考研数学三不考的部分[最全]
【合集】2003-2004年全国硕士研究生招生考试数学试题(数学三)真题解析
2003年考研数学(三)真题答案1.【分析】当≠x 0可直接按公式求导,当x=0时要求用定义求导.【详解】当1>λ时,有,0,0,0,1sin 1cos )(21=≠⎪⎩⎪⎨⎧+='--x x xx x x x f 若若λλλ显然当2>λ时,有)0(0)(lim 0f x f x '=='→,即其导函数在x=0处连续.2. 【分析】 曲线在切点的斜率为 0,即 y = ′0 ,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到2b 与a 的关系.【详解】由题设,在切点处有03322=-='a x y ,有.22a x =又在此点y 坐标为0,于是有0300230=+-=b x a x ,故.44)3(6422202202a a a x a x b =⋅=-=3. 【分析】 本题积分区域为全平面,但只有当0 ≤x ≤1,0 ≤y −x ≤1时,被积函数才不为零,因此实际上只需在满足此不等式的区域内积分即可.【详解】⎰⎰-=Ddxdy x y g x f I )()(=dxdya x y x ⎰⎰≤-≤≤≤10,102=.])1[(212112a dx x x a dy dx ax x=-+=⎰⎰⎰+4. 【分析】 这里 ααT为 n 阶矩阵,而 αT= α2a 2为数,直接通过 AB =E 进行计算并注意利用乘法的结合律即可.【详解】由题设,有)1)((T T a E E AB αααα+-==TT T T aa E αααααααα⋅-+-11=T T T Ta a E αααααααα)(11-+-=TT T a a E αααααα21-+-=E aa E T=+--+αα)121(,于是有0121=+--a a ,即0122=-+a a ,解得.1,21-==a a 由于A<0,故a=-1.5.. 【分析】 利用相关系数的计算公式即可.【详解】 因为)4.0()()]4.0([()4.0,cov(),cov(---=-=X E Y E X Y E X Y Z Y =)(4.0)()()(4.0)(Y E X E Y E Y E XY E +--=E(XY)–E(X)E(Y)=cov(X,Y),且.DX DZ =于是有cov(Y,Z)=DZDY Z Y ),cov(=.9.0),cov(==XY DYDX Y X ρ【评注】 注意以下运算公式:D (X +a ) =DX ,cov(X ,Y +a ) =cov(X ,Y ).6.. 【分析】 本题考查大数定律:一组相互独立且具有有限期望与方差的随机变量n X X X ,,,21 ,当方差一致有界时,其算术平均值依概率收敛于其数学期望的算术平均值:).(1111∞→→∑∑==n EX n X n ni i p n i i 【详解】这里22221,,,n X X X 满足大数定律的条件,且22)(i i i EX DX EX +==21)21(412=+,因此根据大数定律有∑==n i i n X n Y 121依概率收敛于.21112=∑=n i i EX n 二、选择题(本题共 6 小题,每小题 4 分,满分 24 分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)7.【分析】由题设,可推出f(0)=0,再利用在点x=0处的导数定义进行讨论即可.【详解】显然x=0为g(x)的间断点,且由f(x)为不恒等于零的奇函数知,f(0)=0.于是有)0(0)0()(lim )(lim)(lim 00f x f x f x x f xg x x x '=--==→→→存在,故x=0为可去间断点.【评注1】本题也可用反例排除,例如f(x)=x,则此时g(x)=,0,0,0,1=≠⎩⎨⎧=x x x x 可排除(A),(B),(C)三项,故应选(D).【评注2】若f(x)在0x x =处连续,则.)(,0)()(lim000A x f x f A x x x f x x ='=⇔=-→.8..【分析】可微必有偏导数存在,再根据取极值的必要条件即可得结论.【详解】可微函数f(x,y)在点),(00y x 取得极小值,根据取极值的必要条件知0),(00='y x f y ,即),(0y x f 在0y y =处的导数等于零,故应选(A).【评注1】本题考查了偏导数的定义,),(0y x f 在0y y =处的导数即),(00y x f y ';而),(0y x f 在0x x =处的导数即).,(00y x f x '【评注2】本题也可用排除法分析,取22),(y x y x f +=,在(0,0)处可微且取得极小值,并且有2),0(y y f =,可排除(B),(C),(D),故正确选项为(A).9.【分析】根据绝对收敛与条件收敛的关系以及收敛级数的运算性质即可找出答案.【详解】若∑∞=1n na绝对收敛,即∑∞=1n na收敛,当然也有级数∑∞=1n na收敛,再根据nn n a a p +=,nn n a a q -=及收敛级数的运算性质知,∑∞=1n np与∑∞=1n nq都收敛,故应选(B).10.. 【分析】 A 的伴随矩阵的秩为 1, 说明 A 的秩为 2,由此可确定 a,b 应满足的条件.【详解】 根据A 与其伴随矩阵 A*秩之间的关系知,秩(A)=2,故有0))(2(2=-+=b a b a ab b b a b bb a ,即有02=+b a 或a=b.但当a=b 时,显然秩(A)2≠,故必有a ≠b 且a+2b=0.应选(C).【评注】n (n )2≥阶矩阵A 与其伴随矩阵A*的秩之间有下列关系:.1)(,1)(,)(,0,1,*)(-<-==⎪⎩⎪⎨⎧=n A r n A r n A r n A r 11..【分析】本题涉及到线性相关、线性无关概念的理解,以及线性相关、线性无关的等价表现形式.应注意是寻找不正确的命题.【详解】(A):若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 必线性无关,因为若s ααα,,,21 线性相关,则存在一组不全为零的数s k k k ,,,21 ,使得02211=+++s s k k k ααα ,矛盾.可见(A )成立.(B):若s ααα,,,21 线性相关,则存在一组,而不是对任意一组不全为零的数s k k k ,,,21 ,都有.02211=+++s s k k k ααα (B)不成立.(C)s ααα,,,21 线性无关,则此向量组的秩为s ;反过来,若向量组s ααα,,,21 的秩为s ,则s ααα,,,21 线性无关,因此(C)成立.(D)s ααα,,,21 线性无关,则其任一部分组线性无关,当然其中任意两个向量线性无关,可见(D)也成立.综上所述,应选(B).【评注】原命题与其逆否命题是等价的.例如,原命题:若存在一组不全为零的数s k k k ,,,21 ,使得02211=+++s s k k k ααα 成立,则s ααα,,,21 线性相关.其逆否命题为:若对于任意一组不全为零的数s k k k ,,,21 ,都有02211≠+++s s k k k ααα ,则s ααα,,,21 线性无关.在平时的学习过程中,应经常注意这种原命题与其逆否命题的等价性.12.. 【分析】按照相互独立与两两独立的定义进行验算即可,注意应先检查两两独立,若成立,再检验是否相互独立.【详解】因为21)(1=A P ,21)(2=A P ,21)(3=A P ,41)(4=A P ,且41)(21=A A P ,41)(31=A A P ,41)(32=A A P ,41)(42=A A P 0)(321=A A A P ,可见有)()()(2121A P A P A A P =,)()()(3131A P A P A A P =,)()()(3232A P A P A A P =,)()()()(321321A P A P A P A A A P ≠,)()()(4242A P A P A A P ≠.故321,,A A A 两两独立但不相互独立;432,,A A A 不两两独立更不相互独立,应选(C).【评注】本题严格地说应假定硬币是均匀的,否则结论不一定成立.13..【分析】只需求出极限)(lim 1x f x -→,然后定义f(1)为此极限值即可.【详解】因为)(lim 1x f x -→=)1(1sin 11[lim 1x x x x --+-→πππ=xx xx x πππππsin )1(sin )1(lim 111---+-→=xx x xx ππππππππcos )1(sin cos lim 111-+---+-→=xx x x xx ππππππππππsin )1(cos cos sin lim11221----+-→=.1π由于f(x)在)1,21[上连续,因此定义π1)1(=f ,使f(x)在]1,21[上连续.【评注】 本题实质上是一求极限问题,但以这种形式表现出来,还考查了连续的概念.在计算过程中,也可先作变量代换 y=1-x ,转化为求 y →0 +的极限,可以适当简化.14..【分析】本题是典型的复合函数求偏导问题:),(v u f g =,)(21,22y x v xy u -==,直接利用复合函数求偏导公式即可,注意利用.22uv f v u f ∂∂∂=∂∂∂【详解】vfx u f y x g ∂∂+∂∂=∂∂,.vf y u f x yg ∂∂-∂∂=∂∂故v f v f xv u f xy u f y x g ∂∂+∂∂+∂∂∂+∂∂=∂∂2222222222,.2222222222v f v f y u v f xy u f x y g ∂∂-∂∂+∂∂∂-∂∂=∂∂所以222222222222)()(vf y x u f y x yg x g ∂∂++∂∂+=∂∂+∂∂=.22y x +【评注】 本题考查半抽象复合函数求二阶偏导.15.. 【分析】 从被积函数与积分区域可以看出,应该利用极坐标进行计算.【详解】 作极坐标变换:x =r cos θ, y =r sin θ,有dxdyy x e e I Dy x)sin(22)(22+=⎰⎰+-π=.sin 2022dr r re d er ⎰⎰-πππθ令2r t =,则tdt e e I t sin 0⎰-=πππ.记tdt e A t sin 0⎰-=π,则tt de e A --⎰-=int 0π=]cos sin [0⎰----ππtdt e t e t t=⎰--πcos ttde =]sin cos [0tdt e te t t⎰--+-ππ=.1A e-+-π因此)1(21π-+=e A ,).1(2)1(2πππππe e e I +=+=-【评注】本题属常规题型,明显地应该选用极坐标进行计算,在将二重积分化为定积分后,再通过换元与分步积分(均为最基础的要求),即可得出结果,综合考查了二重积分、换元积分与分步积分等多个基础知识点.16..【分析】先通过逐项求导后求和,再积分即可得和函数,注意当x=0时和为1.求出和函数后,再按通常方法求极值.【详解】.1)1()(1212∑∞=-+-=-='n n n xx x x f 上式两边从0到x 积分,得).1ln(211)0()(202x dt t t f x f x+-=+-=-⎰由f(0)=1,得).1(),1ln(211)(2<+-=x x x f 令0)(='x f ,求得唯一驻点x=0.由于,)1(1)(222x x x f +--=''01)0(<-=''f ,可见f(x)在x=0处取得极大值,且极大值为f(0)=1.【评注】 求和函数一般都是先通过逐项求导、逐项积分等转化为可直接求和的几何级数情形,然后再通过逐项积分、逐项求导等逆运算最终确定和函数.17.. 【分析】 F(x)所满足的微分方程自然应含有其导函数,提示应先对 F(x)求导,并将其余部分转化为用 F(x)表示,导出相应的微分方程,然后再求解相应的微分方程.【详解】(1)由)()()()()(x g x f x g x f x F '+'='=)()(22x f x g +=)()(2)]()([2x g x f x g x f -+=(22)x e -2F(x),可见F(x)所满足的一阶微分方程为.4)(2)(2x e x F x F =+'(2)]4[)(222C dx e e e x F dx xdx +⎰⋅⎰=⎰-=]4[42C dx e e x x+⎰-=.22x xCe e-+将F(0)=f(0)g(0)=0代入上式,得C=-1.于是.)(22x x e e x F --=【评注】本题没有直接告知微分方程,要求先通过求导以及恒等变形引出微分方程的形式,从题型来说比较新颖,但具体到微分方程的求解则并不复杂,仍然是基本要求的范围.18..【分析】根据罗尔定理,只需再证明存在一点c )3,0[∈,使得)3(1)(f c f ==,然后在[c,3]上应用罗尔定理即可.条件f(0)+f(1)+f(2)=3等价于13)2()1()0(=++f f f ,问题转化为1介于f(x)的最值之间,最终用介值定理可以达到目的.【详解】因为f(x)在[0,3]上连续,所以f(x)在[0,2]上连续,且在[0,2]上必有最大值M 和最小值m ,于是M f m ≤≤)0(,M f m ≤≤)1(,M f m ≤≤)2(.故.3)2()1()0(M f f f m ≤++≤由介值定理知,至少存在一点]2,0[∈c ,使.13)2()1()0()(=++=f f f c f 因为f(c)=1=f(3),且f(x)在[c,3]上连续,在(c,3)内可导,所以由罗尔定理知,必存在)3,0()3,(⊂∈c ξ,使.0)(='ξf 【评注】介值定理、微分中值定理与积分中值定理都是常考知识点,且一般是两两结合起来考.本题是典型的结合介值定理与微分中值定理的情形.19..【分析】方程的个数与未知量的个数相同,问题转化为系数矩阵行列式是否为零,而系数行列式的计算具有明显的特征:所有列对应元素相加后相等.可先将所有列对应元素相加,然后提出公因式,再将第一行的(-1)倍加到其余各行,即可计算出行列式的值.【详解】方程组的系数行列式ba a a a ab a a a a a b a a a a a b a A n n n n ++++=321321321321=).(11∑=-+ni i n a b b(1)当0≠b 时且01≠+∑=ni iab 时,秩(A)=n ,方程组仅有零解.(2)当b=0时,原方程组的同解方程组为.02211=+++n n x a x a x a 由01≠∑=ni ia可知,),,2,1(n i a i =不全为零.不妨设01≠a ,得原方程组的一个基础解系为T a a )0,,0,1,(121 -=α,T a a )0,,1,0,(132 -=α,.)1,,0,0,(,1T n n a a -=α当∑=-=ni iab 1时,有0≠b ,原方程组的系数矩阵可化为⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑∑∑∑====n i i n nni inni inni ia a a a a a a a a a a a a a a a a a a a 1321132131213211(将第1行的-1倍加到其余各行,再从第2行到第n 行同乘以∑=-ni ia11倍)→⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----∑=1001010100113211 n ni ia a a a a (将第n 行n a -倍到第2行的2a -倍加到第1行,再将第1行移到最后一行)→.0000100101010011⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--- 由此得原方程组的同解方程组为12x x =,13x x =,1,x x n = .原方程组的一个基础解系为.)1,,1,1(T =α【评注】本题的难点在∑=-=ni iab 1时的讨论,事实上也可这样分析:此时系数矩阵的秩为n-1(存在n-1阶子式不为零),且显然T)1,,1,1( =α为方程组的一个非零解,即可作为基础解系.20..【分析】特征值之和为A 的主对角线上元素之和,特征值之积为A 的行列式,由此可求出a,b 的值;进一步求出A 的特征值和特征向量,并将相同特征值的特征向量正交化(若有必要),然后将特征向量单位化并以此为列所构造的矩阵即为所求的正交矩阵.【详解】(1)二次型f 的矩阵为.200200⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=b b a A 设A 的特征值为).3,2,1(=i i λ由题设,有1)2(2321=-++=++a λλλ,.12242002002321-=--=-=b a b ba λλλ解得a=1,b=-2.(2)由矩阵A 的特征多项式)3()2(2020202012+-=+----=-λλλλλλA E ,得A 的特征值.3,2321-===λλλ对于,221==λλ解齐次线性方程组0)2(=-x A E ,得其基础解系T )1,0,2(1=ξ,.)0,1,0(2T =ξ对于33-=λ,解齐次线性方程组0)3(=--x A E ,得基础解系.)2,0,1(3T -=ξ由于321,,ξξξ已是正交向量组,为了得到规范正交向量组,只需将321,,ξξξ单位化,由此得T 51,0,52(1=η,T )0,1,0(2=η,.)52,0,51(3T -=η令矩阵[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==5205101051052321ηηηQ ,则Q 为正交矩阵.在正交变换X=QY 下,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=300020002AQ Q T ,且二次型的标准形为.322232221y y y f -+=【评注】本题求a,b ,也可先计算特征多项式,再利用根与系数的关系确定:二次型f 的矩阵A 对应特征多项式为)].2()2()[2(20020022b a a b b a A E +----=+----=-λλλλλλλ设A 的特征值为321,,λλλ,则).2(,2,2232321b a a +-=-=+=λλλλλ由题设得1)2(2321=-+=++a λλλ,.12)2(22321-=+-=b a λλλ解得 a=1,b=2.21..【分析】先求出分布函数F(x)的具体形式,从而可确定Y=F(X),然后按定义求Y 的分布函数即可。
考研数学三需要掌握的重要考点
考研数学三需要掌握的重要考点考研数学三需要掌握的重要考点我们在准备数学三考研的时候,需要掌握的重要考点有很多。
店铺为大家精心准备了考研数学三需要掌握的重点,欢迎大家前来阅读。
考研数学三掌握23个重要考点(1)曲线的渐近线;(2)某点处的高阶导数;(3)化极坐标系下的二次积分为直角坐标系下的二次积分;(4)数项级数敛散性的判定;(5)向量组的线性相关性;(6)初等变换与初等矩阵;(7)二维均匀分布;(8)统计量的常见分布;(9)未定式的极限;(10)分段函数的复合函数的导数;(11)二元函数全微分的定义;(12)平面图形的面积;(13)初等变换、伴随矩阵、抽象行列式的计算;(14)随机事件的概率;(15)未定式的极限;(16)无界区域上的二重积分;(17)多元函数微分学的经济应用,条件极值;(18)函数不等式的证明;(19)微分方程、变限积分函数、拐点;(20)含参数的方程组;(21)利用正交变换化二次型为标准形;(22)二维离散型随机变量的概率、数字特征;(23)二维常见分布的随机变量函数的分布、数字特征考研数学必掌握的7个高频考点1、两个重要极限,未定式的极限、等价无穷小代换这些小的知识点在历年的考察中都比较高。
而透过我们分析,假如考极限的话,主要考的是洛必达法则加等价无穷小代换,特别针对数三的,这儿可能出大题。
2、处理连续性,可导性和可微性的关系要求掌握各种函数的求导方法。
比如隐函数求导,参数方程求导等等这一类的,还有注意一元函数的应用问题,这也是历年考试的一个重点。
数三的同学这儿结合经济类的一些试题进行考察。
3、参数估计这一点是咱们经常出大题的地方,这一块对咱们数一,数二,数三的考生来讲,包含两块知识点,一个是矩估计,一个是最大似然估计,这两个集中出大题。
4、级数问题,主要针对数一和数三这部分的重点是:一、常数项级数的性质,包括敛散性;二、牵扯到幂级数,大家要熟练掌握幂级数的收敛区间的计算,收敛半径与和函数,幂级数展开的问题,要掌握一个熟练的方法来进行计算。
2000-2013年考研数学三历年真题及真题解析(世上最全收录)
研究生入学考试2000到2013年最新最全数学三考试试题2000年全国硕士研究生入学统一考试数学三试题一、填空题二、选择题2001年全国硕士研究生入学统一考试数学三试题一、填空题二、选择题2002年全国硕士研究生入学统一考试数学三试题一、填空题二、选择题2003年考研数学(三)真题一、 填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设,0,0,0,1cos )(=≠⎪⎩⎪⎨⎧=x x xx x f 若若λ其导函数在x=0处连续,则λ的取值范围是_____. (2)已知曲线b x a x y +-=233与x 轴相切,则2b 可以通过a 表示为=2b ________.(3)设a>0,,x a x g x f 其他若,10,0,)()(≤≤⎩⎨⎧==而D 表示全平面,则⎰⎰-=Ddxdy x y g x f I )()(=_______.(4)设n 维向量0,),0,,0,(<=a a a TΛα;E 为n 阶单位矩阵,矩阵 TE A αα-=, T aE B αα1+=, 其中A 的逆矩阵为B ,则a=______.(5)设随机变量X 和Y 的相关系数为0.9, 若4.0-=X Z ,则Y 与Z 的相关系数为________.(6)设总体X 服从参数为2的指数分布,n X X X ,,,21Λ为来自总体X 的简单随机样本,则当∞→n 时,∑==n i i n X n Y 121依概率收敛于______.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=(A) 在x=0处左极限不存在. (B) 有跳跃间断点x=0.(C) 在x=0处右极限不存在. (D) 有可去间断点x=0. [ ] (2)设可微函数f(x,y)在点),(00y x 取得极小值,则下列结论正确的是(A) ),(0y x f 在0y y =处的导数等于零. (B )),(0y x f 在0y y =处的导数大于零. (C) ),(0y x f 在0y y =处的导数小于零. (D) ),(0y x f 在0y y =处的导数不存在. [ ] (3)设2nn n a a p +=,2nn n a a q -=,Λ,2,1=n ,则下列命题正确的是(A) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq都收敛.(B) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq都收敛.(C) 若∑∞=1n na条件收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定.(D) 若∑∞=1n na绝对收敛,则∑∞=1n np与∑∞=1n nq敛散性都不定. [ ](4)设三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=a b b b a b b b a A ,若A 的伴随矩阵的秩为1,则必有 (A) a=b 或a+2b=0. (B) a=b 或a+2b ≠0.(C) a ≠b 且a+2b=0. (D) a ≠b 且a+2b ≠0. [ ] (5)设s ααα,,,21Λ均为n 维向量,下列结论不正确的是(A) 若对于任意一组不全为零的数s k k k ,,,21Λ,都有02211≠+++s s k k k αααΛ,则s ααα,,,21Λ线性无关.(B) 若s ααα,,,21Λ线性相关,则对于任意一组不全为零的数s k k k ,,,21Λ,都有.02211=+++s s k k k αααΛ(C) s ααα,,,21Λ线性无关的充分必要条件是此向量组的秩为s.(D) s ααα,,,21Λ线性无关的必要条件是其中任意两个向量线性无关. [ ] (6)将一枚硬币独立地掷两次,引进事件:1A ={掷第一次出现正面},2A ={掷第二次出现正面},3A ={正、反面各出现一次},4A ={正面出现两次},则事件(A) 321,,A A A 相互独立. (B) 432,,A A A 相互独立.(C) 321,,A A A 两两独立. (D) 432,,A A A 两两独立. [ ] 三、(本题满分8分) 设).1,21[,)1(1sin 11)(∈--+=x x x x x f πππ 试补充定义f(1)使得f(x)在]1,21[上连续.四 、(本题满分8分)设f(u,v)具有二阶连续偏导数,且满足12222=∂∂+∂∂v f u f ,又)](21,[),(22y x xy f y x g -=,求.2222ygx g ∂∂+∂∂ 五、(本题满分8分) 计算二重积分 .)sin(22)(22dxdy y x e I Dy x +=⎰⎰-+-π其中积分区域D=}.),{(22π≤+y x y x六、(本题满分9分)求幂级数∑∞=<-+12)1(2)1(1n nnx n x 的和函数f(x)及其极值.七、(本题满分9分)设F(x)=f(x)g(x), 其中函数f(x),g(x)在),(+∞-∞内满足以下条件: )()(x g x f =',)()(x f x g =',且f(0)=0, .2)()(xe x g xf =+(1) 求F(x)所满足的一阶微分方程; (2) 求出F(x)的表达式. 八、(本题满分8分)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在)3,0(∈ξ,使.0)(='ξf九、(本题满分13分) 已知齐次线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++++=+++++=+++++=+++++,0)(,0)(,0)(,0)(332211332211332211332211nn nn n n n n x b a x a x a x a x a x b a x a x a x a x a x b a x a x a x a x a x b a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛ 其中.01≠∑=ni ia试讨论n a a a ,,,21Λ和b 满足何种关系时,(1) 方程组仅有零解;(2) 方程组有非零解. 在有非零解时,求此方程组的一个基础解系. 十、(本题满分13分) 设二次型)0(222),,(31232221321>+-+==b x bx x x ax AX X x x x f T ,中二次型的矩阵A 的特征值之和为1,特征值之积为-12. (1) 求a,b 的值;(2) 利用正交变换将二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.十一、(本题满分13分) 设随机变量X 的概率密度为;],8,1[,0,31)(32其他若∈⎪⎩⎪⎨⎧=x x x fF(x)是X 的分布函数. 求随机变量Y=F(X)的分布函数.十二、(本题满分13分)设随机变量X 与Y 独立,其中X 的概率分布为⎪⎪⎭⎫⎝⎛7.03.021~X ,而Y 的概率密度为f(y),求随机变量U=X+Y 的概率密度g(u).2004年全国硕士研究生入学统一考试数学三试题一、填空题:本题共6小题,每小题4分,满分24分. 请将答案写在答题纸指定位置上.(1) 若()0sin limcos 5x x xx b e a→-=-,则a =______,b =______.(2) 函数(),f u v 由关系式()(),f xg y y x g y =+⎡⎤⎣⎦确定,其中函数()g y 可微,且()0g y ≠,则2fu v∂=∂∂______. (3) 设()211,,2211,,2x xe x f x x ⎧-≤<⎪⎪=⎨⎪-≥⎪⎩ 则()2121f x dx -=⎰_____.(4) 二次型()()()()222123122331,,f x x x x x x x x x =++-++的秩为______. (5) 设随机变量X 服从参数为λ的指数分布,则{P X >=______.(6) 设总体X 服从正态分布()21,N μσ,总体Y 服从正态分布()22,N μσ,112,,,n X X X L 和212,,,n Y Y Y L 分别是来自总体X 和Y 的简单随机样本,则()()122211122n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎣⎦∑∑______. 二、选择题:本题共8小题,每小题4分,满分24分. 在每小题给出的四个选项中,只有一项符合题目要求,请把所选项前的字母填在答题纸指定位置上.(7) 函数()()()()2sin 212x x f x x x x -=--在下列哪个区间内有界.(A )()1,0- (B )()0,1 (C )()1,2 (D )()2,3(8) 设()f x 在(),-∞+∞内有定义,且()lim x f x a →∞=,()1,0,0,0,fx g x x x ⎧⎛⎫≠⎪ ⎪=⎝⎭⎨⎪=⎩则(A )0x =必是()g x 的第一类间断点 (B )0x =必是()g x 的第二类间断点 (C )0x =必是()g x 的连续点 (D )()g x 在点0x =处的连续性与a 的值有关.(9) 设()()1f x x x =-,则(A )0x =是()f x 的极值点,但()0,0不是曲线()y f x =的拐点 (B )0x =不是()f x 的极值点,但()0,0是曲线()y f x =的拐点 (C )0x =是()f x 的极值点,且()0,0是曲线()y f x =的拐点 (D )0x =不是()f x 的极值点,()0,0也不是曲线()y f x =的拐点 (10) 设有以下命题: ① 若()2121n n n uu ∞-=+∑收敛,则1n n u ∞=∑收敛② 若1nn u∞=∑收敛,则10001n n u∞+=∑收敛③ 若1lim1n n nu u +→∞>,则1n n u ∞=∑发散 ④ 若()1nn n uv ∞=+∑收敛,则1n n a ∞=∑,1n n v ∞=∑都收敛则以上命题中正确的是(A )①② (B )②③ (C )③④ (D )①④(11) 设()f x '在[],a b 上连续,且()()0,0f a f b ''><,则下列结论中错误的是 (A )至少存在一点()0,x a b ∈,使得()()0f x f a > (B )至少存在一点()0,x a b ∈,使得()()0f x f b > (C )至少存在一点()0,x a b ∈,使得()00f x '= (D )至少存在一点()0,x a b ∈,使得()00f x = (12) 设n 阶矩阵A 与B 等价,则必有(A )当()0A a a =≠时,B a = (B )当()0A a a =≠时,B a =- (C )当0A ≠时,0B = (D )当0A =时,0B =(13) 设n 阶矩阵A 的伴随矩阵*0A ≠,若1234,,,ξξξξ是非齐次线性方程组Ax b =的互不相等的解,则对应的齐次线性方程组0Ax =的基础解系(A )不存在 (B )仅含一个非零解向量 (C )含有两个线性无关的解向量 (D )含有三个线性无关的解向量(14) 设随机变量X 服从正态分布()0,1N ,对给定的()0,1α∈,数n u 满足{}P X u αα>=,若{}P X x α<=,则x 等于(A )2u α (B )12uα-(C )12u α- (D )1u α-三、解答题:本题共9小题,满分94分. 请将解答写在答题纸指定的位置上. 解答应写出文字说明、证明过程或演算步骤.(15)(本题满分8分)求22201cos lim sin x x x x →⎛⎫-⎪⎝⎭.(16)(本题满分8分)求)Dy d σ⎰⎰,其中D 是由圆224x y +=和()2211x y ++=所围成的平面区域(如图).(17)(本题满分8分)设()(),f x g x 在[],a b 上连续,且满足()()xxa a f t dt g t dt ≥⎰⎰,[),x ab ∈,()()bb aaf t dtg t dt =⎰⎰证明:()()bbaaxf x dx xg x dx ≤⎰⎰.(18)(本题满分9分)设某商品的需求函数为1005Q P =-,其中价格()0,20P ∈,Q 为需求量. (Ⅰ)求需求量对价格的弹性()0d d E E >;(Ⅱ)推导()1d dRQ E dP=-(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加.(19)(本题满分9分)设级数()468242462468x x x x +++-∞<<+∞⋅⋅⋅⋅⋅⋅L 的和函数为()S x .求: (Ⅰ)()S x 所满足的一阶微分方程; (Ⅱ)()S x 的表达式.(20)(本题满分13分)设()()()1231,2,0,1,2,3,1,2,2TTTa ab a b ααα==+-=---+,()1,3,3Tβ=-. 试讨论当,a b 为何值时,(Ⅰ)β不能由123,,ααα线性表示;(Ⅱ)β可由123,,ααα唯一地线性表示,并求出表示式;(Ⅲ)β可由123,,ααα线性表示,但表示式不唯一,并求出表示式.(21)(本题满分13分)设n 阶矩阵111b b bb A bb ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦L L M M M L. (Ⅰ)求A 的特征值和特征向量;(Ⅱ)求可逆矩阵P ,使得1P AP -为对角矩阵.(22)(本题满分13分)设,A B 为两个随机事件,且()()()111,,432P A P B A P A B ===,令 1,0,.A X A ⎧=⎨⎩发生,不发生 1,0,.B Y B ⎧=⎨⎩发生,不发生求:(Ⅰ)二维随机变量(),X Y 的概率分布; (Ⅱ)X 与Y 的相关系数XY ρ; (Ⅲ)22Z X Y =+的概率分布.(23)(本题满分13分) 设随机变量X 的分布函数为()1,,;,0,.x F x x x βαααβα⎧⎛⎫->⎪ ⎪=⎨⎝⎭⎪≤⎩其中参数0,1αβ>>. 设12,,,n X X X L 为来自总体X 的简单随机样本. (Ⅰ)当1α=时,求未知参数β的矩估计量; (Ⅱ)当1α=时,求未知参数β的最大似然估计量; (Ⅲ)当2β=时,求未知参数α的最大似然估计量.2005年全国硕士研究生入学统一考试数学三试题一、填空题:本题共6小题,每小题4分,满分24分. 请将答案写在答题纸指定位置上.(1) 极限22lim sin1x xx x →∞=+______. (2) 微分方程0xy y '+=满足初始条件()12y =的特解为______. (3) 设二元函数()()1ln 1x yz xex y +=+++,则()1,0dz =______.(4) 设行向量组()()()()2,1,1,1,2,1,,,3,2,1,,4,3,2,1a a a 线性相关,且1a ≠,则a =______.(5) 从数1,2,3,4中任取一个数,记为X ,再从1,,X L 中任取一个数,记为Y ,则{}2P Y ==______.(6) 设二维随机变量(),X Y 的概率分布为若随机事件{}0X =与{}1X Y +=相互独立,则a =______,b =______.二、选择题:本题共8小题,每小题4分,满分24分. 在每小题给出的四个选项中,只有一项符合题目要求,请把所选项前的字母填在答题纸指定位置上.(7) 当a 取下列哪个值时,函数()322912f x x x x a =-+-恰有两个不同的零点.(A )2 (B )4 (C )6 (D )8(8) 设()()22222123,cos ,cos DDDI I x y d I x y d σσσ==+=+⎰⎰⎰⎰⎰⎰,其中(){}22,1D x y xy =+≤,则(A )321I I I >> (B )123I I I >> (C )213I I I >> (D )312I I I >> (9) 设0,1,2,,n a n >=L 若1nn a∞=∑发散,()111n n n a ∞-=-∑收敛,则下列结论正确的是(A )211n n a∞-=∑收敛,21nn a∞=∑发散 (B )21nn a∞=∑收敛,211n n a∞-=∑发散(C )()2121n n n aa ∞-=+∑收敛 (D )()2121n n n a a ∞-=-∑收敛(10) 设()sin cos f x x x x =+,下列命题中正确的是 (A )()0f 是极大值,2f π⎛⎫⎪⎝⎭是极小值 (B )()0f 是极小值,2f π⎛⎫⎪⎝⎭是极大值 (C )()0f 是极大值,2f π⎛⎫⎪⎝⎭也是极大值 (D )()0f 是极小值,2f π⎛⎫⎪⎝⎭也是极小值 (11) 以下四个命题中,正确的是(A )若()f x '在()0,1内连续,则()f x 在()0,1内有界 (B )若()f x 在()0,1内连续,则()f x 在()0,1内有界 (C )若()f x '在()0,1内有界,则()f x 在()0,1内有界 (D )若()f x 在()0,1内有界,则()f x '在()0,1内有界 (12) 设矩阵()33ijA a ⨯=满足*T A A =,其中*A 为A 的伴随矩阵,TA 为A 的转置矩阵.若111213,,a a a 为三个相等的正数,则11a 为(A )3 (B )3 (C )13(D (13) 设12,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则()112,A ααα+线性无关的充分必要条件是(A )10λ= (B )20λ= (C )10λ≠ (D )20λ≠ (14)(注:该题已经不在数三考纲范围内)三、解答题:本题共9小题,满分94分. 请将解答写在答题纸指定的位置上. 解答应写出文字说明、证明过程或演算步骤.(15)(本题满分8分)求011lim 1x x x e x -→+⎛⎫- ⎪-⎝⎭.(16)(本题满分8分)设()f u 具有二阶连续导数,且(),y x g x y f yfx y ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,求222222g g x y x y ∂∂-∂∂.(17)(本题满分9分) 计算二重积分221Dx y d σ+-⎰⎰,其中(){},01,01D x y x y =≤≤≤≤.(18)(本题满分9分) 求幂级数211121n n x n ∞=⎛⎫-⎪+⎝⎭∑在区间()1,1-内的和函数()S x .(19)(本题满分8分)设()(),f x g x 在[]0,1上的导数连续,且()()()00,0,0f f x g x ''=≥≥.证明:对任何[]0,1α∈,有()()()()()()11ag x f x dx f x g x dx f a g ''+≥⎰⎰(20)(本题满分13分) 已知齐次线性方程组(ⅰ)123123123230,2350,0,x x x x x x x x ax ++=⎧⎪++=⎨⎪++=⎩ 和 (ⅱ)()12321230,210,x bx cx x b x c x ++=⎧⎪⎨+++=⎪⎩ 同解,求,,a b c 的值.(21)(本题满分13分) 设T AC D C B ⎛⎫= ⎪⎝⎭为正定矩阵,其中,A B 分别为m 阶,n 阶对称矩阵,C 为m n ⨯阶矩阵.(Ⅰ)计算T P DP ,其中1mn E A C P OE -⎛⎫-=⎪⎝⎭; (Ⅱ)利用(Ⅰ)的结果判断矩阵1T B C A C --是否为正定矩阵,并证明你的结论.(22)(本题满分13分)设二维随机变量(),X Y 的概率密度为()0,01,02,,1,x y x f x y <<<<⎧=⎨⎩其它. 求:(Ⅰ)(),X Y 的边缘概率密度()(),X Y f x f y ; (Ⅱ)2Z X Y =-的概率密度()Z f z ; (Ⅲ)1122P Y X ⎧⎫≤≤⎨⎬⎩⎭.(23)(本题满分13分)设()12,,,2n X X X n >L 为来自总体()20,N σ的简单随机样本,其样本均值为X ,记,1,2,,i i Y X X i n =-=L .(Ⅰ)求i Y 的方差,1,2,,i DY i n =L ; (Ⅱ)求1Y 与n Y 的协方差()1,n Cov Y Y ;(Ⅲ)若()21n c Y Y +是2σ的无偏估计量,求常数c .2006年全国硕士研究生入学统一考试数学三试题一、填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上. (1) ()11lim ______.nn n n -→∞+⎛⎫=⎪⎝⎭(2) 设函数()f x 在2x =的某邻域内可导,且()()ef x f x '=,()21f =,则()2____.f '''=(3) 设函数()f u 可微,且()102f '=,则()224z f x y =-在点(1,2)处的全微分()1,2d _____.z=(4) 设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则=B . (5)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤=_______.(6) 设总体X 的概率密度为()()121,,,,2xn f x e x X X X -=-∞<<+∞L 为总体X 的简单随机样本,其样本方差为2S ,则2____.ES =二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7) 设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则()(A) 0d y y <<∆. (B) 0d y y <∆<.(C) d 0y y ∆<<. (D) d 0y y <∆< .(8) 设函数()f x 在0x =处连续,且()22lim1h f h h →=,则()(A) ()()000f f -'=且存在 (B) ()()010f f -'=且存在 (C) ()()000f f +'=且存在 (D)()()010f f +'=且存在 (9) 若级数1nn a∞=∑收敛,则级数()(A)1nn a∞=∑收敛 . (B )1(1)nn n a ∞=-∑收敛.(C)11n n n a a∞+=∑收敛. (D)112n n n a a ∞+=+∑收敛. (10) 设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解12(),(),y x y x C 为任意常数,则该方程的通解是()(A) []12()()C y x y x -. (B) []112()()()y x C y x y x +-. (C) []12()()C y x y x +. (D) []112()()()y x C y x y x ++ (11) 设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是()(A) 若00(,)0x f x y '=,则00(,)0y f x y '=. (B) 若00(,)0x f x y '=,则00(,)0y f x y '≠. (C) 若00(,)0x f x y '≠,则00(,)0y f x y '=.(D) 若00(,)0x f x y '≠,则00(,)0y f x y '≠. (12) 设12,,,s αααL 均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是() (A) 若12,,,s αααL 线性相关,则12,,,s A A A αααL 线性相关. (B) 若12,,,s αααL 线性相关,则12,,,s A A A αααL 线性无关. (C) 若12,,,s αααL 线性无关,则12,,,s A A A αααL 线性相关.(D) 若12,,,s αααL 线性无关,则12,,,s A A A αααL 线性无关.(13) 设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()(A) 1C P AP -=. (B) 1C PAP -=.(C) T C P AP =. (D) T C PAP =.(14) 设随机变量X 服从正态分布211(,)N μσ,随机变量Y 服从正态分布222(,)N μσ,且{}{}1211P X P Y μμ-<>-<则必有()(A) 12σσ< (B) 12σσ> (C) 12μμ< (D) 12μμ>三、解答题:15-23小题,共94分. 解答应写出文字说明、证明过程或演算步骤. (15)(本题满分7分)设()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+,求: (Ⅰ)()()lim ,y g x f x y →+∞=;(Ⅱ)()0lim x g x +→。
考研高等数学全面复习资料(电子版)
高等数学考研复习资料,最全篇,适合于一遍,二遍复习研究细节,祝你考研数学春风得意马,突破130 分大关!目录一、函数与极限 (2)1、集合的概念··············································22、常量与变量..............................................3 2、函数..................................................4 3、函数的简单性态............................................4 4、反函数...................................................5 5、复合函数..................................................6 6、初等函数..................................................6 7、双曲函数及反双曲函数......................................7 8、数列的极限..............................................8 9、函数的极限..............................................9 10、函数极限的运算规则. (11)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
考研数学三历年真题答案与解析-模拟试题
考研数学三历年真题答案与解析|模拟试题展开全文第一部分历年真题及详解2008年全国硕士研究生入学统一考试考研数学三真题及详解2009年全国硕士研究生入学统一考试考研数学三真题及详解2010年全国硕士研究生入学统一考试考研数学三真题及详解2011年全国硕士研究生入学统一考试考研数学三真题及详解详解2013年全国硕士研究生入学统一考试考研数学三真题及详解2014年全国硕士研究生入学统一考试考研数学三真题及详解2015年全国硕士研究生招生考试考研数学三真题及详解2016年全国硕士研究生招生考试考研数学三真题及详解2017年全国硕士研究生招生考试考研数学三真题及详解2018年全国硕士研究生招生考试考研数学三真题及详解2019年全国硕士研究生招生考试考研数学三真题及详解(2)模拟试题及详解部分:精选了3套模拟试题,且附有详尽解析。
考生可通过模拟试题部分的练习,掌握最新考试动态,提前感受考场实战。
第二部分模拟试题及详解全国硕士研究生招生考试考研数学三模拟试题及详解(一)全国硕士研究生招生考试考研数学三模拟试题及详解(二)全国硕士研究生招生考试考研数学三模拟试题及详解(三)第一部分历年真题及详解解一、选择题(1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项符合题目要求。
)1设函数f(x)在区间[-1,1]上连续,则x=0是函数的()。
A.跳跃间断点B.可去间断点C.无穷间断点D.振荡间断点【答案】B查看答案【考点】函数间断点的类型【解析】首先利用间断点的定义确定该点为间断点,然后利用如下的间断点的类型进行判断。
第一类间断点:x=x0为函数f(x)的间断点,且与均存在,则称x=x0为函数f(x)的第一类间断点,其中:①跳跃型间断点:②可去型间断点:第二类间断点:x=x0为函数f(x)的间断点,且与之中至少有一个不存在,则称x=x0为函数f(x)的第二类间断点,其中:①无穷型间断点:与至少有一个为∞;②振荡型间断点:或为振荡型,极限不存在。
2021考研数学三真题及答案解析(全)
(16)甲乙两个盒子中各装有 2 个红球和 2 个白球,先从甲盒中任取一球,观察颜色后放入乙盒中,
再从乙盒中任取一球.令 X , Y 分别表示从甲盒和乙盒中取到的红球个数,则 X 与Y 的相关系数
______________.
【答案】 1 . 5
(0, 0) (0,1) (1, 0) (1,1) 0 1 0 1
4
3
(B) .
8
1
(C) .
2
5
(D) .
2
【答案】 A .
【解析】似然函数 L( ) (1 )3(1 )5 , 24
取对数 ln L( ) 3ln(1 ) 5ln(1 ) ;
2
4
求导
d ln L( ) d
3 1
5 1
0 ,得
1 .故正确答案为 A. 4
二、填空题(本题共 6 小题,每小题 5 分,共 30 分.请将答案写在答题纸指定位置
0
f
' y
y x2
0
2x2 x 1 y2 0
即
y
0
得驻点 (1, 0) , (1 , 0) 2
f '' xx
4x
1 x
3(2x2 x4
x
1
y2)
(2)
f '' xy
2 y x3
f '' yy
1 x2
(3)驻点 (1, 0) 处,A=3,B=0,C=1, AC B2 3 0 , A 0
(A)若 P( A | B) P( A) ,则 P( A | B) P( A) .
(B)若 P( A | B) P( A) ,则 P( A | B) P( A)
历年考研数三真题有哪些题型及考查范围
考⽣们在准备历年考研数三的真题时,有很多题型及考查范围需要我们了解清楚。
店铺为⼤家精⼼准备了历年考研数三真题的复习指导,欢迎⼤家前来阅读。
历年考研数三真题常见题型和考查范围 考研的学⼦们要了解数学的命题原则及考试题型,硕⼠研究⽣⼊学考试数学三的试题以考察数学基本概念、基本⽅法和基本原理为主,并在这个基础上加强对考⽣的运算能⼒、抽象概括能⼒、逻辑思维能⼒、空间想象⼒和综合所学知识解决实际问题能⼒等的考察。
研究⽣数学命题具体遵循的原则是科学性、公平性、考察内容全⾯性以及难度适宜性。
硕⼠研究⽣⼊学考试数学三的常见考试题型: ⼀、填空及选择题 实际上相当于⼀些简单的计算题,⽤于考察“三基”及数学性质。
选择题⼤致可分为三类:计算性的、概念性的与推理性的。
主要是考查考⽣对数学概念、数学性质的理解,并能进⾏简单的推理、判定和⽐较。
⼆、证明题 对于数三来说⾼等数学证明题的范围⼤致有:极限存在性、不等式,零点的存在性、定积分的不等式、级数敛散性的论证。
线性代数有矩阵可逆与否的讨论、向量组线性⽆关与相关的论证、线性⽅程组⽆解、唯⼀解、⽆穷多解的论证,矩阵可否对⾓化的论证,矩阵正定性的论证,关于秩的⼤⼩并⽤它来论证有关问题等等,可以说线代的证明题的范围⽐较⼴。
⾄于概率统计证明题通常集中于随机变量的不相关性和独⽴性,估计的⽆偏性等。
三、综合以及应⽤题 综合题考查的是知识之间的有机结合,此类题难度⼀般为中等难度。
同样每⼀试卷中都有⼀⾄⼆道应⽤题,前⼏年研究⽣考试中就考察了⼀道有关于经济类利息率的应⽤题,⽽合并后数三的应⽤题更会涉及经济⽅⾯,所以考⽣在平时⼀定要加强对经济类应⽤题的复习。
考研数学复习的技巧 数学复习贵在长期积累 1.把握课堂,巧⽤⽼师。
⼤学的数学课堂很容易被忽视,尤其是⽂科⽣。
很多同学认为⽼师讲的东西很基础、很浅显,⾼中时就已经懂了,因此也就懒得听;或者认为数学很⽆聊,上课时要么睡觉,要么看别的书,或者⼲脆玩⼿机。
最新考研数学三不考的部分(最全)
高等数学不用看的部分:第5页映射;第17页到第20页双曲正弦双曲余弦双曲正切及相应的反函数可以不记;第107页由参数方程所确定的函数的导数;第119页微分在近似方程中的应用记住几个公式4,5,6还有120页的近似公式即可,不用看例题;第140页泰勒公式的证明可以不看,例题中的几个公式一定要记住,比如正弦公式等;第169页第七节;第178页第八节;第213页第四节;第218页第五节;第280页平行截面面积为已知的立体体积;第282页平面曲线的弧长;第287页第三节;第316页第五节;在第七章微分方程中建议大家只要会解方程即可,凡是书上涉及到物理之类的例题不看跳过例如第301页的例2例3例4;第八章;第90页第六节;第101页第七节;第157页第三节;165页第四节;第十一章;第261页定理6;第278页第四节;第285页第五节;第302页第七节;第316第八节线性代数不用看的部分:第102页第五节概率论与数理统计要考的部分:第一二三四五章;第六章第135页抽样分布;第7章第一节点估计和第二节最大似然估计注意:数学课本和习题中标注星号的为不考内容,在上面的内容中我并没有标出。
上述内容是根据文都发放的教材编的。
《高等数学》目录与2010数三大纲对照的重点计划用时(天)标记及内容要求:★─大纲中要求“掌握”和“会”的内容以及对学习高数特别重要的内容,应当重点加强,对其概念、性质、结论及使用方法熟知,对重要定理、公式会推导。
要大量做题。
☆─大纲中要求“理解”和“了解”的内容以及对学习高数比较重要的内容,要看懂定理、公式的推导,知道其概念、性质和方法,能使用其结论做题●─大纲中没有明确要求,但对做题和以后的学习有帮助。
要能看懂,了解其思路和结论。
▲─超出大纲要求。
第一章函数与极限第一节映射与函数(☆集合、影射,★其余)第二节数列的极限(☆)第三节函数的极限(☆)第四节无穷小与无穷大(★)第五节极限运算法则(★)第六节极限存在准则(★)第七节无穷小的比较(★)第八节函数的连续性与间断点(★)第九节连续函数的运算与初等函数的连续性(★)第十节闭区间上连续函数的性质(★)总习题第二章导数与微分第一节导数概念(★)第二节函数的求导法则(★)第三节高阶导数(★)第四节隐函数及由参数方程所确定的函数的导数相关变化率(★)第五节函数的微分(★)总习题二第三章微分中值定理与导数的应用第一节微分中值定理(★罗尔,★拉格朗日,☆柯西)第二节洛必达法则(★)第三节泰勒公式(☆)第四节函数的单调性与曲线的凹凸性(★)第五节函数的极值与最大值最小值(★)第六节函数图形的描绘(★)第七节曲率(●)第八节方程的近似解(●)总习题三(★注意渐近线)第四章不定积分第一节不定积分的概念与性质(★)第二节换元积分法(★)第三节分部积分法(★)第四节有理函数的积分(★)第五节积分表的使用(★)总习题四第五章定积分第一节定积分的概念与性质(☆)第二节微积分基本公式(★)第三节定积分的换元法和分部积分法(★)第四节反常积分(☆概念,★计算)第五节反常积分的审敛法г函数(●)总习题五第六章定积分的应用第一节定积分的元素法(★)第二节定积分在几何学上的应用(★平面面积,★旋转体,★简单经济应用)第三节定积分在物理学上的应用(★求函数平均值)总习题六、第七章微分方程第一节微分方程的基本概念(☆)第二节可分离变量的微分方程(☆)(★掌握求解方法)第三节齐次方程(☆)(★掌握求解方法)第四节一阶线性微分方程(☆)(★掌握求解方法)第五节可降阶的高阶微分方程(☆)第六节高阶线性微分方程(☆)第七节常系数齐次线性微分方程(★二阶的)第八节常系数非齐次线性微分方程(★二阶的)第九节欧拉方程(●)第十节常系数线性微分方程组解法举例(●)总习题七附录I 二阶和三阶行列式简介附录II 几种常用的曲线附录、积分表第八章空间解析几何与向量代数(▲)第一节向量及其线性运算第二节数量积向量积混合积第三节曲面及其方程第四节空间曲线及其方程第五节平面及其方程第六节空间直线及其方程总习题八第九章多元函数微分法及其应用第一节多元函数的基本概念(☆)第二节偏导数(☆概念。
2001考研数学三真题及超详细答案解析
2001 年全国硕士研究生入学统一考试数学三试题解析一、填空题 (1)【答案】αβ-【使用概念】设()y f x =在x 处可导,且()0f x ≠,则函数y 关于x 的弹性在x 处的值为()()Ey x x y f x Ex y f x ''== 【详解】由Q AL K αβ=,当1Q =时,即1AL K αβ=,有1,K A L αββ--=于是K 关于L 的弹性为:EK EL LK K'=11d A L L dLA Lαββαββ----⎛⎫ ⎪ ⎪⎝⎭=111A L L A Lαββαββααββ------=⋅=-(2)【答案】 11.22t W -+【详解】t W 表示第t 年的工资总额,则1t W -表示第1t -年的工资总额,再根据每年的工资总额比上一年增加20%的基础上再追加2百万,所以由差分的定义可得t W 满足的差分方程是:11(120)2 1.22t t t W W W --=+%+=+(3)【答案】-3【详解】方法1:由初等变换(既可作初等行变换,也可作初等列变换).不改变矩阵的秩,故对A 进行初等变换111111111111k k A k k ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦11111001(1)2,3,410101001kk k k k k k ⎡⎤⎢⎥--⎢⎥⨯-⎢⎥--⎢⎥--⎣⎦行分别加到行311101002,3,400100001k k k k +⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦列分别加到1列 可见只有当k =−3时,r (A )=3.故k =−3.方法2:由题设r (A )=3,故应有四阶矩阵行列式0A =.由111111111111k kA kk=11111001(1)2,3,41010101k k k k k kk --⨯-----行分别加到行311101002,3,4001001k k k k +---列分别加到1列3(3)(1)0,k k =+-=解得 k =1或k = −3. 当k =1时,1111111*********A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦111100001(1)23400000000⎡⎤⎢⎥⎢⎥⨯-⎢⎥⎢⎥⎣⎦行分别加到,,行 可知,此时r (A )=1,不符合题意,因此一定有k =−3. (4)【答案】112【所用概念性质】切比雪夫不等式为:{}2()()D X P X E X εε-≥≤期望和方差的性质:()E X Y EX EY +=+;()2cov(,)D X Y DX X Y DY +=++ 【详解】 把X Y +看成是一个新的随机变量,则需要求出其期望和方差. 故 ()220E X Y EX EY +=+=-+=又相关系数的定义:(,)X Y ρ=则cov(,)(,(0.5)1X Y X Y ρ==-=-()2cov(,)12(1)43D X Y DX X Y DY +=++=+⨯-+=所以由切比雪夫不等式:{}{}2()316()663612D X Y P X Y P X YE X Y ++≥=+-+≥≤==(5)【答案】F ;(10,5)【所用概念】1. F 分布的定义:12Xn F Yn =其中21~()X n χ 22~()Y n χ2. 2χ分布的定义:若1,,n Z Z 相互独立,且都服从标准正态分布(0,1)N ,则221~()ni i Z n χ=∑3. 正态分布标准化的定义:若2~(,)Z N u σ,则~(0,1)Z uN σ- 【详解】因为2(0,2)1,2,,15i X N i =,将其标准化有0(0,1)22i iX X N -=,从而根据卡方分布的定义2222221015111(10),(5),2222X X X X χχ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭由样本的独立性可知,2210122X X ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭与22151122X X ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭相互独立. 故,根据F 分布的定义()22101221102222111515112210(10,5).2225X X X X Y F X X X X ⎡⎤⎛⎫⎛⎫++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦++==⎡⎤++⎛⎫⎛⎫++⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦故Y 服从第一个自由度为10,第二个自由度为5的F 分布.二、选择题(1)【答案】 [ B] 【详解】 方法1:由'()lim1,x af x x a→=--知 lim '()x af x →()'()limx af x x a x a →=⋅--()'()lim lim x a x af x x a x a →→=⋅--10=-⋅0=又函数()f x 的导数在x a =处连续,根据函数在某点连续的定义,左极限等于右极限等于函数在这一点的值,所以()0f a '=,于是有'()'()'()"()limlim 1,x ax a f x f a f x f a x ax a →→-===--- 即()0f a '=,()10f a ''=-<,根据判定极值的第二充分条件:设函数()f x 在0x 处具有二阶导数且0()0f x '=,0()0f x ''≠,当0()0f x ''<时,函数()f x 在0x 处取得极大值. 知x a =是()f x 的极大值点,因此,正确选项为(B). 方法2:由'()lim1,x af x x a→=--及极限保号性定理:如果()0lim x x f x A →=,且0A >(或0A <),那么存在常数0δ>,使得当00x x δ<-<时,有()0f x >(或()0f x <),知存在x a =的去心邻域,在此去心邻域内'()0f x x a<-.于是推知,在此去心邻域内当x a <时()0f x '>;当x a >时()0.f x '<又由条件知()f x 在x a =处连续,由判定极值的第一充分条件:设函数()f x 在0x 处连续,且在0x 的某去心δ领域内可导,若()00,x x x δ∈- 时,()0f x '>,而()00,x x x δ∈ +时,()0f x '<,则()f x 在0x 处取得极大值,知()f a 为()f x 的极大值. 因此,选 (B).(2)【答案】(D)【详解】应先写出g (x )的表达式.当01x ≤<时, 21()(1)2f x x =+,有 ()g x ()0x f u du =⎰201(1)2x u du =+⎰3001162x x u u =+311,62x x =+当12x ≤≤时, 1()(1)3f x x =-,有0()()x g x f u du =⎰101()()x f u du f u du =+⎰⎰120111(1)(1)23x u du u du =++-⎰⎰1132010111116263x x u u u u =++-()221136x =+- 即 ()3211,0162()211,1236x x x g x x x ⎧+≤<⎪⎪=⎨⎪+-≤≤⎪⎩因为 311112lim ()lim 623x x g x x x --→→⎛⎫=+= ⎪⎝⎭,()211212lim ()lim 1363x x g x x ++→→⎛⎫=+-= ⎪⎝⎭,且 ()2212(1)11363g =+-=, 所以由函数连续的定义,知()g x 在点1x =处连续,所以()g x 在区间[0,2]内连续,选(D).同样,可以验证(A)、(B)不正确,01x <<时,321111()06222g x x x x '⎛⎫'=+=+> ⎪⎝⎭,单调增,所以(B)递减错;同理可以验证当12x <<时,()()2211()110363g x x x '⎛⎫'=+-=-> ⎪⎝⎭,单调增,所以()()()02g g x g ≤≤,即()506g x ≤≤与选项(A)无界矛盾.(3)【答案】 (C)【详解】由所给矩阵,A B 观察,将A 的2,3列互换,再将A 的1,4列互换,可得B . 根据初等矩阵变换的性质,知将A 的2,3列互换相当于在矩阵A 的右侧乘以23E ,将A 的1,4列互换相当于在矩阵A 的右侧乘以14E ,即2314AE E B =,其中2310000010********E ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,140001010000101000E ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦由题设条件知114223,P E P E ==,因此21B AP P =.由于对初等矩阵ij E 有,1ij ij E E -=,故111122,P P P P --==.因此,由21B AP P =,及逆矩阵的运算规律,有()111111211212B AP P P P A PP A ------===.(4)【答案】 ()D【详解】由题设,A 是n 阶矩阵,α是n 维列向量,即Tα是一维行向量,可知0TAαα⎛⎫⎪⎝⎭是1n +阶矩阵. 显然有秩0TA αα⎛⎫=⎪⎝⎭秩()A 1,n n ≤≤+ 即系数矩阵0TAαα⎛⎫⎪⎝⎭非列满秩,由齐次线性方程组有非零解的充要条件:系数矩阵非列或行满秩,可知齐次线性方程组00TA X y αα⎛⎫⎛⎫=⎪⎪⎝⎭⎝⎭必有非零解.(5) 【答案】A【详解】 掷硬币结果不是正面向上就是反面向上,所以X Y n +=,从而Y n X =-, 故 ()DY D n X DX =-=由方差的定义:22()DX EX EX =-, 所以[]22()()()DY D n X E n X E n X =-=---222(2)()E n nX X n EX =-+--222222()n nEX EX n nEX EX =-+-+-22()EX EX DX =-=)由协方差的性质:cov(,)0X c = (c 为常数);cov(,)cov(,)aX bY ab X Y =1212cov(,)cov(,)cov(,)X X Y X Y X Y +=+)所以 cov(,)cov(,)cov(,)cov(,)0X Y X n X X n X X DX DX =-=-=-=- 由相关系数的定义,得 (,)1X Yρ===-三【变限积分求导公式】()[()][()]()f x x ag t dt g f x f x ''=⎰【详解】 根据复合函数求导公式,有.du f f dy f dz dx x y dx z dx∂∂∂=++∂∂∂ (*) 在2xye xy -=两边分别对x 求导,得()()0,xy dy dye y xy x dx dx+-+= 即.dy y dx x =- 在0sin x z xt e dt t-=⎰两边分别对x 求导,得 sin()(1),xx z dze x z dx-=⋅-- 即()1.sin()x dz e x z dx x z -=-- 将其代入(*)式,得du dx f f dy f dz x y dx z dx ∂∂∂=++∂∂∂()1.sin()x f y f e x z f x x y x z z⎛⎫∂∂-∂=-+- ⎪∂∂-∂⎝⎭四 【详解】因为1lim(1)xx e x→∞+=lim()x x x c x c →∞+-2lim()xx x c c x c→∞-+=- (把x c +写成2x c c -+)222lim()x c cx c x cx x c c x c-⋅-→∞-+=- (把x 写成22x c cx c x c -⋅-) 222lim (1)cx x cx ccx c x c --→∞⎡⎤=+⎢⎥-⎣⎦(利用幂函数的性质()mnm n aa =)222ln (1)lim cxx c x cc c x c x e--⎡⎤⎢⎥+-⎢⎥⎣⎦→∞= (利用对数性质ln ()()f x ef x =)222ln (1)lim x c c cx c x c x c x e-⎡⎤⎢⎥+--⎢⎥⎣⎦→∞= (利用对数性质()ln ()()ln ()g x f x g x f x =)222limln (1)x cc x cx c x c x c e-→∞⎡⎤⎢⎥+--⎢⎥⎣⎦= (利用x y e =函数的连续性,lim ()()lim x f x f x x ee →∞→∞=)222lim lim ln (1)x c c x x cx c x c x c e-→∞→∞⎡⎤⎢⎥⋅+--⎢⎥⎣⎦=(当各部分极限均存在时,lim ()()lim ()lim ()x x x f x g x f x g x →∞→∞→∞⋅=⋅)222lim ln lim (1)x c c x x cx c x c x c e-→∞→∞⎡⎤⎢⎥⋅+--⎢⎥⎣⎦= (利用ln y x =函数的连续性,lim[ln ()]ln[lim ()]x x f x f x →∞→∞=)2ln c e e ⋅= (利用1lim(1)x x e x→∞+=)2c e = (ln 1e =)又因为()f x 在(),-∞+∞内可导,故在闭区间[1,]x x -上连续,在开区间(1,)x x -内可导,那么又由拉格朗日中值定理,有()(1)()[(1)](),1f x f x f x x f x x ξξξ''--=--=-<<左右两边同时求极限,于是lim[()(1)]lim '()x x f x f x f e ξ→∞→∞--==,因为1x x ξ-<<,x 趋于无穷大时,ξ也趋向于无穷大由题意,lim()lim[()(1)],x x x x c f x f x x c →∞→∞+=--- 从而2c e e =,故12c =五 【详解】 积分区域如图所示,可以写成11,1y y x -≤≤≤≤222211()()22[1],x y x y DDDy xedxdy ydxdy xyedxdy +++=+⎰⎰⎰⎰⎰⎰其中,111112(1);3y Dydxdy dy ydx y y dy --==-=-⎰⎰⎰⎰⎰ 221()2x y Dxyedxdy +⎰⎰22111()21x y yydy xedx +-=⎰⎰22111()2211()2x y yydy ed x +-=⎰⎰ 22111()22211[()]2x y yydy ed x y +-=+⎰⎰2211(1)21()y ye e dy +-=-⎰ 2211(1)2211()2y y e e dy +-=-⎰22111(1)222111122y y e dy e dy +--=-⎰⎰ 22111(1)2221111[(1)]22y y ed ye dy +--=+-⎰⎰22111(1)21112y y e e +--=-0=于是221()22[1]3x y Dy xedxdy ++=-⎰⎰六【详解】方法1:依题意知,抛物线如图所示,令2()0y px qx x px q =+=+=,求得它与x 轴交点的横坐标为:120,.q x x p==- 根据定积分的定义,面积S 为()3232203260q p q p q q p S px qx dx x x p --⎛⎫=+=+=⎪⎝⎭⎰(注:111n n x dx x C n +=++⎰) 因直线5x y +=与抛物线2y px qx =+相切,故它们有唯一公共点. 由方程组25x y y px qx +=⎧⎨=+⎩求其公共解,消去y ,得2(1)50px q x ++-=,因为其公共解唯一,则该一元二次方程只有唯一解,故其判别式必为零,即22(1)4(5)(1)200,q p q p ∆=+-⨯⨯-=++=解得 21(1).20p q =-+ 将p 代入S 中,得()S q 326q p =32216[(1)]20q q =-+34200.3(1)q q =+ 根据函数除法的求导公式,()S q '344342(200)[3(1)][3(1)](200)[3(1)]q q q q q ''⨯+-+⨯=+25200(3)3(1)q q q -=+ 根据驻点的定义,令()0S q '=,已知有0q >,得唯一驻点3q =.当13q <<时,()0S q '>;3q >时,()0S q '<. 故根据极值判定的第一充分条件知,3q =时,()S q 取唯一极大值,即最大值.从而最大值为225(3).32S S ==方法2:设抛物线2y px qx =+与直线5x y +=相切的切点坐标为00(,)x y ,切点既在抛物线上,也在直线上,于是满足方程有2000y px qx =+和005x y +=.抛物线与直线在切点处的切线斜率是相等的,即一阶导数值相等. 在2y px qx =+左右两边关于x 求导,得2y px q '=+,在5x y +=左右两边关于x 求导,得1y '=-,把切点坐标00(,)x y 代入,得021x x y px q ='=+=-⇒012q x p+=-由005x y +=⇒005y x =-,将两结果代入2000y px qx =+得22000011155()()()222q q q y x px qx p q p p p+++=-=--=+=-+- 整理得21(1).20p q =-+ 将p 代入S 中,得34200().3(1)q S q q =+根据函数除法的求导公式,()S q '344342(200)[3(1)][3(1)](200)[3(1)]q q q q q ''⨯+-+⨯=+25200(3)3(1)q q q -=+ 根据驻点(即使得一阶导数为零的点)的定义,令()0S q '=,已知有0q >,得唯一驻点3q =.当13q <<时,()0;S q '>3q >时,()0;S q '<故根据极值判定的第一充分条件知,3q =时, ()S q 取唯一极大值,即最大值.从而最大值为225(3).32S S ==七【详解】将要证的等式中的ξ换成x ,移项,并命1()()()x x f x f x xϕ-'=-问题转化为证在区间(0,1)内()x ϕ存在零点. 将1()()0x f x f x x-'-= 看成一个微分方程,用分离变量法求解. 由()1()df x x dx f x x-= 两边积分得()11(1)()df x x dx dx f x x x -==-⎰⎰⎰利用1ln dx x C x =+⎰及111nn x dx x C n +=++⎰,得 1ln ()ln f x x x C =-+⇒ln ()ln xCe f x x=⇒()x Ce f x x =, 即 ()xxef x C -=,命()()x F x xe f x -=. 由110(1)(),(1)x k f k xe f x dx k -=>⎰及积分中值定理(如果函数()f x 在闭区间[,]a b 上连续,则在积分区间[,]a b 上至少存在一个点ξ,使得()()()()baf x dx f b a a b ξξ=-≤≤⎰),知至少存在一点1(0,)[0,1]kη∈⊂,使1110(1)()()x k f k xe f x dx e f ηηη--==⎰且()()F ef ηηηη-=,1(1)(1)F e f -=. 把1(1)()f e f ηηη-=代入,则111(1)(1)()()()F e f e e f e f F ηηηηηηη----====那么()F x 在[,1]η上连续,在(,1)η内可导,由罗尔中值定理知,至少存在一点(,1)[0,1]ξη∈⊂,使得()()()0F e f e f ξξξξξξ--''=+=即 1() (1)().f f ξξξ-'=-八【详解】由已知条件可见1()()n x n n f x f x x e -'-=,这是以()n f x 为未知函数的一阶线性非齐次微分方程,其中1()1,()n xp x q x xe -=-=,代入通解公式()()()(())p x dx p x dxf x e q x e dx C -⎰⎰=+⎰得其通解为1(),ndx dx n x x n x f x e x e e dx C e C n --⎛⎫⎛⎫⎰⎰=+=+ ⎪ ⎪⎝⎭⎝⎭⎰由条件(1),n e f n =又1(1)n f e C n ⎛⎫=+ ⎪⎝⎭,得0C =, 故(),n x n x e f x n =111()n x n xn n n n x e x f x e n n∞∞∞=====∑∑∑记1(),nn x S x n ∞==∑则1na n =,111lim lim 11n n n na n a nρ+→∞→∞+===,则其收敛半径为11R ρ==,收敛区间为(1,1)-. 当(1,1)x ∈-时,根据幂级数的性质,可以逐项求导,11111()1n n n n n n x x S x x n n x ∞∞∞-===''⎛⎫⎛⎫'====⎪ ⎪-⎝⎭⎝⎭∑∑∑,其中2111n x x x x =+++++-故根据函数积分和求导的关系()()f x dx f x C '=+⎰,得00()()()(0)xxS x dx S x S x S '==-⎰又由于21000(0)012n n S n ∞===++=∑,所以01()(0)()0ln(1)1xxS x S S x dx dx x x'=+=+=---⎰⎰, 即有 1ln(1),(1,1)nn x x x n ∞==--∈-∑ 当1x =-时, 1(1)ln 2nn n ∞=-=-∑. 级数在此点处收敛,而右边函数连续,因此成立的范围可扩大到1x =-处,即1ln(1),[1,1)nn x x x n ∞==--∈-∑ 于是 1()ln(1),[1,1)x nn fx e x x ∞==--∈-∑九【详解】(1) 线性方程组AX β=有解但不唯一,即有无穷多解()()3r A r A n ⇔=<=,将增广矩阵作初等行变换,得111111112a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦21112131()01100112a a a a a a a ⎡⎤⎢⎥-----⎢⎥⎢⎥----⎣⎦行行,行行倍 11123011000(1)(2)2a a a a a a ⎡⎤⎢⎥--⎢⎥⎢⎥--+-+⎣⎦行加到行()因为方程组AX β=有解但不唯一,所以()()3r A r A =<,故a =−2.(2) 由(1),有112121211A -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦由112121211E A λλλλ---=-+---122,312111λλλλλ-+---列加到列 1121121111λλλ-+---提出列公因子1121(1)2,303303λλλ-⨯-+--行分别加到行(3)(3)0λλλ=+-=故A 的特征值为1230,3,3λλλ==-=.当10λ=时,112(0)121211E A --⎡⎤⎢⎥-=--⎢⎥⎢⎥--⎣⎦1121(1),20332,3033--⎡⎤-⎢⎥-⎢⎥⎢⎥-⎣⎦行的倍分别加到行1122033000--⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦行加到3行于是得方程组(0)0E A x -=的同解方程组为1232320330x x x x x +-=⎧⎨-=⎩ 可见,(0)2r E A -=,可知基础解系的个数为(0)321n r E A --=-=,故有1个自由未知量,选2x 为自由未知量,取21x =,解得对应的特征向量为1(1,1,1)Tξ=.当13λ=时,()2123151212E A -⎛⎫ ⎪-=-- ⎪ ⎪-⎝⎭1511,2212212--⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦行互换 151212000--⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦3行-2行151********--⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦1行加到行 于是得方程组(3)0E A x -=的同解方程组为12325090x x x x -+-=⎧⎨=⎩ 可见,(3)2r E A -=,可知基础解系的个数为(3)321n r E A --=-=,故有1个自由未知量,选1x 为自由未知量,取11x =,解得对应的特征向量为2(1,0,1)Tξ=-.当13λ=-时,()4123111214E A --⎛⎫ ⎪--=--- ⎪ ⎪--⎝⎭11112412214---⎛⎫⎪-- ⎪ ⎪--⎝⎭,行互换 1111(4),2036036---⎛⎫- ⎪ ⎪ ⎪--⎝⎭行倍倍分别加到2,3行1112036000---⎛⎫⎪⎪ ⎪⎝⎭行加到3行 于是得方程组(3)0E A x --=的同解方程组为123230360x x x x x ---=⎧⎨+=⎩ 可见,(3)2r E A --=,可知基础解系的个数为(3)321n r E A ---=-=,故有1个自由未知量,选2x 为自由未知量,取22x =,解得对应的特征向量为3(1,2,1)Tξ=--.由于A 是实对称矩阵,其不同特征值的特征向量相互正交,故这三个不同特征值的特征向量相互正交,之需将123,,ξξξ单位化,3121231231111,0,2.111ξξξβββξξξ⎡⎤⎡⎤⎡⎤⎢⎥⎥⎥======-⎢⎥⎥⎥⎢⎥⎥⎥-⎣⎦⎦⎦其中,123ξξξ=====令[]123,,0Q βββ==则有 1300030.000T Q AQ Q AQ -⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦十【详解】(1)由题设条件,1211(,,)||n nijn i j i j A f x x x x x A ===∑∑111111n nn nij i j iijji j i j A x x x A xA A ======∑∑∑∑112211()nii i in n i x A x Ax A x A==+++∑121211(,,,)nii i in i n x x x A AA Ax =⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭∑121211(,,,)n i i i in i n x x x A A A A x =⎛⎫ ⎪⎡⎤ ⎪=⎢⎥⎪⎣⎦ ⎪⎝⎭∑ []12111121221222121(,,,)(,,,)(,,,)n n n n n nn n x x x A A A x A A A x A A A Ax ⎛⎫ ⎪ ⎪=++ ⎪ ⎪⎝⎭11121121222212121(,,,)n n n n n nn n A A A x A A A x x x x AA A A x ⎡⎤⎛⎫⎪⎢⎥ ⎪⎢⎥=⎪⎢⎥ ⎪⎢⎥⎣⎦⎝⎭1212(,,,)T n n x x A x x x Ax *⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭TT A X X A *= 1()T X A X -*其中()*的理由:A 是可逆的实对称矩阵,故111()()TT A A A ---==,因此由实对称的定义知,1A -也是实对称矩阵,又由伴随矩阵的性质A A A E *=,知1A A A *-=,因此A *也是实对称矩阵,TAA **=,故()*成立.(2) 因为()()1111TTAAA A E A ----==,所以由合同的定义知A 与1A -合同.由实对称矩阵A B 与合同的充要条件:二次型Tx Ax 与Tx Bx 有相同的正、负惯性指数.可知,()Tg X X AX =与()f X 有相同的正、负惯性指数,故它们有相同的规范形.十一【应用定理】(i) 期望的性质:()E X Y EX EY +=+;独立随机变量方差的性质:若随机变量X Y 和独立,则()D X Y DX DY +=+(ii)列维-林德伯格中心极限定理:设随机变量12,,,,n X X X 相互独立同分布,方差存在,记22(0)u σσ<<+∞与分别是它们共同的期望与方差,则对任意实数x ,恒有1lim )()ni n i P X nu x x →∞=⎫-≤=Φ⎬⎭∑ (通俗的说:独立同分布的随机变量,其期望方差存在,则只要随机变量足够的多,这些随机变量的和以正态分布为极限分布)(iii) 正态分布标准化:若2~(,)Z N u σ,则~(0,1)Z uN σ-【详解】设(1,2,)i X i n =是装运的第i 箱的重量(单位:千克), n 是所求箱数. 由题设可以将1,,i n X X X 视为独立同分布的随机变量,而n 箱的总重量12n n S X X X =+++是独立同分布随机变量之和.由题设,有()5i E X ==(单位:千克) 所以 1212()()50n n n E S E X X X EX EX EX n =+++=+++= 1212()()25n n n D S D X X X DX DX DX n =+++=+++=则根据列维—林德柏格中心极限定理,知n S 近似服从正态分布(50,25)N n n ,箱数n 根据下述条件确定{}5000n P S P ≤=≤ (将n S 标准化)0.977(2)≈Φ>=Φ由此得2,> 从而98.0199n <, 即最多可以装98箱.十二【详解】由题设条件X 和Y 是正方形{}(,):13,13G x y x y =≤≤≤≤上的均匀分布,则X 和Y 的联合密度为:1,13,13,(,)40,x y f x y ⎧≤≤≤≤⎪=⎨⎪⎩其他 (二维均匀分布的概率密度为1面积) 由分布函数的定义:{}{}()F u P U u P X Y u =≤=-≤(1)当0u <时,()0F u =(因为X Y -是非负的,所以小于0是不可能事件)(2)当2u ≥时,()1F u =(因为X 和Y 最大为3,X 和Y 最小为1,所以X Y -最大也就只能为2,所以2X Y -≤是必然事件,概率为1)(3)当02u ≤<时,{}()F u P U u =≤相当于 阴影部分所占的概率大小. 如图所示:{}{}()F u P U u P X Y u =≤=-≤214(2)4S u S ⎡⎤==--⎣⎦阴影面积总面积 211(2)4u =--(二维均匀分布中各部分所占的概率,相当于用这部分的面积除以总面积,这里阴影部分面积是用总面积减去两个三角形的面积)于是随机变量U 的概率密度为:1(2),02,()'()20, u u p u F u ⎧-<<⎪==⎨⎪⎩其他1O32123。
2021考研数学三真题及答案解析
2021年全国硕士研究生招生考试数学(三)一、选择题:1~10小题,每小题5分,共50分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.1.当0x →,23(e 1)d x t t -⎰是7x 的A.低阶无穷小.B.等价无穷小.C.高阶无穷小.D.同阶但非等价无穷小.【答案】C 【解析】()()2366755e 1d 2e12limlim lim 077x t x x x x t xx x x →→→--===⎰,故选C.2.函数e 1,0,()1,0x x f x x x ⎧-≠⎪=⎨⎪=⎩在0x =处A.连续且取极大值.B.连续且取得最小值.C.可导且导数等于零.D.可导且导数不为零.【答案】D【解析】因为)0(11e lim 0f xxx ==-→,故连续;又因为211e 11e lim 220=--=--→x x x x x x x ,故可导,所以选D3.设函数()ln (0)f x ax b x a =->有2个零点,则ba 的取值范围A.()e,+∞. B.()0,e .C.10,e ⎛⎫ ⎪⎝⎭.D.1,e⎛⎫+∞ ⎪⎝⎭.【答案】A【解析】()ln f x ax b x,=-若0<b ,不满足条件,舍去若0>b 令()=0bf x a x'=-,得b x a =.在()()000b b ,f x ,,f x .a a ⎛⎫⎛⎫''<∞> ⎪⎪⎝⎭⎝⎭,()()0x x lim f x ,lim f x +→+∞→=+∞=+∞,令=ln 1ln 0b b b f b b b ,a a a ⎛⎫⎛⎫-=-<⎪ ⎪⎝⎭⎝⎭得ln 1b a >,即e b a >.故选A.4.设函数(),f x y 可微,且()222+1,e (1),(,)2ln ,xf x x x f x x xx =+=则()d 1,1f =A.d d x y +.B.d d x y -.C.d y .D.d y -.【答案】选C【解析】由于2(1,e )(1)x f x x x +=+两边同时对x 求导得212(1,e )(1,e )e (1)2(1)xxxf x f x x x x ''+++=+++令0x =得12(1,1)(1,1)10f f ''+=+222121(,)(,)24ln 2f x x f x x x x x x x''+=+⋅令1x =得12(1,1)2(1,1)02f f ''+=+因此1(1,1)0f '=;2(1,1)1f '=.所以d (1,1)d f y =,答案选C5.二次型222123122331(,,)()()()f x x x x x x x x x =+++--的正惯性指数与负惯性指数依次为A.02,B.11,C.12,D.21,【答案】B【解析】()()()()222123122331,,f x x x x x x x x x =+++--222222112222333131222x x x x x x x x x x x x =+++++-+-221223132222x x x x x x x =+++二次型对应矩阵为011121110⎛⎫ ⎪⎪ ⎪⎝⎭,11101||121=1211111E A λλλλλλλλ--+---=----------100(1)122111(1)((2)(1)2](1)(3)λλλλλλλλλ=+------=+---=+-则11p q ==.6.设1234(,,,)=A a a a a 的4阶正交矩阵,若矩阵T 1T 2T 31,11⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭a B a a β,k 表示任意常数,则线性方程组=Bx β的通解=x A.2341.k +++a a a a B.1342.k +++a a a a C.1243.k +++a a a a D.1234.k +++a a a a 【答案】D【解析】()T 1T 21234T 3111k ⎛⎫⎛⎫⎪ ⎪+++= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭ααααααα,不难验证A,B,C 均不是方程组的解.7.已知矩阵101211125-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,若下三角可逆矩阵P 和上三角可逆矩阵Q ,使得PAQ 为对角矩阵,则、P Q 分别取().100101100100.010,013.210,010001001321001100101100123.210,013.010,012321001131001A B C D ⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭【答案】C【解析】通过代入验证100101100210013010.3210011012111250010⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎪ ⎪-= ⎪⎪⎪ ⎪ ⎪⎪-- ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎭-⎝选C8.设B A ,为随机事件,且()10<<B P ,下列为假命题的是A.若()()A P B A P =,则()()A P B A P =B.若()()A P B A P >,则()()A P B A P >C.若()()B A P B A P >,则()()A P B A P >D.若()()B A A P B A A P ⋃>⋃,则()()B P A P >【答案】选D【解析】A.条件失效,独立,显然成立B.()(|)()()()()()P AB P A B P A P AB P A P B P B =>⇒>()()1()()()(|()1()1()()()()1()1()()[()1]1()1()P AB P A P B P AB P A B P B P B P A P B P A P B P B P B P A P B P B P A P A --+==---+>--+-=-=-=故B 正确.C.显然()()()P AB P A P B >,()(|)()()P AB P A B P A P B =>故C 正确.D.[()]()()()()()()()()()P A A B P AB P B P AB P AA B P A B P A B P A P B P AB ⋃-⋃===⋃⋃+-∣,()()()P A P B P AB >-,不能说明()()P A P B >,错误.故选D.9.设()()()1122,,,,,,n n X Y X Y X Y 为来自总体()221212,;,;N μμσσρ的简单随机样本,令121111=,,,n ni i i i X X Y Y X Y n n θμμθ==-===-∑∑ ,则A.()()2212,E D nσσθθθ+==.B.()()2212122,E D nσσρσσθθθ+-==.C.()()2212,E D nσσθθθ+≠=.D.()()2212122,E D nσσρσσθθθ+-≠=【答案】B【解析】11ˆ()E E X Y E X EY θμμ=-=-=-.221212ˆ()2Cov(,)2D D X Y D X DY X Y n n nσσσθρσ=-=+-=+-10.设总体X 的概率分布{}{}{}111,23,24P X P X P X θθ-+======利用来自总体X 的样本值1,3,2,2,1,3,1,2,可得θ的最大似然估计值为A.1.4B.3.8C.1.2D.5.8【答案】A【解析】()351124L θθθ-+⎛⎫⎛⎫=⋅ ⎪ ⎪⎝⎭⎝⎭()()()4ln 51ln 52ln 313ln 415ln 213lnln -++--=++-=θθθθθL 令()01513d dln =++--=θθθθL 得1ˆ4θ=二、填空题:11~16小题,每小题5分,共30分.11.若cos ey =则1d d x y x==.【答案】1sin e 2e-.【解析】可得y '=111sin e 2ex x y -=='==.12.5x =_______.【答案】6【解析】5353x x x=+⎰()()352231199622x x =--+-=⎰.13.设平面区域D由曲线y x π=(0≤x ≤1)与x 轴围成,则D 绕x 轴旋转所成旋转体的体积________.【答案】π4【解析】利用旋转体体积计算公式得()2120ππd πsin d 4baV yx x x x x π===⎰⎰14.差分方程t y t ∆=的通解t y =.【答案】()12t ty t C =-+.【解析】先解齐次差分方程10t t y y +-=,t y C=再设非齐次的解为()*01t y t A At =+,代入差分方程()()()01011t+1t A A t A A t ++-+⎡⎤⎣⎦整理得0112A A t A t++=对比系数后得011212A A ⎧=-⎪⎪⎨⎪=⎪⎩得通解()12t ty t C =-+15.多项式12121()211211xx x x f x xx-=-中的3x 项的系数为______.【答案】5-【解析】3x 项为()()1+2+213331415x x x -+-=-,因此3x 项系数为5-16.甲乙两个盒子中各装有2个红球和2个白球,先从甲盒中任取一球,观察颜色后放入乙盒中,再从乙盒中任取一球,令,X Y 分别表示从甲盒和乙盒中取到的红球个数,则,X Y 的相关系数为.【答案】15【解析】3111022EXY EX EY ===221()4DX EX EX =-=,221()4DY EY EY ==-111152220ρ==⋅三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)已知()101lim arctan 1x x a x x →⎡⎤++⎢⎥⎣⎦存在,求a 的值.【解析】()+101lim arctan 1e 2x x a x a x →π⎡⎤++=+⎢⎥⎣⎦,()1011lim arctan 12e x x a x a x -→π⎡⎤+-=-+⎢⎥⎣⎦,由于()101lim arctan 1x x a x x →⎡⎤++⎢⎥⎣⎦存在,得1e=+22e a a ππ+-,得11=e e a ⎛⎫- ⎪π⎝⎭.18.(本题满分12分)求函数222(1)(,)2ln ||2x y f x y x x-+=+的极值.【解析】()()()()22222423212411221,04x x x x x y x y x f x y x xx x x ⎡⎤-⋅--+-+-⎣⎦'=+=+-=,()222,02y y yf x y x x'===,得0y =,代入()()()()22222233331211212+2121,0x x x x x x x x x x x x f x y x x x x x x--+-+---+-'=+-====,得1,12x x ==-.故得坐标()1,0,1,02⎛⎫- ⎪⎝⎭.()()()()()2322222236443221[1]32122233,;21,;,.xx xyyy x x x y x x x y f x y x x x x x x y f x y f x y x x-⋅--+⋅--+''=--+-=+''''=-=在点1,02⎛⎫⎪⎝⎭处,得224;0;4,960.0A B C AC B A ===-=>>,取极小值11,0ln 422f ⎛⎫=-+ ⎪⎝⎭;在点()1,0-处,得23;0;1,30.0A B C AC B A ===-=>>,取极小值()1,02f -=.19.(本题满分12分)设有界区域D 是圆221x y +=和直线y x =以及x 轴在第一象限围成的部分,计算二重积分()()222ed d .x y Dxy x y +-⎰⎰【解析】()()()()()222222222222211sin cos 223sin 2344011111sin 222sin 22224400000002ed d d ecos2d d e cos2d 11111d e d sin 2e d e e d e e 224841e 1.8x y r rr Dr r r r r r r rxy x y r r r rr r r r r r r θθθθθθθθθθππ+++ππ++-===+==-=-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰20.(本题满分12分)设n 为正整数,()n y y x =是微分方程()10xy n y '-+=满足条件()()111n y n n =+的解.(1)求()n y x .(2)求级数()1nn y x ∞=∑的收敛域及和函数.【解析】(1)由微分方程()10xy n y '-+=得()1d 1en x n xny x C Cx ++⎰=⋅=代入()()111n y n n =+,得()11C n n =+,故()()111n ny x x n n +=+.(2)1lim1n n na a ρ+→∞==,11R ρ==,当1x =±时,()1n n y x ∞=∑收敛,故收敛域[]1,1-.()()()[]111,1,11n n n S x y x x x n n ∞+===∈-+∑,则有()1111n n S x x x∞-=''==-∑,得()()()()001d 0d 0ln 11xxS x S t t S t x t''''=+=+=---⎰⎰,()()()()()()0d 0ln 1d 01ln 1xxS x S t t S t t x x x '=+=--+=--+⎰⎰.21.设矩阵2101201a b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 仅有两不同的特征值,若A 相似于对角矩阵,求,a b 的值,并求可逆矩阵P ,使1-P AP 为对角矩阵.【解析】2210||120()[(2)1]1E b a bλλλλλλ---=--=------A ()2()43()(1)(3)0.b b λλλλλλ=--+=---=当1b =时,1a =,1233,1λλλ===,110110101⎛⎫ ⎪=- ⎪ ⎪⎝⎭P .当3b =时,1a =-,1233,1λλλ===,101101011⎛⎫ ⎪=- ⎪ ⎪-⎝⎭P .22.(本题满分12分)在区间(0,2)上随机取一点,将该区间分成两段,较短一段的长度记为X ,较长一段的长度记为Y ,令Y Z X=.(1)求X 的概率密度;(2)求Z 的概率密度;(3)求X E Y⎛⎫ ⎪⎝⎭.【解析】(1)由题意得,~(0,1)X U ,101,()0.x f x <<⎧=⎨⎩其他(2)221X Y X XZ X -===-;当1z <时,()0z F z =;当1z ≥时,()0z F z =221222{}(1)1d 2.11z P Z z P z P X x X z z +⎧⎫=≤=-=≥==-⎨⎬++⎩⎭⎰ 故22,1(1)()0,Z z z f z ⎧>⎪+=⎨⎪⎩,其他..(3)221112111d 2d (1)1(1)2ln 2 1.E E z z z z z z z X YZ +∞+∞⎛⎫⎛⎫⎛⎫===--+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭=-⎰⎰.。
考研数学中那些部分不考(含高数,线代,概率,)
考研数学中那些部分不考(含高数,线代,概率,)1.复习书目推荐《高等数学》上,下册第六版同济大学应用数学系主编高等教育出版社《线性代数》第五版同济大学应用数学系主编高等教育出版社《概率论与数理统计》第四版浙江大学盛骤,谢式千,潘承毅编高等教育出版社2.数学一,数学三试卷结构(此试卷结构参考12年考研)试卷内容比例:高等数学约56%(82分),包含4个选择,4个填空,5个解答题线性代数约22%(34分),包含2个选择,1个填空,2个解答题概率论与数理统计约22%(34分),包含2个选择,1个填空,2个解答题,数学二试卷结构(此试卷结构参考12年考研)试卷内容比例:高等数学约78%(116分),包含6个选择,5个填空,7个解答题线性代数约22%(34分),包含2个选择,1个填空,2个解答题——————分割线——————————————高等数学数一数二数三考试要求第一章函数与极限第十节中的“一致连续性”不用看;其它内容是数一数二数三公共部分第二章导数与微分第四节参数方程求导及相关变化率为数一,数二考试内容,数三不要求;第五节的微分在近似中的应用不用看;其余内容为数一数二数三公共部分。
第三章微分中值定理与导数的应用第六节函数图形的描绘,第八节方程的近似解都不用看;第七节曲率为数一数二考试内容,数三不用看;其余内容为数一数二数三公共部分。
第四章不定积分第五节积分表的使用不看;其余内容为公共部分。
第五章定积分第五节反常积分的审敛法都不用看;其余内容为数一数二数三公共部分。
第六章定积分的应用数三只需要掌握第二节的前两部分:平面图形的面积和体积;数一数二掌握本章全部内容。
第七章微分方程第一,二,三,四(线性方程),六,七,八为数一数二数三公共部分;第五节为数一数二考试内容;第四节的伯努利方程和第九节欧拉方程为数一考试内容。
第八章空间解析几何与向量代数数二数三不考,数一考试内容。
第九章多元函数微分法及其应用第一,二,三,四,五,八节为数一数二数三公共部分;第五节中的隐函数存在定理,第六、七节为数一考试内容;第九、十节数一数二数三都不考。
数学三不考的内容
首先明确数学三不考的内容。
高等数学包括空间解析几何与向量代数、三重积分、曲线积分与曲面积分、重积分,曲线积分与曲面积分的应用,这几大块都不考,小伙伴们,你们是不是很开心呀!
还有"局部地区"也有不考的内容哟,例如:导数应用中的曲率和曲率圆,导数的物理应用,不定积分中有理函数的积分,三角函数的有理式积分,简单无理函数的积分(对于三角函数的有理式积分和简单无理函数的积分,这几年的考题中数一数二数三的要求没有明确的界限,还请各位同学能够完全掌握),定积分应用中旋转的侧面积与曲线弧长,平行截面积为已知的立体体积,物理应用(功,引力,压力,质心,形心等),多元函数微分学中的方向导数和梯度,空间曲线的切线和法平面及曲面的切平面和法线,傅里叶级数,常微分方程中可用简单的变量代换求解的某些微分方程,可降阶的微分方程,高于二阶的某些常系数齐次线性微分方程,欧拉方程,微分方程应用中物理应用.
数学三独家特有的考试内容,
这也充分的体现了数学三的魅力所在,数学三独考的内容有导数应用中的经济应用(边际与弹性等),定积分应用中的经济应用,二重积分中无界区间上的简单的反常二重积分,无穷级数,微分方程应用中的经济应用,差分方程,这些都是数学三独考的,这里没有提到的都是数学一二三共同考的,就不在赘述了,希望可以帮助到你,祝考研成功!。
数学三考研常见的知识点解析
数学三考研常见的知识点解析数学三是考研数学的一部分,主要涵盖了高等数学和线性代数的内容。
下面将对数学三考研常见的知识点进行解析。
一、高等数学1.常见函数及其性质:常见函数有多项式函数、指数函数、对数函数、三角函数等。
在考研中,需要掌握这些函数的基本性质,如定义域、值域、奇偶性、单调性等。
2.极限与连续:极限是高等数学的重要概念之一、需要掌握数列极限和函数极限的求解方法,如夹逼准则、洛必达法则等。
此外,连续函数的判定与性质也是考试重点,例如连续函数与间断点、连续函数的运算性质等。
3.导数与微分:导数是函数的变化率,微分是导数的微小增量。
需要熟练掌握导数的定义和求导法则,如基本初等函数的导数、链式法则、隐函数求导等。
此外,还需要理解函数的凸凹性与极值点的求解方法。
4.定积分与不定积分:定积分是求函数在一定区间上的面积,不定积分是求函数的原函数。
需要熟练掌握定积分与不定积分的定义和性质,如牛顿-莱布尼茨公式、变量替换法、分部积分法等。
5.级数与幂级数:级数是无穷项数列的和,幂级数是形如∑(a_n*x^n)的级数。
需要掌握级数和幂级数的收敛性判定方法,如比较判别法、根值判别法、幂函数展开等。
二、线性代数1.矩阵与行列式:矩阵是二维数组,行列式是一个数。
需要了解矩阵的基本运算,如加法、乘法、转置运算等。
行列式的运算包括展开法、伴随矩阵法、逆矩阵法等。
2.向量与线性方程组:向量是有方向和大小的量,线性方程组是一组线性方程的集合。
需要掌握向量的基本运算,如加法、数量积、向量积等。
对于线性方程组,需要掌握高斯消元法、矩阵法、矩阵的秩等解法。
3.特征值与特征向量:特征值是矩阵对应的线性变换中的固有值,特征向量是与特征值对应的非零向量。
需要了解特征值与特征向量的求解方法,如特征方程的根、特征向量的求解等。
4.正交与正交对角化:正交是指向量间的垂直关系,正交矩阵满足乘积为单位阵。
正交对角化是将一个矩阵通过正交变换转化为对角矩阵。
2007年考研数学三真题与完整解析
2007 年研究生入学考试数学三试题一、选择题: 1~ 10 小题,每小题 4 分,共 40 分. 在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.( 1)当 x0 时,与 x 等价的无穷小量是( A )1 e x( )1 x ( ) 1x 1 ( D)1 cos x[]B lnxC1( 2)设函数 f ( x) 在 x0 处连续,下列命题错误的是:(A )若 limf ( x) 存在,则 f (0)0 ( B )若 lim f (x)f ( x)存在,则 f (0) 0 .x 0xx 0x(B )若 limf ( x)存在,则 f (0)0 ( D )若 lim f (x)f (x)存在,则 f (0) 0 .xxx 0x[ ]( 3 )如图,连续函数y f (x) 在区间 3, 2 , 2,3 上的图形分别是直径为1 的上、下半圆周,在区间2, 0 , 0, 2 的图形分别是直径为2 的下、上半圆周,设 F ( x)xf (t )dt ,则下列结论正确的是:(A ) F(3)3F( 2)(B)F (3)5F(2)44(C ) F (3)3F(2)(D ) F(3)5F( 2)[]414( 4)设函数 f ( x, y) 连续,则二次积分f ( x, y)dy 等于dxsin x21dyf (x, y)dx1 f ( x, y)dx( A )( B )dy0 arcsin y 0 arcsin y 1arcsin y1arcsin y( C )dyf (x, y)dx(D )dyf ( x, y)dx22( 5)设某商品的需求函数为 Q 1602P ,其中 Q, P 分别表示需要量和价格,如果该商品需求弹性的绝对值等于 1,则商品的价格是(A) 10.(B) 20 (C) 30.(D)40.[]( 6)曲线 y1 ln 1 e x 的渐近线的条数为x(A )0.(B )1. (C )2. (D )3. []( 7)设向量组 1 , 2 , 3 线性无关,则下列向量组线性相关的是线性相关,则(A) 12 ,23 ,31(B) 12 ,23 ,3 1(C)122 ,223 ,32 1 .(D)12 2 ,223 ,32 1 .[]2 1 1 1 0 0( 8)设矩阵 A1 21 , B 0 1 0 ,则 A 与B1120 0(A) 合同且相似( B )合同,但不相似 .(C) 不合同,但相似. (D) 既不合同也不相似 []( 9)某人向同一目标独立重复射击,每次射击命中目标的概率为p(0p 1) ,则此人第 4 次射击恰好第 2 次击中目标的概率为(A ) 3 p(1p) 2 .( B ) 6 p(1 p) 2 .(C ) 3 p 2 (1 p)2 .(D ) 6 p 2 (1 p) 2[ ]( 10)设随机变量 X ,Y 服从二维正态分布,且X 与 Y 不相关, f X ( x), f Y ( y) 分别表示 X ,Y 的概率密度,则在 Yy 的条件下, X 的条件概率密度f X|Y ( x | y) 为(A) f X ( x) .(B)f Y ( y) . (C) f X ( x) f Y ( y) . (D)f X (x)[].f Y ( y)二、填空题 : 11~ 16 小题,每小题 4 分,共 24 分 . 把答案填在题中横线上 .( 11)x 3 x 2 1cos x)__________.limx3(sin xx2x( 12)设函数 y1,则 y ( n ) (0)________.2x3( 13) 设 f (u, v) 是二元可微函数, zfy , x,则 x zyz__________.x y xy3( 14)微分方程dyy 1 y 满足 y x 1 1的特解为y________.dxx 2 x0100( 15)设矩阵A0010,则 A3的秩为.00010000( 16)在区间0,1 中随机地取两个数,则这两个数之差的绝对值小于1的概率为. 2三、解答题:17~ 24 小题,共86 分 . 解答应写出文字说明、证明过程或演算步骤.( 17)(本题满分 10分 )设函数 y y(x) 由方程 y ln y x y0 确定,试判断曲线y y( x) 在点 (1,1)附近的凹凸性.( 18)(本题满分 11分)x2 ,| x | | y |1设二元函数 f (x, y)1, 1| x || y |2,计算二重积分 f ( x, y)d ,其中Dx2y 2D x, y | x | | y | 2.( 19)(本题满分 11分)设函数 f ( x), g ( x) 在a, b上连续,在 (a, b) 内具有二阶导数且存在相等的最大值,f (a)g(a), f (b)g(b) ,证明:存在(a, b) ,使得 f( )g ( ) .( 20)(本题满分 10分 )将函数 f ( x)1展开成 x1的幂级数,并指出其收敛区间. x23x4( 21)(本题满分 11分)x1x2x30设线性方程组x12x2ax30与方程 x12x2x3a1有公共解,求 a 的值及所有公共解.x14x2a2x3 0( 22)(本题满分 11分)设三阶对称矩阵 A 的特征向量值11, 22, 3 2 ,1(1, 1,1)T是 A 的属于 1 的一个特征向量,记 B A54A3E,其中E为3阶单位矩阵 .(I )验证1是矩阵B的特征向量,并求B的全部特征值与特征向量;(II )求矩阵B .(23)(本题满分 11 分)设二维随机变量( X , Y) 的概率密度为2 x y, 0x 1,0 y 1f ( x, y).0,其他(I)求P X 2Y;(II)求Z X Y 的概率密度. 2007 答案1⋯ .【分析】本题为等价无穷小的判定,利用定义或等价无穷小代换即可.【详解】当 x0 时,1 e x x ,1x 11x , 1cos x1x21x ,222故用排除法可得正确选项为( B ) .ln1xln(1 x)ln(1x )111事实上, lim1x lim lim1x11x 2 x1,x0x x 0x x 02x1xx)ln(1x)x o(x)x o(x )x o(x)x .或 ln ln(11x所以应选( B)【评注】本题为关于无穷小量比较的基本题型,利用等价无穷小代换可简化计算..2⋯⋯ .【分析】本题考查可导的极限定义及连续与可导的关系. 由于题设条件含有抽象函数,本题最简便的方法是用赋值法求解,即取符合题设条件的特殊函数 f ( x) 去进行判断,然后选择正确选项.【详解】取 f (x)| x |,则 lim f ( x) f ( x)0 ,但 f ( x) 在 x0 不可导,故选(D).x 0x事实上,在 (A),(B) 两项中,因为分母的极限为0,所以分子的极限也必须为0,则可推得 f (0) 0 .在( C)中,lim f (x)存在,则 f (0) 0, f(0)lim f ( x)f(0)lim f ( x)0 ,所以(C)项正确,x 0x x0x0x 0x故选 (D)【评注】对于题设条件含抽象函数或备选项为抽象函数形式结果以及数值型结果的选择题,用赋值法求解往往能收到奇效 .3⋯⋯ .【分析】本题实质上是求分段函数的定积分.【详解】利用定积分的几何意义,可得F(3) 1211213,F(2)1221,222822121F( 2) f (x)dx f ( x)d x f (x)dx1.20202022所以 F (3)3F(2)3F( 2) ,故选( C ).44【评注 】本题属基本题型 . 本题利用定积分的几何意义比较简便.4⋯⋯ .【分析 】本题更换二次积分的积分次序,先根据二次积分确定积分区域,然后写出新的二次积分.【详解 】由题设可知,x,sin x y 1,则 0 y 1,arcsin y x,2故应选( B ).【评注 】本题为基础题型. 画图更易看出 .5⋯⋯ .【分析 】本题考查需求弹性的概念 .【详解 】选( D ) .dQ P 2P P 40,商品需求弹性的绝对值等于Q1dP 160 2P故选( D ) .【评注 】需掌握微积分在经济中的应用中的边际,弹性等概念 .6⋯⋯ .【分析 】利用曲线的渐近线的求解公式求出水平渐近线,垂直渐近线和斜渐近线,然后判断 .【详解 】 lim ylim 1 ln 1 e x, lim ylim 1 ln 1 e x0 ,xxxxxx所以y 0是曲线的水平渐近线;lim ylim1 ln 1 e x,所以 x0 是曲线的垂直渐近线;x 0x 0xlim ylim 1 ln 1 e xln 1 e xe x x 1xlimlim 1e ,xx xxx xx11 x,所以 y x是曲线的斜渐近线 .b l i m y xl i ml n 1 exxxx故选( D ) .【评注 】本题为基本题型,应熟练掌握曲线的水平渐近线,垂直渐近线和斜渐近线的求法.注意当曲线存在水平渐近线时,斜渐近线不存在. 本题要注意 e x 当 x, x时的极限不同 .7⋯⋯ ..【分析 】本题考查由线性无关的向量组1, 2 , 3 构造的另一向量组 1, 2 , 3 的线性相关性 . 一般令1, 2, 31, 2, 3 A ,若 A 0,则 1, 2,3线性相关;若 A0,则1, 2,3线性无关.但考虑到本题备选项的特征,可通过简单的线性运算得到正确选项.【详解】由1223310 可知应选( A ).或者因为1 0 1 1 0 112 ,23 ,311,2,31 1 0 ,而 1 1 00 ,0 1 1 0 1 1所以12 ,23 ,3 1 线性相关,故选( A ) .1,0,0 TT0,0,1 T【评注 】本题也可用赋值法求解,如取1,20,1,0 , 3 ,以此求出 ( A ),( B ),( C ),( D )中的向量并分别组成一个矩阵,然后利用矩阵的秩或行列式是否为零可立即得到正确选项.8⋯⋯ 【分析】本题考查矩阵的合同关系与相似关系及其之间的联系,只要求得 A 的特征值,并考虑到实对称矩阵 A 必可经正交变换使之相似于对角阵,便可得到答案.2 1 1【详解】由 E A1 2 1(3)2可得 123,3 0,112所以 A 的特征值为 3,3,0;而 B 的特征值为 1,1,0.所以 A 与 B 不相似,但是A 与B 的秩均为 2,且正惯性指数都为 2,所以 A 与 B 合同,故选( B ) .【评注 】若矩阵 A 与 B 相似,则 A 与 B 具有相同的行列式,相同的秩和相同的特征值.所以通过计算 A 与 B 的特征值可立即排除( A )(C ).9⋯⋯ ..【分析 】本题计算贝努里概型,即二项分布的概率 . 关键要搞清所求事件中的成功次数 .【详解 】p ={前三次仅有一次击中目标,第4 次击中目标}C 31 p(1 p) 2 p 3p 2 (1 p) 2 ,故选( C ) .【评注 】本题属基本题型 .10⋯⋯ .【分析 】本题求随机变量的条件概率密度,利用X 与 Y 的独立性和公式f X |Y ( x | y)f ( x, y) 可求解 .f Y ( y)【详解】因为 X ,Y 服从二维正态分布,且 X 与 Y 不相关,所以 X 与 Y 独立,所以 f (x, y) f X ( x) f Y ( y) .故 f X |Y ( x | y)f (x, y) f X (x) f Y ( y)f X ( x) ,应选( A ) .f Y ( y)f Y ( y)【评注 】若X ,Y 服从二维正态分布,则 X 与 Y 不相关与 X 与 Y 独立是等价的 .11⋯ .【分析】本题求类未定式,可利用“抓大头法”和无穷小乘以有界量仍为无穷小的结论 .x 3x 2x 3x 2 1【详解 】因为 lim x 3 1lim 2x2x3 2x 00,| sin x cos x | 2 ,x2 xxx 112x所以 lim x3x x23 1(sin x cos x)0 .x2x【 评注 】无穷小的相关性质:( 1) 有限个无穷小的代数和为无穷小;( 2) 有限个无穷小的乘积为无穷小;( 3) 无穷小与有界变量的乘积为无穷小.12,⋯⋯ ..【分析 】本题求函数的高阶导数,利用递推法或函数的麦克老林展开式.【详解 】 y1 , y 2,则 y ( n) ( x) ( 1)n 2n n! ,故 y (n) (0) ( 1)n 2n n! .2x 32x 3 2(2 x 3)n 13n 1【评注 】本题为基础题型 .13⋯⋯ .【分析 】本题为二元复合函数求偏导,直接利用公式即可 .【详解 】利用求导公式可得z y 1 x x 2 f1f 2 ,yz 1 f 1 x2 f 2 ,yxy所以 xzyz2 f 1 yf 2 x.xyxy【评注 】二元复合函数求偏导时,最好设出中间变量,注意计算的正确性 .14⋯ ..【分析 】本题为齐次方程的求解,可令uy.xy,则原方程变为【详解 】令 uxu x du1 u 3 dudx .udx2u 3 2x两边积分得11ln x1ln C ,2u 2221y 2即 x1e u 2x1e x 2 ,将 y x 11代入左式得 Ce ,CCx 2x故满足条件的方程的特解为ex e y 2 ,即 y, x e 1 .ln x1【评注 】本题为基础题型 .15⋯⋯⋯ .【分析 】先将 A 3 求出,然后利用定义判断其秩 .0 1 0 0 0 0 0 10 0 1 00 0 0 0【详解】A0 0A30 0 0 r ( A) 1.0 1 0 0 0 0 00 0 0 0【评注 】本题为基础题型 .16⋯⋯⋯ .【分析 】根据题意可得两个随机变量服从区间0,1 上的均匀分布,利用几何概型计算较为简便 .【 详解 】利用几何概型计算 . 图如下: y1AO 1/2 1/2x1 2S A 132所求概率1.S D4【评注 】本题也可先写出两个随机变量的概率密度,然后利用它们的独立性求得所求概率.17⋯⋯ ..【分析 】由凹凸性判别方法和隐函数的求导可得.【详解 】 方程 y ln y x y 0 两边对 x 求导得y ln y yy1 y 0 , y即 y (2 ln y)1,则1 y (1).2上式两边再对 x 求导得y2y (2ln y)0y1,所以曲线 y y( x) 在点 (1,1)附近是凸的.则 y (1)8【评注】本题为基础题型 .18⋯⋯ .【分析】由于积分区域关于x, y 轴均对称,所以利用二重积分的对称性结论简化所求积分.【详解】因为被积函数关于x, y 均为偶函数,且积分区域关于x, y 轴均对称,所以f (x, y)d f (x, y)d,其中 D1为 D 在第一象限内的部分.D D1而 f ( x, y)d x2d1dD1x y 1,x 0, y 0 1 x y2,x 0, y 0x2y21x12x1dy22x1dydx x2 dy dx dx000 1 xx2y210x2y212 ln 1 2 .12所以 f ( x, y)d 14 2 ln1 2 . 3D【评注】被积函数包含x 2y 2时 , 可考虑用极坐标,解答如下:f (x, y)d1d x 2y 21 x y2 1 x y 2x 0, y 0x0, y 022 d sin1cos drsin cos2 ln(12) ..19⋯⋯ . 【分析】由所证结论 f ( ) g ( ) 可联想到构造辅助函数 F ( x) f (x)g ( x) ,然后根据题设条件利用罗尔定理证明.【详解】令 F (x) f (x) g( x) ,则 F ( x) 在a,b上连续,在 (a,b) 内具有二阶导数且 F (a) F (b)0 .( 1)若f (x), g( x)在(a, b)内同一点c取得最大值,则 f (c) g(c) F (c)0 ,于是由罗尔定理可得,存在1( a,c), 2(c,b) ,使得F(1) F(2) 0.再利用罗尔定理,可得存在( 1 , 2 ) ,使得 F ( ) 0 ,即 f ( ) g ( ) .( 2)若 f (x), g( x) 在 (a, b) 内不同点 c 1, c 2 取得最大值,则 f (c 1) g(c 2 ) M ,于是F (c 1 ) f (c 1 ) g(c 1) 0, F (c 2 ) f (c 2 ) g( c 2 ) 0 ,于是由零值定理可得,存在c 3 (c 1 , c 2 ) ,使得 F (c 3 ) 0于是由罗尔定理可得,存在1( a,c 3 ), 2 (c 3 ,b) ,使得F(1) F(2) 0.再利用罗尔定理,可得,存在( 1 , 2),使得 F () 0 ,即 f( ) g ( ) .【评注 】对命题为 f ( n) () 0 的证明,一般利用以下两种方法:方法一:验证 为 f (n 1) ( x) 的最值或极值点,利用极值存在的必要条件或费尔马定理可得证;方法二:验证 f ( n 1) ( x) 在包含 x于其内的区间上满足罗尔定理条件..20⋯ .【分析 】本题考查函数的幂级数展开,利用间接法.【详解 】 f (x)11 1 11 ,而3x 4 ( x 4)( x 1) 5 x 4 x 1x 21 1 11x 1n( x n1)1n, 2 x 4 ,1x 43 1 x 3 n 03 n 03311 11n( 1)n( x 1)nx 11 x 3 ,x 1n 1, x 1 2 12 n 02n 022所以 f ( x)(x 1)n( 1)n ( x 1)n1( 1)n nn 102n 1n 1n 1 ( x 1) ,n 03n n 032收敛区间为 1 x 3 .【评注 】请记住常见函数的幂级数展开 .21⋯ ..【分析 】将方程组和方程合并,然后利用非齐次线性方程有解的判定条件求得a .【详解 】将方程组和方程合并,后可得线性方程组x1x2x30x12x2ax302x14x2 a x30x12x2x3 a 1其系数矩阵11101110A12a001a10.1 4 a200 3 a2 1 0121 a 1010a111101110 01a1001a100 0 a23a 2 00 0 1 a.a 10 0 1 a a 10 0 (a 1)(a 2)0显然,当 a1, a 2 时无公共解.当时,可求得公共解为Ta1k 1 , 0 ,1为任意常数;, k当 a 2 时,可求得公共解为T 0,1, 1.【评注】本题为基础题型,考查非齐次线性方程组解的判定和结构.22⋯⋯【分析】本题考查实对称矩阵特征值和特征向量的概念和性质.【详解】(I)B1A54A3 E 1543543 1 1 2 1,1 1 1 1111则1是矩阵 B 的属于-2的特征向量.同理可得532 ,B 543133.B22 4 2 12333所以 B 的全部特征值为2,1, 1设B的属于 1 的特征向量为2( x1, x2 , x3 )T,显然 B 为对称矩阵,所以根据不同特征值所对应的特征向量正交,可得T120 .即x1x2x30 ,解方程组可得 B 的属于1的特征向量2k1 (1,0, 1)T k2 (0,1,0) T,其中 k1 , k2为不全为零的任意常数.由前可知 B 的属于-2的特征向量为k3 (1, 1,1)T,其中 k3不为零.101100(II)令P011,由(Ⅰ)可得 P-1BP010,则101002011B10 1 .110【评注】本题主要考查求抽象矩阵的特征值和特征向量,此类问题一般用定义求解,要想方设法将题设条件转化为 Ax x 的形式.请记住以下结论:(1)设是方阵 A 的特征值,则kA, aA bE, A2 , f ( A), A 1, A*分别有特征值k, a b, 2 , f ( ),1A, ( A 可逆),且对应的特征向量是相同的.( 2)对实对称矩阵来讲,不同特征值所对应的特征向量一定是正交的23⋯⋯ .【分析】(I)可化为二重积分计算;(II)利用卷积公式可得.1x7【详解】(I)P X 2Y dx 22 x y dxdy 2 x y dy.0024x 2 y(II)利用卷积公式可得f Z ( z) f ( x, z x)dxz(2x)dx,0z102z z20z11(2x)dx,1z2(2z)21z 2 .z10,其他0,其他【评注】 (II) 也可先求出分布函数,然后求导得概率密度..(24) (本题满分 11 分)设总体 X 的概率密度为10x,21,x 1f ( x)2(1)0,其他( X1, X 2 , ,, X n ) 为来自总体X 的简单随机样本,X 是样本均值.( I )求参数 的矩估计量;(II )判断 4X 2 是否为2的无偏估计量,并说明理由 .【分析 】利用 EX X 求( I );判断 E 4X 2?2.【详解】(I ) EX xf ( x)d xx dx1xdx1 ,222 14令 X11242X.2(II )E 4X24E X24 DXEX 241DXEX 2,n而 EX2x 2f ( x)dxx 21x 221 ,dxdx330 22 16EX2225所以DXEX,121248所以E 4X24 1DX EX11 2111 52 ,2n3n3n4 12n故4X 2 不是2的无偏估计量 .【评注 】要熟练掌握总体未知参数点估计的矩估计法,最大似然估计法和区间估计法 .。
2021年全国硕士研究生招生考试数学三真题详细解析
案.
1 0 −1
(7)已知矩= 阵 A
2
−1
1
,若下三角可逆矩阵
P
和上三角可逆矩阵
Q
,使
PAQ
为对角矩阵,
−1 2 −5
则 P , Q 可以分别取( )
1 0 0 1 0 1
(A)
0
1
0
,
0
1
3
.
0 0 1 0 0 1
1 0 0 1 0 0
(B)
2
−1
0
,
0
1
0
.
−3 2 1 0 0 1
1 0 0 1 0 1
(C)
2
−1
0
,
0
1
3
.
−3 2 1 0 0 1
【答案】应选(C).
1 0 0 1 2 −3
(D)
0
1
0
,
0
−1
2
.
1 3 1 0 0 1
【分析】本题如果希望通过矩阵方程来求得 P , Q 显然难度较大,但对于客观题,一个计算问题通过
答案验证显然要简单得多。将选项代入快速验算,容易到本题答案为(C). 【详解】对选项 C,
【详解】对于选项(A),
P( A B) =P( AB) =P( A) ⇒ P( AB) =P( A)P(B) , P(B)
( ) 事件 A, B 相互独立,即互不干扰,因此易得 P A B = P ( A) ,故 A 正确.
( ) ( ) 对于选项(B),知 P( A B) = P( AB) > P ( A) ⇔ P( AB) > P( A)P(B) ,若 P A B > P A 成立,则 P(B)
考研数学三高等数学考哪些内容
考研数学三高等数学全国硕士研究生入学统一考试数学考试大纲考试科目:微积分.线性代数.概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分56%线性代数22%概率论与数理统计22%四、试卷题型结构试卷题型结构为:单项选择题选题8小题,每题4分,共32分填空题6小题,每题4分,共24分解答题(包括证明题)9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性.单调性.周期性和奇偶性复合函数.反函数.分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数.反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性.拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton- Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值.最大值和最小值二重积分的概念.基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径.收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解...及的麦克劳林(Maclaurin)展开式.六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型.正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解产生变量、变量和变量的典型模式;了解标准正态分布、分布、分布和分布得上侧分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.以上是2010数三考纲,你对照着课本看就好了~~TIME:2010-4-10 18:15 问题:考研数学三高等数学考哪些内容答案:经济类数学三的考概率论、高等代数、和线性代数、空间几何不难,记住几种常用解题题型差不多了,级数部分只要记住几个常用的公式就可以了。
考研数学三不考的部分[最全]
高等数学不用看的部分:第5页映射;第17页到第20页双曲正弦双曲余弦双曲正切及相应的反函数可以不记;第107页由参数方程所确定的函数的导数;第119页微分在近似方程中的应用记住几个公式4,5,6还有120页的近似公式即可,不用看例题;第140页泰勒公式的证明可以不看,例题中的几个公式一定要记住,比如正弦公式等;第169页第七节;第178页第八节;第213页第四节;第218页第五节;第280页平行截面面积为已知的立体体积;第282页平面曲线的弧长;第287页第三节;第316页第五节;在第七章微分方程中建议大家只要会解方程即可,凡是书上涉及到物理之类的例题不看跳过例如第301页的例2例3例4;第八章;第90页第六节;第101页第七节;第157页第三节;165页第四节;第十一章;第261页定理6;第278页第四节;第285页第五节;第302页第七节;第316第八节线性代数不用看的部分:第102页第五节概率论与数理统计要考的部分:第一二三四五章;第六章第135页抽样分布;第7章第一节点估计和第二节最大似然估计注意:数学课本和习题中标注星号的为不考内容,在上面的内容中我并没有标出。
上述内容是根据文都发放的教材编的。
《高等数学》目录与2010数三大纲对照的重点计划用时(天)标记及内容要求:★─大纲中要求“掌握”和“会”的内容以及对学习高数特别重要的内容,应当重点加强,对其概念、性质、结论及使用方法熟知,对重要定理、公式会推导。
要大量做题。
☆─大纲中要求“理解”和“了解”的内容以及对学习高数比较重要的内容,要看懂定理、公式的推导,知道其概念、性质和方法,能使用其结论●─大纲中没有明确要求,但对做题和以后的学习有帮助。
要能看懂,了解其思路和结论。
▲─超出大纲要求。
第一章函数与极限第一节映射与函数(☆集合、影射,★其余)第二节数列的极限(☆)第三节函数的极限(☆)第四节无穷小与无穷大(★)第五节极限运算法则(★)第六节极限存在准则(★)第七节无穷小的比较(★)第八节函数的连续性与间断点(★)第九节连续函数的运算与初等函数的连续性(★)第十节闭区间上连续函数的性质(★)总习题第二章导数与微分第一节导数概念(★)第二节函数的求导法则(★)第三节高阶导数(★)第四节隐函数及由参数方程所确定的函数的导数相关变化率(★)第五节函数的微分(★)总习题二第三章微分中值定理与导数的应用第一节微分中值定理(★罗尔,★拉格朗日,☆柯西)第二节洛必达法则(★)第三节泰勒公式(☆)第四节函数的单调性与曲线的凹凸性(★)第五节函数的极值与最大值最小值(★)第六节函数图形的描绘(★)第七节曲率(●)第八节方程的近似解(●)总习题三(★注意渐近线)第四章不定积分第一节不定积分的概念与性质(★)第二节换元积分法(★)第三节分部积分法(★)第四节有理函数的积分(★)第五节积分表的使用(★)总习题四第五章定积分第一节定积分的概念与性质(☆)第二节微积分基本公式(★)第三节定积分的换元法和分部积分法(★)第四节反常积分(☆概念,★计算)第五节反常积分的审敛法г函数(●)总习题五第六章定积分的应用第一节定积分的元素法(★)第二节定积分在几何学上的应用(★平面面积,★旋转体,★简单经济应用)第三节定积分在物理学上的应用(★求函数平均值)总习题六、第七章微分方程第一节微分方程的基本概念(☆)第二节可分离变量的微分方程(☆)(★掌握求解方法)第三节齐次方程(☆)(★掌握求解方法)第四节一阶线性微分方程(☆)(★掌握求解方法)第五节可降阶的高阶微分方程(☆)第六节高阶线性微分方程(☆)第七节常系数齐次线性微分方程(★二阶的)第八节常系数非齐次线性微分方程(★二阶的)第九节欧拉方程(●)第十节常系数线性微分方程组解法举例(●)总习题七附录I 二阶和三阶行列式简介附录II 几种常用的曲线附录、积分表第八章空间解析几何与向量代数(▲)第一节向量及其线性运算第二节数量积向量积混合积第三节曲面及其方程第四节空间曲线及其方程第五节平面及其方程第六节空间直线及其方程总习题八第九章多元函数微分法及其应用第一节多元函数的基本概念(☆)第二节偏导数(☆概念。
2005考研数三真题及解析
2005年全国硕士研究生入学统一考试数学三试题一、填空题:1-6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 极限12sinlim 2+∞→x xx x = .(2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为 ___________. (3) 设二元函数)1ln()1(y x xe z y x +++=+,则=)0,1(dz_________________.(4) 设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a =(5) 从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P = ____________(6) 设二维随机变量(,)X Y 的概率分布为X Y 0 10 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则a = , b =二、选择题:7-14小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7) 当a 取下列哪个值时,函数a x x x x f -+-=1292)(23恰好有两个不同的零点( )(A) 2. (B) 4. (C) 6. (D) 8. (8) 设σd y x I D⎰⎰+=221cos,σd y x I D⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(,其中}1),{(22≤+=y x y x D ,则( )(A) 123I I I >>. (B)321I I I >>.(C) 312I I I >>. (D) 213I I I >>.(9) 设,,2,1,0 =>n a n 若∑∞=1n n a 发散,∑∞=--11)1(n n n a 收敛,则下列结论正确的是( )(A)∑∞=-112n n a收敛,∑∞=12n na发散 . (B)∑∞=12n na收敛,∑∞=-112n n a发散.(C) )(1212∑∞=-+n n n a a收敛. (D))(1212∑∞=--n n n a a收敛.(10) 设x x x x f cos sin )(+=,下列命题中正确的是( )(A) (0)f 是极大值,)2(πf 是极小值. (B)(0)f 是极小值,)2(πf 是极大值.(C) (0)f 是极大值,)2(πf 也是极大值. (D) (0)f 是极小值,)2(πf 也是极小值.(11) 以下四个命题中,正确的是( )(A)若)(x f '在(0,1)内连续,则)(x f 在(0,1)内有界. (B)若)(x f 在(0,1)内连续,则)(x f 在(0,1)内有界. (C)若)(x f '在(0,1)内有界,则)(x f 在(0,1)内有界. (D)若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界.(12) 设矩阵A =33)(⨯ij a 满足T A A =*,其中*A 是A 的伴随矩阵,TA 为A 的转置矩阵. 若131211,,a a a 为三个相等的正数,则11a 为( )(A) 33. (B) 3. (C) 31. (D)3.(13) 设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是( )(A) 01=λ. (B) 02=λ. (C) 01≠λ. (D) 02≠λ.(14) 设一批零件的长度服从正态分布),(2σμN ,其中2,σμ均未知. 现从中随机抽取16个零件,测得样本均值)(20cm x =,样本标准差)(1cm s =,则μ的置信度为0.90的置信区间是( )(A) )).16(4120),16(4120(05.005.0t t +-(B) )).16(4120),16(4120(1.01.0t t +- (C) )).15(4120),15(4120(05.005.0t t +- (D) )).15(4120),15(4120(1.01.0t t +-三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分8分)求 ).111(lim 0xe x x x --+-→(16)(本题满分8分)设()f u 具有二阶连续导数,且)()(),(y x yf x y f y x g +=,求.222222y g y x g x ∂∂-∂∂(17)(本题满分9分)计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D(18)(本题满分9分)求幂级数∑∞=-+12)1121(n n x n 在区间(-1,1)内的和函数()S x .(19)(本题满分8分)设(),()f x g x 在[0,1]上的导数连续,且(0)0f =,0)(≥'x f ,0)(≥'x g .证明:对任何[0,1]a ∈,有⎰⎰≥'+'ag a f dx x g x f dx x f x g 01).1()()()()()((20)(本题满分13分)已知齐次线性方程组(I) ⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x 和 (II)⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x 同解,求,,a b c 的值.(21)(本题满分13分)设⎥⎦⎤⎢⎣⎡=B C C AD T 为正定矩阵,其中,A B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵.(I) 计算DP P T ,其中⎥⎦⎤⎢⎣⎡-=-n mE oC A E P 1; (II) 利用(I)的结果判断矩阵C A C B T1--是否为正定矩阵,并证明你的结论. (22)(本题满分13分)设二维随机变量(,)X Y 的概率密度为1,01,02,(,)0,.x y x f x y <<<<⎧=⎨⎩其他求:(I) (,)X Y 的边缘概率密度)(),(y f x f Y X ; (II) Y X Z -=2的概率密度).(z f Z (III) }.2121{≤≤X Y P(23)(本题满分13分)设)2(,,,21>n X X X n 为来自总体2(0,)N σ的简单随机样本,其样本均值为X ,记.,,2,1,n i X X Y i i =-=求:(I) i Y 的方差n i DY i ,,2,1, =; (II) 1Y 与n Y 的协方差).,(1n Y Y Cov(III) 若21)(n Y Y c +是2σ的无偏估计量,求常数c .2005年全国硕士研究生入学统一考试数学三试题解析一、填空题 (1)【答案】2【详解】这是一个0∞⋅型未定式,令1t x=有 22002sin2sin 221lim sinlim lim lim 21x t t t txt t t x x t tt →∞→→→+====+(2)【答案】2xy = 【详解】方法1:观察原微分方程知,()0xy xy y ''=+=,积分得原方程的通解C xy =,代入初始条件得12C ⋅=,即C =2,故所求特解为 2xy =. 方法2:变量分离法求解.由0=+'y y x ,分离变量为dy dxy x=- 积分得ln ln ln y x C =-+,即Cy x=. 去掉绝对值号,认为C 可取负值, 得通解C y x=. 以2)1(=y 代入得C =2,得特解2xy =.(3)【答案】dy e edx )2(2++【详解】求二元函数偏导数时,可将令一变量暂时看作定值。
考研数学三基础练习题
考研数学三基础练习题考研数学三基础练习题考研数学三作为考研数学科目中的一部分,是很多考生所头疼的一门课程。
它涉及的知识点广泛,难度较高,需要考生具备扎实的数学基础和一定的解题能力。
为了帮助考生更好地备考,下面将介绍一些基础的练习题,供考生参考。
一、函数与极限1. 求函数 f(x) = sin(2x) + cos(3x) 在区间[0, π] 上的最大值和最小值。
2. 已知函数 f(x) = x^3 - 3x^2 + 2x + 1,求 f(x) 的单调递增区间和单调递减区间。
3. 求函数 f(x) = ln(x^2 - 4x + 3) 的定义域和值域。
二、微分与导数1. 求函数 f(x) = x^3 - 3x^2 + 2x + 1 在点 x = 2 处的切线方程。
2. 求函数 f(x) = e^x / (1 + e^x) 的导数。
3. 已知函数 f(x) = x^3 - 3x^2 + 2x + 1,求 f(x) 的极值点和极值。
三、定积分1. 计算定积分∫[0, π/2] (sin(x) + cos(x)) dx。
2. 计算定积分∫[0, 1] (x^2 + 2x + 1) dx。
3. 计算定积分∫[0, π] (x^2 sin(x)) dx。
四、级数1. 判断级数∑(n=1, ∞) (1/n^2) 的敛散性。
2. 判断级数∑(n=1, ∞) (1/n) 的敛散性。
3. 计算级数∑(n=1, ∞) (1/2^n)。
以上是一些考研数学三基础练习题,涵盖了函数与极限、微分与导数、定积分和级数等知识点。
考生可以根据自己的实际情况选择适合自己的题目进行练习,巩固基础知识,提高解题能力。
在做题过程中,考生要注意理解题意,正确运用相关的数学公式和定理,注意计算的准确性和步骤的合理性。
同时,要注意总结归纳,将解题方法和思路进行总结,以便在考试中能够更好地应用。
此外,考生还可以参考一些优秀的数学教材和辅导资料,结合课堂学习和自主学习,加深对数学知识的理解和掌握。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学不用看的部分:第5页映射;第17页到第20页双曲正弦双曲余弦双曲正切及相应的反函数可以不记;第107页由参数方程所确定的函数的导数;第119页微分在近似方程中的应用记住几个公式4,5,6还有120页的近似公式即可,不用看例题;第140页泰勒公式的证明可以不看,例题中的几个公式一定要记住,比如正弦公式等;第169页第七节;第178页第八节;第213页第四节;第218页第五节;第280页平行截面面积为已知的立体体积;第282页平面曲线的弧长;第287页第三节;第316页第五节;在第七章微分方程中建议大家只要会解方程即可,凡是书上涉及到物理之类的例题不看跳过例如第301页的例2例3例4;第八章;第90页第六节;第101页第七节;第157页第三节;165页第四节;第十一章;第261页定理6;第278页第四节;第285页第五节;第302页第七节;第316第八节线性代数不用看的部分:第102页第五节概率论与数理统计要考的部分:第一二三四五章;第六章第135页抽样分布;第7章第一节点估计和第二节最大似然估计注意:数学课本和习题中标注星号的为不考内容,在上面的内容中我并没有标出。
上述内容是根据文都发放的教材编的。
《高等数学》目录与2010数三大纲对照的重点计划用时(天)标记及内容要求:★─大纲中要求“掌握”和“会”的内容以及对学习高数特别重要的内容,应当重点加强,对其概念、性质、结论及使用方法熟知,对重要定理、公式会推导。
要大量做题。
☆─大纲中要求“理解”和“了解”的内容以及对学习高数比较重要的内容,要看懂定理、公式的推导,知道其概念、性质和方法,能使用其结论●─大纲中没有明确要求,但对做题和以后的学习有帮助。
要能看懂,了解其思路和结论。
▲─超出大纲要求。
第一章函数与极限第一节映射与函数(☆集合、影射,★其余)第二节数列的极限(☆)第三节函数的极限(☆)第四节无穷小与无穷大(★)第五节极限运算法则(★)第六节极限存在准则(★)第七节无穷小的比较(★)第八节函数的连续性与间断点(★)第九节连续函数的运算与初等函数的连续性(★)第十节闭区间上连续函数的性质(★)总习题第二章导数与微分第一节导数概念(★)第二节函数的求导法则(★)第三节高阶导数(★)第四节隐函数及由参数方程所确定的函数的导数相关变化率(★)第五节函数的微分(★)总习题二第三章微分中值定理与导数的应用第一节微分中值定理(★罗尔,★拉格朗日,☆柯西)第二节洛必达法则(★)第三节泰勒公式(☆)第四节函数的单调性与曲线的凹凸性(★)第五节函数的极值与最大值最小值(★)第六节函数图形的描绘(★)第七节曲率(●)第八节方程的近似解(●)总习题三(★注意渐近线)第四章不定积分第一节不定积分的概念与性质(★)第二节换元积分法(★)第三节分部积分法(★)第四节有理函数的积分(★)第五节积分表的使用(★)总习题四第五章定积分第一节定积分的概念与性质(☆)第二节微积分基本公式(★)第三节定积分的换元法和分部积分法(★)第四节反常积分(☆概念,★计算)第五节反常积分的审敛法г函数(●)总习题五第六章定积分的应用第一节定积分的元素法(★)第二节定积分在几何学上的应用(★平面面积,★旋转体,★简单经济应用)第三节定积分在物理学上的应用(★求函数平均值)总习题六、第七章微分方程第一节微分方程的基本概念(☆)第二节可分离变量的微分方程(☆)(★掌握求解方法)第三节齐次方程(☆)(★掌握求解方法)第四节一阶线性微分方程(☆)(★掌握求解方法)第五节可降阶的高阶微分方程(☆)第六节高阶线性微分方程(☆)第七节常系数齐次线性微分方程(★二阶的)第八节常系数非齐次线性微分方程(★二阶的)第九节欧拉方程(●)第十节常系数线性微分方程组解法举例(●)总习题七附录I 二阶和三阶行列式简介附录II 几种常用的曲线附录、积分表第八章空间解析几何与向量代数(▲)第一节向量及其线性运算第二节数量积向量积混合积第三节曲面及其方程第四节空间曲线及其方程第五节平面及其方程第六节空间直线及其方程总习题八第九章多元函数微分法及其应用第一节多元函数的基本概念(☆)第二节偏导数(☆概念。
★计算)第三节全微分(☆概念。
★计算)第四节多元复合函数的求导法则(☆概念。
★计算)第五节隐函数的求导公式(☆)(★掌握求导方法)第六节多元函数微分学的几何应用(☆)第七节方向导数与梯度(●)第八节多元函数的极值及其求法(☆概念。
★计算、必要条件)第九节二元函数的泰勒公式(●)第十节最小二乘法(●)总习题九第十章重积分第一节二重积分的概念与性质(☆)第二节二重积分的计算法(★)第三节三重积分(▲)第四节重积分的应用(★二重积分部分)第五节含参变量的积分(●)总习题十第十一章曲线积分与曲面积分(▲)第一节对弧长的曲线积分第二节对坐标的曲线积分第三节格林公式及其应用第四节对面积的曲面积分第五节对坐标的曲面积分第六节高斯公式通量与散度第七节斯托克斯公式环流量与旋度总习题十一第十二章无穷级数第一节常数项级数的概念和性质(☆)(●其中柯西审敛)第二节常数项级数的审敛法(★定理1、2及推论、3、4 。
☆定理6.、7、8。
●定理5、9、10)第三节幂级数(☆)第四节函数展开成幂级数(☆)第五节函数的幂级数展开式的应用(☆一、二。
●三)第六节函数项级数的一致收敛性及一致收敛级数的基本性质(▲)第七节傅里叶级数(▲)第八节一般周期函数的傅里叶级数(▲)总习题十二2010年全国硕士研究生入学统一考试数学考试大纲--数学三考试科目:微积分.线性代数.概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分 56%线性代数 22%概率论与数理统计 22%四、试卷题型结构试卷题型结构为:单项选择题选题 8小题,每题4分,共32分填空题 6小题,每题4分,共24分解答题(包括证明题) 9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性.单调性.周期性和奇偶性复合函数.反函数.分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性.拐点及渐近线函数图形的描考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点9.会描述简单函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函微分多元函数的极值和条件极值.最大值和最小值二重积分的概念.基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项布尼茨定理幂级数及其收敛半径.收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法考试要求1.了解级数的收敛与发散.收敛级数的和的概念.2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解 . . . 及的麦克劳林(Maclaurin)展开式.六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克莱姆(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线件方方程组的通解考试要求1.会用克莱姆法则解线性方程组.2.掌握非齐次线性方程组有解和无解的判定方法.3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及考试要求1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型.正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量的分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用.3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为的指数分布的概率密度为5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机的分布两个及两个以上随机变量的函数的分布考试要求1.理解多维随机变量的分布函数的概念和基本性质.2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义.5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望切比雪夫(Chebyshev)不等式矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征2.会求随机变量函数的数学期望.3.了解切比雪夫不等式.五、大数定律和中心极限定理考试内容切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗—拉普拉斯(De Moivre-Laplace)定理列维—林德伯格(L 考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限事件的概率.六、数理统计的基本概念考试内容总体个体简单随机样本统计量经验分布函数样本均值样本方差和样本矩分布分布分布分位数正态总体的常用抽样分布考试要求1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2.了解产生变量、变量和变量的典型模式;了解标准正态分布、分布、分布和分布得上侧分位数,会查相应的数值表.3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.4.了解经验分布函数的概念和性质.七、参数估计考试内容点估计的概念估计量与估计值矩估计法最大似然估计法考试要求1.了解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.《概率论与数理统计》目录与大纲对照的重点计划用时(天)第一章概率论的基本概念(★)1 随机试验2 样本空间、随机事件3 频率与概率4 等可能概型(古典概型)5 条件概率6 独立性小结习题第二章随机变量及其分布(★)1 随机变量2 离散型随机变量及其分布律3 随机变量的分布函数4 连续型随机变量及其概率密度5 随机变量的函数的分布小结习题第三章多维随机变量及其分布(★)1 二维随机变量2 边缘分布3 条件分布4 相互独立的随机变量5 两个随机变量的函数的分布小结习题第四章随机变量的数字特征(★)1 数学期望2 方差3 协方差及相关系数4 矩、协方差矩阵小结习题第五章大数定律及中心极限定理1 大数定律(☆)2 中心极限定理(☆定理,★近似计算)小结习题第六章样本及抽样分布1 随机样本(☆)2 直方图和箱线图(☆)3 抽样分布(★)小结附录习题第七章参数估计1 点估计(★)2 基于截尾样本的最大似然估计( ●)3 估计量的评选标准( ●)4 区间估计( ●)5 正态总体均值与方差的区间估计( ●)6 (0-1)分布参数的区间估计( ●)7 单侧置信区间( ●)小结习题第八章假设检验 (▲)1 假设检验2 正态总体均值的假设检验3 正态总体方差的假设检验4 置信区间与假设检验之间的关系5 样本容量的选取6 分布拟合检验7 秩和检验8 假设检验问题的户值检验法小结。