资组合等。

通过分散投资,投资者可以降低投资组合的风险,减少资产定价误差的影响。

动态调整投资组合则可以根据市场的变化来调整投资策略,以适应不同的市场环境。

此外,投资者还可以利用信息技术来分析和应对资产定价误差。

信息技术的发展使得投资者可以更加方便地获取和分析市场信息。

投资者可以利用大数据分析、机器学习等技术来预测市场价格的变动,并据此调整投资策略。

通过利用信息技术,投资者可以更加准确地估计资产的合理价格,降低资产定价误差的影响。

《2024年资本资产定价模型的实证研究》范文

《2024年资本资产定价模型的实证研究》范文

《资本资产定价模型的实证研究》篇一一、引言资本资产定价模型(Capital Asset Pricing Model,简称CAPM)是现代金融理论中最重要的定价模型之一。

该模型为投资者提供了评估投资组合风险与预期收益之间关系的方法,同时为资产定价和资产配置提供了重要的理论依据。

本文旨在通过实证研究方法,对CAPM在中国市场上的应用进行深入探讨,以验证CAPM 的有效性和适用性。

二、文献综述自CAPM模型提出以来,国内外学者进行了大量的研究。

CAPM理论在发达国家得到了广泛的应用和验证,而针对发展中国家尤其是中国市场的实证研究尚属少数。

过去的研究表明,CAPM在中国市场的适用性存在争议,一部分学者认为CAPM能较好地解释中国市场的资产定价现象,而另一部分学者则认为CAPM在中国市场的适用性有待进一步提高。

因此,本文将通过实证研究方法,对CAPM在中国市场的有效性进行深入探讨。

三、研究方法与数据来源本研究采用实证研究方法,通过收集中国股市的历史数据,运用统计分析软件进行数据处理和模型检验。

数据来源为公开的金融数据库和财经网站。

四、模型构建与假设CAPM模型的基本形式为:E(Ri)=RF+βi(E(RM)-RF),其中E(Ri)为资产i的预期收益率,RF为无风险收益率,βi为资产i的系统风险系数,E(RM)为市场收益率。

基于CAPM模型,本文提出以下假设:假设一:CAPM模型在中国市场具有一定的适用性,能较好地解释资产的预期收益率与风险之间的关系。

假设二:CAPM模型中的系统风险系数β值能够反映资产的收益率变化。

五、实证结果与分析(一)数据描述性统计本文选取了中国股市中具有代表性的股票作为研究对象,通过收集这些股票的历史数据,进行描述性统计。

结果表明,各股票的收益率、β值等指标均呈现出一定的分布特征。

(二)CAPM模型检验通过对收集到的数据进行处理和模型检验,本文发现CAPM 模型在中国市场具有一定的适用性。

资本资产定价模型与缺点分析

资本资产定价模型与缺点分析

资本资产定价模型与缺点分析作者:周璟来源:《财经界·学术版》2016年第24期摘要:资本资产定价模型(CAPM)一直是一个备受关注的问题。

对它的分析与研究能促使我们完善此模型。

本文探讨资本资产定价模型以及其优缺点。

CAPM模型的优点在于:模型简单明了,客观的阐述了风险和收益的关系,即高风险对应高收益。

与此同时CAPM模型也存在着不足:模型假设过于苛刻脱离实际,贝塔参数难测量。

关键词:资本资产定价模型模型假设模型检验一、引言资本资产定价模型由Sharp、Lintner 和 Treynor 分别于上世纪60 年代提出来的,这是第一个系统的阐述了收益和风险存在精确的正相关关系的模型。

现已成为现代金融学的奠基石。

资本资产定价模型建立在投资组合选择理论基础上。

此理论由哈里·马科维茨提出,他系统地分析了多种不同的风险投资组合,并指明投资者应该如何构建不同风险波段的投资组合来降低投资组合的标准差。

他还进一步提出了均值方差模型来刻画收益和风险,这为资本资产定价模型奠定了强大的基础。

在资本资产定价模型中,认为投资者是以均值方差模型为基础来进行投资选择。

在均值方差模型中,证劵市场存在一条有效前沿线。

在这条线上的点被称为有效资产组合,这意味着这些投资组合已消除了公司内部风险,只存在市场风险。

与此同时,存在一条从无风险利率出发的射线与均值方差模型的有效前沿线相切与某一点。

马科维茨称这一点为最佳有效资产组合也称为市场组合,称这条线为资产市场线,意味着切点对应的有效投资组合是所有有效投资组合中最好的。

人们按照比例复制一个和市场组合相同的投资组合,各个投资者的区别在于无风险资产和市场组合在个人的总资产的比例上。

市场组合是资本资产定价模型成立和研究的基础。

二、模型假设为了找到真正的市场组合,Sharp、Lintner 和 Treynor还给出了以下4条基本的假设:(1)投资者都是理性的、厌恶风险的,意味着投资者偏好高期望收益和低标准差的证劵。

经典资产定价理论综述

经典资产定价理论综述

Financial View | 金融视线MODERN BUSINESS现代商业156经典资产定价理论综述肖琨小 中央财经大学金融学院 北京 100081摘要:本文从威廉·夏普提出的CAPM模型出发,指出其在理论与实证中的不足,从而从三个不同发展方向出发,全面梳理资产定价深化研究,逐步引入CAPM模型的各种拓展模型,从而较为全面的介绍经典的资本资产定价相关理论。

关键词:资本资产定价;APT模型;CCAPM模型;行为金融理论一、引言资本资产的定价问题一直深受金融市场领域乃至整个金融领域的关注。

研究最早起源于20世界50年代,随着经济、金融的不断发展,如今,如何有效的确定金融资产的价格仍是很多经济学家所面临的重大问题。

马科威茨通过把收益、风险分别定义为均值和方差,第一次从数量上解决了收益与风险的关系问题,资本资产定价模型就是在这一理论的基础之上提出的。

1970年,威廉·夏普率先提出资本资产定价模型:CAPM模型,成为资本资产定价的基础。

它的结论非常简单:投资的收益只与风险有关。

虽然,CAPM模型的提出非常成功,但还是存在着很多理论上、实践上的局限性。

首先,C A P M 的假设前提难以实现;其次,CAPM中的β值难以确定;最后,与之相关的实证结果令人失望。

因此,金融市场学家不断探求比CAPM更为有效的资本市场理论。

经济学家们大致从三个方面进行了改进:第一、将单因素CAPM拓展为多因素模型,如APT套利定价理论,Fama-French 三因素模型(提出SMB和 HML因素);第二、提出基于消费的CCAPM模型,将资产回报率与宏观经济变量联系起来;第三,由行为金融学理论对资产定价问题进行解释。

二、资本资产定价的多因素模型(一)套利定价理论APT该模型由斯蒂芬·罗斯于1976年提出,与CAMP模型相比,其最大的特点是利用套利概念定义均衡,并且该模型的假设更加合理。

套利定价理论的基本机制是:在均衡市场中,两种相同的商品必定以相同价格出售。

资本资产定价模型(CAPM)研究综述

资本资产定价模型(CAPM)研究综述

资本资产定价模型(CAPM)研究综述2019-06-17摘要:资本资产定价模型(CAPM)⾃上个世纪六⼗年代建⽴起就成为现代⾦融学的核⼼研究领域,被⼴泛地运⽤于⾦融市场、消费投资决策、货币政策乃⾄宏观经济的估计和预测。

学者们对于CAPM模型的理论和应⽤作了⼤量的研究,取得了丰硕的成果,该研究领域内的多位经济学家因此获得了诺贝尔经济学奖。

我国由于资本市场发展较晚,对于CAPM模型研究略显薄弱,需要进⼀步发展,以便能够更好地解释资本资产定价问题,推动我国⾦融市场的发展。

关键词:资产定价;CAPM;风险;收益中图分类号:F830.9 ⽂献标识码:A⽂章编号:1005-913X(2016)05-0117-02资本资产定价理论的是在微观经济学基础上发展起来的,研究资本市场中资产的预期收益率与风险资产之间的关系,进⾏风险分析、投资业绩评估和资本成本的计算,是近年来许多专家学者研究的热点。

资本资产定价模型(CAPM)是⼀个均衡定价模型,它是由美国经济学家在⼆⼗世纪六⼗年代建⽴的基于风险资产预期收益率均衡基础上的预测模型,随着这个模型的建⽴,资产定价理论迅速发展起来。

⼀、国外的研究(⼀)标准的CAPM模型20世纪60 年代,夏普(William Sharpe,1964)、林特纳(John Lintner,1965)和莫⾟(Jan Mossin,1966)将马科维茨理论延伸成为资本资产定价模型(Capital and Asset Pricing Model, CAPM)。

CAPM将资产收益与市场组合(即资本市场均衡状态下的均值―⽅差有效组合)收益之间的协⽅差同市场组合收益⽅差之间的⽐界定为该资产所携带的系统风险。

⽅程表达式为:E(Ri)=RF+β[E(RM)-RF]其中:E(Ri)是资产i的期望收益率,RF指⽆风险利率,E(RM)为市场组合的期望收益率,它是指所有的风险资产组成的投资组合,β表⽰系统风险,是i资产与市场组合收益之间的协⽅差,即β=。

金融学中的金融风险定价模型

金融学中的金融风险定价模型

金融学中的金融风险定价模型金融风险定价模型是金融学中的重要理论工具,用于衡量和定价金融市场中的各种风险。

本文将介绍几种常见的金融风险定价模型,并分析它们的优缺点。

一、资本资产定价模型(Capital Asset Pricing Model,简称CAPM)资本资产定价模型是一种广泛应用的金融风险定价模型,它基于风险资产的预期回报与系统性风险的正比关系。

CAPM模型的核心假设是投资者在做出投资决策时会考虑到资产的预期回报和系统性风险。

该模型的公式为:E(Ri) = Rf + βi(E(Rm) - Rf)其中,E(Ri)表示资产i的预期回报,Rf表示无风险利率,βi表示资产i相对于市场组合的系统性风险,E(Rm)表示市场组合的预期回报。

CAPM模型的优点在于简单易懂,计算相对简便,并且能够提供合理的风险调整回报。

然而,该模型的缺点是基于一些过于理想化的假设,如市场是完全有效的、投资者行为理性等。

因此,在实际应用中,CAPM模型的预测能力存在一定局限性。

二、套利定价理论(Arbitrage Pricing Theory,简称APT)套利定价理论是另一种广泛使用的金融风险定价模型,它认为资产价格的变动可以通过影响一系列因素来解释。

APT模型不同于CAPM模型,它不依赖于单一风险因子,而是考虑多个因素对资产价格的影响。

APT模型的核心思想是通过套利来消除不同资产之间的定价差异。

该模型的公式为:E(Ri) = Rf + β1F1 + β2F2 + ... + βnFn其中,E(Ri)表示资产i的预期回报,Rf表示无风险利率,β1~βn表示资产i对各因子F1~Fn的敏感性。

APT模型的优点在于能够考虑多个因子对资产价格的影响,更加灵活和实用。

然而,该模型的缺点是因子的选择和权重确定较为困难,需要大量的历史数据和统计分析。

三、随机波动模型(Stochastic Volatility Model)随机波动模型是一类考虑资产价格波动率随时间变化的金融风险定价模型。

风险中性定价理论在资产定价中的重要性与局限性剖析

风险中性定价理论在资产定价中的重要性与局限性剖析

风险中性定价理论在资产定价中的重要性与局限性剖析风险中性定价理论(Risk-Neutral Pricing Theory)是现代金融学中一个重要的理论框架,用于解释和分析资产定价的原理和方法。

本文将对风险中性定价理论的重要性和局限性进行剖析,以帮助读者更好地理解和运用这一理论。

首先,我们来探讨风险中性定价理论在资产定价中的重要性。

风险中性定价理论是一个基于风险中性假设的模型,即假设投资者在做出投资决策时都是风险中性的,他们不关心资产本身的风险,只关心其预期回报。

这一假设的提出使得资产定价问题从风险角度转变为预期回报和市场需求之间的关系解析,极大地简化了定价问题的复杂性。

根据风险中性定价理论,资产的期望收益率应该等于其风险无关折现率的乘积。

这一理论提供了一种计算资产合理价格的方法,即通过对资产未来现金流进行折现,来计算资产的内在价值。

风险中性定价理论不仅能够帮助投资者估计资产的合理价格,还可以用于衡量不同资产之间的风险溢价,从而指导投资组合的构建和风险管理。

风险中性定价理论在金融衍生品定价中有着广泛的应用。

通过利用期权市场的风险中性定价关系,投资者可以合理确定期权的价格,并基于这些价格进行交易。

风险中性定价理论还可以用于解释和预测期权的隐含波动率,从而为投资者提供交易策略和风险管理工具。

此外,风险中性定价理论还可以帮助投资者理解和解释金融市场的非理性行为和价格波动。

风险中性定价理论认为市场价格的波动主要是由于投资者对风险的不确定性和个体预期的差异所导致的,这一观点有助于解释金融市场的波动性和周期性。

通过风险中性定价理论的分析,投资者可以更好地理解市场机制和定价机制,从而制定更有效的投资策略。

然而,风险中性定价理论也存在一定的局限性。

首先,风险中性假设并不总是成立,在现实市场中存在风险厌恶和非理性行为的投资者。

这意味着风险中性定价理论的预测可能与真实市场情况存在一定的出入。

其次,风险中性定价理论忽视了市场流动性和交易成本对资产价格的影响。

泽稷网校ACCA解读CAPM资本定价模型优缺点

泽稷网校ACCA解读CAPM资本定价模型优缺点

因为在真实的市场中, 即使存在很多投资者持有证券的时间是大于一年的,但是 在计算这些证券的投资回报时, 仍然是会以年为单位进行计算的,因为这样的计 算方便于不同持有期的证券的比较。 投资人已通过完全多元化的投资来分散非系统性的风险, 因此投资者所持有的投 资只有系统性风险(systematic risk),即市场风险。同时,这将意味着:投资 者所持有的投资与市场投资组合(market portfolio)所面临的风险是一样的。 虽然在现实生活中,将非系统性风险完全地分散掉是不可能的,但是分散方法 (diversification)本身是比较容易的,成本也是比较低。因此,投资者只要求 与系统性风险有关的财务回报也是比较合理的。 在实际的市场中,对于投资者来说,以无风险利率(risk-free rate)借钱是不 可能的(补充:无风险利率一般代指的是短期政府债券)。原因也是相对比较简 单的, 与投资者个体相关的风险一定高于与政府实体相关的风险,因此投资者不 能以无风险利率借钱; 在真实的资本市场中,投资者一般是以高于无风险利率的 成本借钱的,因此,真实的 SML 曲线的斜率是比 figure 1 中斜率要小的。 总体来说,虽然有关 CAPM 模型的建立是基于一个由很多假设所构建出的理想的 资本市场, 但是在实际的资本市场中,市场的预期回报与系统性风险之间可能仍 然存在一个比较强的线性关系。
除此之外,为了简化计算,会假设债务的 Beta 系数是零,但是这个假设可能会 加大项目折现率计算的不准确性。 第三: 当 CAPM 模型运用于项目投资评估时, 有一个相关的假设是规定投资的标准期是 一年,虽然这个假设方便于数据的比较,但是这个假设与实际情况(实际投资往 往是跨越多个标准期)是不相符的。 CONCLUSION 有关于 CAPM 模型的批评的声音日益高涨, 但是在更加完善的分析模型出来之前, CAPM 仍然是财务管理领域里非常重要的工具。

《2024年期权定价方法综述》范文

《2024年期权定价方法综述》范文

《期权定价方法综述》篇一一、引言期权定价是金融领域中一个重要的研究课题,它涉及到金融工程、投资策略和风险管理等多个方面。

随着金融市场的不断发展和复杂化,期权定价方法也在不断地演进和改进。

本文将对现有的期权定价方法进行综述,分析各种方法的优缺点及适用范围。

二、经典期权定价模型1. 黑-舒尔斯(Black-Scholes)模型黑-舒尔斯模型是最为广泛应用的期权定价模型之一。

该模型基于无套利原则,假设标的资产价格服从几何布朗运动,并考虑了标的资产价格、执行价格、无风险利率、到期时间以及波动率等因素。

黑-舒尔斯模型为欧式期权提供了明确的定价公式,但在实际运用中仍需根据具体情况对模型参数进行校准和调整。

优点:模型简单明了,为期权定价提供了明确的公式;考虑了多种影响期权价格的因素。

缺点:假设条件较为严格,如标的资产价格服从几何布朗运动等;对模型参数的校准和调整较为复杂。

2. 二叉树模型二叉树模型是一种离散时间的期权定价方法。

该方法通过构建一个二叉树状的价格路径图来模拟标的资产价格的可能变化,并根据这些路径计算期权的预期收益。

优点:模型较为灵活,可以灵活地调整参数以适应不同的市场环境;容易理解和实现。

缺点:对于复杂的期权和长期期权,二叉树模型的计算量较大;对短期期权的定价可能不够准确。

三、现代期权定价方法1. 局部波动率模型局部波动率模型考虑了标的资产的局部波动性,即在不同时间点上标的资产价格的波动率可能不同。

该模型通过引入局部波动率参数来描述这种波动性的变化。

优点:能够更好地反映标的资产的波动性变化;对隐含波动率的估计更为准确。

缺点:模型参数的估计较为复杂;对于非标准期权的定价仍需进一步研究。

2. 随机森林等机器学习方法在期权定价中的应用随着机器学习技术的发展,随机森林等算法也被应用于期权定价领域。

这些方法通过训练大量的历史数据来预测未来标的资产价格的变化,从而为期权定价提供依据。

优点:能够充分利用历史数据提供的信息;对非线性关系的描述更为准确。

资本资产定价模型与缺点分析

资本资产定价模型与缺点分析

资本资产定价模型与缺点分析中南林业科技大学班戈学院周璟(下转第269页)摘要:资本资产定价模型(CAPM )一直是一个备受关注的问题。

对它的分析与研究能促使我们完善此模型。

本文探讨资本资产定价模型以及其优缺点。

CAPM 模型的优点在于:模型简单明了,客观的阐述了风险和收益的关系,即高风险对应高收益。

与此同时CAPM 模型也存在着不足:模型假设过于苛刻脱离实际,贝塔参数难测量。

关键词:资本资产定价模型模型假设模型检验一、引言资本资产定价模型由Sharp 、Lintner 和Treynor 分别于上世纪60年代提出来的,这是第一个系统的阐述了收益和风险存在精确的正相关关系的模型。

现已成为现代金融学的奠基石。

资本资产定价模型建立在投资组合选择理论基础上。

此理论由哈里·马科维茨提出,他系统地分析了多种不同的风险投资组合,并指明投资者应该如何构建不同风险波段的投资组合来降低投资组合的标准差。

他还进一步提出了均值方差模型来刻画收益和风险,这为资本资产定价模型奠定了强大的基础。

在资本资产定价模型中,认为投资者是以均值方差模型为基础来进行投资选择。

在均值方差模型中,证劵市场存在一条有效前沿线。

在这条线上的点被称为有效资产组合,这意味着这些投资组合已消除了公司内部风险,只存在市场风险。

与此同时,存在一条从无风险利率出发的射线与均值方差模型的有效前沿线相切与某一点。

马科维茨称这一点为最佳有效资产组合也称为市场组合,称这条线为资产市场线,意味着切点对应的有效投资组合是所有有效投资组合中最好的。

人们按照比例复制一个和市场组合相同的投资组合,各个投资者的区别在于无风险资产和市场组合在个人的总资产的比例上。

市场组合是资本资产定价模型成立和研究的基础。

二、模型假设为了找到真正的市场组合,Sharp 、Lintner 和Treynor 还给出了以下4条基本的假设:(1)投资者都是理性的、厌恶风险的,意味着投资者偏好高期望收益和低标准差的证劵。

金融市场的资产定价模型研究

金融市场的资产定价模型研究

金融市场的资产定价模型研究随着经济的快速发展,金融市场已成为国家经济发展的重要领域之一。

作为金融市场的核心,资产定价模型是分析和预测个别证券价格以及整个证券市场价格的关键工具。

本文将对当前较为流行的三种资产定价模型进行比较与分析,探讨它们的优缺点与适用范围。

第一种资产定价模型是均衡定价模型(CAPM)。

CAPM以市场组合为主要参考基准,假设市场有效并存在正常的风险溢价。

其基本公式为:ri=rf+βi (rm-rf),其中rf代表无风险利率,βi代表该证券相对于市场组合的收益率,rm-rf代表市场风险溢价。

CAPM在市场上得到广泛的应用,主要原因是它简便易行,方便实用。

其缺点在于,CAPM假设市场是完美有效的,事实上,市场存在大量信息并不完全透明,因此CAPM的预测可能并不准确。

此外,CAPM忽略分散化的风险,以及市场上资产的非风险因素(如流动性等),也是其预测偏差较大的原因之一。

第二种资产定价模型是两因素模型。

两因素模型建立在CAPM的基础之上,引入了市场以外的因素,即系统性风险和非系统性风险。

其基本公式为ri=α+β1f1+β2f2+ei,其中α代表常数项,β1和β2代表证券对风险因素1和风险因素2的敏感度,ei代表非系统性风险。

两因素模型考虑到了CAPM的局限性,更加全面地分析了证券的资产定价问题。

其缺点同样在于模型中的假设过于简化,因此导致预测结果存在误差。

第三种资产定价模型是三因子模型。

三因子模型由Eugene Fama和Kenneth French提出,对两因子模型进行扩展,引入了市场、公司规模和投资价值三个因素。

其基本公式为ri=α+β1(Rm-Rf)+β2 SMB+β3 HML+ε,其中SMB代表小市值公司的收益率减去大市值公司的收益率,HML代表高账面价值公司(价值型股票)的收益率减去低账面价值公司(成长型股票)的收益率。

三因子模型能够更好地解释股票收益率而不是简单地提升单一因素的解释力。

金融市场的资产定价模型研究

金融市场的资产定价模型研究

金融市场的资产定价模型研究近年来,金融市场的资产定价模型研究得到了广泛关注。

资产定价模型是金融领域重要的理论和实践工具,用于估计金融资产的价值以及市场预期收益率。

本文将讨论几个重要的资产定价模型,并对其应用和局限性进行分析。

首先,我们来介绍一下最著名的资产定价模型之一——资本资产定价模型(CAPM)。

CAPM是由美国学者沙普(F.W.Scarf)和曼昆(Eugene F.Fama)于上世纪60年代提出的,其基本思想是资产的预期收益率与市场整体风险的线性关系。

根据CAPM,资产的预期收益率应当等于无风险利率加上风险溢价,其中风险溢价等于资产预期收益率与市场整体预期收益率之差。

然而,CAPM也存在一些局限性。

首先,CAPM假设投资者偏好风险较低的资产,忽视了投资者对中风险资产的需求。

其次,CAPM假设市场是完全有效的,即所有市场参与者都能实时获取和利用信息。

但事实上,市场并非完全有效,信息传递和操作存在滞后和不对称性。

最后,CAPM基于线性风险关系,无法解释复杂的非线性关系。

另一个重要的资产定价模型是套利定价理论(APT)。

APT是由罗斯(Stephen Ross)于上世纪70年代末提出的,与CAPM相比,APT更加灵活和广义。

APT认为各种因素(如通货膨胀、利率变动、企业盈利等)影响资产的预期收益率,通过各因素的权重和贡献来解释资产定价。

与CAPM只考虑市场整体风险不同,APT 考虑了更多的因素,并能够根据实际情况进行针对性的拓展。

然而,就像其他金融定价模型一样,APT也存在一些局限性。

首先,APT需要对各种因素进行准确的估计和权衡,但这在现实中是困难和有限的。

其次,虽然APT相对于CAPM而言更加灵活,但也需要对市场进行细分,以识别出适用于不同资产的因素。

最后,APT并没有提供明确的计算方法,因此在实际应用中仍然存在困难。

除了CAPM和APT之外,还有其他一些重要的资产定价模型,如Black-Scholes期权定价模型、Merton债务定价模型等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

资产定价模型(CAPM)局限性研究综述陈豪吴玉章学院金融工程系 07资产定价模型(CAPM)局限性研究综述 (1)引言 (1)一、CAPM的模型介绍 (2)模型的发展历史 (2)CAPM模型介绍 (2)二、CAPM模型的研究现状 (4)国外实证研究现状(参考文献1-7) (4)国内实证研究现状(参考文献8-15) (5)结论 (6)三、理论局限性分析 (7)文献概述(参考文献16-19) (7)结论 (8)四、参考文献 (9)引言资本资产定价模型(Capital Asset PricingModel,CAPM)最早由Sharpe、Lintner、Mossin分别提出,它用一个简单的模型刻画了资产收益与风险的关系,代表了金融学领域重要的进展和突破,是现代金融学最重要的理论基石之一。

CAPM的核心思想是在一个竞争均衡的资本市场中,非系统风险可以通过多元化加以消除,对期望收益产生影响的只能是无法分散的系统风险(用β系数度量),期望收益与β系数线性相关。

在金融投资决策中,风险的度量和管理一直是理论界和实证界所关注的核心问题。

由于CAPM的简洁性和可操作性,在股票收益预测、投资风险分析等许多问题中得到广泛的应用,但实证研究结果不是很理想,有人认同,有人质疑。

本文对资本资产定价模型的局限性进行深入研究无疑在理论上和实践上都有着重要的意义。

一、CAPM的模型介绍模型的发展历史1952年,马柯维茨(Markowitz)在《金融杂志》上发表题为《投资组合的选择》(Portfolio Selection)的博士论文是现代金融学的第一个突破,他在该文中确定了最小方差资产组合集合的思想和方法,开创了对投资组合管理的先河,奠定了投资理论发展的基石。

其后,在马柯维茨均值—方差分析的基础上,夏普(Sharpe)、林特纳(Lintener)、莫辛(Mossin)等研究了竞争均衡市场中金融证券价格的形成,提出了竞争市场中确定资本资产价值的数学模型,称为资本资产定价模型(Capital Asset Pricing Model,简称CAPM)。

其历史渊源可以追溯至: 1、马克维茨的均值—方差模型(M一v)。

尽管在1952年以前已有相关的投资理论,但它们所缺乏的是当诸多风险相关时,或投资组合无效时,对分散化投资效应如何进行解释。

对收益—风险进行权衡,马柯维茨的独特之处在于他认为分散化投资可有效降低投资风险,但一般不能消除风险,并且在其论文中证券组合的风险用方差来度量。

另外,他第一个给出了分散化投资理念的数学形式,即“整体风险不高于各部分风险之和”的金融版本。

2、从均值—方差理论到CAPM。

夏普(Sharpe)在马克维茨的理论基础上进一步修改,建立了资本资产的均衡理论。

CAPM模型介绍Sharpe在一般经济均衡的框架下,假定所有投资者都以自变量为收益和风险的效用函数来决策,导出全市场的证券组合的收益率是有效的以及资本资产定价模型(CAPM)。

CAPM的基本假定:(1)所有资产均为责任有限的,即对任何资产其期末价值总是大于等于零;(2)市场是完备的,即不存在交易成本和税收,而且所有资产均为无限可分割的;(3)市场上有足够多的投资者使得他们可以按市场价格买卖他们所想买卖的任何数量的任何交易资产;(4)资本市场上的借贷利率相等,且对所有投资者都相同;(5)所有投资者均为风险厌恶者,同时具有不满足性,即对任何投资者,财富越多越好;(6)所有投资者都追求期末财富的期望效用最大化;(7)所有投资者均可免费获得信息,市场上的信息是公开的、完备的;(8)所有投资者对未来具有一致性的预期,都正确地认识到所有资产的收益服从联合的正态分布;(9)对于任何风险资产,投资者对其评价有两个主要指标:风险资产收益率的预期和方差。

预期代表收益,方差代表风险。

简单的可以将假设概括成三方面:1关于资本市场的假设有:市场是完备的,处于完全竞争状态,也就是不存在交易成本和交易方面的税收,而且所有资产均为无限可分割的。

市场上有足够多的投资者使得他们可以按市场价格买卖他们所想买卖的任何数量的任何交易资产。

这些假设对资本市场进行了理想化,认为市场应该是完备的,无摩擦的,资源的配置是有效的。

2关于投资者的假设有:所有投资者均为风险厌恶者,同时具有不满足性,所有投资者都追求财富的期望效用极大化。

所有投资者都对未来具有一致性的预期,投资者对投资的评价依赖于收益和风险这两个主要的指标。

3关于资金的假设有:资本市场上的借贷利率相等,且对所有投资者都相同。

对假设的简单评析:假设(1)~(4)是关于资本市场的一种理想化,概括起来,实质是认为一个理想的市场应该是完备的,无摩擦的,从而对资源的配置是有效的。

当然,这种理想的市场在现实中是不存在的。

假设(5)、(6)、(8)、(9)是关于投资者的假设,风险厌恶的假设具有代表性。

但现实中并不是每个投资者都对风险厌恶。

另外,当面对一个收益极高的诱惑时,投资者考虑更多的可能是对回报的渴望而不是其风险概率发生可能性的大小。

假设(7)是对市场有效性的假设。

假说所认为的有效市场在现实中也不会存在。

在上述假设条件下,可以推导出CAPM模型的具体形式:()(())i f i m f E r r E r r β-=-,2(,)/()/i i m m im m Cov r r Var r βσσ==。

其中()i E r 表示证券i 的期望收益,()m E r 为市场组合的期望收益,f r 为无风险资产的收益,(,)im i m Cov r r σ=为证券i 收益率和市场组合收益率的协方差,2()m m Var r σ=为市场组合收益率的方差。

CAPM 模型认为,在均衡条件下,投资者所期望的收益和他所面临的风险的关系可以通过资本市场线(Capital Market Line ,CML )、证券市场线(Security Market Line ,SML )和证券特征线(characteristic line )等公式来说明。

二、CAPM 模型的研究现状国外实证研究现状(参考文献1-7)资本资产定价模型(CAPM)主要研究证券市场中资产的预期收益率与风险资产之间的关系,以及均衡价格是如何形成的,它刻画了均衡状态下资产的预期收益率及其与市场风险之间的关系。

而CAPM 中的β系数是度量证券系统风险的一个重要指标,一直以来,学术界和投资者对系数关注的焦点集中在其稳定性和时变性行为特征上。

国外许多学者较早就开始了对CAPM 的检验和系数的稳定性研究,美国学者Sharpe(1972)进行的研究是此类检验的第一例,他选择了美国34个共同基金作为样本,计算了各基金在1954年~1963年之间的年平均收益率与收益率的标准差,并对基金的年收益率与收益率的标准差进行了回归,发现平均收益和β近似成线性关系。

Black,Jensen 与Scholes(1972)【1】对1931年~1956年间美国证券交易所所有上市公司的股票的检验也证实了股票平均收益和β之间存在正相关关系,同时发现了非系统风险对收益率有一定影响。

Fama 和Macbeth(1973)【2】采用多元线性回归模型(后被称为FM 模型)进行检验,发现正如CAPM 描述的那样,平均收益和β呈线性关系,而非系统性风险却不能得到补偿,即平均收益和σ无关。

关于系数的行为特征,Blume(1971,1975)、Brenner 和Smidt(1977)的研究表明,β系数有回归均值的趋势。

西方发达国家股票市场的实证研究表明:早期实证研究多支持CAPM 模型。

但后期的研究多对CAPM 模型的有效性提出质疑。

Black(1976)【3】、Fama(1992)【5、6】等国外学者均对CAPM 的理论缺陷进行了描述,认为CAPM 的系数具有时变特性。

Roll(1976)【4】提出了著名的Roll 批评,认为CAPM 在实际中是不可检验的,因为无法证明市场指数组合是有效市场组合,从而无法找到真正的β系数。

自此之后,对CAPM 的检验由单纯的收益与系统性风险关系的检验转向多变量的检验,如公司股本大小和公司收益等,并成为20世纪末CAPM 检验的主流。

例如Basu(1977)指出了市盈率效应,即低市盈率的公司组合比高市盈率的组合有更高的样本收益。

Fama和French(1992)【5、6】采用与Fama和MacBeth(1973)【2】相同方法进行实证研究,却得到了完全相反的结论:后者的研究发现了CAPM所描述的线性关系在1962年~1989年不成立了,收益率与风险存在正的相关关系,而前者的研究却发现两者根本不存在任何关系。

Fama和French(1992)【5、6】把产生不同结果的原因归于他们采用了不同的样本周期。

Sunder(1980)和Si-monds,LaMotte和McWhorter(1986)则认为用随机行走系数模型描述时变系数更适合于美国股票的长时期数据。

Campbell. J。

Y. Jianping Mei(1993)【7】利用向量自回归时间序列模型等讨论了资产β值的分解,使用从1952年~1987年的纽约证券交易所价值加权指数的市场投资组合数据进行实证研究,得出产业和市场规模投资的β值大部分归因于预期收益率的改变,在通货膨胀和工业生产下的β值反映了反向的现金流和预期收益率;CAPM预测现金流随市场变化很大的资产也拥有随市场变化很大的预期超额回报率,但找不到在数据上对这一影响的明显支持。

而等(2000)还进一步讨论了行业β系数的时变性及其在投资管理中的作用。

国内实证研究现状(参考文献8-15)近年来,中国一些学者对CAPM及其β系数的相关问题在中国证券市场展开了一系列的实证研究。

国内的实证文献主要集中于国内股票市场是否符合CAPM理论模型上。

关于投资风险的实证研究,其中较早的是施东晖(1996)【8】的研究,他对上海股市50只股票在1993年4月27日至1996年5月5日期间的双周资料进行的实证检验,分析表明上海股票市场的风险-收益关系不符合CAPM模型的结论,股票样本的系统性风险占总风险的平均比例高达%,远高于国外的平均水平。

杨朝军、邢靖(1998)【9】选取1993年1月4日至1995年11月30日作为研究的时间段,将上海股票市场中的179家股票按β系数的大小划分为18个股票组合,采用横截面的多元线性回归方法对日收益率进行分析,结果也显示上海股票市场股票的定价并不完全符合CAPM的预期,系统风险并非是决定收益的唯一因素。

之后,阮涛、林少宫(2000)【10】选取上海股票市场40支股票的1996年~1998年的数据,在中国股票市场符合CAPM模型的假定前提下,使用时间序列回归和横截面数据回归方法进行分析,计算出股票风险的度量β值,并依此而区分出风险低的保守性股票和风险高的进攻性股票的作法是值得商榷的,说明了上海股票市场不符合CAPM,基于CAPM模型对中国现阶段的股票市场的分析和应用缺乏有效性依据。

相关文档
最新文档