生物接触氧化池计算

合集下载

接触氧化池设计计算

接触氧化池设计计算

接触氧化池设计计算3.5 生物接触氧化池设计参数进水COD浓度La=650mg/L,出水COD浓度Le=250mg/L。

取一级生物接触氧化池的COD容积负荷M为1.5kgCOD/(m3·d)。

3.5.1 生物接触氧化池填料容积根据公式W=(La-Le)Q/1000M,计算填料的总有效容积为1600m3.其中,W为填料的总有效容积,m3;Q为日平均污水量,m3;La为进水COD浓度,mg/L;Le为出水COD浓度,mg/L;M为COD容积负荷率,gCOD/(m3·d)。

3.5.2 生物接触氧化池总面积根据公式A=W/H3,取填料层高度H为3m,计算接触氧化池总面积为533.3m2.其中,A为接触氧化池总面积,m2;W为填料的总有效容积,m3;H为填料层高度,m,取3m。

3.5.3 接触氧化池格数和尺寸设一座接触氧化池,分3格,每格接触氧化池面积为178m2.每格池的尺寸为30×6=180 m2.每格接触氧化池在其端部与邻接触氧化池的隔墙上设1m×1m的溢流孔洞。

3.5.4 污水与填料接触时间根据公式t=nfH3×180×3×24/Q,计算污水在填料层内的接触时间为6.5h。

其中,t为污水在填料层内的接触时间,h;n为填料层数,取为1层;f为每格接触氧化池面积,m2;H为填料层高度,m,取3m;180为每格池的尺寸,m2;3为3格;24为小时数;Q为日平均污水量,m3.3.5.5 接触氧化池总高度接触氧化池的总高度为4.5m。

其中,H为填料层高度,m,取3.0m;h1为池体超高,m,取0.5m;h2为填料上部的稳定水层深,m,取0.5m;h3为填料层间隙高度,m,取0.2m;m为填料层数,取为1层;h4为配水区高度,m,取0.5m。

3.5.6 填料需气量按每去除1kgCOD消耗1kg氧气计算,生物接触氧化池的需氧量Q1为2400 kgO2/d。

生物接触氧化池计算

生物接触氧化池计算

生物接触氧化池计算摘要:生物接触氧化法作为给水生物预处理工艺,近年来得到了日益广泛的工程实际应用。

本文对给水生物接触氧化法预处理工程中常用的两种曝气系统(微孔曝气器曝气和穿孔管曝气),作了充氧性能、系统造价、运行成本及运行管理等方面的比较研究。

研究表明,在实际工程应用中,采用微孔曝气器的曝气系统优于采用穿孔管的曝气系统。

关键词:微孔曝气器生物接触氧化池穿孔管充氧性能运行成本近些年来,随着工农业的迅速发展,城市化建设加快,城市人口膨胀,引起了城市工业与生活用水大量增加;同时,相应的污染排放量也在逐年增加,导致了饮用水水源普遍受到污染,饮用水水质恶化。

在给水处理领域中引入生物预处理,已成为微污染水源水处理的技术发展方向和有效手段之一。

在我国,给水工程实践中常用生物接触氧化法作为生物预处理工艺。

在该方法中,曝气系统的选择直接关系着整个生物预处理工艺的充氧性能、处理效果、运行成本和管理操作。

本文结合中试试验和工程实践对这两种不同曝气系统作了多方面的比较与分析。

1 生物接触氧化池的两种曝气系统为提高氧的利用率,生物接触氧化池宜采用气水逆向流设计。

一般用鼓风机鼓风曝气,曝气设备分布于池底;气流自下向上流经填料区,水流自上向下流经填料区。

曝气系统一般采用微孔曝气系统或穿孔曝气系统。

微孔曝气系统一般采用膜片式微孔曝气器作为曝气设备,池中填料一般采用弹性填料,设计气水比一般取0.7左右。

穿孔曝气系统采用穿孔管作为曝气设备,池中填料可采用颗粒填料或弹性填料,设计气水比一般取1左右。

2 充氧性能比较通过对中试装置的清水充氧试验,对两种不同曝气方式的标准状态充氧性能作了测试,并对以下几项充氧性能评定指标作了比较与分析。

(1) 标准状态下的氧总转移系数K Las(h-1)——曝气器在标准状态(水温20℃、1atm大气压强)的测试条件下,在单位传质推动力作用时,单位时间向单位体积水中传递氧的数量;K Las=K La(T)·1.024(20-T)(1)式中K La(T)——水温为T℃条件下,氧气的总转移系数(h-1);T——测定时的实际水温(℃)。

生物接触氧化法计算公式

生物接触氧化法计算公式
生物接触氧化法 设计依据及参数资料 设计流量(m3/d)Q= 1500 日变化系数KZ= 1 设计水温(度)T= 20 最大流量Qmax= 1500 1)进水水质(mg/L) BOD= 200 COD= 400 SS= NH4-N= 0 TN= 0 TP= 2)出水水质(mg/L) BOD= 100 COD= 250 SS= NH4-N= 0 TN= 0 TP= 3)有效容积V(填料体积) 设容积去除负荷Nv= 1.2 kgCOD/m3.d Nv取值:城市污水3.0~6.0;印染废水1.5~3.0 V=Qmax*(S1-S2)/Nv*1000= 187.5 m3 4)总面积F 取填料层总高度H= 3 m(一般H=3m) F=V/H= 62.5 m2 5)每格池面积f 设格数n= 1 f=F/n= 62.5 m2 一般f≤25m2,n≥2 取池宽B= 5m 池长L=f/B= 12.5 m 6)接触时间校核 T=24*n*f*H/Qmax= 3h 7)池体总尺寸 取超高h1= 0.5 m(一般h1=0.5~0.6m) 填料上水深h2= 0.5 m(一般h2=0.4~0.5m) 填料层间隙高h3= 0 m(一般h3=0.2~0.3m) 配水区高度h4= 0.5 m(不进入检修h4=0.5m,进入检修h4=1.5m) 填料层数m= 10 池总高H0=H+h1+h2+(m-1)h3+h4= 4.5 m 池总容积V0=n*f*H0= 281.25 m3 8)曝气量 取气水比k= 12 (推荐取值10~15) 曝气量Q=k*Qmax/24*60= 12.5 m3/min 单池曝气量Q1=Q/n= 12.5 m3/min
200 0 60 0
Hale Waihona Puke

二段式接触氧化池设计计算

二段式接触氧化池设计计算

二段式接触氧化池设计计算设计目标:设计参数:1.排放标准:- 化学需氧量(COD)小于100 mg/L- 生化需氧量(BOD)小于20 mg/L- 悬浮物(SS)小于10 mg/L- 氨氮(NH3-N)小于5 mg/L2.水流量:100m³/h3. 进水COD浓度: 5000 mg/L4. 进水BOD浓度: 3000 mg/L5. 进水SS浓度: 200 mg/L6. 进水NH3-N浓度: 100 mg/L7.氧化剂投加量:COD比例为1:2,BOD比例为1:1,SS比例为1:3,NH3-N比例为1:5设计计算步骤:1.确定一段接触氧化池的高度和直径:1.1根据水质参数和目标排放标准,计算目标出水水质参数:- 目标出水COD浓度小于100 mg/L- 目标出水BOD浓度小于20 mg/L- 目标出水SS浓度小于10 mg/L- 目标出水NH3-N浓度小于5 mg/L1.2确定一段接触氧化池的停留时间(一般为3-4小时):-以一段接触氧化池的水流量和设计水质参数为依据,计算池容积:-COD池体积=COD进水浓度×COD进水量/目标出水COD浓度-BOD池体积=BOD进水浓度×BOD进水量/目标出水BOD浓度-SS池体积=SS进水浓度×SS进水量/目标出水SS浓度-NH3-N池体积=NH3-N进水浓度×NH3-N进水量/目标出水NH3-N浓度-求取最大池体积,然后得到一段接触氧化池的高度和直径。

2.确定二段接触氧化池的高度和直径:2.1根据水质参数和目标排放标准,计算目标出水水质参数,方法同步骤1.12.2确定二段接触氧化池的停留时间(一般为2-3小时):-以二段接触氧化池的水流量和设计水质参数为依据,计算池容积,方法同步骤1.2-求取最大池体积,然后得到二段接触氧化池的高度和直径。

3.设计氧化剂投加系统:-根据进水水质参数和氧化剂投加比例,计算氧化剂的实际投加量。

生物接触氧化池计算

生物接触氧化池计算

生物接触氧化池计算:实现秒出结果的专业技术路径一、引言在环保工程领域,生物接触氧化池是一种常见的污水处理装置,其设计和运行需要精确的计算以实现最佳的运行效果。

然而,传统的计算方法往往复杂且耗时。

本报告将介绍一种能够实现秒出结果的生物接触氧化池计算方法,通过结合先进的理论模型与计算机技术,大大提高了计算效率。

二、生物接触氧化池的基本原理与计算难点生物接触氧化池是一种生物膜反应器,通过在池内装填生物膜载体,使污水与生物膜接触,通过微生物的新陈代谢作用达到净化污水的目的。

然而,生物接触氧化池的计算涉及多个因素,如反应时间、氧气供应、微生物生长速率等,这使得计算过程变得复杂且耗时。

三、秒出结果的专业技术路径为了解决传统计算方法的不足,我们提出了一种基于计算机技术的快速计算方法。

该方法通过建立生物接触氧化池的数学模型,结合实时监测数据,实现了秒出结果的目标。

1.数学模型建立:根据生物接触氧化池的物理特性、微生物生长规律以及反应动力学原理,建立数学模型。

该模型考虑了多种因素,如污水流量、污染物浓度、氧气供应等。

2.计算机程序开发:利用计算机编程语言,将数学模型转化为可执行的计算程序。

该程序能够自动进行数据分析和计算,大大提高了计算效率。

3.实时监测数据采集:通过安装在线监测设备,实时收集生物接触氧化池的各项运行数据,如污水流量、污染物浓度、氧气供应等。

这些数据作为输入参数传递给计算程序。

4.秒出结果的技术实现:通过将在线监测数据输入到计算程序中,程序根据数学模型进行快速计算,并即时给出处理效果预测和优化建议。

由于整个计算过程在秒级时间内完成,因此实现了秒出结果的目标。

四、专业技术优势与应用前景这种基于计算机技术的快速计算方法具有以下优势:1.高效率:通过自动化计算和实时监测,实现了秒出结果的目标,大大提高了计算效率。

2.精确性:数学模型考虑了多种影响因素,能够更准确地预测处理效果。

3.灵活性:该方法可适用于不同类型的生物接触氧化池,具有广泛的适用性。

生物接触氧化池设计计算

生物接触氧化池设计计算

计算方法一
计算方法一
计算公式 Q'=Q/24
V=Q(S1-S2)/Nv A=V/H f=A/2 L=f/B
t=24*n*f*H/Q
H0=H+H1+H2+H3+H4 V0=n*f*H0
t'=n*f*(H0-h1)*24/Q D=k*Q/24*60
计算参数 500
20.83333333 500 100 3.2 62.5 3
序号
参数名称
1
设计最大流量
2
小时流量
2
进水BOD
3
出水BOD
4
填料容积负荷
5 好氧池有效容积
6
填料高度
7
好氧池面积
8
水池格数
9
每格水池面积
10
水池宽
11
水池长
10 接上水深
13
填料层间隙
14
配水区高度
15
总高度
16
池体总容积
17 污水总停留时间
18
汽水比
19
曝气总量
20 生物接触氧化池污泥
21 集水槽出水堰负荷
22
出水堰长度
符号 Q Q' S1 S2 Nv V H A n f B L t h1 h2 h3 h4 H0 V0 t' k D W q L
单位 T/d T/H mg/L mg/L kg/(m3*d) m3
m2
m2 m m h m m m m m m3 h m3/m3 m3/min kg L/(s*m) m
不检修取0.5,检修取1.5
一般取10-15 按每公斤产生0.35-0.4干污泥计算
一般取2.0-3.0 取整数

接触氧化池容积负荷

接触氧化池容积负荷

接触氧化池容积负荷接触氧化池是一种生物处理设备,常用于污水处理和废气处理等领域。

容积负荷是衡量接触氧化池处理能力的一个重要指标,它表示单位体积的接触氧化池在单位时间内能够处理的污染物量。

本文将介绍接触氧化池容积负荷的计算方法、影响因素以及在设计过程中需要注意的事项。

一、容积负荷的计算方法接触氧化池容积负荷的计算公式如下:容积负荷= (进入接触氧化池的污染物量/ 接触氧化池的容积) * 处理时间其中,进入接触氧化池的污染物量可以通过流量计、化验室分析等方法获得。

接触氧化池的容积需要根据实际情况进行设计,处理时间则可以根据实际需要和工艺要求进行设定。

二、影响因素接触氧化池容积负荷受到多种因素的影响,以下是几个主要因素:1.污染物种类和浓度:不同种类的污染物在接触氧化池中的降解速率不同,浓度也会影响降解速率。

因此,不同污染物在接触氧化池中的容积负荷会有所不同。

2.接触氧化池结构:接触氧化池的结构会对容积负荷产生影响。

例如,填料方式、气流分布、水流速度等都会影响污染物的降解速率和容积负荷。

3.微生物种类和数量:接触氧化池中的微生物种类和数量会对容积负荷产生影响。

一些微生物具有更高的降解速率,可以处理更多的污染物。

4.水温和其他环境因素:水温和其他环境因素也会对容积负荷产生影响。

例如,高温可以加快污染物的降解速率,而湿度则会影响微生物的生长和繁殖。

三、设计过程中需要注意的事项在接触氧化池的设计过程中,需要注意以下几点以提高容积负荷:1.选择合适的填料:填料是接触氧化池中的重要组成部分,它可以提供微生物生长的载体,并影响水流和气流的分布。

因此,选择合适的填料对于提高容积负荷非常重要。

2.优化接触氧化池结构:通过优化接触氧化池结构,可以改善气流和水流的分布,提高污染物的降解速率。

例如,采用分格设计可以增加水流的紊动程度,提高传质效果。

3.控制水温和水质:水温和水质是影响容积负荷的重要因素。

在设计中应考虑控制水温和水质,以提高污染物的降解速率和容积负荷。

生物接触氧化池计算

生物接触氧化池计算

生物接触氧化法设计依据及参数资料设计流量(m 3/d)Q=4000 日变化系数K Z =1设计水温(度)T=20 最大流量Q max =40001)进水水质(mg/L)BOD=150COD=200NH 4-N=60TN=2)出水水质(mg/L)BOD=10COD=50NH4-N=3TN=设BOD容积去除负荷Nv=1.5kgBOD/m3.dNv取值:城市污水1.0~6.0;印染废水1.5~3.0V=Qmax*(S1-S2)/Nv*1000=400m 3氨氮容积负荷N=0.45kgNH3/m3.d一般取值范围0.3-0.8反应体积V NH3=507m 3总面积F2.5m(一般H=2-3m)60%F=V/H=121.6m2每格池面积f设格数n=1f=F/n=121.6m2一般f≤25m2,n≥24)第一接触氧化池规格参数3)有效容积V(填料体积)一氧池取总有效体积的取填料层总高度H=取池宽B=2.5m池长L=f/B=48.6m池体总尺寸取超高h1=0.3m(一般h1=0.5~0.6m)填料上水深h2=0.5m(一般h2=0.4~0.5m)填料层间隙高h3=0.2m(一般h3=0.2~0.3m)配水区高度h4=0.5m(不进入检修h4=0.5m,进入检修h4=1.5m)填料层数m=2池总高H0=H+h1+h2+(m-1)h3+h4=4池总容积V0=n*f*H0=486.4总面积F取填料层总高度H=2m(一般H=2-2.5m)F=V/H=101.333333m2每格池面积f设格数n=1f=F/n=101.333333m2一般f≤25m2,n≥2取池宽B=2.5m池长L=f/B=40.5m池体总尺寸取超高h1=0.3m(一般h1=0.5~0.6m)填料上水深h2=0.6m(一般h2=0.4~0.5m)填料层间隙高h3=0.2m(一般h3=0.2~0.3m)配水区高度h4=0.5m(不进入检修h4=0.5m,进入检修h4=1.5m)填料层数m=2池总高H0=H+h1+h2+(m-1)h3+h4=3.6m 池总容积V0=n*f*H0=364.8m35)第二接触氧化池规格参数T=24*n*f*H/Qmax=3.04h7)曝气量取气水比k=15(推荐取值10~15)曝气量Q=k*Qmax/24*60=41.66666667单池曝气量Q1=Q/n=41.66666667接触沉淀池 1)表面负荷取值: q=5一般取5-7m3/m2.h之间 沉淀池表面积33.3m2 选用方形池则池长 5.8m取有效水深2m超高0.3m污泥斗高1m总高 3.3mHRT 6.7小时 反洗气量冲洗强度30m3/m2.h Q=1000.0m3/h =16.67m3/min 6)接触时间校核SS=200TP=5SS=5TP=0.3表13 生物接触氧化池的典型负荷率kgBOD/(m 3·d)KgNH 4-N/(m 3·d)碳氧化高负荷率2~5------碳氧化/硝化高负荷率0.5~20.1~0.4三级硝化高负荷率<20mgBOD/L a0.2~1.0处理要求工艺要求体积负荷率a:装置进水浓度。

生物接触氧化法计算

生物接触氧化法计算

生物接触氧化法计算生物接触氧化法的原理是通过将废水与活性污泥接触,利用污泥中的微生物对有机废水进行降解氧化。

微生物主要是利用废水中的有机物作为其生长及代谢的源,通过代谢作用使有机物分解为二氧化碳、水及微生物本身等无害物质。

污水在接触池中停留一段时间,有机物被微生物降解后,废水中的BOD(五日生化需氧量)和COD(化学需氧量)等指标得到降低。

生物接触氧化法的基本工艺流程包括接触池、初沉池、二沉池和消毒池等单元。

污水经进水管道进入接触池,与活性污泥充分接触,微生物对有机物进行降解。

接触池后,废水流入初沉池,通过重力沉淀将污泥与悬浮物分离。

然后进入二沉池,进一步去除悬浮物和沉淀污泥。

最后通过消毒池对水进行消毒处理,以确保出水水质符合排放标准。

在进行生物接触氧化法计算时,需要根据废水的特性和处理要求,确定污水处理工艺的参数。

以下是一些典型参数的计算方法:1.污水流量:根据生产设备产水量或日用水量,结合污水排放实际情况进行估算。

2.污水水质参数:根据废水中各指标的浓度,可以通过现场取样分析、监测数据或相关文献资料获得。

3. 体积负荷:指单位时间内处理的废水体积与污泥体积的比值。

根据污水流量和污泥产生量计算,常用单位为kg/(m³·d)。

4.净化程度要求:根据排放标准或使用要求,确定需要达到的废水净化程度。

常用指标包括BOD、COD、悬浮物、氨氮等。

5.接触池停留时间:根据废水的性质和处理要求,一般在0.5-2小时之间。

根据实际情况和经验进行选择。

6.混沉池和二沉池的设计:根据流量和停留时间来确定混沉池和二沉池的尺寸和设计参数,以确保充分的沉淀效果。

通过以上计算,可以确定适合具体情况的生物接触氧化法处理工艺参数。

在实际工程设计和运行中,还需要考虑到其他因素,如系统的稳定性、污泥处理和回用等问题。

此外,生物接触氧化法在处理有机废水过程中还可以结合其他工艺单元,如曝气池、调节池、好氧池等,以进一步提高处理效果。

污水处理生物膜法生物接触氧化池

污水处理生物膜法生物接触氧化池

污水处理生物膜法-生物接触氧化池一、概述生物接触氧化处理技术的实质之一是在池内充填填料,已充氧的污水将填料浸没全部,并以一定的流速流经填料。

而填料上布满生物膜,污水与生物膜通过接触,在生物膜上微生物的新陈代谢功能的作用下,污水中有机污染物得到去除,污水得到净化,因此,生物接触氧化处理技术又称为淹没式曝气生物滤池。

二、生物接触氧化池的构造接触氧化池是由池体、填料及支架、曝气装置、进出水装置以及排泥管道等部件所组成。

生物接触氧化池的构造示意图见图生物接触氧化池的构造示意图(一)池体池体的作用除了进行净化污水外,还要考虑填料,布水、布气等设施的安装。

当池体容积较小时可采用圆形钢结构,池体容积较大时可采用矩形钢筋混凝土结构。

池体的平面尺寸以满足布水、布气均匀,填料安装、维护管理方便为准。

池体的底壁须有支承填料的框架和进水进气管的支座。

池体厚度根据池的结构强度要求来计算。

高度则由填料、布水布气层、稳定水层以及超高的高度来计算。

同时,还必须考虑到充氧设备的供气压力或提升高度。

各部位的尺寸一般为:池内填料高度为3.0~3.5m;底部布气层高为0.6~0.7m;顶部稳定水层0.5~0.6m,总高度约为4.5~5.0m。

(二)填料1.填料的要求填料是生物膜的载体,所以也称之为载体。

填料是接触氧化处理工艺的关键部位,它直接影响处理效果,同时,它的费用在接触氧化系统的建设费用中占的比重较大,约占55%~60%;同时载体填料直接关系到接触氧化法的经济效果,所以选定适宜的填料是具有经济和技术意义的。

接触氧化处理工艺对填料的要求如下:(1)在水力特性方面,比表面积大、空隙率高、水流通畅、阻力小、流速均一;(2)要求形状规则、尺寸均一,表面粗糙度较大;填料表面电位高,附着性强;(3)化学与生物稳定性较强,经久耐用,不溶出有害物质,不导致产生二次污染; (4)在经济方面要考虑货源、价格,也要考虑便于运输与安装等。

2. 填料类型填料可分为悬挂式填料、悬浮式填料和固形块状填料三种类型。

生物接触氧化池的设计参数及计算公式

生物接触氧化池的设计参数及计算公式

生物接触氧化池的设计一、一般规定1、生物接触氧化池每个(格)平面形状宜采用矩形,沿水流方向池长不宜大于10m。

其长宽比宜采用1:2 ~ 1:1,有效面积不宜大于100m2。

2、生物接触氧化池由下至上应包括构造层、填料层、稳水层和超高。

其中,构造层宜采用0.6~1.2m,填料层高宜采用2.5~3.5m,稳水层高宜采用0.4~0.5m,超高不宜小于0.5m。

3、生物接触氧化池进水端宜设导流槽,其宽度不宜小于0.8m。

导流槽与生物接触氧化池应采用导流墙分隔。

导流墙下缘至填料底面的距离宜为0.3~0.5m,至池底的距离宜不小于0.4m。

4、生物接触氧化池应在填料下方满平面均匀曝气。

5、当采用穿孔管曝气时,每根穿孔管的水平长度不宜大于5m;水平误差每根不宜大于±2mm,全池不宜大于±3mm,且应有调节气量和方便维修的设施。

6、生物接触氧化池应设集水槽均匀出水。

集水槽过堰负荷宜为2-3L/(s·m)。

7、生物接触氧化池底部应有放空设施。

8、当生物接触氧化池水面可能产生大量泡沫时,应有消除泡沫措施。

9、生物接触氧化池应有检测溶解氧的设施。

二、填料1、生物接触氧化池的填料应采用对微生物无毒害、易挂膜、比表面积较大、空隙率较高、氧转移性能好、机械强度大、经久耐用、价格低廉的材料。

2、当采用炉渣等粒状填料时,填料层下部0.5m高度范围内的填料粒径宜采用50~80mm,其上部填料粒径宜采用20~50mm(常用炉渣填料的理化性能见附录B)3、当采用蜂窝填料时,孔径宜采用25~30mm。

材料宜为玻璃钢、聚氯乙烯等。

4、不同类型的填料可组合应用。

三、设计计算1、生物接触氧化池的填料容积应按下式计算:V=24LjQ/(1000*Fr)V---生物接触氧化池的填料容积Lj---生物接触氧化系统进水五日生化需氧量BOD5(mg/L);Q---生物接触氧化池设计流量(m3/h)Fr---生物接触氧化池BOD5填料容积负荷(kg/m3d).2、生物接触氧化池BOD5填料容积负荷通过试验确定.当无试验资料且采用二段式系统,进入生物接触氧化系统的污水BOD5为60~180mg/L时,可按下式计算系统的填料容积负荷.Fr =0.2881 L 0.7246 (3.3.2)式中L---生物接触氧化系统出水BOD5(mg/L).3、生物接触氧化池中,污水与填料的接触时间可由下列公式计算或按表采用:t=24Lj/(1000Fr)式中t----污水与填料的接触时间(h),不得小于0.5h.表:接触时间与进出水BOD5关系表(h)进水BOD5(mg/L) 出水BOD5(mg/L)20 25 30180 1.71 1.46 1.28150 1.43 1.21 1.06120 1.14 0.97 0.8590 0.86 0.73 0.6460 0.60 0.50 0.50当采用二段式时,污水在第一生物接触氧化池内与填料接触的时间宜为总接触时间的55%~60%.4、生物接触氧化池的气水比宜通过试验或参照相似条件的运行资料确定.当进水BOD5为60~180mg/L,且采用穿孔管在填料下方满平面均匀曝气时,二段式系统的总气水比可采用3:1~7~1,其中,一氧池的气水比为2:1~4:1,二氧池的气水比为1:1~3:1.5、生物接触氧化池曝气强度宜采用10~20m3/m2•h。

生物接触氧化设计计算详解

生物接触氧化设计计算详解

摘要水污染问题是我国最大的环境问题之一,水处理的发展对我国能否实现可持续发展起着举足轻重的作用。

尤其是水资源的过度开发和不合理利用,导致水污染日益严重。

因此,高效、合理、经济的污水处理工艺是解决这些问题的关键。

本设计是山东济南某新区20000m3/d生活污水处理厂的初步设计。

根据城市所处的地理位置和污水厂的规模,并结合脱氮除磷的要求,城市污水处理厂设计采用生物接触氧化工艺。

生物接触氧化是采用生物膜水处理废水的一种方法,是以附着在载体(填料)上的生物膜,净化有机废水的一种高效水处理工艺。

所选的生物接触氧化工艺具有工艺稳定性高,处理构筑物少,流程简化,节省投资等优点。

通过此工艺的处理,出水水质将达到国家《城镇污水处理厂污染物排放标准》(GB18918-2002)中的一级B标准。

关键词:生物接触氧化污水处理厂工艺流程AbstractOne of the foremost Environmental problems in our country is water pollution, especially because of over-exploitation of water resources and unreasonable use,water pollution is increasely serious.So,efficient,rational,economic process of wastewater treatment plant is the key to solve these problems.The design is a intial design on sewage treatment plants of a new township Ji Nan of Shan dong province.According to the location of the township ,the sacle of the plant and the requirements of nitrogen and phosphorus removal,the craft of the plant is bio-contact oxidation. Bio-contact oxidation is a kind of wastewater treatment method by using biofilm, which is a highly efficient wastewater treatment process of organic materials purification with the biomembrane attached to the carrier (commonly known as fillers).Selected bio-contact oxidation process has some advantages, such as high process stability , less structure, process simplification and saving investment.Through this craft processing, the effluent will reach the B standard of national "urban sewage treatment plant emission standards (GB18918-2002).Keywords: bio-contact oxidation Sewage treatment plant Process目录摘要 (I)Abstract (II)第1章设计概论 (1)1.1设计依据和设计任务 (1)1.1.1 原始依据 (1)1.1.2 设计的基本要求 (1)1.1.3 设计原则 (2)1.1.4 设计依据 (2)1.1.5 设计目的 (2)1.2设计水量 (3)1.3设计水质 (3)第2章工艺流程的确定 (4)2.1设计方案及可行性分析 (4)2.1.1 CASS工艺 (5)2.1.2 生物接触氧化工艺 (6)2.1.3 工艺比选 (7)2.2工程实例 (8)2.2.1 CASS工程实例 (8)2.2.2 生物接触氧化工程实例 (9)2.3工艺流程 (10)第3章污水处理构筑物设计计算 (11)3.1粗格栅 (11)3.1.1 设计说明 (11)3.1.2 设计参数 (11)3.1.3 设计计算 (12)3.2提升泵房 (15)3.2.1 设计说明 (15)3.2.2 设计参数 (15)3.2.3 设计计算 (15)3.3细格栅 (16)3.3.1 设计参数 (16)3.3.2 设计计算 (17)3.4平流沉砂池 (19)3.4.1 设计说明 (19)3.4.2 设计参数 (19)3.5水解酸化池 (23)3.5.1设计参数 (23)3.5.2 池体计算 (23)3.5.3 配水系统 (24)3.6配水井 (26)3.6.1 设计说明 (26)3.6.2 设计要求 (26)3.6.3 设计计算 (27)3.7生物接触氧化池 (28)3.8二沉池 (38)3.8.1 已知条件 (38)3.8.2 设计参数 (38)3.8.3 设计计算 (39)3.9消毒池 (44)3.9.1 设计参数 (44)3.9.2设计计算 (44)3.10加氯间 (45)3.10.1 消毒剂 (45)3.10.2 加氯量计算 (45)3.11污泥浓缩池 (46)3.11.1 设计参数 (46)3.11.2 设计计算 (47)3.12鼓风机房 (49)3.13贮泥池 (49)3.13.1 设计参数 (50)3.13.2 设计计算 (50)3.14污泥泵房 (51)3.15污泥脱水机房 (51)3.15.1 脱水污泥量的计算 (52)3.15.2 脱水机选型 (52)3.15.3 污泥运输泵的选型 (53)3.15.4 加药量的计算 (54)3.16调节池 (54)3.16.1 体积计算 (54)第四章主要设备说明 (55)第五章污水处理厂布置 (58)5.1污水处理厂平面布置 (58)5.1.1平面布置的原则 (58)5.1.2 平面布置 (58)5.2污水处理厂高程布置 (60)5.2.1 高程布置原则 (60)5.2.2 污水处理高程计算 (60)5.2.3 污泥处理高程计算 (68)第六章工程概算与成本分析 (72)6.1企业组织 (72)6.1.1 企业情况 (72)6.1.2 劳动定员 (72)6.2投资概算 (72)6.2.1 投资概算 (72)6.2.2 工器具购置费 (75)6.3工程建设其他费用计算 (76)6.4预备费用计算 (76)6.5运行费用 (76) (76)6.5.1 能源消耗费E16.5.2 药剂费E (77)26.5.3 工资福利E (77)3 (77)6.5.4 固定资产基本折旧费E4 (78)6.5.5 无形资产和递延资产摊销费E56.5.6 大修理基金提成E (78)6 (78)6.5.7 日常检修维护费E76.5.8 管理费销售费和其他费用E (78)8 (79)6.5.9 年经营成本E96.5.10 年总成本E (79)10 (79)6.5.11 单位处理成本E116.5.12 单位经营成本E (79)12第7章环境影响评价 (80)7.1环境质量标准与污染物排放标准 (80)7.1.1 环境质量标准 (80)7.1.2 污染物排放标准 (80)7.2项目建设和生产对环境的影响 (80)7.2.1 大气污染源 (80)7.2.2 废水污染源 (81)7.2.3 固体废气物 (81)7.2.4 噪声 (81)7.3环境保护措施初步方案 (81)7.3.1 大气环境治理 (81)7.3.2 废水治理 (81)7.3.3 固体废弃物治理 (82)7.3.4 噪声治理 (82)7.4安全措施 (82)7.5评价结论 (82)结束语.................................................... 错误!未定义书签。

生物接触氧化池设计计算

生物接触氧化池设计计算

生物接触氧化池设计计算生物接触氧化池是一种以生物膜为载体、通过微生物附着和生长来降解有机物质的装置。

它是水处理领域中常用的一种生物处理方法,广泛应用于废水处理、污泥厌氧消化、水体富营养化治理等领域。

在设计计算生物接触氧化池时,需要考虑到废水的水质特性、处理要求、氧化剂补给和系统运行参数等多个因素。

下面将逐步介绍生物接触氧化池的设计计算要点。

1.确定处理要求:首先,需要确定需要处理的废水水质特性、COD (化学需氧量)和BOD(生化需氧量)的浓度要求、处理效果等。

这些参数将决定生物接触氧化池的设计容积和运行参数。

2.计算废水量:根据生产、生活或其他需求的废水量,计算出废水的平均流量(Q)和峰值流量(Qp)。

根据废水的水质特性和峰值流量,可以确定每天处理的最大COD和BOD负荷。

3.确定生物膜附着量:生物膜的附着量是生物接触氧化池设计的重要参数。

根据废水的水质特性和处理要求,在设计中应该考虑生物膜的最小附着量,以确保生物附着和生长的充分。

4. 设计容积:根据废水的COD和BOD负荷、最小时段性冲击负荷、处理要求和水质特性计算出生物接触氧化池的设计容积。

根据Poncel Vehr Zuazua方程:V=HRT×Q/95其中V为氧化池的体积(m³),HRT为水在氧化池中停留的平均时间(d),Q为废水的日平均流量(m³/d),95为COD的平均去除效率。

5.确定氧化剂补给:生物接触氧化池中需要提供充足的氧化剂(如氧气)以促进有机物质的降解过程。

根据水质特性、处理要求和氧化剂的补给方式(如曝气或气体推进),计算出氧化剂的补给量和补给方式。

6.确定系统运行参数:根据废水的水质特性和处理要求,确定系统的运行参数,如曝气强度、微生物附着速率、氧化池的停留时间、生物附着膜的生物量、溶解氧浓度等。

7.设计处理设备:根据需求和计算结果,设计相应的处理设备,如氧化池、通气设备、氧化剂供应设备等。

生物接触氧化池的设计参数及计算公式

生物接触氧化池的设计参数及计算公式

生物接触氧化池的设计参数及计算公式生物接触氧化池是一种常用的污水处理装置,通过生物微生物附着在接触器内,利用其降解有机物质的能力来达到净化污水的目的。

设计生物接触氧化池的参数包括污水处理能力、氧化池尺寸、接触器高度、曝气量等。

计算公式主要包括污水处理能力、氧化池容积及曝气量的计算。

一、污水处理能力的计算公式:污水处理能力(Q)=年排水量(V)/运行年数(N)V:单位时间内排入氧化池的污水量N:生物接触氧化装置的寿命,通常为15-20年二、氧化池容积的计算公式:1.常用全混式生物接触氧化池氧化池容积(Vc)的计算公式:Vc=Q/最小停留时间(Tm)Q:污水处理能力Tm:污水在氧化池内停留的最短时间2.循环式生物接触氧化池氧化池容积(Vc)的计算公式:Vc=Q/氧化池内实际停留时间(Th)Q:污水处理能力Th:污水在氧化池内停留的实际时间三、曝气量的计算公式:曝气量(Qa)=Q×SQ:污水处理能力S:污泥产生速率,取决于单位时间内进入氧化池的有机物质的浓度及降解效果四、其他设计参数:1.接触器高度的确定:根据氧化池内的水曝气以及氧化物的混合程度,通常氧化池高度为7-10m,并应考虑污泥堆浆区的高度。

2.曝气系统的确定:曝气系统的设计应满足生物附着膜的氧的需求,并保证有效的气泡分布。

3.曝气时间的确定:曝气时间取决于污水中有机物的浓度和降解速率,通常情况下为6-8小时。

综上所述,生物接触氧化池的设计参数和计算公式包括污水处理能力、氧化池容积、曝气量等。

设计者需要考虑到实际运行情况、水质要求和设备费用等因素进行适当调整和优化。

接触氧化池曝气量计算

接触氧化池曝气量计算

6 接触氧化池流量83.3m /h ,一般取停留时间13h,故其有效容积为83.3⨯13=1082.93m 前面的气浮水解去除BOD 为20%,则到接触氧化池时BOD 含量为450⨯80%=360 接触氧化池中BOD 去除率为80%,则去除BOD 含量为360⨯0.8= 288mg/l 其BOD 负荷33e 32000m /d 288mg/l0.53kg /m d 1083m W Q S N V ∙⨯===∙ 有效水深取6m,其中填料到水面高1m,填料下安装曝气装置预留1.5m.填料高3.5米. 还有超高0.5m..采用折回布水,水流从池的一头进入,通过多设挡墙,增加污水与挂膜的接触时间, 曝气量的计算:11b r Q a Q S VX =+ 1a 微生物氧化分解有机物过程中的需氧率,即微生物每代谢1kgBOD 所需氧量的kg 数. 1b 1kg 的活性污泥(MLVSS)每天自身氧化所需氧的kg 数,即污泥自身氧化的需氧率,1d - N(MLSS)=4000mg/l,f=0.75,则V(MLVSS)=3000mg/lQ=0.6⨯20003m /d ⨯288mg/l+0.07⨯10833m ⨯3000mg/l=573.03kg/d2)计算曝气池内平均溶解氧饱和度,公式:sb 5()2.0261042b t s P O C C =+⨯计算,为此,确定式中各参数值:1)求定空气扩散装置出口处的绝对压力b P 值:b P =1.013⨯53109.8 4.510+⨯⨯=1.552a P 2)求定气泡离开池表面时,氧的百分比t O 值:21(1)100%7921(1)A t A E O E -=+- A E -------空气扩散装置的氧的转移效率,一般在6%-12%之间,这里取10%,得t O =19.3%3)确定计算水温20,25条件下的氧的饱和度,查附录1,得:0(20)9.17/S C m g l =0(30)7.63/S C m g l = 代入5()2.0261042t sb s O Pb C C =+⨯ 各值,得:(30)1.55219.37.63()9.352.02642sb C =+=mg/l (20)1.55219.39.17()11.232.02642sb C =+= mg/l 计算20度时脱氧清水的需氧量,按公式(4-84),代入(20)0(20)()[]1.024s T sb T RC R C C αβρ-=∙∙- 各值,得:0(3020)573.039.170.85[0.9519.352]1.024R -⨯=⨯⨯⨯-=708.4kg/d计算供气量:01000.3S A R G E =708.41000.310S G =⨯=236133/m d 则,汽水比约为12。

生物接触氧化池设计计算

生物接触氧化池设计计算

生物接触氧化池设计计算生物接触氧化池(Biological Contact Oxidation Tank)是一种常用于废水处理的技术,通过细菌和微生物的代谢作用将废水中的有机污染物氧化降解为无机物。

在设计和计算生物接触氧化池时,需要考虑污水的水质特性、污染物的浓度、氧化池的容积、水力停留时间等因素,以满足废水处理的要求。

下面将详细介绍生物接触氧化池的设计和计算。

一、生物接触氧化池的设计准则1. 水力停留时间(Hydraulic Retention Time, HRT):根据废水的特性和需求,通常取值为4-6小时。

2.水质特性:需要了解废水的pH值、污染物的种类与浓度、废水的温度等参数。

3.氧化池容积:根据水质特性和污染物浓度,通过负荷计算确定。

4.氧化池的曝气方式:可通过机械曝气或自然曝气等方式提供氧气。

5.污泥潜污深度:根据废水中悬浮物的特性和需求,一般取值为2-3米。

6.曝气强度:根据有机负荷或氨氮负荷来确定。

二、生物接触氧化池的计算方法1. 水质设计计算:根据废水的种类和浓度,结合COD(化学需氧量)和BOD5(五日生化需氧量)来计算污水的有机负荷(kg COD/h)。

2.曝气强度的计算:根据废水中的氨氮浓度,结合气水比,来计算曝气强度。

曝气强度是指单位时间内曝气气量与污水的曝气量之比。

3.污泥产率的计算:根据废水负荷的大小,选择适当的污泥产率。

污泥产率是指单位时间内污泥的累积产量与废水负荷之比。

4.氧化池体积的计算:根据水质特性和污染物浓度的要求,通过负荷计算法计算氧化池体积。

三、生物接触氧化池的工艺优化1.曝气方式的选择:根据氧化池的容积和负荷,选择合适的曝气方式。

常见的曝气方式有机械曝气和自然曝气。

2.污泥悬浮物的处理:可以通过悬浮填料、调节水流速度等方式来处理污泥悬浮物。

3.氧化池的操作调控:控制曝气时间、氧化剂投加量等参数,以保持氧化池内合适的环境条件,促进废水的降解。

4.污泥回流的利用:通过回流部分污泥,在氧化池中增加微生物的附着表面,提高废水处理效果。

接触氧化池需氧量计算

接触氧化池需氧量计算

接触氧化池需氧量计算氧化池是处理污水或废水的设备之一,它通过微生物的作用将有机物降解为无机物。

而氧化池的设计和操作,需要通过计算需氧量来确定氧化池的尺寸和氧气供应量。

本文将介绍氧化池需氧量计算的方法和步骤。

需氧量(COD)是衡量废水中有机物含量的指标,表示有机物被氧化分解所需要的氧气量。

COD的计算一般以化学需氧量(CODcr)作为基准,即废水中有机物在碱性条件下被强氧化剂(通常是高锰酸钾或二氧化氯)氧化所需的氧气量。

首先,需要收集废水样本,并进行CODcr的测定。

测定方法可以采用标准的化学分析方法,如浸出法、消解法或光度法等。

测定CODcr的结果通常以毫克氧气/升(mg/L)为单位。

这个数值可以代表废水中有机物的浓度,我们将其记为CODcr。

接下来,需氧量的计算可以根据以下公式进行:COD = CODcr × 1.42其中,1.42是一个经验值,用于将CODcr转换为COD。

这是因为CODcr只测定了一部分有机物的含量,而真实的有机物含量通常会比CODcr更高。

然后,需要计算氧化池的需氧量(CODR)。

CODR表示氧化池中有机物的总氧化需求,包括废水输入的有机物(C0)和污泥的有机物(S0)。

CODR=C0+S0废水输入的有机物(C0)可以通过废水流量(Q)和CODcr浓度(CODC)计算得出:C0=Q×CODC其中,Q表示废水流量,单位通常为升/秒(L/s),CODC表示废水的CODcr浓度,单位为mg/L。

污泥溶解产生的有机物(S0)可以通过污泥产率(Y)和废水中CODcr的去除率(R)计算得出:S0=Q×Y×(CODC-R×CODSTAD)其中,Y表示污泥产率,单位为克污泥/克COD,CODSTAD表示污泥中CODcr的浓度,单位为mg/L。

最终,根据CODR的计算结果,可以确定氧化池的尺寸和氧气供应量。

一般来说,氧化池的尺寸需要根据设计要求和容量来确定,而氧气供应量则需要根据氧化池中有机物的需氧量来确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生物接触氧化池计算摘要:生物接触氧化法作为给水生物预处理工艺,近年来得到了日益广泛的工程实际应用。

本文对给水生物接触氧化法预处理工程中常用的两种曝气系统(微孔曝气器曝气和穿孔管曝气),作了充氧性能、系统造价、运行成本及运行管理等方面的比较研究。

研究表明,在实际工程应用中,采用微孔曝气器的曝气系统优于采用穿孔管的曝气系统。

关键词:微孔曝气器生物接触氧化池穿孔管充氧性能运行成本近些年来,随着工农业的迅速发展,城市化建设加快,城市人口膨胀,引起了城市工业与生活用水大量增加;同时,相应的污染排放量也在逐年增加,导致了饮用水水源普遍受到污染,饮用水水质恶化。

在给水处理领域中引入生物预处理,已成为微污染水源水处理的技术发展方向和有效手段之一。

在我国,给水工程实践中常用生物接触氧化法作为生物预处理工艺。

在该方法中,曝气系统的选择直接关系着整个生物预处理工艺的充氧性能、处理效果、运行成本和管理操作。

本文结合中试试验和工程实践对这两种不同曝气系统作了多方面的比较与分析。

1 生物接触氧化池的两种曝气系统为提高氧的利用率,生物接触氧化池宜采用气水逆向流设计。

一般用鼓风机鼓风曝气,曝气设备分布于池底;气流自下向上流经填料区,水流自上向下流经填料区。

曝气系统一般采用微孔曝气系统或穿孔曝气系统。

微孔曝气系统一般采用膜片式微孔曝气器作为曝气设备,池中填料一般采用弹性填料,设计气水比一般取0.7左右。

穿孔曝气系统采用穿孔管作为曝气设备,池中填料可采用颗粒填料或弹性填料,设计气水比一般取1左右。

2 充氧性能比较通过对中试装置的清水充氧试验,对两种不同曝气方式的标准状态充氧性能作了测试,并对以下几项充氧性能评定指标作了比较与分析。

(1) 标准状态下的氧总转移系数K Las(h-1)——曝气器在标准状态(水温20℃、1atm大气压强)的测试条件下,在单位传质推动力作用时,单位时间向单位体积水中传递氧的数量;K Las=K La(T)·1.024(20-T)(1)式中K La(T)——水温为T℃条件下,氧气的总转移系数(h-1);T——测定时的实际水温(℃)。

K La(T)=2.303lg[(c3-c1)/(c3-c2)]×[60/(t2-t1)] (2)式中C s——液体中的氧气溶解度(mg/L);C1、C2——在t1、t2时间(以min计)所测得的氧气浓度(mg/L)。

(2) 氧气转移率dc/dt(mg/L.h)——曝气器在标准状态的测试条件下,单位体积内氧气的转移速率;dC/dt=K Las·C s(20)(3)式中dC/dt ——单位体积内氧气的转移速率,简称氧气转移率(mg/L.h);C s(20)——标准状态下的氧气在清水中的溶解度,C s(20)=9.17mg/L。

(3) 充氧能力R0(kgO2/h)——曝气器在标准状态的测试条件下,单位时间向溶解氧为零的水中传递的氧量:R0=K Las·V·C s(20)·10-3 ,(kgO2/h)(4)式中V——液体体积(m3)。

(4) 氧利用率E A(%)——曝气器在标准状态的测试条件下,传递到水中的氧量占曝气器供氧量的百分比:E A=(R0/S)×100%(5)式中S——供氧量(kgO2/h);S=0.21·1.331·G S其中0.21——空气中氧所占比例;1.331——标准状态下氧的容重(kg/m3);G S——供给空气量(m3/h)。

(5) 充氧动力效率E P(kgO2/kW.h)——曝气器在标准状态的测试条件下消耗1kW.h有用功所传递到水中的氧量。

Ep=R0/N (kgO2/KW.h)(6)式中N ——消耗功率计算值;N=HG sγ/102 (kW)其中H ——空气压力(kg/cm2);γ——标准状态下的空气容重,γ =1.205(kg/m3)。

2.1 清水充氧试验本试验直接利用A型和B型生物接触氧化中试装置(见图1)为测试装置:A型生物接触氧化池的填料区下方设微孔曝气器(微孔直径0~200μm范围内变化),直接向弹性填料区鼓风曝气,池中水深4.5m,填料区高度4m,并采用两级串联的方式运行。

B型生物接触氧化池的填料区下方设置穿孔曝气管(孔径1mm),直接向颗粒填料区鼓风曝气,池中水深4.1m,填料区高度2m。

试验用水为自来水,水温28℃,供气量以转子流量计计量换算。

试验方法采用静态启动的间歇非稳态法;用亚硫酸钠为消氧剂,氯化钴为催化剂;溶解氧采用溶氧仪直接测定。

试验条件和测试结果见图2和表1。

*注:气量均采用设计工况下的曝气量,曝气强度均控制在4m3/m2.h左右。

2.2 试验结果分析和结论2.2.1 由表1可以看出:(1)由于氧的溶解度小(因而氧的转移也慢),通过正常的气水交界面难以获得足够的氧量来进行好氧生物处理,必须要人为地增加气水的交界面。

鼓风曝气就是增加氧转移交界面的一种方法。

依据双膜理论,膜的厚度反映了阻力的大小。

在浓度差相等的情况下,鼓风曝气气泡愈小,氧的转移量也愈多。

由表1第6项可知,A型生物接触氧化池的气泡直径远小于B型;从第7、8项可看出,其相应的K LaS值和dc/dt值高于B型。

(2)一个曝气装置的K LaS值大,吸收的氧量虽可多些,但未必经济。

所以在实际工作中常用氧利用率E A和充氧动力效率E p来作为比较曝气装置效率的指标。

从表1第10、11项可明显看出,A型生物接触氧化池的E A值和E P值均高于B型。

这说明在同等的充氧能力下,A型生物接触氧化池所消耗的能量小于B型。

2.2.2 在后来试验稳定工况的连续运转中,曾多次测定A、B型生物接触氧化池中水体的溶解氧,结果见表2:由表2可知,A型生物接触氧化池中各部位的溶解氧值均高于B型。

这说明了A型生物接触氧化池具有较高的充氧效率,能提供足够的氧气以保证生物膜进行生化反应。

综上所述,可认为:从充氧性能的上述五项评价指标来比较,A型生物接触氧化池的充氧性能明显优于B型生物接触氧化池。

3 曝气系统经济比较参考某地一座4万m3/d产水量的生物接触氧化池的实际工程设计,假定池表面积560 m2,有效水深为4.5m;并假定填料均采用YDT弹性波纹立体填料,曝气用鼓风机均采用国产罗茨风机,水下空气管道采用ABS管材(水上空气总管采用钢管)。

在此假定前提下,对可能用的两种曝气系统方案进行了经济上的比较与分析。

3.1 曝气系统造价比较(1)微孔曝气系统的气水比为0.7,总供气量为2.8万m3/d。

采用鼓风机的额定空气流量为19.4 m3/min,出口静压49kPa,配套电动机功率30kW。

空气总管管径300mm,采用钢管。

为曝气均匀,将整个生物接触氧化池分为四个曝气区。

位于生物接触氧化池底部的布气管道布置成环状,管径100mm,管道间距0.6m,采用ABS管。

曝气器采用膜片式微孔曝气器,安装于环状布气管道上,每个曝气器的服务面积约0.5m2,共1200个曝气器。

(2)穿孔曝气系统的气水比为1,总供气量为4万m3/d。

采用鼓风机的额定空气流量为27.8m3/min,出口静压49kPa,配套电动机功率37kW。

空气总管管径350mm,采用钢管。

为曝气均匀,位于生物接触氧化池底部的穿孔曝气管采取环路布置和曝气管下弯配置方法。

穿孔管采用ABS管,沿管道每隔25mm开孔,孔径为2~3mm,管道间距为1.5~2.0m。

(3)曝气系统主要包括鼓风机和管道系统(曝气器、管道、管件、阀门、支撑、水平调节器等)。

计算曝气系统造价时,参照1999年上半年上海市的市场价格,再考虑相应的安装调试费用,最后得出两种曝气系统的工程造价(未考虑利润率)如下:微孔曝气系统:约60万元;穿孔曝气系统:约35万元。

3.2 曝气系统运行成本比较因为两种曝气系统的维护管理所需人工费相近,所以主要考虑用电量的差别。

参考上海市工业用电价格,设电价平均为0.7元/kW.h,并假定生物接触氧化池每天24小时运行。

微孔曝气系统所用电动机功率为30kW,每年耗电量262800kW.h,每年电费约为18.4万元;穿孔曝气系统所用电动机功率为37kW,每年耗电量324120kW.h,每年电费约为22.7万元。

所以两种曝气系统每年所需电费相差约为4.3万元。

由以上分析可知,微孔曝气系统每年的运行成本比穿孔曝气系统约少4.3万元。

3.3 曝气系统对制水成本的增加(1)整个曝气系统按15年折旧计算,为简化起见,不考虑土建投资、贷款及利息,则曝气系统的年折旧费用为:微孔曝气系统:约4万元/年;穿孔曝气系统:约2.3万元/年。

(2)曝气系统所需运行费用主要包括电费和人工费,人工费均按4.8万元/年计算,所以年运行费用为:微孔曝气系统:约23.2万元/年;穿孔曝气系统:约27.5万元/年。

(3)因生物接触氧化池日产水量为4万m3/d,年产水量为1460万m3/年,所以曝气系统对制水成本的增加为:微孔曝气系统:(4+23.2)/1460=0.0186元/m3水,约1.86分/m3水;穿孔曝气系统:(2.3+27.5)/1460=0.0204元/m3水,约2.04分/m3水。

4 曝气系统的运行管理曝气系统的正常运行依赖于曝气系统的使用寿命和日常维护。

(1)微孔曝气系统正常运行的关键在于微孔曝气器的正确选用。

随着科技的发展,在目前的工程应用中,曝气器支承盘多采用ABS工程塑料,布气膜片多采用高分子聚合物或添加了增强剂的橡胶,取代了原有的钛板或陶瓷板曝气的微孔曝气器。

布气膜片的内外表面很光滑,不会产生金属氧化物,不易固着生物膜,并有很好的耐酸耐碱性能。

布气膜片上的气孔可随气量的增减而可大可小,从而使曝气变得更加均匀,同时也防止了堵塞。

由于布气膜片具有一定的弹性,曝气器在充氧曝气时,布气膜片及膜片上的微孔在气体的作用下能自行鼓胀挣开,以确保气体可从微孔中通过,在停止曝气时,布气膜片上的微孔呈闭合状态。

由于布气膜片具有弹性及微孔可自行扩张和收缩,避免了以往曝气器微孔容易受堵的现象。

其缺陷在于:生产微孔曝气器的厂家较多,其产品质量良莠不齐。

如果曝气器布气膜片的材质和加工质量不过关,会导致在使用过程中出现布气膜片破损的情况。

在已有的生产性给水生物接触氧化池中,有的水厂连续运行三年以上,未出现过布气膜片破损的情况;但也有个别水厂在不到一年的运行时间内,就有少数曝气器的布气膜片出现破损。

由于曝气器安装在填料的下方,更换检修较为困难,所以对曝气器的质量提出了严格的要求。

(2)穿孔曝气系统直接在空气管道上开孔曝气,所以不存在上述微孔曝气系统存在的膜片破损问题。

给水工程中,穿孔曝气管孔眼直径一般为3mm,也有工程采用1~2mm孔眼直径。

尽管在污水处理中,穿孔曝气管多采用3mm孔眼直径,且较少有曝气不均匀和堵塞现象。

相关文档
最新文档