2020-2021济南市高三数学上期中一模试题(及答案)
2020-2021济南市外国语初中部高中必修一数学上期中一模试题(及答案)
2020-2021济南市外国语初中部高中必修一数学上期中一模试题(及答案)一、选择题1.设常数a ∈R ,集合A={x|(x ﹣1)(x ﹣a )≥0},B={x|x≥a ﹣1},若A ∪B=R ,则a 的取值范围为( ) A .(﹣∞,2)B .(﹣∞,2]C .(2,+∞)D .[2,+∞)2.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( ) A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭3.若偶函数()f x 在区间(]1-∞-,上是增函数,则( ) A .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭B .3(1)(2)2f f f ⎛⎫-<-< ⎪⎝⎭C .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭D .3(2)(1)2f f f ⎛⎫<-<- ⎪⎝⎭4.设()f x 是定义在R 上的偶函数,且当0x ≥时,()21,0122,1xx x f x x ⎧-+≤<=⎨-≥⎩,若对任意的[],1x m m ∈+,不等式()()1f x f x m -≤+恒成立,则实数m 的最大值是( ) A .1-B .13-C .12-D .135.已知函数224()(log )log (4)1f x x x =++,则函数()f x 的最小值是A .2B .3116C .158D .16.设x 、y 、z 为正数,且235x y z ==,则 A .2x <3y <5z B .5z <2x <3y C .3y <5z <2xD .3y <2x <5z7.函数223()2xx xf x e +=的大致图像是( )A .B .C .D .8.已知函数21(1)()2(1)a x x f x x x x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是 A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-9.已知()()2,11,1xx f x f x x ⎧<⎪=⎨-≥⎪⎩,则()2log 7f =( )A .7B .72C .74D .7810.函数2xy x =⋅的图象是( )A .B .C .D .11.设函数3()f x x x =+ ,. 若当02πθ<<时,不等式(sin )(1)0f m f m θ+-> 恒成立,则实数m 的取值范围是( ) A .1(,1]2B .1(,1)2C .[1,)+∞D .(,1]-∞12.若函数2()sin ln(14)f x x ax x =⋅+的图象关于y 轴对称,则实数a 的值为( ) A .2B .2±C .4D .4±二、填空题13.方程组240x y x +=⎧⎨-=⎩的解组成的集合为_________. 14.若函数()f x 满足()3298f x x +=+,则()f x 的解析式是_________. 15.已知2a =5b =m ,且11a b+=1,则m =____. 16.若幂函数()a f x x =的图象经过点1(3)9,,则2a -=__________.17.103383log ()()1255---+=__________.18.某班有36名同学参加数学、物理、化学竞赛小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有__________人. 19.己知函数()f x =x a b +的图象经过点(1,3),其反函数()1fx -的图象经过点(2.0),则()1f x -=___________.20.已知函数())ln1f x x =+,()4f a =,则()f a -=________.三、解答题21.设()4f x x x=-(1)讨论()f x 的奇偶性;(2)判断函数()f x 在()0,∞+上的单调性并用定义证明.22.已知函数24()(0,1)2x xa af x a a a a-+=>≠+是定义在R 上的奇函数. (1)求a 的值:(2)求函数()f x 的值域;(3)当[]1,2x ∈时,()220xmf x +->恒成立,求实数m 的取值范围.23.已知函数()222,00,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩是奇函数.(1)求实数m 的值;(2)若函数()f x 在区间[]1,2a --上单调递增,求实数a 的取值范围. 24.已知函数()xf x b a =⋅,(其中,a b 为常数且0,1a a >≠)的图象经过点(1,6),(3,24)A B(1)求()f x 的解析式(2)若不等式11120x xm a b ⎛⎫⎛⎫++-≥ ⎪ ⎪⎝⎭⎝⎭在(],1x ∈-∞上恒成立,求实数m 的取值范围. 25.已知函数()1ln1xf x x+=-的定义域为集合A ,集合(),1B a a =+,且B A ⊆. (1)求实数a 的取值范围;(2)求证:函数()f x 是奇函数但不是偶函数.26.某辆汽车以x 千米/小时的速度在高速公路上匀速行驶(考虑到高速公路行车安全要求60120)x 剟时,每小时的油耗(所需要的汽油量)为14500()5x k x-+升,其中k 为常数,且60100k 剟. (1)若汽车以120千米/小时的速度行驶时,每小时的油耗为11.5升,欲使每小时的油耗不超过9升,求x 的取值范围;(2)求该汽车行驶100千米的油耗的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 试题分析:当时,,此时成立,当时,,当时,,即,当时,,当时,恒成立,所以a 的取值范围为,故选B.考点:集合的关系2.C解析:C 【解析】 【分析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果. 【详解】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩, 所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C.【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.3.D解析:D 【解析】 【分析】函数()f x 为偶函数,则()()f x f x =-则()()22f f =-,再结合()f x 在(]1-∞-,上是增函数,即可进行判断. 【详解】函数()f x 为偶函数,则()()22f f =-.又函数()f x 在区间(]1-∞-,上是增函数. 则()()3122f f f ⎛⎫<-<- ⎪⎝⎭-,即()()3212f f f ⎛⎫<-<- ⎪⎝⎭故选:D. 【点睛】本题考查函数奇偶性和单调性的应用,考查化归与转化的思想,属于基础题.4.B解析:B 【解析】 【分析】由题意,函数()f x 在[0,)+∞上单调递减,又由函数()f x 是定义上的偶函数,得到函数()f x 在(,0)-∞单调递增,把不等式(1)()f x f x m -≤+转化为1x x m -≤+,即可求解. 【详解】易知函数()f x 在[)0,+∞上单调递减, 又函数()f x 是定义在R 上的偶函数, 所以函数()f x 在(),0-∞上单调递增, 则由()()1f x f x m -≤+,得1x x m -≥+,即()()221x x m -≥+,即()()22210g x m x m =++-≤在[],1x m m ∈+上恒成立,则()()()()()()3110121310g m m m g m m m ⎧=-+≤⎪⎨+=++≤⎪⎩,解得113m -≤≤-, 即m 的最大值为13-. 【点睛】本题主要考查了函数的基本性质的应用,其中解答中利用函数的基本性质,把不等式转化为1x x m -≤+ 求解是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力,属于中档试题.5.B解析:B 【解析】 【分析】利用对数的运算法则将函数()()()224log log 41f x x x =++化为()2221log 1log 12x x +++,利用配方法可得结果. 【详解】化简()()()224log log 41f x x x =++()2221log 1log 12x x =+++22211131log log 224161616x x ⎛⎫=++-≥-= ⎪⎝⎭,即()f x 的最小值为3116,故选B.【点睛】本题主要考查对数的运算法则以及二次函数配方法求最值,属于中档题. 求函数最值常见方法有,①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法;③不等式法;④单调性法;⑤图象法.6.D解析:D 【解析】令235(1)x y zk k ===>,则2log x k =,3log =y k ,5log =z k∴22lg lg 3lg 913lg 23lg lg8x k y k =⋅=>,则23x y >, 22lg lg5lg 2515lg 25lg lg32x k z k =⋅=<,则25x z <,故选D. 点睛:对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.7.B解析:B 【解析】由()f x 的解析式知仅有两个零点32x =-与0x =,而A 中有三个零点,所以排除A ,又()2232xx x f x e-++'=,由()0f x '=知函数有两个极值点,排除C ,D ,故选B . 8.C解析:C 【解析】x ⩽1时,f (x )=−(x −1)2+1⩽1, x >1时,()()21,10a a f x x f x x x=++'=-…在(1,+∞)恒成立, 故a ⩽x 2在(1,+∞)恒成立, 故a ⩽1,而1+a +1⩾1,即a ⩾−1, 综上,a ∈[−1,1], 本题选择C 选项.点睛:利用单调性求参数的一般方法:一是求出函数的单调区间,然后使所给区间是这个单调区间的子区间,建立关于参数的不等式组即可求得参数范围;二是直接利用函数单调性的定义:作差、变形,由f (x 1)-f (x 2)的符号确定参数的范围,另外也可分离参数转化为不等式恒成立问题.9.C解析:C 【解析】 【分析】根据函数的周期性以及分段函数的表达式,结合对数的运算法则,代入即可得到结论. 【详解】2222log 4log 7log 83=<<=Q ,20log 721∴<-<,()()2log 72227log 7log 7224f f -∴=-==.【点睛】本题主要考查函数值的计算,根据分段函数的表达式以及函数的周期性进行转化是解决本题的关键.10.A解析:A 【解析】 【分析】先根据奇偶性舍去C,D,再根据函数值确定选A. 【详解】因为2xy x =⋅为奇函数,所以舍去C,D; 因为0x >时0y >,所以舍去B ,选A. 【点睛】有关函数图象识别问题的常见题型及解题思路(1)由解析式确定函数图象的判断技巧:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.(2)由实际情景探究函数图象.关键是将问题转化为熟悉的数学问题求解,要注意实际问题中的定义域问题.11.D解析:D 【解析】 【分析】 【详解】易得()f x 是奇函数,2()310()f x x f x '=+>⇒在R 上是增函数,不等式(sin )(1)0f m f m θ+-> 恒成立. 可得11(sin )(1)sin 1,0sin 111sin 1sin f m f m m m m m θθθθθ>-⇒>-⇒<<<⇒⇒≤--, 故选D.12.B解析:B 【解析】 【分析】根据图象对称关系可知函数为偶函数,得到()()f x f x =-,进而得到ax +=.()f x Q 图象关于y 轴对称,即()f x 为偶函数 ()()f x f x ∴=-即:()sin ln sin lnsin lnx ax x ax x ⋅+=-⋅=⋅ax ∴+=恒成立,即:222141x a x +-=24a ∴=,解得:2a =± 本题正确选项:B 【点睛】本题考查根据函数的奇偶性求解参数值的问题,关键是能够明确恒成立时,对应项的系数相同,属于常考题型.二、填空题13.【解析】【分析】解方程组求出结果即可得答案【详解】由解得或代入解得或所以方程组的解组成的集合为故答案为【点睛】该题考查的是有关方程组解集的问题需要注意的问题是解是二维的再者就是需要写成集合的形式属于 解析:()(){}2,2,2,2--【解析】 【分析】 解方程组240x y x +=⎧⎨-=⎩,求出结果即可得答案. 【详解】由240x -=,解得2x =或2x =-,代入0x y +=, 解得22x y =⎧⎨=-⎩或22x y =-⎧⎨=⎩,所以方程组2040x y x +=⎧⎨-=⎩的解组成的集合为{}(2,2),(2,2)--,故答案为{}(2,2),(2,2)--. 【点睛】该题考查的是有关方程组解集的问题,需要注意的问题是解是二维的,再者就是需要写成集合的形式,属于简单题目.14.【解析】【分析】设带入化简得到得到答案【详解】设代入得到故的解析式是故答案为:【点睛】本题考查了利用换元法求函数解析式属于常用方法需要学生熟练掌握解析:()32f x x =+【分析】设32t x =+,带入化简得到()32f t t =+得到答案. 【详解】()3298f x x +=+,设32t x =+ 代入得到()32f t t =+故()f x 的解析式是() 32f x x =+ 故答案为:()32f x x =+ 【点睛】本题考查了利用换元法求函数解析式,属于常用方法,需要学生熟练掌握.15.10【解析】因为2a=5b=m 所以a=log2mb=log5m 由换底公式可得=logm2+logm5=logm10=1则m=10点睛:(1)在对数运算中先利用幂的运算把底数或真数进行变形化成分数指数解析:10 【解析】因为2a =5b =m ,所以a =log 2m ,b =log 5m , 由换底公式可得11a b+=log m 2+log m 5=log m 10=1,则m =10. 点睛:(1)在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底或指数与对数互化.(2)熟练地运用对数的三个运算性质并配以代数式的恒等变形是对数计算、化简、证明常用的技巧.16.【解析】由题意有:则: 解析:14【解析】 由题意有:13,29aa =∴=-, 则:()22124a--=-=. 17.【解析】18.8【解析】【分析】画出表示参加数学物理化学竞赛小组集合的图结合图形进行分析求解即可【详解】由条件知每名同学至多参加两个小组故不可能出现一名同学同时参加数学物理化学竞赛小组设参加数学物理化学竞赛小组的解析:8 【解析】 【分析】画出表示参加数学、物理、化学竞赛小组集合的Venn 图,结合图形进行分析求解即可.【详解】由条件知,每名同学至多参加两个小组,故不可能出现一名同学同时参加数学、物理、化学竞赛小组,设参加数学、物理、化学竞赛小组的人数构成的集合分别为A ,B ,C ,则()0card A B C ⋂⋂=,()6card A B ⋂=,()4card B C ⋂=,由公式()card A B C ⋃⋃()()()()()()card A card B card C card A B card A C card B C =++-⋂-⋂-⋂ 知()3626151364card A C =++---⋂,故()8card A C ⋂=即同时参加数学和化学小组的有8人,故答案为8.【点睛】本小题主要考查Venn 图表达集合的关系及运算、Venn 图的应用、集合中元素的个数等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想,属于基础题.19.【解析】∵函数=的图象经过点(13)∴∵反函数的图象经过点(20)∴函数=的图象经过点(02)∴∴∴==∴=解析:()2log 1,1x x ->【解析】∵函数()f x =x a b +的图象经过点(1,3),∴3a b +=,∵反函数()1f x -的图象经过点(2,0),∴函数()f x =x a b +的图象经过点(0,2),∴12b +=.∴2, 1.a b ==∴()f x =x a b +=2 1.x +∴()1f x -=()2log 1, 1.x x ->20.【解析】【分析】发现计算可得结果【详解】因为且则故答案为-2【点睛】本题主要考查函数的性质由函数解析式计算发现是关键属于中档题【解析】【分析】发现()()f x f x 2+-=,计算可得结果.【详解】因为()()))()22f x f x ln x 1ln x 1ln 122x x +-=+++=+-+=, ()()f a f a 2∴+-=,且()f a 4=,则()f a 2-=-.故答案为-2【点睛】本题主要考查函数的性质,由函数解析式,计算发现()()f x f x 2+-=是关键,属于中档题.三、解答题21.(1)奇函数(2)()f x 在()0,+∞上是增函数,证明见解析.【解析】【分析】(1)分别确定函数的定义域和()f x 与()f x -的关系即可确定函数的奇偶性;(2)()12,0,x x ∀∈+∞,且12x x <,通过讨论()()12f x f x -的符号决定()1f x 与()2f x 的大小,据此即可得到函数的单调性.【详解】(1)()4f x x x=-的定义域为0x ≠,()()()44f x x x f x x x ⎛⎫-=--=--=- ⎪-⎝⎭,()4f x x x ∴=-是奇函数. (2)()12,0,x x ∀∈+∞,且12x x <,()()()()()()121212122112121212124444441f x f x x x x x x x x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=---=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-⎛⎫=-+=-+ ⎪⎝⎭ ∵()1212,0,,x x x x ∈+∞<,121240,10x x x x ∴-+, ()1212410x x x x ⎛⎫∴-+< ⎪⎝⎭, ()()12f x f x <. ∴Q ()f x 在()0,+∞上是增函数.本题主要考查函数的奇偶性,函数的单调性的证明等知识,意在考查学生的转化能力和计算求解能力.22.(1)2a =(2)()1,1-(3)(10,3)+∞ 【解析】【分析】(1)利用函数是奇函数的定义求解a 即可(2)判断函数的单调性,求解函数的值域即可(3)利用函数恒成立,分离参数m ,利用换元法,结合函数的单调性求解最大值,推出结果即可.【详解】(1)∵()f x 是R 上的奇函数,∴()()f x f x -=- 即:242422x x x x a a a a a a a a---+-+=-++. 即2(4)2422x x x x a a a a a a a a+-+⋅-+-=+⋅+ 整理可得2a =.(2)222212()12222121x x x x x f x ⋅--===-⋅+++在R 上递增 ∵211x +>,22021x ∴-<-<+, 211121x ∴-<-<+ ∴函数()f x 的值域为()1,1-.(3)由()220xmf x +-> 可得,()2 2xmf x >-,21()2221x x x mf x m -=>-+. 当[]1,2x ∈时,(21)(22)21x x x m +->- 令(2113)x t t -=≤≤), 则有(2)(1)21t t m t t t+->=-+, 函数21y t t =-+在1≤t ≤3上为增函数, ∴max 210(1)3t t -+=,103m ∴>, 故实数m 的取值范围为(10,3)+∞ 【点睛】 本题主要考查了函数恒成立条件的应用,函数的单调性以及函数的奇偶性的应用,属于中档题.23.(1)2;(2)(]1,3.【解析】【分析】(1)设0x <,可得0x ->,求出()f x -的表达式,利用奇函数的定义可得出函数()y f x =在0x <时的解析式,由此可求出实数m 的值;(2)作出函数()y f x =的图象,可得出函数()y f x =的单调递增区间为[]1,1-,于是可得出[][]1,21,1a --⊆-,进而得出关于实数a 的不等式组,解出即可.【详解】 (1)()222,00,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩Q 为奇函数, 当0x <时,0x ->,则()()()2222f x x x x x -=--+⨯-=--,则()()22f x f x x x =--=+,2m ∴=; (2)由(1)可得()222,00,02,0x x x f x x x x x ⎧-+>⎪==⎨⎪+<⎩,作出函数()y f x =如下图所示:由图象可知,函数()y f x =的单调递增区间为[]1,1-,由题意可得[][]1,21,1a --⊆-,则121a -<-≤,解得13a <?.因此,实数a 的取值范围是(]1,3.【点睛】本题考查奇函数解析式的求解,同时也考查了利用函数在区间上的单调性求参数,考查运算求解能力,属于中等题.24.(1)()=32x f x ⋅;(2)1112m ≤. 【解析】试题分析:(1)由题意得2,3a b ==,即可求解()f x 的解析式;(2)设11()()()x x g x a b =+,根据()y g x =在R 上为减函数,得到min 5()(1)6g x g ==,再由11()()120x x m a b ++-≥在(],1x ∈-∞上恒成立,得5216m -≤,即可求解实数m 的取值范围.试题解析:(1)由题意得()x 36a 2,b 3,f x 32a 24a b b ⋅=⎧⇒==∴=⋅⎨⋅=⎩(2)设()x x x x 1111g x a b 23⎛⎫⎛⎫⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则()y g x =在R 上为减函数 ∴当x 1≤时()()min 5g x g 16== x x 1112m 0a b ⎛⎫⎛⎫∴++-≥ ⎪ ⎪⎝⎭⎝⎭在(]x ,1∞∈-上恒成立,即5112m 1m 612-≤⇒≤ ∴ m 的取值范围为:11m 12≤ 点睛:本题主要考查了函数解析式的求解和不等式的恒成立问题的应用,解答中涉及到函数满足条件的实数的取值范围的求法,以及函数的单调性的应用,解题时要认真审题,仔细解答,同时注意合理进行等价转化是解答本题的关键,试题有一定的难度,属于中档试题.25.(1)[1,0]- ;(2)见解析.【解析】试题分析:(1)由对数的真数大于0,可得集合A ,再由集合的包含关系,可得a 的不等式组,解不等式即可得到所求范围;(2)求得()f x 的定义域,计算()f x -与()f x 比较,即可得到所求结论.试题解析:(1)令101x x+>-,解得11x -<<,所以()1,1A =-,因为B A ⊆,所以111a a ≥-⎧⎨+≤⎩,解得10a -≤≤,即实数a 的取值范围是[]1,0- (2)函数()f x 的定义域()1,1A =-,定义域关于原点对称()()()1ln 1x f x x ---=+- ()1111ln ln ln 111x x x f x x x x -+--⎛⎫===-=- ⎪-++⎝⎭而1ln32f ⎛⎫= ⎪⎝⎭,11ln 23f ⎛⎫-= ⎪⎝⎭,所以1122f f ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭ 所以函数()f x 是奇函数但不是偶函数.26.(1)[60,100];(2)当75100k 剟,该汽车行驶100千米的油耗的最小值为220900k -升; 当6075k <…,该汽车行驶100千米的油耗的最小值为10546k -升. 【解析】【分析】(1)将120x =代入每小时的油耗,解方程可得100=k ,由题意可得14500(100)95x x -+…,解不等式可得x 的范围; (2)设该汽车行驶100千米油耗为y 升,由题意可得10014500()5y x k x x=-+g ,换元令1t x=、化简整理可得t 的二次函数,讨论t 的范围和对称轴的关系,即可得到所求最小值.【详解】解:(1)由题意可得当120x =时,1450014500()(120)11.555120x k k x -+=-+=, 解得100=k ,由14500(100)95x x-+…, 即214545000x x -+…,解得45100x 剟, 又60120x 剟,可得60100x 剟, 每小时的油耗不超过9升,x 的取值范围为[60,100];(2)设该汽车行驶100千米油耗为y 升,则2100145002090000()20(60120)5k y x k x x x x x =-+=-+g 剟, 令1t x=,则1[120t ∈,1]60, 即有22290000202090000()209000900k k y t kt t =-+=-+-,对称轴为9000k t =,由60100k 剟,可得1[9000150k ∈,1]90, ①若19000120k …即75100k 剟, 则当9000k t =,即9000x k=时,220900min k y =-; ②若19000120k <即6075k <…, 则当1120t =,即120x =时,10546min k y =-. 答:当75100k 剟,该汽车行驶100千米的油耗的最小值为220900k -升; 当6075k <…,该汽车行驶100千米的油耗的最小值为10546k -升. 【点睛】本题考查函数模型在实际问题中的运用,考查函数的最值求法,注意运用换元法和二次函数的最值求法,考查运算能力,属于中档题.。
2020-2021年山东省济南市质检一:济南市2020届高三第一次质量检测数学(理)试题附答案
山东省济南市2020届高三第一次质量检测
理科数学
注意事项:
1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写到答题卡和试卷规定的位置上。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
第Ⅰ卷(共60分)
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={0,1,2},B={z|z=x+y,x∈A,y∈A},则B=()A.{0,1,2,3,4}B.{0,1,2}C.{0,2,4}D.{1,2}
2.(5分)复数对应的点位于()
A.第一象限B.第二象限C.第三象限D.第四象限
3.(5分)已知p:2m+4n<4,q:m+2n<2,则p是q的()
A.充分而非必要条件B.必要而非充分条件
第1页(共19页)。
2020年山东省济南市高考数学一模试卷(文科)含答案解析
2020年山东省济南市高考数学一模试卷(文科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z满足z•(2+i)=10﹣5i(i为虚数单位),则z的共轭复数为()A.﹣3+4i B.﹣3﹣4i C.3+4i D.3﹣4i2.已知集合M={x|﹣x≤x<3},集合N={x|y=},则M∪N=()A.M B.N C.{x|﹣1≤x≤2}D.{x|﹣3≤x<3}3.某校高三(1)班共有48人,学号依次为1,2,3,…,48,现用系统抽样的办法抽取一个容量为6的样本.已知学号为3,11,19,35,43的同学在样本中,那么还有一个同学的学号应为()A.27 B.26 C.25 D.244.已知直线ax+by=1经过点(1,2),则2a+4b的最小值为()A.B.2C.4 D.45.设m,n是两条不同的直线,α,β是两个不同的平面,给出下列四个命题:①若m∥n,m⊥β,则n⊥β;②若m∥α,m∥β,则α∥β;③若m∥n,m∥β,则n∥β;④若m⊥α,m⊥β,则α⊥β其中真命题的个数为()A.1 B.2 C.3 D.46.已知命题p:∃x0∈R,使sinx0=;命题q:∀x∈(0,),x>sinx,则下列判断正确的是()A.p为真B.¬q为假C.p∧q为真D.p∨q为假7.函数f(x)=2sin(ωx+φ)(w>0,|φ|<)的部分图象如图所示,则f(0)+f()的值为()A.2﹣B.2+C.1﹣D.1+8.已知x,y满足约束条件,则z=的范围是()A.[,2]B.B[﹣,]C.[,]D.[,]9.已知函数f(x)=ax2﹣bx2+x,连续抛掷两颗骰子得到的点数分别是a,b,则函数f (x)在x=1处取得最值的概率是()A.B.C.D.10.已知抛物线y2=2px(p>0),△ABC的三个顶点都在抛物线上,O为坐标原点,设△ABC三条边AB,BC,AC的中点分别为M,N,Q,且M,N,Q的纵坐标分别为y1,y2,y3.若直线AB,BC,AC的斜率之和为﹣1,则++的值为()A.﹣B.﹣C.D.二、填空题:(本题共5小题,每题5分,共25分)11.设ln3=a,ln7=b,则e a+e b=_______.(其中e为自然对数的底数)12.已知向量,,其中||=,||=2,且(﹣)⊥,则向量和的夹角是_______.13.已知过点(2,4)的直线l被圆C:x2+y2﹣2x﹣4y﹣5=0截得的弦长为6,则直线l的方程为_______.14.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为_______.(参考数据:sin15°=0.2588,sin7.5°=0.1305)15.已知函数f(x)=,g(x)=kx+1,若方程f(x)﹣g(x)=0有两个不同实根,则实数k的取值范围为_______.三、解答题:本大题共6小题,共75分16.近日,济南楼市迎来去库存一系列新政,其中房产税收中的契税和营业税双双下调,对住房市场持续增长和去库存产生积极影响.某房地产公司从两种户型中各拿出9套进行促销活动,其中A户型每套面积100平方米,均价1.1万元/平方米,B户型每套面积80平方米,均价1.2万元/平方米.下表是这18套住宅平方米的销售价格:(单位:万元/平方米):房号/户型 1 2 3 4 5 6 7 8 9A户型0.98 0.99 1.06 1.17 1.10 1.21 a 1.09 1.14B户型 1.08 1.11 1.12 b 1.26 1.27 1.26 1.25 1.28(I)求a,b的值;(II)张先生想为自己和父母买两套售价小于100万元的房子,求至少有一套面积为100平方米的概率.17.在△ABC中,内角A,B,C的对边分别为a,b,c,已知2ccosA+a=2b(Ⅰ)求角C的值;(Ⅱ)若c=2,且△ABC的面积为,求a,b.18.如图,四棱锥P﹣ABCD的底面为正方形,侧面PAD⊥底面ABCD,PA⊥AD,E,E,H分别为AB,PC,BC的中点(Ⅰ)求证:EF∥平面PAD;(Ⅱ)求证:平面PAH⊥平面DEF.19.已知数列{a n}为公差不为零的等差数列,其前n项和为S n,满足S5﹣2a2=25,且a1,a4,a13恰为等比数列{b n}的前三项(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)设T n是数列{}的前n项和,是否存在k∈N*,使得等式1﹣2T k=成立,若存在,求出k的值;若不存在,说明理由.20.设椭圆C: +=1(a>b>0),定义椭圆C的“相关圆”方程为x2+y2=.若抛物线y2=4x的焦点与椭圆C的一个焦点重合,且椭圆C短轴的一个端点和两个焦点构成直角三角形(Ⅰ)求椭圆C的方程和“相关圆”E的方程;(Ⅱ)过“相关圆”E上任意一点P的直线l:y=kx+m与椭圆交于A,B两点,O为坐标原点,若OA⊥OB,证明原点O到直线AB的距离为定值,并求m的取值范围.21.设函数f(x)=ax2+b(lnx﹣x),g(x)=﹣2+(1﹣b)x,已知曲线y=f(x)在点(1,f(1))处的切线与直线x﹣y+1=0垂直.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的极值点;(Ⅲ)若对于任意b∈(1,+∞),总存在x1,x2∈[1,b],使得f(x1)﹣f(x2)﹣1>g(x1)﹣g(x2)+m成立,求实数m的取值范围.2020年山东省济南市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z满足z•(2+i)=10﹣5i(i为虚数单位),则z的共轭复数为()A.﹣3+4i B.﹣3﹣4i C.3+4i D.3﹣4i【考点】复数代数形式的乘除运算.【分析】由z•(2+i)=10﹣5i,得z=,再由复数代数形式的乘除运算化简复数z,则z的共轭复数可求.【解答】解:由z•(2+i)=10﹣5i,得=3﹣4i,则z的共轭复数=3+4i.故选:C.2.已知集合M={x|﹣x≤x<3},集合N={x|y=},则M∪N=()A.M B.N C.{x|﹣1≤x≤2}D.{x|﹣3≤x<3}【考点】并集及其运算.【分析】分别求出集合M、N的范围,从而求出其并集即可.【解答】解:集合M={x|﹣x≤x<3}={x|0≤x<3},集合N={x|y=}={x|﹣3≤x≤2},则M∪N={x|﹣3≤x<3},故选:D.3.某校高三(1)班共有48人,学号依次为1,2,3,…,48,现用系统抽样的办法抽取一个容量为6的样本.已知学号为3,11,19,35,43的同学在样本中,那么还有一个同学的学号应为()A.27 B.26 C.25 D.24【考点】系统抽样方法.【分析】根据系统抽样的特征,从48名学生从中抽取一个容量为6的样本,则系统抽样的分段间隔为8,可求得余下的同学的编号.【解答】解:∵从48名学生从中抽取一个容量为6的样本,∴系统抽样的分段间隔为=8,∵学号为3,11,19,35,43的同学在样本中,∴抽取的另一个同学的学号应为27,故选:A.4.已知直线ax+by=1经过点(1,2),则2a+4b的最小值为()A.B.2C.4 D.4【考点】基本不等式.【分析】直线ax+by=1经过点(1,2),可得:a+2b=1.再利用基本不等式的性质、指数的运算性质即可得出.【解答】解:∵直线ax+by=1经过点(1,2),∴a+2b=1.则2a+4b≥==2,当且仅当时取等号.故选:B.5.设m,n是两条不同的直线,α,β是两个不同的平面,给出下列四个命题:①若m∥n,m⊥β,则n⊥β;②若m∥α,m∥β,则α∥β;③若m∥n,m∥β,则n∥β;④若m⊥α,m⊥β,则α⊥β其中真命题的个数为()A.1 B.2 C.3 D.4【考点】命题的真假判断与应用.【分析】①根据线面垂直的性质定理进行判断.②根据线面平行的判定定理进行判断.③根据线面平行的判定定理进行判断.④根据线面垂直和面面垂直的判定定理进行判断.【解答】解:①若m∥n,m⊥β,则n⊥β成立,故①正确;②若m∥α,m∥β,则α∥β不一定成立,有可能相交,故②错误;③若m∥n,m∥β,则n∥β或n⊂β;故③错误,④若m⊥α,m⊥β,则α∥β,故④错误,故正确的是①,故选:A6.已知命题p:∃x0∈R,使sinx0=;命题q:∀x∈(0,),x>sinx,则下列判断正确的是()A.p为真B.¬q为假C.p∧q为真D.p∨q为假【考点】复合命题的真假.【分析】分别判断出p,q的真假,从而判断出复合命题的真假即可.【解答】解:∀x∈R,都有sinx≤1,故命题p:∃x0∈R,使sinx0=是假命题;令f(x)=x﹣sinx,f′(x)=1+cosx>0,y=f(x)在区间(0,)上单调递增,∴f(x)>f(0)=0,故命题q:∀x∈(0,),x>sinx是真命题,故B正确,故选:B.7.函数f(x)=2sin(ωx+φ)(w>0,|φ|<)的部分图象如图所示,则f(0)+f()的值为()A.2﹣B.2+C.1﹣D.1+【考点】正弦函数的图象.【分析】根据函数f(x)的部分图象,求出周期T与ω的值,再计算φ的值,写出f(x)的解析式,从而求出f(0)+f()的值.【解答】解:根据函数f(x)=2sin(ωx+φ)(w>0,|φ|<)的部分图象,得T=﹣(﹣)=,又T==π,∴ω=2;当x=﹣时,函数f(x)取得最小值﹣2,∴2×(﹣)+φ=﹣+2kπ,k∈Z,解得φ=﹣+2kπ,k∈Z,又|φ|<,∴φ=﹣,∴f(x)=2sin(2x﹣);∴f(0)+f()=2sin(﹣)+2sin(2×﹣)=2×(﹣)+2sin=2﹣.故选:A.8.已知x,y满足约束条件,则z=的范围是()A.[,2]B.B[﹣,]C.[,]D.[,]【考点】简单线性规划.【分析】画出满足条件的平面区域,求出角点的坐标,根据z=的几何意义求出z的范围即可.【解答】解:画出满足条件的平面区域,如图示:,由,解得A(1,2),由,解得B(3,1),而z=的几何意义表示过平面区域内的点与(﹣1,﹣1)的直线的斜率,显然直线AC斜率最大,直线BC斜率最小,K AC==,K BC==,故选:C.9.已知函数f(x)=ax2﹣bx2+x,连续抛掷两颗骰子得到的点数分别是a,b,则函数f (x)在x=1处取得最值的概率是()A.B.C.D.【考点】利用导数求闭区间上函数的最值.【分析】所有的(a,b)共计6×6=36个,函数f′(x)=ax2﹣bx在x=1处取得最值等价于f″(1)=2a﹣b=0,用列举法求得满足条件的(a,b)有3个,再根据概率公式计算即可.【解答】解:连续抛掷两颗骰子得到的点数分别是a,b,共有36种等可能事件,∵f(x)=ax3﹣bx2+x,∴f′(x)=ax2﹣bx+1,∵函数f′(x)=ax2﹣bx+1在x=1处取得最值,∴f″(x)=2ax﹣b,∴f″(1)=2a﹣b=0,即2a=b,满足的基本事件有(1,2),(2,4),(3,6),共3种,故函数f′(x)在x=1处取得最值的概率为=,故选:C.10.已知抛物线y2=2px(p>0),△ABC的三个顶点都在抛物线上,O为坐标原点,设△ABC三条边AB,BC,AC的中点分别为M,N,Q,且M,N,Q的纵坐标分别为y1,y2,y3.若直线AB,BC,AC的斜率之和为﹣1,则++的值为()A.﹣B.﹣C.D.【考点】抛物线的简单性质.【分析】设AB,BC,AC的方程,联立方程组消元,利用根与系数的关系解出y1,y2,y3,根据斜率之和为﹣1化简++即可得出答案.【解答】解:设AB的方程为x=m1y+t1,BC的方程为x=m2y+t2,AC的方程为x=m3y+t3,联立方程组,消元得:y2﹣2pm1y﹣2pt1=0,∴y1=pm1,同理可得:y2=pm2,y3=pm3,∵直线AB,BC,AC的斜率之和为﹣1,∴++=﹣1.∴则++=++=(++)=﹣.故选:B.二、填空题:(本题共5小题,每题5分,共25分)11.设ln3=a,ln7=b,则e a+e b=10.(其中e为自然对数的底数)【考点】对数的运算性质.【分析】使用对数恒等式解出.【解答】解:∵ln3=a,ln7=b,∴e a=3,e b=7,∴e a+e b=10.故答案为10.12.已知向量,,其中||=,||=2,且(﹣)⊥,则向量和的夹角是.【考点】平面向量数量积的运算.【分析】利用向量垂直的数量积为0列出方程;利用向量的平方等于向量模的平方及向量的数量积公式将方程用模与夹角表示求出夹角.【解答】解:设两个向量的夹角为θ,∵||=,||=2,且(﹣)⊥,∴(﹣)•=||2﹣•=||2﹣||•||cosθ=3﹣2cosθ=0,解得cosθ=,∵0≤θ≤π,∴θ=,故答案为:.13.已知过点(2,4)的直线l被圆C:x2+y2﹣2x﹣4y﹣5=0截得的弦长为6,则直线l的方程为x﹣2=0或3x﹣4y+10=0.【考点】直线与圆的位置关系.【分析】设过点(2,4)的直线l的方程为y=k(x﹣2)+4,求出圆C的圆心C(1,2),半径r=,圆心C(1,2)到直线l的距离d,由此能求出直线l的方程;当直线l的斜率不存在时,直线l的方程为x=2也满足条件.由此能求出直线l的方程.【解答】解:设过点(2,4)的直线l的方程为y=k(x﹣2)+4,圆C:x2+y2﹣2x﹣4y﹣5=0的圆心C(1,2),半径r==,圆心C(1,2)到直线l的距离d==,∵过点(2,4)的直线l被圆C:x2+y2﹣2x﹣4y﹣5=0截得的弦长为6,∴由勾股定理得:,即,解得k=,∴直线l的方程为y=(x﹣2)+4,即3x﹣4y+10=0,当直线l的斜率不存在时,直线l的方程为x=2,圆心C(1,2)到直线x=2的距离d=1,满足,故x﹣2=0是直线l的方程.综上,直线l的方程为x﹣2=0或3x﹣4y+10=0.故答案为:x﹣2=0或3x﹣4y+10=0.14.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为24.(参考数据:sin15°=0.2588,sin7.5°=0.1305)【考点】程序框图.【分析】列出循环过程中S与n的数值,满足判断框的条件即可结束循环.【解答】解:模拟执行程序,可得n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故答案为:24.15.已知函数f(x)=,g(x)=kx+1,若方程f(x)﹣g(x)=0有两个不同实根,则实数k的取值范围为(,1)∪(1,e﹣1].【考点】根的存在性及根的个数判断;函数的零点与方程根的关系.【分析】方程f(x)﹣kx=1有两个不同实根可化为函数f(x)与函数y=kx+1有两个不同的交点,作函数f(x)与函数y=kx+1的图象,结合函数的图象求解.【解答】解:∵g(x)=kx+1,∴方程f(x)﹣g(x)=0有两个不同实根等价为方程f(x)=g(x)有两个不同实根,即f(x)=kx+1,则等价为函数f(x)与函数y=kx+1有两个不同的交点,当1<x≤2,则0<x﹣1≤1,则f(x)=f(x﹣1)=e x﹣1,当2<x≤3,则1<x﹣1≤2,则f(x)=f(x﹣1)=e x﹣2,当3<x≤4,则2<x﹣1≤3,则f(x)=f(x﹣1)=e x﹣3,…当x>1时,f(x)=f(x﹣1),周期性变化;函数y=kx+1的图象恒过点(0,1);作函数f(x)与函数y=kx+1的图象如下,C(0,1),B(2,e),A(1,e);故k AC=e﹣1,k BC=;在点C处的切线的斜率k=e0=1;结合图象可得,实数k的取值范围为(,1)∪(1,e﹣1];故答案为:三、解答题:本大题共6小题,共75分16.近日,济南楼市迎来去库存一系列新政,其中房产税收中的契税和营业税双双下调,对住房市场持续增长和去库存产生积极影响.某房地产公司从两种户型中各拿出9套进行促销活动,其中A户型每套面积100平方米,均价1.1万元/平方米,B户型每套面积80平方米,均价1.2万元/平方米.下表是这18套住宅平方米的销售价格:(单位:万元/平方米):房号/户型 1 2 3 4 5 6 7 8 9A户型0.98 0.99 1.06 1.17 1.10 1.21 a 1.09 1.14B户型 1.08 1.11 1.12 b 1.26 1.27 1.26 1.25 1.28(I)求a,b的值;(II)张先生想为自己和父母买两套售价小于100万元的房子,求至少有一套面积为100平方米的概率.【考点】列举法计算基本事件数及事件发生的概率;分层抽样方法.【分析】(Ⅰ)由已知利用平均数公式能求出a,b.(Ⅱ)A户型小于100万的有2套,B户型小于100万的有4套,先求出买两套售价小于100万的房子所含基本事件总数,再列举法求出事件A=“至少有一套面积为100平方米住房所含基本事件个数,由此能求出至少有一套面积为100平方米的概率.【解答】解:(Ⅰ)由已知得:(0.98+0.99+1.06+1.17+1.10+1.21+a+1.09+1.14)=1.1,解得a=1.16,(1.08+1.11+1.12+b+1.26+1.27+1.26+1.25+1.28)=1.2,解得b=1.17.…(Ⅱ)A户型小于100万的有2套,设为A1,A2,B户型小于100万的有4套,设为B1,B2,B3,B4…买两套售价小于100万的房子所含基本事件总数为=15,…令事件A=“至少有一套面积为100平方米住房”,则A中所含基本事件有{A1,A2},{A1,B1},{A1,B2},{A1,B3},{A1,B4},{A2,B1},{A2,B2},{A2,B3},{A2,B4},共9个…∴P(A)=,∴至少有一套面积为100平方米的概率为..17.在△ABC中,内角A,B,C的对边分别为a,b,c,已知2ccosA+a=2b(Ⅰ)求角C的值;(Ⅱ)若c=2,且△ABC的面积为,求a,b.【考点】正弦定理;余弦定理.【分析】(Ⅰ)利用两角和的正弦函数公式,正弦定理,三角形内角和定理化简已知等式可得sinA=2sinAcosC,由于sinA≠0,解得,又C是三角形的内角,即可得解C的值.(Ⅱ)利用三角形面积公式可求ab=4,又由余弦定理可解得a+b=4,联立即可解得a,b的值.【解答】(本题满分为12分)解:(Ⅰ)∵2ccosA+a=2b,∴2sinCcosA+sinA=2sinB,…∴2sinCcosA+sinA=2sin(A+C),即2sinCcosA+sinA=2sinAcosC+2cosAsinC,∴sinA=2sinAcosC,∴,又∵C是三角形的内角,∴…(Ⅱ)∵,∴,∴ab=4,…又∵c2=a2+b2﹣2abcosC,∴4=(a+b)2﹣2ab﹣ab,∴a+b=4,∴a=b=2.…18.如图,四棱锥P﹣ABCD的底面为正方形,侧面PAD⊥底面ABCD,PA⊥AD,E,E,H分别为AB,PC,BC的中点(Ⅰ)求证:EF∥平面PAD;(Ⅱ)求证:平面PAH⊥平面DEF.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(Ⅰ)取CD中点N,连接FN,EN,则FN∥PD,EN∥AD,故而平面EFN∥平面PAD,所以EF∥平面PAD;(Ⅱ)由侧面PAD⊥底面ABCD可得PA⊥平面ABCD,故PA⊥DE,由正方形的性质可得DE⊥AH,故DE⊥平面PAH,于是平面PAH⊥平面DEF.【解答】证明:(Ⅰ)取CD中点N,连接FN,EN.∵在△CPD中,F,N为中点,∴FN∥PD.∵正方形ABCD中,E,N为中点,∴EN∥AD,∵EN⊂平面EFN,FN⊂平面EFN,EN∩FN=N,PD⊂平面PAD,AD⊂平面PAD,PD∩AD=D,∴平面EFN∥平面PAD,∵EF⊂平面EFN,∴EF∥平面PAD.(Ⅱ)∵侧面PAD⊥底面ABCD,PA⊥AD,侧面PAD∩底面ABCD=AD,∴PA⊥底面ABCD,∵DE⊂底面ABCD,∴DE⊥PA,∵E,H分别为正方形ABCD边AB,BC中点,∴Rt△ABH≌Rt△ADE,则∠BAH=∠ADE,∴∠BAH+∠AED=90°,则DE⊥AH,∵PA⊂平面PAH,AH⊂平面PAH,PA∩AH=A,∴DE⊥平面PAH,∵DE⊂平面EFD,∴平面PAH⊥平面DEF.19.已知数列{a n}为公差不为零的等差数列,其前n项和为S n,满足S5﹣2a2=25,且a1,a4,a13恰为等比数列{b n}的前三项(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)设T n是数列{}的前n项和,是否存在k∈N*,使得等式1﹣2T k=成立,若存在,求出k的值;若不存在,说明理由.【考点】数列的求和;数列递推式.【分析】(I)利用等差数列与等比数列的通项公式及其前n项和公式即可得出;(II)利用“裂项求和”与数列的单调性即可得出.【解答】解:(Ⅰ)设等差数列{a n}的公差为d(d≠0),∴,解得a1=3,d=2,∵b1=a1=3,b2=a4=9,∴.(Ⅱ)由(I)可知:a n=3+2(n﹣1)=2n+1.,∴=,∴,单调递减,得,而,所以不存在k∈N*,使得等式成立.20.设椭圆C: +=1(a>b>0),定义椭圆C的“相关圆”方程为x2+y2=.若抛物线y2=4x的焦点与椭圆C的一个焦点重合,且椭圆C短轴的一个端点和两个焦点构成直角三角形(Ⅰ)求椭圆C的方程和“相关圆”E的方程;(Ⅱ)过“相关圆”E上任意一点P的直线l:y=kx+m与椭圆交于A,B两点,O为坐标原点,若OA⊥OB,证明原点O到直线AB的距离为定值,并求m的取值范围.【考点】椭圆的简单性质.【分析】(Ⅰ)由抛物线y2=4x的焦点为(1,0)与椭圆C的一个焦点重合,椭圆C短轴的一个端点和其两个焦点构成直角三角形,得到b=c=1,由此能求出椭圆C的方程和“相关圆”E 的方程.(Ⅱ)联立方程组得(1+2k2)x2+4kmx+2m2﹣2=0,由此利用根的判别式、韦达定理、点到直线距离公式,结合已知条件能证明原点O到直线AB的距离为定值,并能求出m的取值范围.【解答】解:(Ⅰ)因为若抛物线y2=4x的焦点为(1,0)与椭圆C的一个焦点重合,所以c=1又因为椭圆C短轴的一个端点和其两个焦点构成直角三角形,所以b=c=1故椭圆C的方程为,“相关圆”E的方程为…证明:(Ⅱ)设A(x1,y1),B(x2,y2)联立方程组得(1+2k2)x2+4kmx+2m2﹣2=0△=16k2m2﹣4(1+2k2)(2m2﹣2)=8(2k2﹣m2+1)>0,即2k2﹣m2+1>0…,由条件OA⊥OB得3m2﹣2k2﹣2=0…所以原点O到直线l的距离是由3m2﹣2k2﹣2=0得为定值.…此时要满足△>0,即2k2﹣m2+1>0,又,即,所以,即或…21.设函数f(x)=ax2+b(lnx﹣x),g(x)=﹣2+(1﹣b)x,已知曲线y=f(x)在点(1,f(1))处的切线与直线x﹣y+1=0垂直.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的极值点;(Ⅲ)若对于任意b∈(1,+∞),总存在x1,x2∈[1,b],使得f(x1)﹣f(x2)﹣1>g(x1)﹣g(x2)+m成立,求实数m的取值范围.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,得到f′(1)=2a=﹣1,求出a的值即可;(Ⅱ)求出f(x)的导数,结合二次函数的性质,通过讨论b的范围,确定函数的单调区间,求出函数的极值点即可;(Ⅲ)令F(x)=f(x)﹣g(x),x∈[1,b],求出F(x)的导数,得到F(x)max﹣F(x)min=F(b)﹣F(1)=blnb﹣b+1,问题转化为即blnb﹣b>m对任意b∈(1,+∞)成立.构造函数:t(b)=blnb﹣b,b∈[1,+∞),通过讨论函数t(b)的单调性,求出m的范围即可.【解答】解:(Ⅰ),所以k=f'(1)=2a=﹣1,所以…(Ⅱ),其定义域为(0,+∞),,令h(x)=﹣x2﹣bx+b,x∈(0,+∞)△=b2+4b(i)当﹣4≤b≤0时,△=b2+4b≤0,有h(x)≤0,即f'(x)≤0,所以f(x)在区间(0,+∞)上单调递减,故f(x)在区间(0,+∞)无极值点;(ii)当b<﹣4时,△>0,令h(x)=0,有,,x2>x1>0,当x∈(0,x1)时,h(x)<0,即f'(x)<0,得f(x)在(0,x1)上递减;当x∈(x1,x2)时,h(x)>0,即f'(x)>0,得f(x)在(x1,x2)上递增;当x∈(x2,+∞)时,h(x)<0,即f'(x)<0,得f(x)在(x2,+∞)上递减.此时f(x)有一个极小值点和一个极大值点.(iii)当b>0时,△>0,令h(x)=0,有,,当x∈(0,x2)时,h(x)>0,即f'(x)>0,得f(x)在(0,x2)上递增;当x∈(x2,+∞)时,h(x)<0,即f'(x)<0,得f(x)在(x2,+∞)上递减.此时f(x)唯一的极大值点,无极小值点.综上可知,当b<﹣4时,函数f(x)有一个极小值点和一个极大值点.当﹣4≤b≤0时,函数f(x)在(0,+∞)上有无极值点;当b>0时,函数f(x)有唯一的极大值点,无极小值点;…(III)令F(x)=f(x)﹣g(x),x∈[1,b],则F(x)==blnx﹣x若总存在x1,x2∈[1,b],使得f(x1)﹣f(x2)﹣1>g(x1)﹣g(x2)+m成立,即总存在x1,x2∈[1,b],使得f(x1)﹣g(x1)>f(x2)﹣g(x2)+m+1成立,即总存在x1,x2∈[1,b],使得F(x1)﹣F(x2)>m+1成立,即F(x)max﹣F(x)min>m+1,因为x∈[1,b],所以F'(x)≥0,即F(x)在[1,b]上单调递增,所以F(x)max﹣F(x)min=F(b)﹣F(1)=blnb﹣b+1,即blnb﹣b+1>m+1对任意b∈(1,+∞)成立,即blnb﹣b>m对任意b∈(1,+∞)成立.构造函数:t(b)=blnb﹣b,b∈[1,+∞),t'(b)=lnb,当b∈[1,+∞)时,t'(b)≥0,∴t(b)在[1,+∞)上单调递增,∴t(b)min=t(1)=﹣1.∴对于任意b∈(1,+∞),∴t(b)>t(1)=﹣1.所以m≤﹣1…2020年9月12日。
2020济南市高三期中数学试题参考答案
济南市高三期中考试数学试题答案与评分标准填空题13. -25 ; 14.4; 15.1312; 16. 323π。
三、解答题17. 解答:若选①,由题意()()()a b a b a c c +-=-,化简得222122a cb ac +-=,-2分 即1cos ,02B B π=<<,得3B π=。
------------------------3分(1)由余弦定理22()22cos b a c ac ac B =+--,得21124222ac ac =--⋅,解得43ac = 114sin sin 22333S ac B π==⨯⨯=。
----------------------6分(2)由正弦定理4sin sin sin a c b A C B ====,又因为23A C π+=, 所以4(sin sin )a c A C +=+-------------------------------8分24(sin sin())3A A π=+-=1cos )2A A +=)6A π+,-----------10分 因为220,3663A A ππππ<<<+<,1sin()(,1]62A π+∈。
4]a c +∈----------------------------------------------12分若选②,由22cos a c b C -=,得2sin sin 2sin cos A C B C -=,2sin()sin 2sin cos B C C B C +-=,化简得2cos sin sin B C C =,得1cos ,02B B π=<<,得3B π=。
以下与选①同。
若选③,由3(cos )sin a b C c B -=得3(sin sin cos )sin sin A B C C B -=,即3[sin()sin cos ]sin sin B C B C C B +-=,化简得tan 3B =,0B π<<,得3B π=。
2020届山东省济南市高三第一模数学试题(word版含答案)
2020年山东省济南市高三一模数学试题一、单项选择题:本题共8小题,每小题5分,共40分。
1.已知全集U R =,集合A =2{}x x x |>,则UA =A . []0,1B . (0,1)C . (],1-∞D . 1-∞(,) 2.设复数21iz i+=(其中i 为虚数单位),则复数z 在复平面内对应的点所在的象限为 A . 第一象限 B . 第二象限 C . 第三象限 D .第四象限3.加强体育锻炼是青少年生活学习中非常重要的组成部分。
某学生做引体向上运动,处于如图所示的平衡状态时,若两只胳膊的夹角为60︒,每只胳膊的拉力大小均为400N ,则该学生的体重(单位:kg )约为(参考数据:取重力加速度大小为210/3 1.732g m s ≈=,) A . 63 B . 69 C . 75 D .814.已知函数y f x =()的部分图象如图,则f x ()的解析式可能是 A . f x x tanx ()=+ B . 2f x x sin x ()=+ C .1 22f x x sin x -()= D. 1cos 2f x x x -()= 5.方舱医院的创设,在抗击新冠肺炎疫情中发挥了不可替代的重要作用。
某方舱医院医疗小组有七名护士,每名护士从周一到周日轮流安排一个夜班。
若甲的夜班比丙晚一天,丁的夜班比戊晚两天,乙的夜班比庚早三天,己的夜班在周四,且恰好在乙和丙的正中间,则周五值夜班的护士为 A . 甲 B . 丙 C . 戊 D .庚6.已知抛物线24y x =的焦点为F ,直线l 过F 且与抛物线交于A ,B 两点,过A 作抛物线准线的垂线,垂足为M ,MAF ∠的角平分线与抛物线的准线交于点P ,线段AB 的中点为Q 。
若8AB PQ =,则= A . 2 B . 4 C . 6 D . 87.洛书,古称龟书,是阴阳五行术数之源,被世界公认为组合数学的鼻祖,它是中华民族对人类的伟大贡献之一。
2020届济南市第一中学高三上学期期中数学试题
C .如果函数 y 3cos(2x
) 的图像关于点
4 ,0 中心对称,那么 | | 的最小值为 3
6
rrr D .设 a 、 b , c 是任意的非零平面向量,且相互不共线,则
r rr r rr
r
(b c) a (c a)b 不与 c 垂
直
【答案】 ABC
【解析】 A. 通过函数的奇偶性来判断; B. 利用对数函数的性质来判断; C.利用三角函数
1x
令 2x2 8x 6 0 ,可得 x 1,x 3 ,
则 f ( x) 在 1,1 , 3, 上单调递增,在 1,3 上单调递减,
x 3是函数 f (x) 的一个极值点,
故 AC 正确, B 错误;
因为 f (1) 16ln(1 1) 12 10 16ln 2 9 ,
f (3) 16ln(1 3) 32 10 3 16ln 4 21,
又 y 16ln3 16 f 2 ,
根据 f (x) 在 1,3 上单调递减得 f 1 f 2 f 3
得 16ln3 16 16ln 2 9,16ln3 16 16ln 4 21,
所以直线 y 16ln3 16 与函数 y f (x) 的图象有 3 个交点,故 D 正确 .
故选: ACD.
【点睛】
本题考查函数的单调性,极值的综合应用,是中档题
【解析】 ∵ a3 7 2a5 , ∴ a1 2d 7 2( a1 4d ) ,即 a1 6 d 7 ,
∴ S13 13a7 13(a1 6d ) 13 7 91 ,故选 B.
7.已知函数 f (x) sin(x ) ,要得到 g ( x) cosx 的图象,只需将函数 y f ( x) 的 3
图象( )
2020-2021济南市高三数学上期中一模试题带答案
(2)若 , ,求 .
25. 的内角A,B,C的对边分别为a,b,c,已知 , .
求C;
若 ,求, 的面积
26.已知等比数列 的各项均为正数, .
Ⅰ 求数列 的通项公式;
Ⅱ 设 证明: 为等差数列,并求 的前n项和 .
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
化为(m+n)·(m2+n2-mn+2 016)=0,
∵ ,
∴m+n=a4-1+a2 013-1=0,
∴a4+a2 013=2,
∴ .
很明显a4-1>0,a2 013-1<0,∴a4>1>a2 013,
本题选择D选项.
12.D
解析:D
【解析】
分析:由正弦定理可将 化简得 ,由余弦定理可得 ,从而得解.
10.D
解析:D
【解析】
【分析】
由正弦定理化简 ,得到 ,由此得到三角形是等腰或直角三角形,得到答案.
【详解】
由题意知, ,
结合正弦定理,化简可得 ,
所以 ,则 ,
所以 ,得 或 ,
所以三角形是等腰或直角三角形.
故选D.
【点睛】
本题考查了正弦定理和余弦定理在解三角形中的应用.在解三角形问题中经常把边的问题转化成角的正弦或余弦函数,利用三角函数的关系来解决问题,属于基础题.
3.C
解析:C
【解析】
【分析】
设等比数列 的公比为 ,验证 是否为非零常数,由此可得出正确选项.
【详解】
设等比数列 的公比为 ,则 .
对于①中的函数 , ,该函数为“保等比数列函数”;
对于②中的函数 , 不是非零常数,该函数不是“保等比数列函数”;
2020-2021学年山东省济南市高三(上)期中数学试卷
2020-2021学年山东省济南市高三(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知全集为R ,集合1{|()1}2x A x =,2{|680}B x x x =-+,则()(R A B =⋂)A .{|0}x xB .{|24}x xC .{|02x x <或4}x >D .{|02x x <或4}x2.(5分)已知a 是实数,1a ii-+是纯虚数,则(a = ) A .1B .1- CD.3.(5分)“18a =”是“对任意的正数x ,21ax x+的” ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(5分)将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为( ) A .540B .300C .180D .1505.(5分)设113244342(),(),()433a b c ===,则a ,b ,c 的大小顺序是( )A .c a b <<B .c b a <<C .a c b <<D .b c a <<6.(5分)我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,问中间3尺的重量为()A .6斤B .9斤C .9.5斤D .12斤7.(5分)已知函数,01(),0xx x f x lnx x x⎧⎪⎪-=⎨⎪>⎪⎩,若关于x 的方程()f x x a =+无实根,则实数a 的取值范围为( )A .(-∞,10)(e ⋃,1)B .(1,0)-C .1(0,)eD .(0,1)8.(5分)我国古代入民早在几千年以前就已经发现并应用勾股定理了,勾股定理最早的证明是东汉数学家赵爽在为《周髀算经》作注时给出的,被后人称为“赵爽弦图”.“赵爽弦图”是数形结合思想的体现,是中国古代数学的图腾,还被用作第24届国际数学家大会的会徽.如图,大正方形ABCD 是由4个全等的直角三角形和中间的小正方形组成的,若,AB a AD b ==,E 为BF 的中点,则(AE = )A .4255a b +B .2455a b +C .4233a b +D .2433a b +二、选择题:本题共4小题,每小题5分,共20分。
2020-2021学年度山东省济南市高考第一次模拟考试数学(理)试题及答案
高考模拟考试 理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数11212i i+++(其中i 为虚数单位)的虚部为( ) A .35B .35i C .35- D .35i - 2.若集合{|12}A x x =<<,{|,}B x x b b R =>∈,则A B ⊆的一个充分不必要条件是( ) A .2b ≥ B .12b <≤ C .1b ≤ D .1b <3.已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为x ,方差为2s ,则( )A .4x =,22s <B .4x =,22s >C .4x >,22s <D .4x >,22s >4.已知椭圆C :22221(0)x y a b a b+=>>,若长轴长为6,且两焦点恰好将长轴三等分,则此椭圆的标准方程为( )A .2213632x y += B .22198x y += C .22195x y +=D .2211612x y += 5.已知正项等比数列{}n a 满足31a =,5a 与432a 的等差中项为12,则1a 的值为( ) A .4 B .2 C .12 D .146.已知变量x ,y 满足约束条件40221x y x y --≤⎧⎪-≤<⎨⎪≤⎩,若2z x y =-,则z 的取值范围是( )A .[5,6)-B .[5,6]-C .(2,9)D .[5,9]-7.七巧板是一种古老的中国传统智力游戏,被誉为“东方魔板”.如图,这是一个用七巧板拼成的正方形,其中1号板与2号板为两个全等的等腰直角三角形,3号板与5号板为两个全等的等腰直角三角形,7号板为一个等腰直角三角形,4号板为一个正方形,6号板为一个平行四边形.现从这个正方形内任取一点,则此点取自阴影部分的概率是( )A .18B .14 C .316 D .388.已知函数()sin()f x x ωϕ=+3cos()x ωϕ++0,2πωϕ⎛⎫><⎪⎝⎭的最小正周期为π,且()3f x f x π⎛⎫-= ⎪⎝⎭,则( ) A .()f x 在0,2π⎛⎫⎪⎝⎭上单调递减 B .()f x 在2,63ππ⎛⎫⎪⎝⎭上单调递增 C .()f x 在0,2π⎛⎫⎪⎝⎭上单调递增 D .()f x 在2,63ππ⎛⎫⎪⎝⎭上单调递减 9.某程序框图如图所示,该程序运行后输出M ,N 的值分别为( )A .13,21B .34,55C .21,13D .55,34 10.设函数212()log (1)f x x =+112x++,则使得()(21)f x f x ≤-成立的x 的取值范围是( ) A .(,1]-∞B .[1,)+∞C .1,13⎡⎤⎢⎥⎣⎦D .[)1,1,3⎛⎤-∞+∞ ⎥⎝⎦U11.设1F ,2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过1F 作一条渐近线的垂线,垂足为M ,延长1F M 与双曲线的右支相交于点N ,若13MN F M =u u u u r u u u u r,则此双曲线的离心率为( )A .132 B .53 C .43D .263 12.设1x ,2x 分别是函数()xf x x a -=-和()log 1a g x x x =-的零点(其中1a >),则124x x +的取值范围是( )A .[4,)+∞B .(4,)+∞C .[5,)+∞D .(5,)+∞ 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量(1,1)a =r ,(2,)b x =r,若a b +r r 与3a b -r r 平行,则实数x 的值是.14.某几何体的三视图如图所示,其中主视图的轮廓是底边为23,高为1的等腰三角形,俯视图的轮廓为菱形,左视图是个半圆.则该几何体的体积为.15.512a x x x x ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中含4x 项的系数为.16.如图所示,将平面直角坐标系中的格点(横、纵坐标均为整数的点)按如下规则标上标签: 原点处标数字0,记为0a ;点(1,0)处标数字1,记为1a ; 点(1,1)-处标数字0,记为2a ;点(0,1)-处标数字-1,记为3a ; 点(1,1)--处标数字-2,记为4a ;点(1,0)-处标数字-1,记为5a ; 点(1,1)-处标数字0,记为6a ;点(0,1)处标数字1,记为7a ; …以此类推,格点坐标为(,)i j 的点处所标的数字为i j +(i ,j 均为整数),记12n n S a a a =++⋅⋅⋅+,则2018S =.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.每22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,且cos cos 2b A a B c -=. (1)证明:tan 3tan B A =-;(2)若2223b c a bc +=+,且ABC ∆的面积为3,求a .18.如图1,在高为6的等腰梯形ABCD 中,//AB CD ,且6CD =,12AB =,将它沿对称轴1OO 折起,使平面1ADO O ⊥平面1BCO O .如图2,点P 为BC 中点,点E 在线段AB 上(不同于A ,B 两点),连接OE 并延长至点Q ,使//AQ OB .(1)证明:OD ⊥平面PAQ ;(2)若2BE AE =,求二面角C BQ A --的余弦值.19.2018年2月22日上午,山东省省委、省政府在济南召开山东省全面展开新旧动能转换重大工程动员大会,会议动员各方力量,迅速全面展开新旧动能转换重大工程.某企业响应号召,对现有设备进行改造,为了分析设备改造前后的效果,现从设备改造前后生产的大量产品中各抽取了200件产品作为样本,检测一项质量指标值,若该项质量指标值落在[20,40)内的产品视为合格品,否则为不合格品.图3是设备改造前的样本的频率分布直方图,表1是设备改造后的样本的频数分布表.表1:设备改造后样本的频数分布表 质量指标值[15,20)[20,25)[25,30)[30,35)[35,40)[40,45]频数4369628324改造有关;设备改造前设备改造后合计 合格品 不合格品 合计(3)企业将不合格品全部销毁后,根据客户需求对合格品...进行等级细分,质量指标值落在[25,30)内的定为一等品,每件售价240元;质量指标值落在[20,25)或[30,35)内的定为二等品,每件售价180元;其它的合格品定为三等品,每件售价120元.根据表1的数据,用该组样本中一等品、二等品、三等品各自在合..格品中的频率......代替从所有产品中抽到一件相应等级产品的概率.现有一名顾客随机购买两件产品,设其支付的费用为X (单位:元),求X 的分布列和数学期望. 附:20()P K k ≥0.150 0.100 0.050 0.025 0.010 0k2.0722.7063.8415.0246.6352()()()()()n ad bc K a b c d a c b d -=++++20.在平面直角坐标系xOy 中,抛物线1C :24x y =,直线l 与抛物线1C 交于A ,B 两点.(1)若直线OA ,OB 的斜率之积为14-,证明:直线l 过定点; (2)若线段AB 的中点M 在曲线2C :214(2222)4y x x =--<<上,求AB 的最大值. 21.已知函数2()ln (21)f x a x x a x =-+-()a R ∈有两个不同的零点. (1)求a 的取值范围;(2)设1x ,2x 是()f x 的两个零点,证明:122x x a +>.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分. 22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,过点(1,2)P 的直线l的参数方程为1122x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点O 为极点,x轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin ρθ=. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)若直线l 与曲线C 相交于M ,N 两点,求11PM PN+的值. 23.[选修4-5:不等式选讲] 已知函数()222f x x x =--+. (1)求不等式()6f x ≥的解集;(2)当x R ∈时,()f x x a ≥-+恒成立,求实数a 的取值范围.2018年济南市高考数学模拟考试理科数学参考答案一、选择题1-5: CDABA 6-10: ACDBC 11、12:BD 二、填空题 13. 214. 315. -48 16. -249 三、解答题 17.【解析】(1)根据正弦定理,由已知得:sin cos cos sin B A B A -2sin 2sin()C A B ==+, 展开得:sin cos cos sin B A B A -2(sin cos cos sin )B A B A =+, 整理得:sin cos 3cos sin B A B A =-,所以,tan 3tan B A =-.(2)由已知得:222b c a +-=,∴222cos 2b c a A bc+-===, 由0A π<<,得:6A π=,tan A =,∴tan B = 由0B π<<,得:23B π=,所以6C π=,a c =, 由12sin23S ac π=212==,得:2a =.18.【解析】(1)【解法一(几何法)】取1OO 的中点为F ,连接AF ,PF ;∴//PF OB , ∵//AQ OB ,∴//PF AQ ,∴P 、F 、A 、Q 四点共面, 又由图1可知1OB OO ⊥, ∵平面1ADO O ⊥平面1BCO O , 且平面1ADO O I 平面11BCO O OO =, ∴OB ⊥平面1ADO O , ∴PF ⊥平面1ADO O , 又∵OD ⊂平面1ADO O , ∴PF OD ⊥.在直角梯形1ADO O 中,1AO OO =,1OF O D =,1AOF OO D ∠=∠,∴1AOF OO D ∆≅∆,∴1FAO DOO ∠=∠,∴190FAO AOD DOO AOD ∠+∠=∠+∠=o, ∴AF OD ⊥.∵AF PF F =I ,且AF ⊂平面PAQ ,PF ⊂平面PAQ , ∴OD ⊥平面PAQ .(1)【解法二(向量法)】由题设知OA ,OB ,1OO 两两垂直,所以以O 为坐标原点,OA ,OB ,1OO 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设AQ 的长度为m ,则相关各点的坐标为(0,0,0)O ,(6,0,0)A ,(0,6,0)B ,(0,3,6)C ,(3,0,6)D ,(6,,0)Q m .∵点P为BC中点,∴9 (0,,3)2P,∴(3,0,6)OD=u u u r,(0,,0)AQ m=u u u r,9(6,,3)2PQ m=--u u u r,∵0OD AQ⋅=u u u r u u u r,0OD PQ⋅=u u u r u u u r,∴OD AQ⊥u u u r u u u r,OD PQ⊥u u u r u u u r,且AQuuu r与PQuuu r不共线,∴OD⊥平面PAQ.(2)∵2BE AE=,//AQ OB,∴132AQ OB==,则(6,3,0)Q,∴(6,3,0)QB=-u u u r,(0,3,6)BC=-u u u r.设平面CBQ的法向量为1(,,)n x y z=u r,∵11n QBn BC⎧⋅=⎪⎨⋅=⎪⎩u r u u u ru r u u u r,∴630360x yy z-+=⎧⎨-+=⎩,令1z=,则2y=,1x=,则1(1,2,1)n=u r,又显然,平面ABQ的法向量为2(0,0,1)n=u u r,设二面角C BQ A--的平面角为θ,由图可知,θ为锐角,则12126cosn nn nθ⋅==⋅u r u u ru r u u r19.【解析】(1)根据图3和表1得到22⨯列联表:设备改造前设备改造后合计合格品172 192 364 不合格品28 8 36合计200 200 40022()()()()()n ad bc K a b c d a c b d -=++++2400(172828192)20020036436⨯⨯-⨯=⨯⨯⨯12.210≈.∵12.210 6.635>,∴有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关. (2)根据图3和表1可知,设备改造前产品为合格品的概率约为1724320050=,设备改造后产品为合格品的概率约为1922420025=;显然设备改造后产品合格率更高,因此,设备改造后性能更优. (3)由表1知: 一等品的频率为12,即从所有产品中随机抽到一件一等品的概率为12; 二等品的频率为13,即从所有产品中随机抽到一件二等品的概率为13; 三等品的频率为16,即从所有产品中随机抽到一件三等品的概率为16. 由已知得:随机变量X 的取值为:240,300,360,420,480.240P X =()1116636=⨯=,300P X =()12111369C =⨯⨯=,360P X =()1211115263318C =⨯⨯+⨯=,420P X =()12111233C =⨯⨯=,480P X =()111224=⨯=.∴随机变量X 的分布列为:∴240300369E X =⨯+⨯()3604204804001834+⨯+⨯+⨯=. 20.【解析】设()11,A x y ,()22,B x y ,(1)由题意可知直线l 的斜率存在,设直线l 的方程为y kx m =+,由24x y y kx m⎧=⎨=+⎩,得:2440x kx m --=, ()2160k m ∆=+>,124x x k +=,124x x m =-,1212OA OBy y k k x x ⋅⋅=⋅2212121144x xx x ⋅=⋅12164x x m⋅==-, 由已知:14OA OB k k ⋅=-,所以1m =, ∴直线l 的方程为1y kx =+,所以直线l 过定点(0,1). (2)设()00,M x y ,则12022x x x k +==,2002y kx m k m =+=+, 将()00,M x y 带入2C:214(4y x x =--<<得: 22124(2)4k m k +=-,∴243m k =-.∵0x -<,∴2k -<k <<,又∵()216k m ∆=+22216(43)32(2)0k k k =+-=->,∴k <<,故k的取值范围是:(k ∈.AB ==243m k =-代入得:AB =22≤=当且仅当2212k k+=-,即2k =±所以AB 的最大值为. 21.【解析】 (1)【解法一】函数()f x 的定义域为:(0,)+∞.'()221a f x x a x =-+-(21)()x a x x+-=, ①当0a ≤时,易得'()0f x <,则()f x 在(0,)+∞上单调递增, 则()f x 至多只有一个零点,不符合题意,舍去. ②当0a >时,令'()0f x =得:x a =,则max 极大. 设()ln 1g x x x =+-,∵1'()10g x x=+>,则()g x 在(0,)+∞上单调递增. 又∵(1)0g =,∴1x <时,()0g x <;1x >时,()0g x >. 因此:(i )当01a <≤时,max ()()0f x a g a =⋅≤,则()f x 无零点, 不符合题意,舍去.(ii )当1a >时,max ()()0f x a g a =⋅>, ∵12()(1)f a e e =-2110e e --<,∴()f x 在区间1(,)a e上有一个零点, ∵(31)ln(31)f a a a -=-2(31)(21)(31)a a a --+--[ln(31)(31)]a a a =---, 设()ln h x x x =-,(1)x >,∵1'()10h x x=-<, ∴()h x 在(1,)+∞上单调递减,则(31)(2)ln 220h a h -<=-<, ∴(31)(31)0f a a h a -=⋅-<,∴()f x 在区间(,31)a a -上有一个零点,那么,()f x 恰有两个零点. 综上所述,当()f x 有两个不同零点时,a 的取值范围是(1,)+∞. (1)【解法二】函数的定义域为:(0,)+∞.'()221a f x x a x =-+-(21)()x a x x+-=, ①当0a ≤时,易得'()0f x <,则()f x 在(0,)+∞上单调递增, 则()f x 至多只有一个零点,不符合题意,舍去. ②当0a >时,令'()0f x =得:x a =,则max 极大.∴要使函数()f x 有两个零点,则必有()(ln 1)0f a a a a =+->,即ln 10a a +->,设()ln 1g a a a =+-,∵1'()10g a a=+>,则()g a 在(0,)+∞上单调递增, 又∵(1)0g =,∴1a >; 当1a >时: ∵12()(1)f a e e =-2110e e--<, ∴()f x 在区间1(,)a e上有一个零点; 设()ln h x x x =-, ∵11'()1xh x x x-=-=,∴()h x 在(0,1)上单调递增,在(1,)+∞上单调递减, ∴()(1)10h x h ≤=-<,∴ln x x <,∴2()ln (21)f x a x x a x =-+-22(21)3ax x a x ax x x ≤-+-=--23(3)ax x x a x ≤-=-, 则(4)0f a <,∴()f x 在区间(,4)a a 上有一个零点, 那么,此时()f x 恰有两个零点.综上所述,当()f x 有两个不同零点时,a 的取值范围是(1,)+∞. (2)【证法一】由(1)可知,∵()f x 有两个不同零点,∴1a >,且当(0,)x a ∈时,()f x 是增函数; 当(,)x a ∈+∞时,()f x 是减函数; 不妨设:12x x <,则:120x a x <<<; 设()()(2)F x f x f a x =--,(0,2)x a ∈, 则:'()'()'(2)F x f x f a x =--2(21)2a ax a x a x=-+-+-2(2)(21)a x a --+- 22()22(2)a a x a x a x x a x -=+-=--. 当(0,)x a ∈时,'()0F x >,∴()F x 单调递增,又∵()0F a =, ∴()0F x <,∴()(2)f x f a x <-, ∵1(0,)x a ∈,∴11()(2)f x f a x <-, ∵12()()f x f x =,∴21()(2)f x f a x <-,∵2(,)x a ∈+∞,12(,)a x a -∈+∞,()f x 在(,)a +∞上单调递减, ∴212x a x >-,∴122x x a +>. (2)【证法二】由(1)可知,∵()f x 有两个不同零点,∴1a >,且当(0,)x a ∈时,()f x 是增函数; 当(,)x a ∈+∞时,()f x 是减函数; 不妨设:12x x <,则:120x a x <<<; 设()()()F x f a x f a x =+--,(0,)x a ∈, 则'()'()'()F x f a x f a x =++-2()(21)a aa x a a x a x=-++-++-2()(21)a x a --+- 222()()a a x a x a x a x a x =+-=+-+-. 当(0,)x a ∈时,'()0F x >,∴()F x 单调递增, 又∵(0)0F =,∴()0F x >,∴()()f a x f a x +>-, ∵1(0,)a x a -∈,∴12()()f x f x =11(())(())f a a x f a a x =--<+-1(2)f a x =-, ∵2(,)x a ∈+∞,12(,)a x a -∈+∞,()f x 在(,)a +∞上单调递减, ∴212x a x >-,∴122x x a +>. 22.【解析】(1)由已知得:11222x t y ⎧-=⎪⎪⎨⎪-=⎪⎩,消去t得21)y x -=-,20y -+-=, 即:l20y -+=.曲线C :4sin ρθ=得,24sin ρρθ=,即224x y y +=,整理得22(2)4x y +-=,即:C :22(2)4x y +-=.(2)把直线l的参数方程1122x t y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数)代入曲线C 的直角坐标方程中得:221(1))42t ++=,即230t t +-=, 设M ,N 两点对应的参数分别为1t ,2t ,则121213t t t t +=-⎧⎨⋅=-⎩,∴11 PM PN+1212PM PN t tPM PN t t++==⋅⋅21212121212()4t t t t t tt t t t-+-⋅==⋅⋅13=.23.【解析】(1)当2x≤-时,()4f x x=-+,∴()646f x x≥⇒-+≥2x⇒≤-,故2x≤-;当21x-<<时,()3f x x=-,∴()636f x x≥⇒-≥2x⇒≤-,故xφ∈;当1x≥时,()4f x x=-,∴()646f x x≥⇒-≥10x⇒≥,故10x≥;综上可知:()6f x≥的解集为(,2][10,)-∞+∞U.(2)由(1)知:4,2()3,214,1x xf x x xx x-+≤-⎧⎪=--<<⎨⎪-≥⎩,【解法一】如图所示:作出函数()f x的图象,由图象知,当1x=时,13a-+≤-,解得:2a≤-,∴实数a的取值范围为(,2]-∞-.【解法二】当2x≤-时,4x x a-+≥-+恒成立,∴4a≤,当21x-<<时,3x x a-≥-+恒成立,∴2a≤-,当1x≥时,4x x a-≥-+恒成立,∴2a≤-,综上,实数a的取值范围为(,2]-∞-.。
2020-2021学年山东省济南市章丘区高三(上)期中数学试卷
2020-2021学年山东省济南市章丘区高三(上)期中数学试卷一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的 1.(5分)已知集合1{|1}A x x=<,2{|280)B x x x =-->,则(A B = )A .(-∞,2)(4-⋃,)+∞B .(4,)+∞C .(2-,0)(1⋃,4)D .(1,4)2.(5分)设复数122iz i-=-(其中i 为虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.(5分)已知2log 3a =,4log 8b =,2c ln =,则实数a ,b ,c 的大小关系是( ) A .c a b <<B .c b a <<C .b a c <<D .a b c <<4.(5分)已知平面向量(2,)a m =,(1,2)b =-,且|2||2|a b a b -=+,则||(a b += ) A .1B .2C .3D .45.(5分)“|3|1x -<”是“311x >-”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件6.(5分)函数2()(1)x x f x ln x x -=+-的图象大致为( )A .B .C .D .7.(5分)若0x >,0y >,且47x y +=,则111x y++的最小值为( ) A .2B .98C .94D .328.(5分)设()f x 是定义在(-∞,0)(0⋃,)+∞上的函数,()f x '为其导函数,(12)(21)f x f x -=-,(2)0f -=,当0x >时,()()xf x f x -'<,则使得()0f x >成立的x 的取值范围是( ) A .(2-,0)(0⋃,2) B .(-∞,2)(2-⋃,)+∞C .(-∞,2)(0-⋃,2)D .(0,2)(2⋃,)+∞二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求全部选对的得5分,部分选对的得3分,有选错的得0分9.(5分)若命题“x R ∃∈,22(1)4(1)30k x k x -+-+”是假命题,则k 的值可能为( ) A .1-B .1C .4D .710.(5分)函数()sin()(0f x A x ωϕω=+>,0)A >的部分图象如图所示,则( )A .2πω=B .6AC .4πϕ=-D .(0)3f =-11.(5分)为了研究某种病毒在特定环境下随时间变化的繁殖情况,得到了一些数据,绘制成散点图,发现用模型kx y ce =拟合比较合适,令z lny =,得到 1.3z x a =+,经计算发现x ,z 满足如表:天数x 天2 3 4 5 6 z1.54.55.56.57则( ) A .0.2c e -=B . 1.3k =C .0.2c e =D . 1.3k =-12.(5分)已知函数2||,0()43,0lnx x f x x x x >⎧=⎨++⎩,若函数2()[()]4()1g x f x f x m =-++恰有8个零点,则( )A .m 的最小值为1B .m 的最小值为2C .m 的最大值为3D .m 无最大值三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.(5分)已知1sin cos 6αα=-,(0,)απ∈,则cos sin αα-= .14.(5分)先将函数cos()((0y x ϕϕ=+∈,))π的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),再向左平移3π个单位长度,所得函数图象关于y 轴对称,则ϕ= . 15.(5分)在ABC ∆中,3AC BC ==,2AB =,点M 和点N 分别是边BC 和边AB 上的点,且满足2MC BM =,AN NB =,则AM CN = .16.(5分)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,其外接圆的半径为1.若1cos cos cos 3a Ab Bc C ++=,则ABC ∆的面积为 . 四、解答题:本大题共6小题,共70分.解答应写出文字说明证明过程或演算步骤17.(10分)在①4C π=,②ABC ∆的面积为,③sin BA BC ac bc A =-这三个条件中任选一个,补充在下面的问题中,并解答问题.问题:在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,_____,且sin cos a B A =,ABC ∆的外接圆的半径为4.求ABC ∆的周长.18.(12分)某学校为了了解学生暑假期间学习数学的情况,抽取了人数相等的甲、乙两班进行调查,甲班同学每天学习数学的平均时间的频率分布直方图(将时间分成[0,1),[1,2),[2,3),[3,4),[4,5),[5,6]共6组)和乙班同学每天学习数学的平均时间的频数分布表如图所示(单位:小时). 乙班同学学习数学平均时间的频率分布表[5,6] 3(1)从甲班每天学习数学的平均时间在[0,2)的人中随机选出3人,求3人中恰有1人学习数学的平均时间在[0,1)范围内的概率;(2)从甲、乙两个班每天学习数学平均时间不小于5个小时的学生中随机抽取4人进一步了解其他情况,设4人中乙班学生的人数为ξ,求ξ的分布列和数学期望.19.(12分)已知向量(cos ,cos sin )a x x x =+,(3sin b x =,11cos sin )22x x -,且函数()f x a b =.(1)求()f x 的解析式及单调递增区间; (2)若α为锐角,且1()3f α=,求cos2α的值.20.(12分)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .已知(sin cos )0b a C C +-=. (1)求A ;(2)若D 为BC 边上一点,且AD BC ⊥,(222)BC AD =,求sin 2B . 21.(12分)已知函数2222()(log )2log f x x x a =-+.(1)若对任意(0,)x ∈+∞,()0f x >恒成立,求a 的取值范围;(2)设1m >,若对任意[2x ∈,)+∞,不等式((22))(441)x x x x f m f ---<+-恒成立,求m 的取值范围.22.(12分)已知函数()(1)(0)ax f x e lnx a =->.(1)当1a =时,求曲线()y f x =在(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若关于x 的方程2()f x ax ax =-在[1,)+∞上恰有三个不同的实数解,求a 的取值范围.2020-2021学年山东省济南市章丘区高三(上)期中数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的 1.(5分)已知集合1{|1}A x x=<,2{|280)B x x x =-->,则(A B = )A .(-∞,2)(4-⋃,)+∞B .(4,)+∞C .(2-,0)(1⋃,4)D .(1,4)【解答】解:{|1A x x =>或0}x <,{|2B x x =<-或4}x >,(AB ∴=-∞,2)(4-⋃,)+∞.故选:A . 2.(5分)设复数122iz i-=-(其中i 为虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【解答】解:因为12(12)(2)432(2)(2)5i i i i z i i i --+-===--+,复数z 在复平面内对应的点为43(,)55-, 所以复数z 在复平面内对应的点在第四象限. 故选:D .3.(5分)已知2log 3a =,4log 8b =,2c ln =,则实数a ,b ,c 的大小关系是( ) A .c a b <<B .c b a <<C .b a c <<D .a b c <<【解答】解:244log 3log 9log 81a b ==>=>, 21c ln lne =<=,∴实数a ,b ,c 的大小关系为c b a <<.故选:B .4.(5分)已知平面向量(2,)a m =,(1,2)b =-,且|2||2|a b a b -=+,则||(a b += ) A .1B .2C .3D .4【解答】解:平面向量(2,)a m =,(1,2)b =-,且|2||2|a b a b -=+, 所以22|2||2|a b a b -=+, 可得0a b =,所以20-=,解得m =所以(3,0)a b +=, 所以22||303a b +=+=. 故选:C .5.(5分)“|3|1x -<”是“311x >-”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件【解答】解:|3|1x -<,24x ∴<<, 311x >-,14x ∴<<, (2,4)(1,4),∴ “|3|1x -<”是“311x >-”的充分不必要条件, 故选:B .6.(5分)函数2()(1)x x f x ln x x -=+-的图象大致为( )A .B .C .D .【解答】解:22222()(()1())(1)(1)(1)1x xx x x xf x ln x x ln x x x x x x lnx x----===-+--+++++-+-22()1x x x xf x--+===-,()f x∴为奇函数,排除选项B和D;取1x=,则f(1)11-=<,排除选项A,故选:C.7.(5分)若0x>,0y>,且47x y+=,则111x y++的最小值为() A.2B.98C.94D.32【解答】解:若0x>,0y>,且47x y+=,则(1)48x y++=,所以11111141149[(1)4]()(5)[25] 18181818y xx yx y x y x y x y++=+++=++⨯+= +++,当且仅当47411x yy xx y+=⎧⎪+⎨=⎪+⎩,即5343xy⎧=⎪⎪⎨⎪=⎪⎩时,等号成立.故选:B.8.(5分)设()f x是定义在(-∞,0)(0⋃,)+∞上的函数,()f x'为其导函数,(12)(21)f x f x-=-,(2)0f-=,当0x>时,()()xf x f x-'<,则使得()0f x>成立的x的取值范围是()A.(2-,0)(0⋃,2)B.(-∞,2)(2-⋃,)+∞C.(-∞,2)(0-⋃,2)D.(0,2)(2⋃,)+∞【解答】解:由题意设()()g x xf x=,则()()()g x xf x f x'='+,当0x>时,有()()0xf x f x'+>,∴则当0x>时,()0g x'>,∴函数()()g x xf x=在(0,)+∞上为增函数,(12)(21)f x f x-=-,故函数()f x是偶函数,()()()()[()]()()g x x f x x f x xf x g x∴-=--=-=-=-,∴函数()g x为定义域上的奇函数,由(2)0f -=得,(2)g g -=-(2)0=,()0f x >即0x >时,()0g x g >=(2),解得:2x >, 0x <时,()0g x <,解得:2x <-∴使得()0f x >成立的x 的取值范围是:(-∞,2)(2-⋃,)+∞,故选:B .二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求全部选对的得5分,部分选对的得3分,有选错的得0分9.(5分)若命题“x R ∃∈,22(1)4(1)30k x k x -+-+”是假命题,则k 的值可能为( ) A .1-B .1C .4D .7【解答】解:由题可知,命题“x R ∀∈,22(1)4(1)30k x k x -+-+>”是真命题, 当210k -=时,1k =或1k =-.若1k =,则原不等式为30>,恒成立,符合题意;若1k =-,则原不等式为830x +>,不恒成立,不符合题意. 当210k -≠时,依题意得22210,16(1)4(1)30k k k ⎧->⎨---⨯<⎩. 即(1)(1)0,(1)(7)0,k k k k +->⎧⎨--<⎩解得17k <<.综上所述,实数k 的取值范围为{|17}k k <, 故选:BC .10.(5分)函数()sin()(0f x A x ωϕω=+>,0)A >的部分图象如图所示,则( )A .2πω=B .6AC .4πϕ=-D .(0)3f =-【解答】解:由已知,8.5 6.522T =-=,所以24T πω==,解得2πω=,所以()sin()2f x A x πϕ=+.又(8.5)(0.5)0f f ==,所以sin()04A πϕ+=,则24k πϕπ+=,k Z ∈,即24k πϕπ=-+,k Z ∈①.又(5)f =5sin()2A πϕ+cos A ϕ=②.由①②可得A ()sin()24f x x ππ-.故(0))4f π=-=故选:ABD .11.(5分)为了研究某种病毒在特定环境下随时间变化的繁殖情况,得到了一些数据,绘制成散点图,发现用模型kx y ce =拟合比较合适,令z lny =,得到 1.3z x a =+,经计算发现x ,z 满足如表:则( ) A .0.2c e -=B . 1.3k =C .0.2c e =D . 1.3k =-【解答】解:由题意可得2345645x ++++==, 1.5 4.5 5.5 6.5755z ++++==,ˆˆ 1.3zx a =+,结果样本中心(4,5),可得ˆ5 1.340.2a =-⨯=-, 因为z lny =,kx y ce =,所以z kx lnc =+, 所以 1.3k =,0.2lnc a ==-,即0.2c e -=, 故选:AB .12.(5分)已知函数2||,0()43,0lnx x f x x x x >⎧=⎨++⎩,若函数2()[()]4()1g x f x f x m =-++恰有8个零点,则( )A .m 的最小值为1B .m 的最小值为2C .m 的最大值为3D .m 无最大值【解答】解:设()f x t =, 因为()g x 有8个零点,所以方程()f x t =有2个不同的实数根,结合()f x 的图象可得2410t t m -++=在(0,3]内有2个不同的实数根, 即214m t t +=-+在(0,3]内有2个不同的实数根, 则314m +<,故23m <. 故选:BD .三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.(5分)已知1sin cos 6αα=-,(0,)απ∈,则cos sin αα-= 23 .【解答】解:因为1sin cos 6αα=-,所以12sin cos 03αα=-<,且(0,)απ∈,可得cos 0α<,sin 0α>,因为24(cos sin )12cos sin 3αααα-=-=, 可得23cos sin αα-=. 故答案为:2314.(5分)先将函数cos()((0y x ϕϕ=+∈,))π的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),再向左平移3π个单位长度,所得函数图象关于y 轴对称,则ϕ= 56π .【解答】解:先将函数cos()((0y x ϕϕ=+∈,))π的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),可得1cos()2y x ϕ=+的图象;再向左平移3π个单位长度,可得函数1cos()26y x πϕ=++的图象, 根据所得函数图象关于y 轴对称,可得6k πϕπ+=,k Z ∈,则56πϕ=,故答案为:56π. 15.(5分)在ABC ∆中,3AC BC ==,2AB =,点M 和点N 分别是边BC 和边AB 上的点,且满足2MC BM =,AN NB =,则AM CN = 83- .【解答】解:在ABC ∆中,3AC BC ==,2AB =,点M 和点N 分别是边BC 和边AB 上的点,且满足2MC BM =,AN NB =,如图: 1233AM AC AB =+,1122CN CA CB =+, 则1211()()3322AM CN AC AB CA CB =++211116363AC AB CA AC CB AB CB =-+++222211113321133233()23633623333+-=-⨯-⨯⨯⨯+⨯⨯⨯-+⨯⨯⨯⨯⨯83=-. 故答案为:83-.16.(5分)在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,其外接圆的半径为1.若1cos cos cos 3a A b B c C ++=,则ABC ∆的面积为 16. 【解答】解:设ABC ∆的外接圆的半径为R ,因为cos cos cos 3Ra Ab Bc C ++=, 所以2cos 2cos 2cos 123a Ab Bc C R ++=,所以12sin cos 2sin cos 2sin cos 3A A B B C C ++=,即1sin 2sin 2sin 23A B C ++=,所以1sin[()()]sin[()()]sin 23A B A B A B A B C ++-++--+=, 则12sin()cos()2sin cos 3A B A B C C +-+=,因为A B C π++=,所以sin()sin A B C +=,cos()cos A B C +=-, 所以12sin cos()2sin cos()3C A B C A B --+=,所以12sin [cos()cos()]3C A B A B --+=,所以14sin sin sin 3A B C =,即1sin sin sin 12A B C =,设ABC ∆的面积为S ,则111sin 2sin sin sin 22126S ab C A B C ===⨯=.故答案为:16. 四、解答题:本大题共6小题,共70分.解答应写出文字说明证明过程或演算步骤 17.(10分)在①4C π=,②ABC ∆的面积为,③sin BA BC ac bc A =-这三个条件中任选一个,补充在下面的问题中,并解答问题.问题:在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,_____,且sin cos a B A =,ABC ∆的外接圆的半径为4.求ABC ∆的周长.【解答】解:因为sin cos a B A +=,由正弦定理可得sin sin cos A B B A B +, 因为sin 0B ≠,所以sin A Asin()3A π+=,因为(0,)A π∈,(33A ππ+∈,4)3π,所以233A ππ+=,可得3A π=, 由于ABC ∆的外接圆的半径4R =,8=,解得a =若选①:4C π=,可得512B A C ππ=--=,8=,解得ABC ∆的周长为a b c ++=;若选②:ABC ∆的面积为1sin 2bc A ,解得48bc =,又由余弦定理可得222248()3()348b c bc b c bc b c =+-=+-=+-⨯,解得b c +=解得ABC ∆的周长为a b c ++==; 若选③:sin BA BC ac bc A =-,可得cos sin ac B ac bc A =-,即cos sin a B a b A =-, 由正弦定理可得sin cos sin sin sin A B A B A =-,由于3A π=,可得sin cos )14B B B π+=+=,可得sin()42B π+=,因为(44B ππ+∈,5)4π,可得344B ππ+=,解得2B π=,6C A B ππ=--=,由正弦定理可得8sin 8b B ==,8sin 4c C ==,解得ABC ∆的周长为12a b c ++=+18.(12分)某学校为了了解学生暑假期间学习数学的情况,抽取了人数相等的甲、乙两班进行调查,甲班同学每天学习数学的平均时间的频率分布直方图(将时间分成[0,1),[1,2),[2,3),[3,4),[4,5),[5,6]共6组)和乙班同学每天学习数学的平均时间的频数分布表如图所示(单位:小时). 乙班同学学习数学平均时间的频率分布表(1)从甲班每天学习数学的平均时间在[0,2)的人中随机选出3人,求3人中恰有1人学习数学的平均时间在[0,1)范围内的概率;(2)从甲、乙两个班每天学习数学平均时间不小于5个小时的学生中随机抽取4人进一步了解其他情况,设4人中乙班学生的人数为ξ,求ξ的分布列和数学期望.【解答】解:(1)易知乙班人数共有50人,即甲班共有50人.甲班在[0,2)中的人数有50(0.040.08)16⨯+⨯=(人),在[0,1)中的人数有500.042⨯=(人).令A =事件“3人中恰有1人学习数学“,故P (A )1224360.6C C C ==. 即3人中恰有1人学习数学的平均时间在[0,1)范围内的概率为0.6.(2)甲班中每天学习数学时间不小5小时的人数为500.084⨯=(人),乙班有3人. 故甲乙两班每天学习数学不小于5小时的人数共有437+=人.从这7人中任取4人,设4人中乙班学生的人数为ξ,ξ的可能取值为0,1,2,3.44471(0)35C P C ξ===;31434712(1)35C C P C ξ===;22434718(2)35C C P C ξ===;1343474(3)35C C P C ξ===.故ξ的分布列为:0 1 2 3 P13512351835435故期望112184120123353535357E ξ=⨯+⨯+⨯+⨯=. 19.(12分)已知向量(cos ,cos sin )a x x x =+,(3sin b x =,11cos sin )22x x -,且函数()f x a b =.(1)求()f x 的解析式及单调递增区间; (2)若α为锐角,且1()3f α=,求cos2α的值.【解答】解:(1)1()3cos sin (cos sin )(cos sin )2f x a b x x x x x x ==++-12cos2sin(2)26x x x π=+=+, 令222262k x k πππππ-+++,k Z ∈,得36k xk ππππ-++,k Z ∈,所以函数()f x 的单调递增区间为[,]()36k k k Z ππππ-++∈.(2)因为α为锐角,所以72(,)666πππα+∈, 又因为110()sin(2)632f παα<=+=<,所以2(,)62ππαπ+∈,所以cos(2)6πα+=,所以cos2cos[(2)]66ππαα=+-cos(2)cos sin(2)sin 6666ππππαα=+++=. 20.(12分)在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .已知(sin cos )0b a C C +-=. (1)求A ;(2)若D 为BC 边上一点,且AD BC ⊥,2)BC AD =,求sin 2B . 【解答】解:(1)因为(sin cos )0b a C C +-=, 所以sin sin (sin cos )0B A C C +-=,所以sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=,即cos sin sin sin 0A C A C +=, 因为0C π<<,所以sin 0C ≠,所以sin cos 0A A +=,则tan 1A =-, 因为0A π<<,所以34A π=. (2)因为AD BC ⊥,所以11sin 22ABC S bc A a AD ∆==a AD =,因为2)BC AD =,所以AD =,所以2(2a bc =+,由余弦定理可得2222cos a b c bc A =+-,则22(2bc b c +=++,整理可得2()0b c -=,即b c =,可得B C =,因为34A π=,所以8B π=,所以sin 2sin 4B π==.21.(12分)已知函数2222()(log )2log f x x x a =-+.(1)若对任意(0,)x ∈+∞,()0f x >恒成立,求a 的取值范围;(2)设1m >,若对任意[2x ∈,)+∞,不等式((22))(441)x x x x f m f ---<+-恒成立,求m 的取值范围.【解答】解:(1)可令2log t x =,则222y t t a =-+,由0x >,可得t R ∈, 对任意(0,)x ∈+∞,()0f x >恒成立,等价为t R ∈,2220y t t a =-+>恒成立, 则△2440a =-<,解得1a >或1a <-; (2)令2log t x =,因为2x ,则1t ,因为222y t t a =-+的对称轴为1t =,所以222y t t a =-+在[1,)+∞递增,即()f x 在[2,)+∞递增,因为2x ,所以152224x x-->,4412x x -+->, 因为1m >,所以(22)2x x m -->,因为((22))(441)xxxxf m f ---<+-,所以(22)441xxxxm ---<+-,即44122x x x xm --+-<-,因为2441(22)1x x x x --+-=-+,所以12222x x x xm --<-+-,因为15224x x--,所以1154241222241560x x x x ---++=-,故24160m <, 因为1m >,所以m 的取值范围是241(1,)60. 22.(12分)已知函数()(1)(0)ax f x e lnx a =->.(1)当1a =时,求曲线()y f x =在(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若关于x 的方程2()f x ax ax =-在[1,)+∞上恰有三个不同的实数解,求a 的取值范围. 【解答】解:(1)当1a =时,()(1)x f x e lnx =-,可得f (1)0=,()f x 的导数1()x xe f x e lnx lnx-'=+, 所以切线的斜率为k f ='(1)1e =-, 则切线的方程为(1)(1)y e x =--,该切线与x 轴的交点为(1,0),与y 轴的交点为(0,1)e -, 所以所求三角形的面积为111(1)22e e -⨯⨯-=;(2)显然1x =为方程2()f x ax ax =-的根,当0x >且1x ≠时,原方程等价于111ax lnx e x e ax lnx lnx---==, 设1()(0)x e g x x x -=>,2(1)1()x x e g x x -+'=, 设()1(1)(0)x h x x e x =+->,()0x h x xe '=>,可得()h x 在(0,)+∞递增, 则()((0)0h x h >=,即()0g x '>,()g x 在(0,)+∞递增, 原方程等价于()()g ax g lnx =,只需ax lnx =在(1,)+∞上有两个不等实根. 故只需ax lnx =在(1,)+∞上有两个不等的实根. 则(1)lnxa x x=>, 设()(1)lnx k x x x =>,21()lnxk x x-'=, 可得()k x 在(1,)e 递增,在(,)e +∞递减, 则()k x 的最大值为k (e )1e =,又k (1)0=,所以a 的范围是1(0,)e.。
2020-2021学年山东省济南市历下区德润学校高三(上)期中数学试卷(解析版)
2020-2021学年山东省济南市历下区德润中学高三(上)期中数学试卷一、单项选择题(共8小题).1.已知集合A={x|x2﹣2x≥0},B={x|0<x<3},则A∩B=()A.(﹣1,3)B.(0,2]C.[2,3)D.(2,3)2.sin225°=()A.B.C.﹣D.3.已知a=log32,b=3,c=ln,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b4.设x∈R,则“|x+1|<2”是“lgx<0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知{a n}为等比数列,若a3=2,a5=8,则a7=()A.64B.32C.±64D.±326.函数f(x)=x﹣的大致图象为()A.B.C.D.7.为了得到函数y=sin(2x﹣)的图象,只需把函数y=sin(2x+)的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位8.已知函数f(x)是定义在R上的奇函数,且当x<0时,f(x)=2﹣x﹣1,若f(a2﹣3)+f(2a)≤0,则实数a的数值范围()A.(﹣∞,﹣3]∪[1,+∞)B.[﹣3,1]C.(﹣3,1)D.(﹣∞,﹣3)∪(1,+∞)二、多项选择题:本题共4小题,在每小题给出的选项中,有多项符合题目要求。
9.下列函数中,既是偶函数,又在(0,+∞)上单调递增的是()A.y=x3B.y=x﹣2C.y=e|x|D.y=lgx210.在平面直角坐标系xOy中.角α顶点在原点O,以x正半轴为始边,终边经过点P(1,m)(m<0),则下列各式的值恒大于0的是()A.B.cosα﹣sinαC.sinαcosαD.sinα+cosα11.关于函数f(x)=4sin(2x+)(x∈R)有下列命题,其中正确的是()A.y=f(x)是以2π为最小正周期的周期函数B.y=f(x)的表达式可改写为C.y=f(x)的图象关于直线对称D.y=f(x)的图象关于点对称12.已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且x∈[0,2]时,f(x)=log2(x+1),给出下列结论正确的是()A.f(3)=1B.若m∈(0,1),则关于x的方程f(x)﹣m=0在[0,6]上所有根之和为4C.函数f(x)关于直线x=4对称D.函数f(x)在[﹣6,﹣2]上是减函数三、填空题:本题共4小题。
2020-2021济南市济南十二中高中必修一数学上期中第一次模拟试题(及答案)
2020-2021济南市济南十二中高中必修一数学上期中第一次模拟试题(及答案)一、选择题1.若35225a b ==,则11a b +=( ) A .12B .14C .1D .22.1()xf x e x=-的零点所在的区间是( ) A .1(0,)2B .1(,1)2C .3(1,)2D .3(,2)23.设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,4.设函数22,()6,x x x af x ax x a⎧--≥⎪=⎨-<⎪⎩是定义在R 上的增函数,则实数a 取值范围( )A .[)2,+∞B .[]0,3C .[]2,3D .[]2,45.已知()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,若存在三个不同实数a ,b ,c 使得()()()f a f b f c ==,则abc 的取值范围是( ) A .(0,1)B .[-2,0)C .(]2,0-D .(0,1)6.函数2()ln(28)f x x x =--的单调递增区间是 A .(,2)-∞- B .(,1)-∞ C .(1,)+∞D .(4,)+∞7.若0.23log 2,lg0.2,2a b c ===,则,,a b c 的大小关系为A .c b a <<B . b a c <<C . a b c <<D .b c a <<8.已知函数2()log (23)(01)a f x x x a a =--+>≠,,若(0)0f <,则此函数的单调减区间是() A .(,1]-∞-B .[1)-+∞,C .[1,1)-D .(3,1]--9.设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则( )A.233231log224ff f--⎛⎫⎛⎫⎛⎫>> ⎪⎪⎪⎝⎭⎝⎭⎝⎭B.233231log224f f f--⎛⎫⎛⎫⎛⎫>>⎪ ⎪⎪⎝⎭⎝⎭⎝⎭C.23332122log4f f f--⎛⎫⎛⎫⎛⎫>>⎪⎪ ⎪⎝⎭⎝⎭⎝⎭D.23323122log4f f f--⎛⎫⎛⎫⎛⎫>>⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭10.已知0.80.820.7,log0.8, 1.1a b c===,则,,a b c的大小关系是()A.a b c<<B.b a c<<C.a c b<<D.b c a<<11.已知奇函数()f x在R上是增函数,若21log5a f⎛⎫=- ⎪⎝⎭,()2log4.1b f=,()0.82c f=,则,,a b c的大小关系为( )A.a b c<<B.b a c<<C.c b a<<D.c a b<<12.设0.60.3a=,0.30.6b=,0.30.3c=,则a,b,c的大小关系为()A.b a c<<B.a c b<<C.b c a<<D.c b a<<二、填空题13.某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算.某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为____元.14.若函数()6,23log,2ax xf xx x-+≤⎧=⎨+>⎩(0a>且1a≠)的值域是[)4,+∞,则实数a的取值范围是__________.15.某在校大学生提前创业,想开一家服装专卖店,经过预算,店面装修费为10000元,每天需要房租水电等费用100元,受营销方法、经营信誉度等因素的影响,专卖店销售总收入P与店面经营天数x的关系是P(x)=21300,0300245000,300x x xx⎧-≤<⎪⎨⎪≥⎩则总利润最大时店面经营天数是___.16.如果函数221x x y a a =+-(0a >,且1a ≠)在[]1,1-上的最大值是14,那么a 的值为__________.17.计算:__________.18.有15人进家电超市,其中有9人买了电视,有7人买了电脑,两种均买了的有3人,则这两种都没买的有 人.19.用{}min ,,a b c 表示,,a b c 三个数中最小值,则函数{}()min 41,4,8f x x x x =++-+的最大值是 .20.若关于 x 的方程2420x x a ---= 在区间 (1, 4) 内有解,则实数 a 的取值范围是_____.三、解答题21.已知函数24()(0,1)2x xa af x a a a a-+=>≠+是定义在R 上的奇函数. (1)求a 的值:(2)求函数()f x 的值域;(3)当[]1,2x ∈时,()220xmf x +->恒成立,求实数m 的取值范围.22.近年来,雾霾日趋严重,雾霾的工作、生活受到了严重的影响,如何改善空气质量已成为当今的热点问题,某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销售经验得到下面有关生产销售的统计规律,每生产该型号空气净化器x (百台),其总成本为()P x (万元),其中固定成本为12万元,并且每生产1百台的生产成本为10万元(总成本=固定成本+生产成本),销售收入()Q x (万元)满足20.522,016(){224,16x x x Q x x -+≤≤=>,假定该产品销售平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)求利润函数()y f x =的解析式(利润=销售收入-总成本); (2)工厂生产多少百台产品时,可使利润最多? 23.设a 为实数,函数()()21f x x x a x R =+-+∈.(1)若函数()f x 是偶函数,求实数a 的值; (2)若2a =,求函数()f x 的最小值;(3)对于函数()y m x =,在定义域内给定区间[],a b ,如果存在()00x a x b <<,满足()0()()m b m a m x b a-=-,则称函数()m x 是区间[],a b 上的“平均值函数”,0x 是它的一个“均值点”.如函数2y x =是[]1,1-上的平均值函数,0就是它的均值点.现有函数()21g x x mx =-++是区间[]1,1-上的平均值函数,求实数m 的取值范围.24.已知集合A ={x |x 2-2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,m ∈R ,x ∈R}. (1)若A ∩B ={x |0≤x ≤3},求实数m 的值; (2)若A ⊆∁R B ,求实数m 的取值范围.25.有一种候鸟每年都按一定的路线迁陟,飞往繁殖地产卵.科学家经过测量发现候鸟的飞行速度可以表示为函数301log lg 2100x v x =-,单位是min km ,其中x 表示候鸟每分钟耗氧量的单位数,0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:lg 20.30=, 1.23 3.74=, 1.43 4.66=)(1)若02x =,候鸟每分钟的耗氧量为8100个单位时,它的飞行速度是多少min km ? (2)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(3)若雄鸟的飞行速度为2.5min km ,雌鸟的飞行速度为1.5min km ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?26.已知函数()f x 的定义域是(0,)+∞,且满足()()()f xy f x f y =+,1()12f =,如果对于0x y <<,都有()()f x f y >. (1)求()1f 的值;(2)解不等式()(3)2f x f x -+-≥-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】由指数式与对数式的转化,结合换底公式和对数的运算,即可求解. 【详解】由题意3225,5225a b==根据指数式与对数式的转化可得35log 225,log 225a b == 由换底公式可得lg 2252lg15lg 2252lg15,lg 3lg 3lg 5lg 5a b ==== 由对数运算化简可得11lg 3lg 52lg152lg15a b +=+lg3lg52lg15+=lg1512lg152== 故选:A 【点睛】本题考查了指数式与对数式的转化,对数的运算及换底公式的应用,属于中档题.2.B解析:B 【解析】 函数f (x )=e x ﹣1x 是(0,+∞)上的增函数,再根据f (12)=e ﹣2<0,f (1)=e ﹣1>0,可得f (12)f (1)<0,∴函数f (x )=e x ﹣1x 的零点所在的区间是(12,1),故选B .点睛:判定函数的零点所在区间,只需计算区间端点处的函数值,并判断是否异号,只要异号,则区间内至少有一个零点存在.3.D解析:D 【解析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果.详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .点睛:该题考查的是有关通过函数值的大小来推断自变量的大小关系,从而求得相关的参数的值的问题,在求解的过程中,需要利用函数解析式画出函数图像,从而得到要出现函数值的大小,绝对不是常函数,从而确定出自变量的所处的位置,结合函数值的大小,确定出自变量的大小,从而得到其等价的不等式组,从而求得结果.4.D解析:D 【解析】 【分析】画出函数22y xx =--的图象,结合图象及题意分析可得所求范围. 【详解】画出函数22y x x =--的图象如下图所示,结合图象可得,要使函数()22,,6,,x x x a x ax x a ⎧--≥⎪=⎨-<⎪⎩是在R 上的增函数,需满足22226a a a a ≥⎧⎨--≥-⎩,解得24x ≤≤.所以实数a 取值范围是[]2,4. 故选D . 【点睛】解答本题的关键有两个:(1)画出函数的图象,结合图象求解,增强了解题的直观性和形象性;(2)讨论函数在实数集上的单调性时,除了考虑每个段上的单调性之外,还要考虑在分界点处的函数值的大小关系.5.C解析:C 【解析】 【分析】画出函数图像,根据图像得到20a -<≤,1bc =,得到答案. 【详解】()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,画出函数图像,如图所示:根据图像知:20a -<≤,20192019log log b c -=,故1bc =,故20abc -<≤.【点睛】本题考查了分段函数的零点问题,画出函数图像是解题的关键.6.D解析:D 【解析】由228x x -->0得:x ∈(−∞,−2)∪(4,+∞), 令t =228x x --,则y =ln t ,∵x ∈(−∞,−2)时,t =228x x --为减函数; x ∈(4,+∞)时,t =228x x --为增函数; y =ln t 为增函数,故函数f (x )=ln(228x x --)的单调递增区间是(4,+∞), 故选D.点睛:形如()()y f g x =的函数为()y g x =,() y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数. 当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增; 当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增.简称为“同增异减”.7.B解析:B 【解析】 【分析】由对数函数的单调性以及指数函数的单调性,将数据与0或1作比较,即可容易判断.由指数函数与对数函数的性质可知,a =()3log 20,1,b ∈=lg0.20,c <=0.221>,所以b a c <<,故选:B. 【点睛】本题考查利用指数函数和对数函数的单调性比较大小,属基础题.8.D解析:D 【解析】 【分析】求得函数()f x 的定义域为(3,1)-,根据二次函数的性质,求得()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,再由(0)0f <,得到01a <<,利用复合函数的单调性,即可求解. 【详解】由题意,函数2()log (23)a f x x x =--+满足2230x x --+>,解得31x -<<,即函数()f x 的定义域为(3,1)-,又由函数()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,因为(0)0f <,即(0)log 30a f =<,所以01a <<,根据复合函数的单调性可得,函数()f x 的单调递减区间为(3,1]--, 故选D. 【点睛】本题主要考查了对数函数的图象与性质,以及复合函数的单调性的判定,着重考查了推理与运算能力,属于基础题.9.C解析:C 【解析】 【分析】由已知函数为偶函数,把233231log ,2,24f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,转化为同一个单调区间上,再比较大小. 【详解】()f x Q 是R 的偶函数,()331log log 44f f ⎛⎫∴= ⎪⎝⎭.223303322333log 4log 31,1222,log 422---->==>>∴>>Q ,又()f x 在(0,+∞)单调递减,∴()23323log 422f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,23323122log 4f f f --⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C .【点睛】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.10.B解析:B 【解析】 【分析】根据指数函数的单调性以及对数函数的单调性分别判断出a b c 、、的取值范围,从而可得结果. 【详解】0.8000.70.71a <=<=Q ,22log 0.8log 10b =<=, 0.801.1 1.11c =>=,b ac ∴<<,故选B. 【点睛】本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间 );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.11.C解析:C 【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭, 且:0.822log 5log 4.12,122>><<,据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<. 本题选择C 选项.【考点】 指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.12.B解析:B 【解析】 【分析】根据指数函数的单调性得出0.60.30.30.3<,而根据幂函数的单调性得出0.30.30.30.6<,从而得出a ,b ,c 的大小关系. 【详解】解:0.3xy =Q 在定义域上单调递减,且0.360.<,0.60.30.30.3∴<,又0.3y x∴=在定义域上单调递增,且0.360.<,0.30.30.30.6∴<,0.60.30.30.30.30.6∴<<,a cb ∴<<故选:B . 【点睛】考查指数函数和幂函数的单调性,以及增函数和减函数的定义.二、填空题13.1120【解析】【分析】明确折扣金额y 元与购物总金额x 元之间的解析式结合y =30>25代入可得某人在此商场购物总金额减去折扣可得答案【详解】由题可知:折扣金额y 元与购物总金额x 元之间的解析式y∵y=解析:1120 【解析】 【分析】明确折扣金额y 元与购物总金额x 元之间的解析式,结合y =30>25,代入可得某人在此商场购物总金额, 减去折扣可得答案. 【详解】由题可知:折扣金额y 元与购物总金额x 元之间的解析式,y ()()006000.0560060011000.11100251100x x x x x ⎧≤⎪=-≤⎨⎪-+⎩,<,<,> ∵y =30>25 ∴x >1100∴0.1(x ﹣1100)+25=30 解得,x =1150, 1150﹣30=1120,故此人购物实际所付金额为1120元.本题考查的知识点是分段函数,正确理解题意,进而得到满足条件的分段函数解析式是解答的关键.14.【解析】试题分析:由于函数的值域是故当时满足当时由所以所以所以实数的取值范围考点:对数函数的性质及函数的值域【方法点晴】本题以分段为背景主要考查了对数的图象与性质及函数的值域问题解答时要牢记对数函数 解析:(]1,2【解析】试题分析:由于函数()()6,2{0,13log ,2a x x f x a a x x -+≤=>≠+>的值域是[)4,+∞,故当2x ≤时,满足()64f x x =-≥,当2x >时,由()3log 4a f x x =+≥,所以log 1a x ≥,所以log 2112a a ≥⇒<<,所以实数a 的取值范围12a <≤.考点:对数函数的性质及函数的值域.【方法点晴】本题以分段为背景主要考查了对数的图象与性质及函数的值域问题,解答时要牢记对数函数的单调性及对数函数的特殊点的应用是解答的关键,属于基础题,着重考查了分类讨论的思想方法的应用,本题的解答中,当2x >时,由()4f x ≥,得log 1a x ≥,即log 21a ≥,即可求解实数a 的取值范围.15.200【解析】【分析】根据题意列出总利润L(x)的分段函数然后在各个部分算出最大值比较大小就能确定函数的最大值进而可求出总利润最大时对应的店面经营天数【详解】设总利润为L(x)则L(x)=则L(x)解析:200【解析】【分析】根据题意,列出总利润L(x)的分段函数,然后在各个部分算出最大值,比较大小,就能确定函数的最大值,进而可求出总利润最大时对应的店面经营天数.【详解】设总利润为L(x),则L(x)=2120010000,0300210035000,300x x x x x ⎧-+-≤<⎪⎨⎪-+≥⎩则L(x)=21(200)10000,0300210035000,300x x x x ⎧--+≤<⎪⎨⎪-+≥⎩当0≤x<300时,L(x)max =10000,当x ≥300时,L(x)max =5000,所以总利润最大时店面经营天数是200.本题主要考查分段函数的实际应用,准确的写出各个部分的函数关系式是解决本题的关键. 16.3或【解析】【分析】令换元后函数转化为二次函数由二次函数的性质求得最大值后可得但是要先分类讨论分和求出的取值范围【详解】设则对称轴方程为若则∴当时解得或(舍去)若则∴当时解得或(舍去)答案:3或【点 解析:3或13 【解析】 【分析】 令x t a =,换元后函数转化为二次函数,由二次函数的性质求得最大值后可得a .但是要先分类讨论,分1a >和01a <<求出t 的取值范围.【详解】 设0x t a =>,则221y t t =+-,对称轴方程为1t =-. 若1,[1,1]a x >∈-,则1,x t a a a ⎡⎤=∈⎢⎥⎣⎦, ∴当t a =时,2max 2114y a a =+-=,解得3a =或5a =-(舍去).若01a <<,[1,1]x ∈-,则1,x t a a a ⎡⎤=∈⎢⎥⎣⎦∴当1t a =时,2max 112114y a a ⎛⎫=+⨯-= ⎪⎝⎭解得13a =或15a =-(舍去) 答案:3或13 【点睛】本题考查指数型复合函数的最值,本题函数类型的解题方法是用换元法把函数转化为二次函数求解.注意分类讨论.17.4【解析】原式=log3332+lg(25×4)+2-(23)3-13=32+2+2-32=4故填4 解析:【解析】原式=,故填.18.【解析】【分析】【详解】试题分析:两种都买的有人所以两种家电至少买一种有人所以两种都没买的有人或根据条件画出韦恩图:(人)考点:元素与集合的关系解析:【分析】【详解】 试题分析:两种都买的有人,所以两种家电至少买一种有人.所以两种都没买的有人.或根据条件画出韦恩图:(人).考点:元素与集合的关系.19.6【解析】试题分析:由分别解得则函数则可知当时函数取得最大值为6考点:分段函数的最值问题解析:6【解析】试题分析:由414,418,48x x x x x x +>++>-++>-+分别解得1, 1.4,2x x x >>>,则函数()8,2{4,1241,1x x f x x x x x -+≥=+<<+≤则可知当2x =时,函数{}()min 41,4,8f x x x x =++-+取得最大值为6考点:分段函数的最值问题20.-6-2)【解析】【分析】转化成f(x)=与有交点再利用二次函数的图像求解【详解】由题得令f(x)=所以所以故答案为-6-2)【点睛】本题主要考查二次方程的有解问题考查二次函数的图像和性质意在考查学解析:[-6,-2)【解析】【分析】转化成f(x)=242x x --与y a =有交点, 再利用二次函数的图像求解.【详解】由题得242x x a --=,令f(x)=()242,1,4x x x --∈, 所以()()[)2242266,2f x x x x =--=--∈--,所以[)6,2a ∈--故答案为[-6,-2)【点睛】本题主要考查二次方程的有解问题,考查二次函数的图像和性质,意在考查学生对这些知识的掌握水平和数形结合分析推理能力.三、解答题21.(1)2a =(2)()1,1-(3)(10,3)+∞ 【解析】【分析】(1)利用函数是奇函数的定义求解a 即可(2)判断函数的单调性,求解函数的值域即可(3)利用函数恒成立,分离参数m ,利用换元法,结合函数的单调性求解最大值,推出结果即可.【详解】(1)∵()f x 是R 上的奇函数,∴()()f x f x -=- 即:242422x x x x a a a a a a a a---+-+=-++. 即2(4)2422x x x x a a a a a a a a+-+⋅-+-=+⋅+ 整理可得2a =.(2)222212()12222121x x x x x f x ⋅--===-⋅+++在R 上递增 ∵211x +>,22021x ∴-<-<+, 211121x ∴-<-<+ ∴函数()f x 的值域为()1,1-.(3)由()220xmf x +-> 可得,()2 2xmf x >-,21()2221x x x mf x m -=>-+. 当[]1,2x ∈时,(21)(22)21x x x m +->- 令(2113)x t t -=≤≤), 则有(2)(1)21t t m t t t+->=-+, 函数21y t t =-+在1≤t ≤3上为增函数, ∴max 210(1)3t t -+=,103m ∴>, 故实数m 的取值范围为(10,3)+∞ 【点睛】 本题主要考查了函数恒成立条件的应用,函数的单调性以及函数的奇偶性的应用,属于中档题.22.(Ⅰ)20.51212,016(){21210,16x x x f x x x -+-≤≤=-> ;(Ⅱ)12 . 【解析】试题分析:(1)先求得()P x ,再由()()()f x Q x P x =-,由分段函数式可得所求;(2)分别求出各段的最大值,注意运用一次函数和二次函数的单调性求最值法,然后比较两个最值即可得到结果.试题解析:(1)由题意得()1210P x x =+∴()()()20.51212,016{21210,16x x x f x Q x P x x x -+-≤≤=-=-> . (2)当16x >时, 函数()f x 递减,∴()()1652f x f <=万元当016x ≤≤时,函数()()20.51260f x x =--+当12x =时,()f x 有最大值60万元所以当工厂生产12百台时,可使利润最大为60万元 .【方法点睛】本题主要考查阅读能力及建模能力、分段函数的解析式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.理解本题题意的关键是构造分段函数,构造分段函数时,做到分段合理、不重不漏,分段函数的最值是各段的最大(最小)者的最大者(最小者). 23.(1);(2);(3)()0,2 【解析】试题分析:(1)考察偶函数的定义,利用通过整理即可得到;(2)此函数是一个含有绝对值的函数,解决此类问题的基本方法是写成分段函数的形式,()2221,221{3,2x x x f x x x x x x +-≥=+-+=-+<,要求函数的最小值,要分别在每一段上求出最小值,取这两段中的最小值;(3)此问题是一个新概念问题,这种类型都可转化为我们学过的问题,此题定义了一个均值点的概念,我们通过概念可把题目转化为“存在()01,1x ∈-,使得()0g x m =”从而转化为一元二次方程有解问题.试题解析:解:(1)()f x Q 是偶函数,()()f x f x ∴-=在R 上恒成立,即()2211x x a x x a -+--+=+-+,所以x a x a +=-得0ax = x R ∈Q 0a ∴=(2)当2a =时,()2221,221{3,2x x x f x x x x x x +-≥=+-+=-+< 所以()f x 在[)2,+∞上的最小值为()25f =, ()f x 在(),2-∞上的的最小值为f ()=, 因为<5,所以函数()f x 的最小值为. (3)因为函数()21g x x mx =-++是区间[]1,1-上的平均值函数,所以存在()01,1x ∈-,使()0(1)(1)1(1g g g x --=--) 而(1)(1)1(1g g m --=--),存在()01,1x ∈-,使得()0g x m = 即关于x 的方程21x mx m -++=在()1,1-内有解;由21x mx m -++=得210x mx m -+-=解得121,1x x m ==-所以111m -<-<即02m <<故m 的取值范围是()0,2考点:函数奇偶性定义;分段函数求最值;含参一元二次方程有解问题.24.(1)2;(2){|35}m m m -或【解析】试题分析:(1)根据一元二次不等式的解法,对A ,B 集合中的不等式进行因式分解,从而解出集合A ,B ,再根据A∩B=[0,3],求出实数m 的值;(2)由(1)解出的集合A ,B ,因为A ⊆C R B ,根据子集的定义和补集的定义,列出等式进行求解.解:由已知得:A={x|﹣1≤x≤3},B={x|m ﹣2≤x≤m+2}.(1)∵A ∩B=[0,3]∴∴,∴m=2;(2)C R B={x|x <m ﹣2,或x >m+2}∵A ⊆C R B ,∴m ﹣2>3,或m+2<﹣1,∴m >5,或m <﹣3.考点:交、并、补集的混合运算.25.(1)1.70/min km ;(2)466;(3)9【解析】试题分析:(1)直接代入求值即可,其中要注意对数的运算;(2)还是代入求值即可;(3)代入后得两个方程,此时我们不需要解出1x 、2x ,只要求出它们的比值即可,所以由对数的运算性质,让两式相减,就可求得129x x =. 试题解析:(1)将02x =,8100x =代入函数式可得:31log 81lg 22lg 220.30 1.702v =-=-=-= 故此时候鸟飞行速度为1.70/min km . (2)将05x =,0v =代入函数式可得:310log lg 52100x =-即3log 2lg52(1lg 2)20.70 1.40100x ==⋅-=⨯= 1.43 4.66100x ∴==于是466x =. 故候鸟停下休息时,它每分钟的耗氧量为466个单位.(3)设雄鸟每分钟的耗氧量为1x ,雌鸟每分钟的耗氧量为2x ,依题意可得:13023012.5log lg 2100{11.5log lg 2100x x x x =-=-两式相减可得:13211log 2x x =,于是129x x =. 故此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的9倍.考点:1.函数代入求值;2.解方程;3.对数运算.26.(1)()10f = (2){|10}x x -≤<.【解析】【分析】(1)根据()()()f xy f x f y =+,令1x y ==,即可得出()1f 的值;(2)由0x y <<,都有()()f x f y >知()f x 为()0,+∞上的减函数,根据()f x 的单调性,结合函数的定义域,列出不等式解出x 的范围即可.【详解】(1)令1x y ==,则()()()111f f f =+,()10f =.(2)解法一:由x y <<,都有()()f x f y >知()f x 为()0,+∞上的减函数,且030x x ->⎧⎨->⎩,即0x <.∵()()()f xy f x f y =+,(),0,x y ∈+∞且112f ⎛⎫= ⎪⎝⎭, ∴()()32f x f x -+-≥-可化为()()1322f x f x f ⎛⎫-+-≥- ⎪⎝⎭,即()()113022f x f f x f ⎛⎫⎛⎫-++-+≥ ⎪ ⎪⎝⎭⎝⎭=()()()331112222x x x x f f f f f f --⎛⎫⎛⎫⎛⎫⇔-+≥⇔-⋅≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 则03122x x x <⎧⎪⎨--⋅≤⎪⎩,解得10x -≤<. ∴不等式()()32f x f x -+-≥-的解集为{|10}x x -≤<.【点睛】本题主要考查抽象函数的定义域、不等式的解法,属于中档题.定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数()f x 的定义域为[],a b ,则函数()()f g x 的定义域由不等式()a g x b ≤≤求出.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
y
2
,则
z
x
3y
的最小值为__________.
x 1
三、解答题
21.在 ABC 中,内角 A、B、C 的对边分别为 a,b,c ,
2 cosC a cos B bcos A c 0 .
(Ⅰ)求角 C 的大小;
(Ⅱ)若 a 2,b 2 ,求 sin 2B C 的值.
22.在 ABC 中,内角 A, B,C 所对的边分别为 a,b, c ,已知
值,进而找到 a,b 之间的关系式 2a 3b 6, 然后可得 2 3 1 ( 2 3)(2a 3b) ,化 a b 6a b
简变形用基本不等式即可求解。 【详解】
不等式组表示的平面区域如图,由
3x y 6 0
x
y
2
0
得点
B
坐标为
B(4,6).由图可知当直线 z ax by 经过点 B(4,6)时,Z 取最大值。因为目标函数 z ax by (a 0,b 0) 的最大值为 12,所以 4a 6b 12, 即 2a 3b 6,
ax
by
(a
0,
b
0)
的最大值为
y 0
12,则 2 3 的最小值为 (
)
ab
A. 25 6
B. 25
C. 25 3
D. 5
9.已知数列{an}的通项公式为 an= n( 2)n 则数列{an}中的最大项为( ) 3
A. 8 9
B. 2 3
C. 64 81
D. 125 243
10.已知正数 x 、 y 满足 x y 1,则 1 4 的最小值为( ) x 1 y
17.某公司租赁甲、乙两种设备生产 A,B 两类产品,甲种设备每天能生产 A 类产品 5 件和 B
类产品 10 件,乙种设备每天能生产 A 类产品 6 件和 B 类产品 20 件.已知设备甲每天的租赁
费为 200 元,设备乙每天的租赁费为 300 元,现该公司至少要生产 A 类产品 50 件,B 类产品
(2)设 bn
3 an an 1
, Tn
是数列
bn
的前
n
项和,求使得 Tn
m 20
对所有
n
N
都成立的
最小正整数 m .
24.设数列 的前 项和为 ,且
.
(1)求数列 的通项公式;
(2)设
,求数列 的前 项和 .
25.各项均为整数的等差数列{an},其前 n 项和为 Sn , a1 1, a2 , a3 , S4 1 成等比
当 n<2 时,an+1-an>0,即 an+1>an; 当 n=2 时,an+1-an=0,即 an+1=an; 当 n>2 时,an+1-an<0,即 an+1<an. 所以 a1<a2=a3,a3>a4>a5>…>an,
· n,
所以数列{an}中的最大项为 a2 或 a3,且 a2=a3=2× 2= .故选 A.
一、选择题
1.D 解析:D 【解析】
设等比数列an的公比为 q ,则 q3
a4 a1
1 8 ,解得 q
1 2
,
∴ an
1 2n1
,
∴ anan1
1 2n1
1 2n
1 22n1
,
∴数列{anan1} 是首项为
1 2
,公比为
1 4
的等比数列,
∴ a1a2
a2a3
anan1
1 2
(1
1 4n
1 1
求出
1 4 的最小值. x 1 y
【详解】 x y 1 ,所以, x (1 y) 2 ,
则 2(1 4 ) [x (1 y)](1 4 ) 4x 1 y 5 2 4x 1 y 5 9 ,
x 1 y
2
10
20
1 2
700.
所以 AC=10 7 km.
故选 D. 【点睛】 本题考查余弦定理的实际应用,考查计算能力.
6.C
解析:C 【解析】 【分析】
根据等差数列前 n 项和公式,结合已知条件列不等式组,进而求得使前 n 项和 Sn 0 成立
的最大正整数 n. 【详解】
由于等差数列 an 满足 a1 0, a2018 a2019 0, a2018 a2019 0 ,所以 d 0 ,且
aa22001189
0
,所以
0
S4036 S4037
a1 a1
a4036 2
a4037 2
4036 4037
a2018 a2019 2018 2a2019 4037 0
2
0
,所以使前
n
项和
Sn 0 成立的最大正整数 n 是 4036 .
故选:C 【点睛】
本小题主要考查等差数列前 n 项和公式,考查等差数列的性质,属于基础题. 7.D
故选: D
【点睛】
平面区域的形状问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面
区域,然后结合分类讨论的思想,针对图象分析满足条件的参数的取值范围.
3.C
解析:C 【解析】
对于 A ,若 a 1, b 1,则 A 不成立;对于 B ,若 c 0 ,则 B 不成立;对于 C ,若 a b ,则 a3 b3 ,则 C 正确;对于 D , a 2 , b 1,则 D 不成立.
140 件,所需租赁费最少为__________元.
18.设
a
b
2
,
b
0
,则当
a
_____时,
2
1 |a
|
|
a b
|
取得最小值.
19.若原点和点 (1, 2019) 在直线 x y a 0 的同侧,则 a 的取值范围是________(用
集合表示).
y x
20.设变量
x,
y
满足约束条件:
是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定
和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否
在定义域内,二是多次用 或 时等号能否同时成立).
8.A
解析:A 【解析】
【分析】
先画不等式组表示的平面区域,由图可得目标函数 z ax by (a 0,b 0) 何时取最大
数列.
(1)求 {an } 的通项公式; (2)求数列{(1)n • an} 的前 2n 项和 T2n . 26.在 ABC 中,内角 A, B,C 的对边分别是 a,b, c ,已知
A , b2 c2 3 abc a2 .
3
3
(1)求 a 的值;
(2)若 b 1,求 ABC 的面积.
【参考答案】***试卷处理标记,请不要删除
时的 n 为( ).
A.1
B.6
C.7
D.6 或 7
5.已知 A、B 两地的距离为 10 km,B、C 两地的距离为 20 km,现测得∠ABC=120°,则 A、
C 两地的距离为 ( )
A.10 km
B. 3 km
C.10 5 km
D.10 7 km
6.等差数列 an 满足 a1 0, a2018 a2019 0, a2018 a2019 0 ,则使前 n 项和 Sn 0 成立
解法二
=
=
,
令 >1,解得 n<2;令 =1,解得 n=2;令 故 a1<a2=a3,a3>a4>a5>…>an,
<1,解得 n>2.又 an>0,
所以数列{an}中的最大项为 a2 或 a3,且 a2=a3=2× 2= .故选 A.
10.B
解析:B 【解析】 【分析】
由 x y 1得 x (1 y) 2 ,再将代数式 x (1 y) 与 1 4 相乘,利用基本不等式可 x 1 y
1 2 1 23 1 23 n
15.在 ABC 中,角 A,B,C 所对的边分别为 a,b, c ,且满足
sin Asin B sin2 C sin2 A sin2 B ,若 ABC 的面积为 3 ,则 ab __
16.已知
的三边长分别为 3,5,7,则该三角形的外接圆半径等于_________.
解析:D 【解析】
由
x
1,
2
时,
x2
mx
2
0
恒成立得
m
x
2 x
对任意
x
1,
2
恒成立,即
m
x
2 x
max
,
当x
2
时,
x
2 x
取得最大值
2
2,m 2
2 , m 的取
值范围是 2 2, ,故选 D.
【易错点晴】本题主要考查利用基本不等式求最值以及不等式恒成立问题,属于中档题. 利
用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正
a
的取值范围是(
)
x y a
A.
4 3
,
B. 0,1
C.
1,
4 3
D. 0,1
4 3
,
3.下列命题正确的是
A.若 a>b,则 a2>b2
B.若 a>b,则 ac>bc
C.若 a>b,则 a3>b3
D.若 a>b,则 1 < 1 ab
4.已知等差数列an的前 n 项为 Sn ,且 a1 a5 14 , S9 27 ,则使得 Sn 取最小值
的最大正整数 n 是( )
A.2018
B.2019
C.4036
D.4037