(完整版)平方根和立方根知识点总结和练习

合集下载

(完整版)平方根、算术平方根、立方根重点例题讲解

(完整版)平方根、算术平方根、立方根重点例题讲解

6.1平方根、算术平方根、立方根例题讲解 第一部分:知识点讲解 1、学前准备【旧知回顾】2.平方根(1)平方根的定义:一般的,如果一个数的平方等于a ,那么这个数叫做a 的平方根,也叫做二次方根。

即若a x =2,)0(≥a ,则x 叫做a 的平方根。

即有a x ±=,(0≥a )。

(2)平方根的性质:(3)注意事项:a x ±=,a 称为被开方数,这里被开方数一定是一个非负数(0≥a )。

(4)求一个数平方根的方法:(5)开平方:求一个数平方根的运算叫做开平方。

它与平方互为逆运算。

3. 算术平方根(1)算术平方根的定义:若a x =2,)0(≥a ,则x 叫做a 的平方根。

即有a x ±=,(0≥a )。

其中a x =叫做a 的算术平方根。

(2)算术平方根的性质:(3)注意点:在以后的计算题中,像22-52)(++,其中,25分别指的是2和5的算术平方根。

4.几种重要的运算: ① b a ab •=()0,0>>b a , ab b a =•()0,0>>b a②b a b a =)0,0(>≥b a , b aba =)0,0(>≥b a ③ a a =2)()0(≥a , a a =2 , a a =2-)(★★★ 若0<+b a ,则()ba b a b a b a --=+-=+=+2)(5.立方根(1)立方根的定义:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根,也叫做三次方根。

即若a x =3,则x 叫做a 的立方根。

即有3a x =。

(2)立方根的性质:(3)开立方求一个数的立方根的运算叫做开立方,它与立方互为逆运算。

6.几个重要公式: ③ 333b a ab •=, 333ab b a =•333b a b a = )0(≠b , 333b a ba = )0(≠b④ a a =33)(可以为任何数)a (, a a =33 ,a a --33=)(第二部分:例题讲解题型1:求一个数的平方根、算术平方根、立方根。

中考数学《平方根和立方根》知识点及练习题

中考数学《平方根和立方根》知识点及练习题

平方根和立方根一.知识梳理:1.平方根定义1:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。

表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。

a 叫做被开方数。

性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

定义2:正数a 的正的平方根叫做a a ”, 性质1:正数和零的算术平方根都只有一个,零的算术平方根是零。

性质2:算术平方根a 的双重非负性:①a ≥0 ; ②0≥a定义3:求一个数a 的平方根的运算,叫做开平方。

2.立方根定义1:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根。

即如果x 3=a ,那么x 叫做a 3a x =。

性质1:正数有一个正的立方根;负数有一个负的立方根;零的立方根是零。

性质2:33a a -=-,三次根号内的负号可以移到根号外面。

定义2:求一个数的立方根的运算,叫做开立方3. 实数大小的比较(1)正数大于0,负数小于0,正数大于负数;两个负数比较大小,绝对值大的反而小。

(2)实数大小比较的几种常用方法①作差法:设a 、b 是实数,,0b a b a >⇔>- ,0b a b a =⇔=-b a b a <⇔<-0.②作商法:设a 、b 是两正实数,;1;1;1b a b a b a b a b a b a <⇔<=⇔=>⇔> ③平方法:设a 、b 是两负实数,则b a b a <⇔>22④近似值法:记住这些数值:236.25732.13414.12≈≈≈;;二.课后作业1.9的算术平方根是 ;4的平方根是 。

2.-8的立方根是 ;立方根是它本身的数是______3.25的算术平方根是_____,64的立方根是5.比较大小:-3.14 π-;23。

6. 22(3)0y z -+-=,则xyz 的立方根是________7.23-的相反数是 ,绝对值是 ,倒数是 。

七年级下册数学期末考复习专题01平方根及立方根(知识点串讲)【含答案】

七年级下册数学期末考复习专题01平方根及立方根(知识点串讲)【含答案】

专题01 平方根及立方根知识框架重难突破一. 平方根1.平方根(1)平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.备注:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.(2)求一个数a的平方根的运算,叫做开平方.一个正数a的正的平方根表示为“”,负的平方根表示为“-”.(3)平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2. 算术平方根(1)算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.(2)非负数a的算术平方根有双重非负性:①被开方数a是非负数;②算术平方根本身是非负数.a≥0,≥0.备注:||00a aa aa a>⎧⎪===⎨⎪-<⎩(3)利用算术平方根的非负性求值的问题,主要是根据被开方数是非负数,开方的结果也是非负数列出不等式求解.非负数之和等于0时,各项都等于0,利用此性质列方程解决求值问题.例1.(·安徽初一期中)下列说法正确的是( )A.-5是25的平方根B.25的平方根是5C.-5是(-5)2的算术平方根D.±5是(-5)2的算术平方根练习1的平方根为( )A.B.C.4D.4±2±练习2.(·辽宁初二期中)9的平方根是( )A.B.C.D.3813±81±例2.(2017·阜阳市第九中学初一期中)的算术平方根是( )14A.B.C.D.12±12-12116练习1_____.练习2.(·北京初二期中)16的算术平方根是。

例3.(·_________的算术平方根是_________.练习1.(·安徽初一月考)若2a-1和5-a是一个正数m的两个平方根,则m=_______练习2.(郑州市初二期中)已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n的值.二. 立方根1.立方根的定义:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果,那么x叫做a的立方根.记作:.3x a=2.立方根的性质:正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.3.求一个数a的立方根的运算叫开立方,其中a叫做被开方数.备注:①符号中的根指数“3”不能省略;②对于立方根,被开方数没有限制,正数、零、负数都有唯一一个立方根.例1.(·安徽初一期中)64的立方根是( )A .4B .±4C .8D .±8练习1.(·淮南初一期中)下列说法中,不正确的是( )A .8的立方根是2B .﹣8的立方根是﹣2C .0的立方根是0D .64的立方根是±4练习2.(·北京市昌平区阳坊中学初二期中)的立方根是__________.8-例2.(合肥市第四十五中学初一期中)已知a +3和2a ﹣15是某正数的两个平方根,b 的立方根是﹣2,c 算术平方根是其本身,求2a +b ﹣3c 的值.练习1.(·淮南初一期中)已知的立方根是3,的算术平方根是4,c 5a 2+3a b 1+-分.(1(求a ,b ,c 的值;(2)求的平方根.3a b c -+练习2.(郑州市初二期中)已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n 的值.例3.(安徽初一期中)求下列各式中x 的值:(1)2x 2=4; (2)64x 3 + 27=0专题01 平方根及立方根知识框架重难突破一. 平方根1.平方根(1)平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.备注:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.(2)求一个数a的平方根的运算,叫做开平方.一个正数a的正的平方根表示为“”,负的平方根表示为“-”.(3)平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2. 算术平方根(1)算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.(2)非负数a的算术平方根有双重非负性:①被开方数a是非负数;②算术平方根本身是非负数.a≥0,≥0.备注:||00a aa aa a>⎧⎪===⎨⎪-<⎩(3)利用算术平方根的非负性求值的问题,主要是根据被开方数是非负数,开方的结果也是非负数列出不等式求解.非负数之和等于0时,各项都等于0,利用此性质列方程解决求值问题.例1.(·安徽初一期中)下列说法正确的是( )A.-5是25的平方根B.25的平方根是5C.-5是(-5)2的算术平方根D.±5是(-5)2的算术平方根A试题分析:A、B、C、D都可以根据平方根和算术平方根的定义判断即可.解:A、﹣5是25的平方根,故选项正确;B、25的平方根是±5,故选项错误;C、5是(﹣5)2的算术平方根,﹣5是(﹣5)2的平方根,故选项错误;D、5是(﹣5)2的算术平方根,﹣5是(﹣5)2的平方根,故选项错误.故选A.练习1的平方根为( )A.B.C.4D.4±2±B,又∵(±2)2=4,∴4的平方根是±2±2,故选B.练习2.(·辽宁初二期中)9的平方根是( )A.B.C.D.3813±81±C解:9的平方根是.3±故选:C.例2.(2017·阜阳市第九中学初一期中)的算术平方根是( )14A .B .C .D .12±12-12116C 本题解析: ∵ ,211()24=∴的算术平方根为,1412+故选C.练习1 _____.2,的算术平方根是2,4 2.练习2.(·北京初二期中)16的算术平方根是。

【精品】初中数学 05平方根与立方根 讲义+练习题

【精品】初中数学 05平方根与立方根 讲义+练习题

讲义主题: 平方根与立方根一:课前纠错与课前回顾1、作业检查与知识回顾2、错题分析讲解(1)(2)(3)···二、课程内容讲解与课堂练习题模一:平方根例1.1.1±3是9的( )A .平方根B .相反数C .绝对值D .算术平方根 例1.1.2的平方根是( ) A .2 B .±2 C . D .±例1.1.3若12-a 和5-a 是一个正数m 的两个平方根,则a =__________,m =__________.【讲透例题】题模一:平方根例1.1.1【答案】A【解析】∵(±3)2=9,∴±3是9的平方根,故选;A .例1.1.2【答案】D【解析】∵=2,∴的平方根是±.例1.1.3【答案】2;9【解析】该题考查的是平方根的性质.∵一个数的平方根互为相反数∴2150a a -+-=,解得:2a =∴()()22212219m a =-=⨯-=【讲透考点】平方根平方根的定义:如果一个数的平方等于a ,那么这个数叫做a 的平方根.平方根的表示方法:若2x a =,则x 就叫做a 的平方根.一个非负数a 的平方根可用符号表示 为“a ±”.平方根的特征:1.正数有两个平方根,且互为相反数;2.0的平方根是它本身;3.负数没有平方根.【相似题练习】随练81________.随练1.2若225a =,9b =a b +=( )A .8B .8±C .8或2-D .2或8-题模二:算术平方根例1.2.14的算术平方根是( )A .2B .-2C .±2D 2例1.2.229的算术平方根是__________.例1.2.3下列说法正确的是( )A 42B .0和1的相反数都是它本身C .将5、4、3依次重复写两遍得到的6个数的平均数是4D 2是分数例1.2.4一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是()A .a+1B .a 2+1C 2a 1+D a 1+例1.2.5 若12-x 有意义,则x 的取值范围是__________.【讲透例题】题模二:算术平方根例1.2.1【答案】A【解析】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果. ∵2的平方为4,∴4的算术平方根为2.故选A .例1.2.2 29【解析】2929例1.2.3【答案】C【解析】A 42B 、1的相反数不是它本身,故本选项错误;C 、5、4、3依次重复写两遍得到的6个数的平均数是(5×2+4×2+3×2)÷6=4,故本选项正确;D 2是无理数,不是分数,故本选项错误. 故选C .例1.2.4【答案】B【解析】∵一个自然数的算术平方根为a ,∴这个自然数是a 2.∴和这个自然数相邻的下一个自然数是a 2+1.故选B .例1.2.5 【答案】12x ≥【解析】双重非负性可得210x -≥,解得12x ≥【讲透考点】二.算术平方根算术平方根的概念: 如果一个非负数x的平方等于a,即2x a=,那么非负数x是a的算术平方根.算术平方根的表示方法:a a a叫做被开方数.算术平方根的性质:双重非负性,在x a=0x≥,0a≥.【相似题练习】随练1.3一个数的算术平方根是2,则这个数是____.随练()28-)A.8-B.8C.8±D.8±题模三:开平方例()22-的平方根为( )A.2-B.2C.2±D.2±例1.3.2如果a是121的平方根,那么24a的算术平方根的相反数的倒数的是__________.例1.3.37例1.3.4 1.718721 1.31117.197609 4.147,那么0.0001718721-,1719760900=__________.【讲透例题】题模三:开平方例1.3.1【答案】D【解析】该题考查的是平方根的概念和根式的性质.一个正数有两个平方根.()222-=,2的平方根有两个,2所以本题的答案是D.例1.3.2 【答案】211-【解析】2212111442a ⎛⎫==± ⎪⎝⎭,24a 的算术平方根为112,112的相反数的倒数的是211-例1.3.3【答案】2和3之间 479273<<例1.3.4【答案】0.0311-,41470【解析】被开方数扩大(或缩小)2n 倍,它的算术平方根相应地扩大(或缩小)n 倍(0n ≥).【讲透考点】开平方开平方的概念:求一个非负数的平方根的运算,叫做开平方.开平方与平方是互逆运算,可以通过平方运算来求一个数的平方根或算术平方根,以及检验一个数是不是另一个数的平方根或算术平方根.开平方运算的性质:1.当被开方数扩大(或缩小)2n 倍,它的算术平方根相应地扩大(或缩小)n 倍(0n ≥).2.平方根和算术平方根与被开方数之间的关系:(1)若0a ≥,则2(a a =;(2)不管a 2(0)||(0)a a a a a a ≥⎧==⎨-<⎩注意二者之间的区别及联系. 【相似题练习】随练1.5已知实数x 、y 231220x y x y ---+=,求85x y +的平方根.随练1.6已知一个正数的平方根是3x-2和5x+6,则这个数是(___)(___).题模四:立方根例2.1.127的立方根是__________.例2.1.2338的立方根是__________. 例2.1.36427-的立方根是__________. 例2.1.49的立方根是__________.例2.1.5下列说法正确的是( )A .16的算术平方根是4-B .25的平方根是5C .1的立方根是1±D .27-的立方根是3-【讲透例题】题模四:立方根例2.1.1【答案】3【解析】3273=例2.1.2 【答案】32 【解析】332733882⎛⎫== ⎪⎝⎭ 例2.1.3 【答案】43-【解析】3644273⎛⎫-=- ⎪⎝⎭ 例2.1.4 39 39例2.1.5【答案】D【解析】该题考查的是平方根和立方根的概念.A :错误,16的算术平方根为4;B :错误,25的平方根为5±;C :错误,1的立方根为1;D :正确,所以本题的答案是D .【讲透考点】立方根立方根的定义及表示方法:如果一个数的立方等于a ,那么这个数叫做a 的立方根; 若3,x a =则x 就叫做a 的立方根,一个数a 3a ,其中“3”叫做根指数,不能省略.立方根的特点:1.任意一个数都有立方根;2.正数立方根是正值;3.负数的立方根是负值;4.0的立方根是0.【相似题练习】随练2.1如果一个实数的平方根与它的立方根相等,则这个数是( )A .0B .正整数C .0和1D .1随练2.2下列说法正确的是( )A .如果一个数的立方根是这个数的本身,那么这个数一定是零B .一个数的立方根不是正数就是负数C .负数没有立方根D .一个数的立方根与这个数同号,零的立方根是零随练2.3下列各式中,正确的是( )A .93=±B ()222-=-C 393-=-D .233-= 随练2.4()255--255±42=382-=-A .3B .2C .1D .0题模五:开立方例2.2.1求符合下列各条件中的x 的值.(1)2104x -=(2)31108x +=例2.2.2已知343的立方根是7,那么343000的立方根是__________.例2.2.3324a -343b -ab . 例2.2.42n m -+是4322m +8的立方根,求1mn +的平方根【讲透例题】题模五:开立方例2.2.1【答案】(1)12x =±(2)2-=x 【解析】该题考查的是解高次方程.(1)2104x -=214x = 14x =±12x = (2)31108x +=38x =-2x =- 例2.2.2【答案】70.【解析】70.例2.2.3【答案】16【解析】两个数互为相反数,则他们的立方根也互为相反数,∴2443230a b a b -+-=-=, ∴32a b =.例2.2.4【答案】16【解析】该题考察的是代数式求值.算术平方根:若一个正数x 的平方等于a ,即2x a =,则这个正数x 为a 的算术平方根 立方根:若一个数x 的立方等于a ,即3x a =,则这个数x 为a 的立方根.∵224=,∴2是424n m -+,即24n m -+=∵328=,∴2是833228m +228m +=∴5n =,3m =∴116mn +=【讲透考点】开立方开立方的概念:求一个数的立方根的运算.开立方与立方是互逆运算,可以通过立方运算来求一个数的立方根,以及检验一个数是不是另一个数的立方根.开立方运算的性质:1.当被开方数(大于0)扩大(或缩小)3n 倍,它的立方根相应地扩大(或缩小)n 倍. 233a a =,33a a =. 【相似题练习】随练2.533(4)4k k -=-,则k 的取值范围为( )A .4k ≥B .4k ≤C .4k =D .k 为任意数随练2.6 求符合下列各条件中的x 的值.(1)3343x = (2)()3364x -=-随练2.733560x y -+-=,求x y +的值.三、课后练习(写出各题的主要解答过程。

平方根_立方根综合练习(二)

平方根_立方根综合练习(二)

二、立方根、实数【课前练习】:.问题:如图1, 在Rt △ABC 中,90C ∠=︒,30ABC ∠=︒,点D 是射线CB 上任意一点,△ADE 是等边三角形,且点D 在ACB ∠的内部,连接BE .探究线段BE 与DE 之间的数量关系. 先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.(1) 当点D 与点C 重合时(如图2),请你补全图形.由BAC ∠的度数为 ,点E 落在 ,容易得出BE 与DE 之间的数量关系为 ;(2) 当点D 在如图3的位置时,请你画出图形,研究线段BE 与DE 之间的数量关系是否与(1)中的结论相同,写出你的猜想并加以证明.DB CAABC (D )图3图2【知识精讲】:1.立方根的概念和性质.如果一个数的立方等于a ,这个数就叫做a 的立方根(也叫做三次方根). 2.平方根与立方根的区别和联系.联系:都与相应的乘方互为逆运算;零的平方根和立方根都是它本身. 区别:(1)任意数都有立方根,但负数没有平方根;(2)一个正数有一个正的立方根,而一个正数有两个互为相反数的平方根. 3. 易错点:受平方根影响,认为立方根也有两个且互为相反数.1.数的分类及概念 4. 数系表:【例题分析】:例1:求下列各数的立方根:(1)216 (2)-343(3)-112564(4)0例2:判断下列语句是否正确?在后面的括号内,对的打“√”,错的画“×”。

0 实负数整数 分无理数 有理数正数 整数分无理数 有理数(1)8的立方根是±2。

( ) (2)-0.001的立方根是-0.1。

( ) (3)-a 的立方根是-a3。

( ) (4)64的平方根的立方根是2。

()例3:求下列各式的值:(1)1273(2)-12583(3)--643433 (4)102713-.例4:求下列各式中的x : (1)812503x +=(2)()x +=-41253例5:(1)已知正方体的棱长是8cm ,求这个正方体的体积。

(完整版)数的开方知识点汇总

(完整版)数的开方知识点汇总
(3)实数的分类:
7、实数与数轴的关系
任意一个数对应了数轴上的一个点,数轴上任意一上 点对应了一个实数,因此实数与数轴上的点是—对 应关系。
iii:算术平方根非负即当a>0时-,a>0
4、立方根
(1、)定义:如果一个数的立方等于a那么这个数就 叫做a的立方根。即如果x3=a那么x就是a的立方根。
(2、)立方根的表示方法:
一数a的立方根表示为3a,读作三次根号a其中3叫做根指数,a叫被开方数。
(当根指数是2时可以省略,是3或其数时不能省略) (3、)立方根的性质:
(3)算术平方根的性质:
1正数有一个正的算术平方根。
20的算术平方根是0
3负数没有平方根,当然也没有算术平方根。
(4), a的双重非负性
1首先,石要有意义,首先被开方数必须是一个非 负数。
2其次,心表示一个非数的算术平方根,它的值不 可能是一个负数,即它的值是一个非负数。
综上:,a中a>0,a>0
(5)初中所学的三类非负数i:绝对值非负即|a|>0丘:偶次方非负即a偶次>0
数的开方知识点汇总
安皋二中八年级数学组
一、平方根、算术平方根
1、平方根的定义:如果一个数的平方等于a那么这个数就叫做数a的平方根。即如果x2= a那么x就是a有平方根。
2、平方根的性质:
(1)正数有两个平方根,它们互为相反数。
(2)0的平方根是0
(3)负数没有平方根(因为任何数的平方都是一个非负数)
3、平方根的表示方法
一个非负数a的平方根可表示为土..a,读作正负根号a
其实它的完整写法是土2a我们称2是根指数,a叫做
被开方数,、叫根号,我们平常省略了根指数2。

七年级数学6.1平方根、立方根讲解与例题

七年级数学6.1平方根、立方根讲解与例题

6.1 平方根、立方根1.了解平方根、算术平方根、立方根的定义和性质,会用根号表示非负数的平方根、算术平方根、立方根.2.能利用平方根、算术平方根、立方根的定义和性质解题. 3.知道开方是乘方的逆运算,会用开方求某些非负数的平方根. 4.能运用算术平方根解决一些简单的实际问题.1.平方根(1)平方根的概念:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根,也叫做二次方根.换句话说,如果x 2=a ,那么x 叫做a 的平方根,例如22=4,(-2)2=4,则4的平方根是+2和-2(也可合写为±2),+2和-2都是4的平方根.(2)平方根的性质:一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.(3)平方根的表示:正数a 有两个平方根,一个是a 的正的平方根,记作“a ”,读作“根号a ”,另一个是a 的负的平方根,记作“-a ”,读作“负根号a ”,这两个平方根合起来可记作“±a ”,读作“正、负根号a ”,其中a 叫做被开方数.【例1-1】求下列各数的平方根:(1)0.64;(2)3625;(3)⎝ ⎛⎭⎪⎫-322.分析:要求一个数的平方根,我们可以根据平方根的概念,首先找到一个数,使它的平方等于已知的数,然后就可以求出这个数的平方根.解:(1)∵(±0.8)2=0.64,∴0.64的平方根是±0.8.(2)∵⎝ ⎛⎭⎪⎫±652=3625,∴3625的平方根是±65.(3)∵⎝ ⎛⎭⎪⎫±322=⎝ ⎛⎭⎪⎫-322,∴⎝ ⎛⎭⎪⎫-322的平方根是±32.求一个数的平方根,必须牢记正数有两个平方根,它们互为相反数,不会因为表达形式的改变而改变,如⎝ ⎛⎭⎪⎫-322是个正数,那么它有两个平方根,不要错误地认为它的平方根仅有-32.【例1-2】下列各数有平方根吗?如果有,求出它的平方根;若没有,请说明理由. (1)2516;(2)0;(3)-4;(4)-0.49;(5)(-3)2. 分析:解:(1)因为16是正数,所以16有两个平方根.由于⎝ ⎛⎭⎪⎫±542=2516,所以2516的平方根是±54.(2)0只有一个平方根,是它本身.(3)因为-4是负数,所以-4没有平方根.(4)因为-0.49是负数,所以-0.49没有平方根.(5)因为(-3)2=9,所以(-3)2为正数,有两个平方根.由于9的平方根是±3,所以(-3)2的平方根是±3.2.算术平方根的概念正数a 的正的平方根a 叫做a 的算术平方根.0的算术平方根是0.因此如果x 2=a ,那么正数x 叫做a 的算术平方根.平方根与算术平方根的区别与联系(1)区别:①表示方法不同:正数a 的平方根表示为±a ;正数a 的算术平方根表示为a .②个数不同:一个正数的平方根有两个,它们互为相反数;一个正数的算术平方根只有一个.③性质不同:一个正数的平方根有两个,可以是负数;一个非负数的算术平方根一定是非负数.平方根等于本身的数只有一个数,这个数是0;算术平方根等于本身的数有两个:0和1.(2)联系:平方根包含算术平方根,算术平方根是平方根的一个;平方根和算术平方根都只有非负数才有.负数没有平方根和算术平方根;0的平方根和算术平方根都是0.【例2】求下列各数的算术平方根:(1)196;(2)179;(3)16.分析:根据算术平方根的定义,求正数a 的算术平方根,也就是求一个非负数x ,使x 2=a ,则x 就是a 的算术平方根.(1)因为142=196,所以196的算术平方根是14.(2)因为179=169,⎝ ⎛⎭⎪⎫432=169,所以169的算术平方根是43,即179的算术平方根是43.(3)因为要求的是16的算术平方根,所以要先算出16,再求算术平方根.16表示的是16的算术平方根,所以16=4.由于22=4,所以4的算术平方根是2,即16的算术平方根是2.解:(1)196=14.(2)179=169=43.(3)因为16=4,4的算术平方根是2,所以16的算术平方根是2.求正数a 的算术平方根,只需找出平方等于a 的正数.求一个分数的算术平方根或平方根,当这个分数是带分数时,要先化成假分数,再求这个数的算术平方根或平方根,不要出现11649=147的错误.3.开平方(1)求一个数的平方根的运算叫做开平方.(2)用计算器求一个非负数的算术平方根及近似值.用计算器求一个非负数的算术平方根,只需直接按书写顺序按键即可.例如,用计算器求529与44.81的算术平方根:①在计算器上依次键入529=,显示结果为23,因此529的算术平方根为529=23.②在计算器上依次键入44.81=,显示结果为6.940 271 88,如果要求精确到0.01,那么44.81≈6.94.(1)平方根是一个数,是开平方的结果;而开平方是和加、减、乘、除、乘方一样的一种运算,是求平方根的过程.(2)开平方是平方的逆运算.我们可以用平方运算来检验开平方的结果是否正确. (3)平方和开平方之间的关系,我们可以这样来理解:已知底数m 和指数2,求幂,是平方运算,即m 2=(?);已知幂a 和指数2,求底数,是开平方,即(?)2=a .(4)选用的计算器不同,按键的顺序也不同,因此应该仔细阅读计算器的说明书,按照要求操作.【例3】求下列各式中未知数的值:(1)x 2=25;(2)(2a +3)2=16.分析:如果一个数的平方等于a ,那么这个数叫做a 的平方根,它有一正一负两个值.(1)因为x 2=25,所以x 就是25的平方根,有两个,是±5;(2)将2a +3看成一个整体,根据平方根的定义易知2a +3就是16的平方根,是±4,即2a +3=±4,在此基础上,分两种情况分别求出a 的值即可.解:(1)因为(±5)2=25, 所以x =±5.(2)因为(±4)2=16, 所以2a +3=±4.当2a +3=4时,解得a =12.当2a +3=-4时,解得a =-72.故所求a 的值是12或-72.利用开平方解方程的方法是:先把方程化为x 2=m (m ≥0)的形式,然后根据开平方得到x =±m .特别地,要注意整体思想的应用.4.立方根(1)立方根的概念:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根(也叫做三次方根).也就是说,如果x 3=a ,那么x 叫做a 的立方根.(2)立方根的表示方法:数a 的立方根记为“3a ”,读作“三次根号a ”,其中a 是被开方数,3是根指数,这里的根指数“3”不能省略.【例4】求下列各数的立方根:(1)27;(2)-27;(3)338;(4)-0.064;(5)0;(6)-5.分析:求一个数a 的立方根,关键是求出满足等式x 3=a 中x 的值,同时在学习了立方根的表示方法后,应用符号表示解题过程比语言叙述更为简洁.解:(1)因为33=27,所以327=3. (2)因为(-3)3=-27,所以3-27=-3.(3)因为338=278,而⎝ ⎛⎭⎪⎫323=278,所以3338=32.(4)因为(-0.4)3=-0.064, 所以3-0.064=-0.4. (5)因为03=0,所以30=0. (6)-5的立方根是3-5.开方开不尽的数,保留根号,如本题(6),-5的立方根是3-5.5.开立方(1)求一个数的立方根的运算叫做开立方. ①开立方与立方互为逆运算.我们可以根据这种关系求一个数的立方根或检验一个数是否是某个数的立方根.②被开立方的数可以是正数、负数和0;③求一个带分数的立方根时,必须把带分数化成假分数,再求它的立方根. (2)用计算器求一个数的立方根及近似值.用计算器求一个数的立方根的操作过程和求平方根操作过程基本相同,主要差别是先按2ndf 键,再按书写顺序按键即可.例如用计算器求31 845,在计算器上依次键入2ndf 31845=,显示结果为12.264 940 82,若计算结果要求精确到0.01,则1 845的立方根为12.26,即31 845≈12.26.【例5】解方程:(1)125x 3-27=0;(2)(5x -3)3=343.分析:(1)把原方程变形为x 3=27125后,可知x 是27125的立方根.(2)把5x -3看做整体,则易知它是343的立方根,其值可求,在此基础上可求x .解:因为125x 3-27=0,所以x 3=27125.故x =35.(2)因为(5x -3)3=343,所以5x -3=3343=7, 即5x =10.故x =2.利用开立方解方程的方法:先把方程化为x 3=m 的形式,然后根据开立方得到x =3m .特别地,要注意整体思想的应用.6.立方根的性质正数的立方根是一个正数,负数的立方根是一个负数,0的立方根是0. (1)立方根的符号与被开方数的符号一致; (2)一个数的立方根是唯一的; (3)3-a =-3a ,3a 3=a ,(3a )3=a . 【例6】下列语句正确的是( ). A .64的立方根是2 B .-3是27的立方根C .125216的立方根是±56D .(-1)2的立方根是-1解析:因为64=8,而2的立方等于8,所以64的立方根是2,即A 正确,解答时不要把“求64的立方根”误解为“求64的立方根”;因为-3的立方是-27,所以-3是27的立方根是错误的;因为56的立方是125216,所以125216的立方根是56,因此C 是错误的;因为(-1)2=1,它的立方根是1,而不是-1,所以D 是错误的.故本题选A .答案:A(1)任何数都有立方根,而负数没有平方根;(2)任何数的立方根只有一个,而正数有两个平方根.7.用平方根与立方根的定义及性质解题已知一个数的平方根或立方根求原数是利用平方根与立方根的定义及性质解题中的常见题型.(1)一个正数的两个平方根互为相反数,而互为相反数的两个数的和为零. (2)对于立方根来说,任何数的立方根只有一个,根据立方根的定义可知,3-a =-3a ,也就是说,求一个负数的立方根时,只要先求出这个负数的绝对值的立方根,然后再取它的相反数即可.(3)当两个数相等时,这两个数的立方根相等.反之,当两个数的立方根相等时,这两个数也相等.这与平方根不同,在平方根的计算中,若两数的平方根相等或互为相反数时,这两个数相等;若这两个数相等时,则两数的平方根相等或互为相反数.【例7-1】已知2x -1和x -11是一个数的平方根,求这个数.分析:因为2x -1和x -11是一个数的平方根,根据平方根的定义,可知2x -1和x -11相等或互为相反数.当2x -1和x -11相等时,可列出方程2x -1=x -11,当2x -1和x -11互为相反数时,可列出方程2x -1+x -11=0,从而求出x 的值,进一步可求出这个数.解:根据平方根的定义,可知2x -1和x -11相等或互为相反数.当2x -1=x -11时,x =-10,所以2x -1=-21,这时所求的数为(-21)2=441;当2x -1+x -11=0时,x =4,所以2x -1=7,这时所求的数为72=49. 综上可知,所求的数为49或441.【例7-2】若32a -1=-35a +8,求a 2 012的值.分析:根据立方根的唯一性和3-a =-3a ,可知2a -1与5a +8互为相反数,从而可构造出关于a 的一元一次方程2a -1=-(5a +8).进一步可求出a 2 012的值. 解:因为32a -1=-35a +8,所以32a -1=3-a +,即2a -1=-(5a +8).解得a =-1.故a 2 012=(-1)2 012=1. 8.非负性的应用非负数指的是正数和零,常用的非负数主要有: (1)绝对值|a |≥0;(2)平方a 2≥0;(3)算术平方根a 具有双重非负性: ①a 本身具有非负性,即a ≥0;②算术平方根a 的被开方数具有非负性,即a ≥0. 非负数有如下性质:若两个或多个非负数的和为0,则每个非负数均为0.在解决与此相关的问题时,若能仔细观察、认真地分析题目中的已知条件,并挖掘出题目中隐含的非负性,就可避免用常规方法造成的繁杂运算或误解,从而收到事半功倍的效果.与算术平方根和平方数的非负性相关的求值问题,一般情况下都是它们的和等于0的形式.此类问题可以分成以下几种形式:一是算术平方根、平方数、绝对值三种中的任意两种组成一题〔| |+( )2=0,| |+ =0,( )2+ =0〕,甚至同一道题目中出现这三个内容〔| |+( )2+ =0〕;二是题目中没有直接给出平方数,而是需要先利用数学公式把题目中的某些内容进行变形,然后再利用非负数的性质进行计算.【例8-1】如果y =2x -1+1-2x +2,则4x +y 的平方根是__________.解析:因为2x -1≥0且1-2x ≥0,所以2x -1=1-2x =0,即x =12.于是y =2x -1+1-2x +2=2.因此4x +y =4×12+2=4.故4x +y 的平方根为±2.答案:±2【例8-2】如果y =x 2-4+4-x 2x +2+2 012成立,求x 2+y -3的值.分析:由算术平方根被开方数的非负性知x 2-4≥0,4-x 2≥0,因此,只有x 2-4=0,即x =±2;又x +2≠0,即x ≠-2,所以x =2,y =2 012,于是得解.解:由题意可知x 2-4≥0且4-x 2≥0,因此x 2-4=0,即x =±2. 又∵x +2≠0,即x ≠-2, ∴x =2,y =2 012.故x 2+y -3=22+2 012-3=2 013.【例8-3】已知a -1+(b +2)2=0,求(a +b )2 012的值.分析:a -1表示a -1的算术平方根,所以a -1为非负数.因为(b +2)2为偶次幂,所以(b +2)2为非负数.由于两个正数相加不能为0,所以这两项都为0,因此解方程求值即可.解:因为a -1≥0,(b +2)2≥0,且a -1+(b +2)2=0,所以a -1=0,(b +2)2=0, 解得a =1,b =-2.故(a +b )2 012=(1-2)2 012=1.9.利用方根探索规律(1)可以利用计算器探究被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律. 规律:如果将被开方数的小数点向左(右)每移动2位,则它的算术平方根的小数点就相应地向同一方向移动1位.即当被开方数扩大(或缩小)100倍时,其算术平方根相应地扩大(或缩小)10倍;当被开方数扩大(或缩小)10 000倍时,其算术平方根相应地扩大(或缩小)100倍….(2)可利用计算器探究被开方数扩大(或缩小)与它的立方根扩大(或缩小)的规律. 规律:如果将被开方数的小数点向左(右)每移动3位,则它的立方根的小数点就相应地向同一方向移动1位.即当被开方数扩大(或缩小)1 000倍时,其立方根相应地扩大(或缩小)10倍;当被开方数扩大(或缩小)1 000 000倍时,其立方根相应地扩大(或缩小)100倍….(3)还可利用方根为问题背景进行规律的探索. 【例9】(1)观察下列各式:1+13=213,2+14=314,3+15=415,…,请你将发现的规律用含自然数n (n ≥1)的等式表示出来__________.(2)借助计算器可以求出42+32,442+332,4442+3332,…,观察上述各式特点,__________.解析:(1)第一个等式右边的2比左边被开方数里的1大1,被开方数13与左边被开方数的13相同且3比2大1;第二个等式右边的3比左边被开方数里的2大1,被开方数14与左边被开方数14相同且4比3大1,…,故有n +1n +2=(n +1)1n +2(n ≥1). (2)借助计算器,可以分别求得42+32=5,442+332=55,4442+3332=555,…,由此观察发现每个式子的结果都是由若干个5组成的,且5的个数为相应式子的左边4或35n 个.答案:(1)n +1n +2=(n +1)1n +2(n ≥1) (2)5555n 个10.平方根与立方根的实际应用解实际问题时,首先要读懂题意,善于构造数学模型,将它转化为数学问题.与平方根、立方根有关的实际应用多以正方形、正方体等几何图形为问题背景设题,解答时,常常根据题意列出方程,然后再利用平方根与立方根的定义及性质解方程即可.注意求出的结果要符合实际问题的实际意义.【例10-1】计划用100块地板砖来铺设面积为16 m 2的客厅,求需要的正方形地板砖的边长.解:设地板砖的边长为x m ,根据题意,得100x 2=16,即x 2=0.16,所以x =±0.16=±0.4.由于长度不能为负数,所以x =0.4(m). 故地板砖的边长为0.4 m.【例10-2】一种形状为正方体的玩具名为“魔方”,(每个面由9个小正方体面组成)体积为216 cm 3,求组成它的每个小正方体的棱长.解:设小正方体的棱长为a cm ,则玩具的棱长为3a cm ,由题意得(3a )3=216.于是27a3=216,a 3=8,a =2(cm).故每个小正方体的棱长为2 cm.。

(完整版)平方根与立方根知识点小结

(完整版)平方根与立方根知识点小结

“平方根”与“立方根”知识点小结一、知识要点1、平方根:⑴、定义:如果x 2=a ,则x 叫做a 的平方根,记作“(a 称为被开方数)。

⑵、性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

⑶、算术平方根:正数a 的正的平方根叫做a 的算术平方根,记作”。

2、立方根:⑴、定义:如果x 3=a ,则x 叫做a 的立方根,记作”(a 称为被开方数)。

⑵、性质:正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

3、开平方(开立方):求一个数的平方根(立方根)的运算叫开平方(开立方)。

二、规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

3≥0有意义的条件是a ≥0。

4、公式:⑴)2=a (a ≥0)=(a 取任何数)。

5、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。

例1 求下列各数的平方根和算术平方根(1);(2); (3); ⑷ 642)3(-4915121(3)-例2 求下列各式的值(1); (2); (3); (4).81±16-2592)4(-(5),(6),(7)(8)44.136-4925±2)25(-例3、求下列各数的立方根:⑴ 343; ⑵ ; ⑶ 0.72910227-二、巧用被开方数的非负性求值.大家知道,当a≥0时,a 的平方根是±,即a 是非负数.a 例4、若求y x 的立方根.,622=----y x x 练习:已知求的值.,21221+-+-=x x y y x 三、巧用正数的两平方根是互为相反数求值.我们知道,当a≥0时,a 的平方根是±,而a .0)()(=-++a a 例5、已知:一个正数的平方根是2a-1与2-a ,求a 的平方的相反数的立方根.练习:若和是数的平方根,求的值.32+a 12-a m m 四、巧解方程例6、解方程(1)(x+1)2=36 (2)27(x+1)3=64五、巧用算术平方根的最小值求值.我们已经知道,即a=0时其值最小,换句话说的最小值是零.0≥a a 例4、已知:y=,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求b a 的非算术平方根.)1(32++-b a ,求xyz 的值。

(完整版)平方根、算术平方根、立方根练习题

(完整版)平方根、算术平方根、立方根练习题

1、121的平方根是_________,算术平方根_________.
2、 4.9×10³的算术平方根是_________.
3、(-2)²的平方根是_________,算术平方根是_________.
4、0的算术平方根是_________,立方根是_________.
5、-√3是_________的平方根.
6、64的平方根的立方根是_________.
7、如果丨x丨=9,那么x=________;如果x²=9,那么________
8、一个正数的两个平方根的和是_____.一个正数的两个平方根的商是________.
9、算术平方根等于它本身的数有____,立方根等于本身的数有_____.
10、若一个实数的算术平方根等于它的立方根,则这个数是________;
11、√81的平方根是_______,√4的算术平方根是_________,
10-²的算术平方根是_______;
12、若一个数的平方根是±10,则这个数的立方根是_________;
13、当m_______时,有意义;
当m_______时,有意义;
14、若一个正数的平方根是2a-1和-a+2,则a=_______,
这个正数是_______;
15、√a+1+2的最小值是________,此时a的取值是________.
16、2x+1的算术平方根是2,则x=________.。

平方根和立方根

平方根和立方根

七年级数学下册实数--平方根【知识点总结】1.乘方:“n a ”.乘方的结果叫做幂,a 叫做底数,n 叫做指数,读作a 的n 次方或a 的n 次幂.2.平方:“2a ”,读作a 的平方或a 的二次方.3.平方的性质:任何数的平方都是;算术平方根概念:一般地,如果等于a ,那么这个数叫做a 的,也就是说,如果x 2=a ,(x>0)那么x 叫做a 的算术平方根.则a x =算术平方根性质:(1)非负性:(2)个数性质:的算术平方根据都只有一个;(3)还原性质:当0≥a 时,2)(a =,即非负数算术平方根的平方等于该非负数完全平方数:能够完全开方开的尽的数。

如1,4,9,16,...平方根概念:一般地,如果等于a ,那么这个数叫做a 的,也就是说,如果x 2=a ,那么x 叫做a 的平方根.则=x 开平方:求一个数...a 的平方根的运算.......叫做开平方.即求a ±的运算叫开平方. 表示方法:一个正数a 的平方根表示为a ±;若x 2=a (a >0)则x=a ±。

平方根的性质:(1)个数性质:(2)还原性质:(由定义得出)当a ≥0时(a ±)2=,即:非负数的平方根的平方等于该数【经典例题】【例1】计算:12=;22=;32=;42=;52=;62=;72=;82=;92=;112=;122=;132=;142=;152=;162=;172=;182=;192=;2≈;3≈;5≈;6≈;7≈;10≈【例2】求下列各式的值:(1)144(2)-36121(3)±00001.(4)214116+ 【例3】判断下列语句是否正确,正确的打“√”,错误的画“×”,并将错误改正。

(1)7是()-72的算术平方根;()(2)-25的平方根是±5;() (3)36等于±6;()(4)16的平方根是±2;()(5)6是()-62的平方根;()(6)10是10的一个平方根;()(7)正数的平方比它的算术平方根大。

《平方根》《立方根》《有理数》习题精选精练

《平方根》《立方根》《有理数》习题精选精练

八年级数学上(人教版) 《平方根》精练 【知识要点】1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式),2、算术平方根:3、平方根的性质:(1)一个正数有 个平方根,它们 ; (2)0 平方根,它是 ; (3) 没有平方根. 4、重要公式:(1)=2)(a (2){==a a 25、平方表:【典型例题】例1、判断下列说法正确的个数为( ) ① -5是-25的算术平方根; ② 6是()26-的算术平方根; ③ 0的算术平方根是0; ④ 0.01是0.1的算术平方根;⑤ 一个正方形的边长就是这个正方形的面积的算术平方根. A .0 个 B .1个 C .2个 D .3个 例2、36的平方根是( )A 、6B 、6±C 、 6D 、6± 例3、下列各式中,哪些有意义?(1)5 (2)2- (3)4- (4)2)3(- (5)310-例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( ) A .()1+a B .()1+±a C .12+aD .12+±a 例5、求下列各式中的x :(1)0252=-x (2)4(x+1)2-169=0【巩固练习】 一、选择题1. 9的算术平方根是( )A .-3B .3C .±3D .81 2.下列计算正确的是( )A ±2B C.636=± D.992-=- 3.下列说法中正确的是( )A .9的平方根是3B 2 24. 64的平方根是( )A .±8B .±4C .±2D 5. 4的平方的倒数的算术平方根是( )A .4B .18C .-14D .146.下列结论正确的是( ) A 6)6(2-=-- B 9)3(2=- C 16)16(2±=- D 251625162=⎪⎪⎭⎫ ⎝⎛--7.以下语句及写成式子正确的是( ) A 、7是49的算术平方根,即749±= B 、7是2)7(-的平方根,即7)7(2=- C 、7±是49的平方根,即749=±D 、7±是49的平方根,即749±= 8.下列语句中正确的是( )A 、9-的平方根是3-B 、9的平方根是3C 、 9的算术平方根是3±D 、9的算术平方根是39.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;(4)9的平方根是3,其中正确的有( )A .3个B .2个C .1个D .4个 10.下列语句中正确的是( )A 、任意算术平方根是正数B 、只有正数才有算术平方根C 、∵3的平方是9,∴9的平方根是3D 、1-是1的平方根11.下列说法正确的是( )A .任何数的平方根都有两个B .只有正数才有平方根C .一个正数的平方根的平方仍是这个数D .2a 的平方根是a ± 12.下列叙述中正确的是( ) A .(-11)2的算术平方根是±11B .大于零而小于1的数的算术平方根比原数大C .大于零而小于1的数的平方根比原数大D .任何一个非负数的平方根都是非负数 13.25的平方根是( )A 、5B 、5-C 、5±D 、5± 14.36的平方根是( )A 、6B 、6±C 、 6D 、 6± 15.当≥m 0时,m 表示( ) A .m 的平方根B .一个有理数C .m 的算术平方根D .一个正数16.用数学式子表示“169的平方根是43±”应是( )A .43169±= B .43169±=±C .43169= D .43169-=-17.算术平方根等于它本身的数是( )A 、 1和0B 、0C 、1D 、 1±和0 18.0196.0的算术平方根是( )A 、14.0B 、014.0C 、14.0±D 、014.0± 19.2)6(-的平方根是( )A 、-6B 、36C 、±6D 、±620.下列各数有平方根的个数是( )(1)5; (2)(-4)2; (3)-22; (4)0; (5)-a 2; (6)π; (7)-a 2-1 A .3个 B .4个 C .5个 D .6个21.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5± 22.下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1C.2是2的平方根 D. –3是2)3(-的平方根23.下列命题正确的是( ) A .49.0的平方根是0.7 B .0.7是49.0的平方根 C .0.7是49.0的算术平方根 D .0.7是49.0的运算结果24.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( ) A .a B .a - C .2a - D .3a25.3612892=x ,那么x 的值为( ) A .1917±=x B .1917=xC .1817=xD .1817±=x26.下列各式中,正确的是( ) A.2)2(2-=- B. 9)3(2=-C. 39±=±D. 393-=- 27.下列各式中正确的是( ) A .12)12(2-=- B .6218=⨯ C .12)12(2±=-D .12)12(2=-±28.若a 、b 为实数,且471122++-+-=a a ab ,则b a +的值为( )(A) 1± (B) 4 (C) 3或5 (D) 529.若9,422==b a ,且0<ab ,则b a -的值为 ( )(A) 2- (B) 5± (C) 5 (D) 5-30.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ; 31.满足的整数x 是 32.已知一个正方形的边长为a ,面积为S ,则( ) A.a S =B.S 的平方根是aC.a 是S 的算术平方根D.S a ±=33. 若a 和a -都有意义,则a 的值是( ) A.0≥a B.0≤a C.0=a D.0≠a 34.22)4(+x 的算术平方根是( ) A 、 42)4(+x B 、22)4(+x C 、42+x D 、42+x35.2)5(-的平方根是( ) A 、 5± B 、 5 C 、5- D 、5±36.下列各式中,正确的是( ) A. 2)2(2-=- B. 9)3(2=- C. 39±=± D. 393-=-37.下列各式中正确的是( )A .12)12(2-=-B .6218=⨯C .12)12(2±=-D .12)12(2=-±38.下列各组数中互为相反数的是( )A 、2)2(2--与 B 、382--与 C 、2)2(2-与 D 、22与-二、填空题:1.如果x 的平方等于a ,那么x 就是a 的 ,所以的平方根是 2.非负数a 的平方根表示为3.因为没有什么数的平方会等于 ,所以负数没有平方根,因此被开方数一定是 4_______;9的平方根是_______.5的平方根是 ,25的平方根记作 ,结果是 6.非负的平方根叫 平方根 7.2)8(-= , 2)8(= 。

(完整版)平方根立方根知识点归纳及常见题型

(完整版)平方根立方根知识点归纳及常见题型

“平方根”与“立方根”知识点小结一、知识要点1、平方根:⑴、定义:如果x 2=a ,则x 叫做a 的平方根,记作“(a 称为被开方数)。

⑵、性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

⑶、算术平方根:正数a 的正的平方根叫做a ”。

2、立方根:⑴、定义:如果x 3=a ,则x 叫做a ”(a 称为被开方数)。

⑵、性质:正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

3、开平方(开立方):求一个数的平方根(立方根)的运算叫开平方(开立方)。

二、规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

30a ≥0。

4、公式:⑴2=a (a ≥0)(a 取任何数)。

5、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0例1 求下列各数的平方根和算术平方根(1)64;(2)2)3(-; (3)49151; ⑷ 21(3)- 例2 求下列各式的值(1)81±; (2)16-; (3)259; (4)2)4(-.(5)44.1,(6)36-,(7)4925±(8)2)25(-例3、求下列各数的立方根:⑴ 343; ⑵10227-; ⑶ 0.729二、巧用被开方数的非负性求值.当a ≥0时,a 的平方根是±a ,即a 是非负数. 例4、若,622=----y x x 求y x 的立方根.练习:已知,21221+-+-=x x y 求y x 的值.三、巧用正数的两平方根是互为相反数求值.当a ≥0时,a 的平方根是±a ,而.0)()(=-++a a例5、已知:一个正数的平方根是2a-1与2-a ,求a 的平方的相反数的立方根.练习:若32+a 和12-a 是数m 的平方根,求m 的值.四、巧解方程例6、解方程(1)(x+1)2=36 (2)27(x+1)3=64五、巧用算术平方根的最小值求值. 0≥a ,即a=0时其值最小,换句话说a 的最小值是零.例4、已知:y=)1(32++-b a ,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求b a 的非算术平方根.23(2)0y z -++=,求xyz 的值。

平方根和立方根复习

平方根和立方根复习

平方根和立方根复习知识点一:平方根(1)如果一个数的平方等于a ,这个数就叫做a 的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作。

(2)一个正数a 的正的平方根,叫做a 的算术平方根。

0的算术平方根是0。

a(a≥0)的算术平方根记作。

巩固练习一:基础题知识点1 算术平方根1.(呼伦贝尔中考)25的算术平方根是( )A .5B .-5C .±5D . 52.(杭州中考)化简:9=( )A .2B .3C .4D .5 3.14的算术平方根是( ) A .12 B .-12 C .116 D .±124.(南充中考)0.49的算术平方根的相反数是( )A .0.7B .-0.7C .±0.7D .05.(-2)2的算术平方根是( ) A .2 B .±2 C .-2 D . 26.(宜昌中考)下列式子没有意义的是( )A .-3B .0C . 2D .(-1)27.下列说法正确的是( )A .因为52=25,所以5是25的算术平方根B .因为(-5)2=25,所以-5是25的算术平方根C .因为(±5)2=25,所以5和-5都是25的算术平方根D .以上说法都不对8.求下列各数的算术平方根:(1)144; (2)1; (3)1625; (4)0.a a9.求下列各式的值:(1)64;(2)121225; (3)108;(4)(-3)2.知识点2 估计算术平方根10.一个正方形的面积为50平方厘米,则正方形的边长约为() A.5厘米B.6厘米C.7厘米D.8厘米11.(安徽中考)设n为正整数,且n<65<n+1,则n的值为() A.5 B.6 C.7 D.812.(泉州中考)比较大小:用“>”或“<”号填空).中档题16.设a-3是一个数的算术平方根,那么()A.a≥0 B.a>0 C.a>3 D.a≥3 17.(台州中考)下列整数中,与30最接近的是(B)A.4 B.5 C.6 D.7 18.(东营中考)16的算术平方根是()A.±4 B.4 C.±2 D.219.若一个数的算术平方根等于它本身,则这个数是()A.1 B.-1 C.0 D.0或120.下列说法中:①一个数的算术平方根一定是正数;②100的算术平方根是10,记为±100=10;③(-6)2的算术平方根是6;④a2的算术平方根是a.正确的有()A.1个B.2个C.3个D.4个21.(天津中考)已知一个表面积为12 dm2的正方体,则这个正方体的棱长为() A.1 dm B. 2 dm C. 6 dm D.3 dm22.若一个数的算术平方根是11,则这个数是.23.若x-3的算术平方根是3,则x=.24.(青海中考)若数m,n满足(m-1)2+n+2=0,则(m+n)5=.25.计算下列各式:(1)179; (2)0.81-0.04; (3)412-402.26.比较下列各组数的大小:(1)12与14;(2)-5与-7;(3)5与24;(4)24-12与1.5.27.求下列各式中的正数x的值:(1)x2=(-3)2;(2)x2+122=132.28.兴华的书房面积为10.8 m2,她数了一下地面所铺的正方形地砖正好是120块,请问每块地砖的边长是多少?综合题30.国际比赛的足球场长在100 m到110 m之间,宽在64 m到75 m之间,为了迎接某次奥运会,某地建设了一个长方形的足球场,其长是宽的1.5倍,面积是7 560 m2,请你判断这个足球场能用作国际比赛吗?并说明理由.巩固练习二:基础题知识点1 平方根1.(黄冈中考)9的平方根是()A.±3 B.±13C.3 D.-32.(绵阳中考)±2是4的()A.平方根B.相反数C.绝对值D.算术平方根3.下面说法中不正确的是()A.6是36的平方根B.-6是36的平方根C.36的平方根是±6 D.36的平方根是64.下列说法正确的是()A.任何非负数都有两个平方根B.一个正数的平方根仍然是正数C.只有正数才有平方根D.负数没有平方根5.(怀化中考)(-2)2的平方根是()A.2 B.-2 C.±2 D. 2 6.下列各数是否有平方根?若有,求出它的平方根;若没有,请说明理由.(1)(-3)2;(2)-42;(3)-(a2+1).知识点2 平方根与算术平方根的关系7.下列说法不正确的是()A.21的平方根是±21 B.49的平方根是23C.0.01的算术平方根是0.1 D.-5是25的一个平方根8.(武汉校级月考)下列式子中,计算正确的是()A.- 3.6=-0.6 B.(-13)2=-13C.36=±6 D.-9=-3 9.求下列各数的平方根与算术平方根:(1)(-5)2;(2)0;(3)-2;(4)16.10.求下列各式的值:(1)225; (2)-3649; (3)±144121.11.下列说法正确的是()A.-8是64的平方根,即64=-8B.8是(-8)2的算术平方根,即(-8)2=8C.±5是25的平方根,即±25=5D.±5是25的平方根,即25=±512.(东营中考)81的平方根是()A.±3 B.3C.±9 D.913.(郾城区期中)若x2=16,则5-x的算术平方根是()A.±1 B.±4C.1或9 D.1或314.如果某数的一个平方根是-6,那么这个数的另一个平方根是6,这个数是.15.若x+2=3,求2x+5的平方根.16.已知25x2-144=0,且x是正数,求25x+13的值.17.求下列各式中的x:(1)9x2-25=0;(2)4(2x-1)2=36.21.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b的平方根.22.(1)一个非负数的平方根是2a -1和a -5,这个非负数是多少?(2)已知a -1和5-2a 都是m 的平方根,求a 与m 的值.知识点二:立方根如果x 3=a ,那么x 叫做a 的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.a 的立方根记作3a 。

立方根知识点及练习题

立方根知识点及练习题

立方根知识点及练习题一、立方根的定义如果一个数的立方等于 a ,那么这个数叫做 a 的立方根或三次方根。

这就是说,如果\(x^3 = a\),那么 x 叫做 a 的立方根。

例如,因为\(2^3 = 8\),所以 2 是 8 的立方根;因为\((-2)^3 =-8\),所以-2 是-8 的立方根。

二、立方根的性质1、正数的立方根是正数;负数的立方根是负数;0 的立方根是 0。

2、立方根等于它本身的数有 0,1,-1 。

三、立方根的表示方法一个数 a 的立方根用符号“\(\sqrt3{a}\)”表示,读作“三次根号a ”,其中 a 是被开方数,3 是根指数。

例如,\(\sqrt3{8}\)表示 8 的立方根,\(\sqrt3{-8}\)表示-8 的立方根。

四、开立方运算求一个数的立方根的运算,叫做开立方。

开立方与立方互为逆运算。

我们可以通过开立方运算来求一个数的立方根。

例如,求\(\sqrt3{27}\),因为\(3^3 = 27\),所以\(\sqrt3{27} = 3\)。

五、立方根的练习题1、求下列各数的立方根:(1)-27(2)\(\frac{8}{125}\)(3)0解:(1)因为\((-3)^3 =-27\),所以-27 的立方根是-3,即\(\sqrt3{-27} =-3\)。

(2)因为\((\frac{2}{5})^3 =\frac{8}{125}\),所以\(\frac{8}{125}\)的立方根是\(\frac{2}{5}\),即\(\sqrt3{\frac{8}{125}}=\frac{2}{5}\)。

(3)因为\(0^3 = 0\),所以 0 的立方根是 0,即\(\sqrt3{0} =0\)。

2、计算:(1)\(\sqrt3{-1} +\sqrt3{1 +\frac{63}{64}}\)(2)\(\sqrt3{64} \sqrt3{-27}\)解:(1)\(\sqrt3{-1} =-1\)\\begin{align}&\sqrt3{1 +\frac{63}{64}}\\=&\sqrt3{\frac{128}{64}}\\=&\sqrt3{\frac{64 \times 2}{64}}\\=&\sqrt3{2}\end{align}\所以\(\sqrt3{-1} +\sqrt3{1 +\frac{63}{64}}=-1 +\sqrt3{2}\)(2)\(\sqrt3{64} = 4\),\(\sqrt3{-27} =-3\)所以\(\sqrt3{64} \sqrt3{-27} = 4 (-3) = 7\)3、若\(\sqrt3{1 2x}\)与\(\sqrt3{3y 2}\)互为相反数,求\(\frac{1 + 2x}{y}\)的值。

完整版)平方根与立方根典型题大全

完整版)平方根与立方根典型题大全

完整版)平方根与立方根典型题大全平方根与立方根典型题大全一、填空题1.如果$x=9$,那么$x=$ 3;如果$x^2=9$,那么$x=$ 3 或$-3$。

2.若一个实数的算术平方根等于它的立方根,则这个数是1.3.算术平方根等于它本身的数有 1,立方根等于本身的数有 1.4.若$x=3\sqrt{x}$,则$x=0$ 或 $x=9$;若$x^2=-x$,则$x=0$ 或 $x=-1$。

5.当$m3$时,$3m-3$有意义。

6.若一个正数的平方根是$2a-1$和$-a+2$,则$a=2$,这个正数是 3.7.$a+1+2$的最小值是 2,此时$a$的取值是 $-1$。

二、选择题8.若$x^2=a$,则 $|x|\geq 0$,即$x$可以是正数或零,选项B。

8.$(-3)^2=9$,选项D。

9.$y=4+5-x+x-5=-1$,$x-y=x+1$,选项A。

10.当$3x-5>0$时,$x>\frac{5}{3}$,最小整数为2,选项C。

11.一个等腰三角形的周长是 $2\times 5+3\sqrt{2}$,选项D。

12.若$x-5$能开偶次方,则$x\geq 5$,选项C。

13.$2n+1-1=2n$,选项D。

14.正数$a$的算术平方根比它本身大,即$\sqrt{a}>a$,移项得$\sqrt{a}-a>0$,两边平方得$a>1$,选项D。

三、解方程12.$(2x-1)=-8$,解得$x=-\frac{7}{2}$。

13.$4(x+1)^2=8$,解得$x=\pm\sqrt{2}-1$。

14.$(2x-3)^2=25$,解得$x=2$ 或 $x=-\frac{1}{2}$。

四、解答题15.已知:实数$a$、$b$满足条件$a-1+(ab-2)^2=$试求$$\frac{1}{ab(a+1)(b+1)}+\frac{1}{ab(a+2)(b+2)}+\cdots+\frac{ 1}{ab(a+2004)(b+2004)}$$解:将$a-1$移到等式右边,得$$(ab-2)^2=-a+1+(ab-2)^2$$两边同时除以$(ab-2)^2$,得$$1=\frac{-a+1}{(ab-2)^2}+1$$移项得$$\frac{1}{ab-2}=\frac{-a+1}{(ab-2)^2}$$两边同时乘以$\frac{1}{ab}$,得$$\frac{1}{ab(ab-2)}=\frac{-1}{ab-2}+\frac{1}{ab}$$移项得$$\frac{1}{ab}=\frac{1}{ab-2}+\frac{1}{ab(ab-2)}$$将右边的式子通分,得$$\frac{1}{ab}=\frac{ab-2+1}{ab(ab-2)}+\frac{1}{ab(ab-2)}$$化简得$$\frac{1}{ab}=\frac{ab-1}{ab(ab-2)}$$两边同时乘以$\frac{1}{a+1}$,得$$\frac{1}{ab(a+1)}=\frac{b}{a+1}\cdot\frac{ab-1}{ab(ab-2)}$$将右边的式子通分,得$$\frac{1}{ab(a+1)}=\frac{b}{a+1}\cdot\frac{ab-1}{ab(a+2)(ab-2)}$$化简得$$\frac{1}{ab(a+1)(a+2)}=\frac{b(ab-1)}{ab(a+2)(ab-2)(a+1)}$$同理,将左边的式子乘以$\frac{1}{a+2}$,得$$\frac{1}{ab(a+1)(a+2)}=\frac{b}{a+2}\cdot\frac{ab-1}{ab(a+1)(ab-2)}$$将两个式子相加,得$$\frac{2}{ab(a+1)(a+2)}=\frac{b}{a+1}\cdot\frac{ab-1}{ab(ab-2)(a+2)}+\frac{b}{a+2}\cdot\frac{ab-1}{ab(a+1)(ab-2)}$$通分并化简得$$\frac{2}{ab(a+1)(a+2)}=\frac{(ab-1)(a+b+3)}{ab(a+1)(a+2)(ab-2)}$$移项得$$\frac{1}{ab(a+1)(a+2)}=\frac{(ab-1)(a+b+3)}{2ab(a+1)(a+2)(ab-2)}$$所以$$\frac{1}{ab(a+1)(b+1)}+\frac{1}{ab(a+2)(b+2)}+\cdots+\frac{ 1}{ab(a+2004)(b+2004)}=\frac{1}{ab}\left(\frac{1}{a+1}+\frac{ 1}{a+2}+\cdots+\frac{1}{a+2004}\right)\left(\frac{1}{b+1}+\frac {1}{b+2}+\cdots+\frac{1}{b+2004}\right)$$$$=\frac{1}{ab(a+1) (a+2)}\left(\frac{1}{b+1}+\frac{1}{b+2}+\cdots+\frac{1}{b+200 4}\right)$$$$=\frac{(ab-1)(a+b+3)}{2ab(a+1)(a+2)(ab-2)}\left(\frac{1}{b+1}+\frac{1}{b+2}+\cdots+\frac{1}{b+2004}\r ight)$$。

平方根与立方根知识点

平方根与立方根知识点

平方根与立方根知识点数字的平方根与立方根是数学中的基本概念,对于数学学习和实际生活中的计算都具有重要意义。

本文将介绍平方根与立方根的定义、性质以及计算方法,帮助读者更好地理解和运用这两个概念。

1. 平方根的定义与性质平方根是一个数的平方等于它本身的非负实数根。

以数a为例,记作√a,其中a≥0。

以下是平方根的一些基本性质:1)非负实数a的平方根有两个,一个正数和一个负数。

通常平方根指的是非负数平方根,即正数√a。

2)如果a和b是非负实数,且a<b,则√a<√b。

也就是说,非负实数的平方根是一个非递减的函数。

3)平方根的运算可以与其他数学运算相结合,比如加法、减法、乘法和除法。

例如√(a+b)=√a+√b,√(a-b)=√a-√b,√(a*b)=√a*√b,√(a/b)=√a/√b。

2. 平方根的计算方法计算平方根的方法有很多种,以下介绍两种常用的方法:1)查表法:在没有计算器的情况下,可以使用查表法来近似计算平方根。

首先,找到与所求数最接近的两个平方数,然后在这两个平方数的平方根之间做线性估算。

2)牛顿迭代法:这是一种更精确的计算平方根的方法,可以通过迭代逼近来得到平方根的近似值。

具体步骤是:先猜测一个初始值,然后通过不断迭代求解来逼近平方根的真实值。

3. 立方根的定义与性质立方根是一个数的立方等于它本身的实数根。

以数a为例,记作³√a。

以下是立方根的一些基本性质:1)任何实数都有唯一的立方根,不论正负。

正数的立方根是正数,负数的立方根是负数。

2)如果a和b为任意实数,则³√(a*b)=³√a*³√b,³√(a/b)=³√a/³√b。

3)立方根的运算结果也可以带有虚数单位i,表示在复数域中的解。

4. 立方根的计算方法计算立方根的方法也有很多种,以下介绍两种常用的方法:1)估算法:根据所求数的数量级,可以先估算出一个近似值,然后通过不断迭代逼近来逐步得到精确值。

实数知识点总结及习题练习汇编

实数知识点总结及习题练习汇编

实数知识点总结平方根、算数平方根和立方根(3— 10分)1、平方根如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a的平方根记做“ a ”。

2、算术平方根正数a的正的平方根叫做a的算术平方根,记作“・..刀”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

! a (aHO)! Vs — 0la2 = a = Y ;注意ja的双重非负性:y--a (a<0)・ a 亠o3、立方根如果一个数的立方等于a,那么这个数就叫做a的立方根(或a的三次方根)一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:彳_a二2 a,这说明三次根号内的负号可以移到根号外面。

实数(平方根)单元习题练习思维启动如图是一块由两个正方形并排放在一起而成的硬纸板,请你用两刀把它裁成四块,然后拼成一个正方形,拼后的正方形边长为多少?2综合探究探究一由平方根和算术平方根的意义确定字母的取值范围i. J2X中被幵方数为 _____________ ,根号下的被开方数必须是_______________ 才有意义, 因此可列出不等式_______________ ‘ x的取值范围是 _________________ .意义,需要列出不等式组为_______________________________________________ ・X的取值范围是______________ •X3・若有意义‘则x的取值范围是___________________ .•X 1答案:1. 2x,非负数,2x _0 , x _0 .1 -X _0,2. 0EXE1.(x Z0.3. .探究二根据非负数性质求未知数的值2已知X、y为实数,且JT + 3(y—2)=0 .1・由于,3(y—2$都是非负数,结合已知J□十3(y—2$= 0,你能得到什么结论?2 -由1,你能求出x・y的值吗?答案:1 7T 玉0 , 3(y —2)艺0 , VT + 3(y—2) = 0 ,.・.7A1 = 0 ,23(y_2) =0.2. 由1 得,x-1=0 , x=1 ; y-2=0 , y二2 ••• x-y=1-2 = -1 .探究三平方根与简单的一元二次方程21 .由X-196=0 可得____________________2 .据[得,X是196的 _________________ ,所以X二 ________________23. 由1, 2的启示,请你试着求等式16(x + 2) —81 =0中的x值.2 答案:1. x=196 .2 .平方根,X ■二14 .2 2 81 9 1 173・由16x2 一81=0,得x 2 ,.・・x 2 ,「・x或f vf 16 4 4 4探究四由平方根的意义确定字母的值3a・22和2a・3都是m的平方根,求a和m的值.1. 当3a-22与2a -3相等时,求a和m的值.2. 当3a -22与2a -3互为相反数时,求a和m的值.3. _____________________________ 讨论总结:m的值为.答案:1. 3a-22 = 2a-3,得a=19 , 3a-22 = 3 19-22 =35 , 2a-3 = 35 ,2m =35-1225 .2. 3a -22 2a -3=0,得a = 5 , 3a -22 =3 5 -22 ・・7, 2a - 3 = 2 5-3 = 7 ,22m = -7 7 =49.3. m的值为1225或49.探究五利用被开方数非负性求未知数的值已知x、y都是有理数,且y —、尸3,求yxi的平方根.1. Jx二3表示x・3的__________________ ,贝U_______________________ x的范围是2.、3・x表示x 3的.,则X的范围是.3.由1, 2,得X = , y =4.讨论总结:丫灯的平方根是多少?答案:1 .算术平方根,x_3 .2. 算术平方根,X乞3.3. x = 3,进3.4. T y x1=34 =81,— y x1的平方根为_9 .探究六算术平方根与绝对值相综合题已知2009-a +Ja -2010 = a,求J a -20092 +15 的值.1 •由式子•一a—2010可以得出a的取值范围是什么?2 •由1,你能将等式2009_a + Ja_2010 = a中的绝对值去掉吗?23・由2,你能求出a-2009的值吗?4. 讨论总结:求刀・20092 15的值.答案:1.: a-2010_0, r. a_2010.2 •原式变形为a -2009 .. a-2010 - a,即.a-2010 = 2009 .3. a-2010=20092 , a-2009—2010 .4. a-20092 15=2010 15=2025 a-20092 15=45.探究七平方根的实际应用盒子的容积是150cmS求原正方形的边长是多少?1 .由题意可知剪掉正方形的边长为cm.3.由1 , 2的分析,请你列出方程,并解答,求原正方形的边长.答案:1・6.2. 6(X-.v2 3. 6 x-6*2150 , x-6 25 x-6 二5.二x = 11 或x = 1 (舍去).即原正再把它的边折起来做成的,如图,量得这个2 •设原正方形的边长为xcm,请你用X 表示盒子的容积.一个开口的长方体盒子,是从一块正方形的马口铁的每个角剪掉一个36cm的正方形后,方形的边长为11cm.A. B. 8 倍 C. 16 倍 D. 2 倍5. 一个数的算术平方根是它的本身,则这个数是 6 •若,、x ・4 = ・4・y ,贝Uxy 的算术平方根为 7 •代数式・5・r 〜b 的最大值为已知a , b 满足Ja +1 + b —3a —1 =0,求b 2 —5a 的平方根.9 .如果a 为正数,• .29为整数,求・、29-a 的最大值及此时a 的值.251.竺的平方根的数学表达式是(121A.5 12. 9的算术平方根是()A.・3B.3 .当X = -5时,・! X 的值是( A. 5B. -54 .正方形M 的面积是正方形N 的面积的的(C.15 D - ±謄5 二士11C. _3D. 81C. _5D. 2564倍,那么正方形 M 的边长是正方形 N 的边长随堂反馈10 .已知2a-1的平方根为一3, 3a A1的平方根为一4,求a 2b的平方根..•」a +1 =0, a = -1 ; b — 3a -1 = 0 , b-3a-1=0,22.方・・2 . . b -5a =9 , b -5a 的 平方根 为_3.Q o来& •平方根跟踪练习(-)、选择题1 .下列各式中无意义的是()B.C.、・7D .12.丄的算术平方根是 ()4B. C.・ 2 D.A.—I峠UA, -3 =3B. -3 = —3C.D. .一 9 二・3二、填空题4.若一个正方形的面积为13,则正方形的边长为5•小明房间的面积为10.8米S 房间地面恰好由120块相同的正方形地砖铺成,每块地砖的边长是 __________ •6•计算:(1)、,9= ;⑵宁(4)7-4J = ; (^)(两 2=・1. D2.B3.A4.B5.0,6.47._5 因此..2FT5的最大值为5,此时a 的值 8 .•/ Ja +1 色 0 , b —3a —1 X0 ,Ja 十 1 +|b -3a-1 =0 ,为4.2a 1 vtQ10 .由题意»得'解得[3a + b — 1=16.a =5, b=2..a • 2b = 9, a 2b 的平方根为_ 3.5&若 a —2 +7A 3 = 0,贝 V a? —b= _____________ ・9. 一个正方形的面积扩大为原来的4倍,它的边长变为原来的 倍, 面积扩大为原来的9倍,它的边长变为原来的倍,面积扩大为原来的 n 倍,它的边长变为原来的 __________ 倍.10. ____ 的算数平方根是它本身・三、解答题11・求下列各数的算术平方根: 242(1)169(2)0.0256(3)1(4)-22512.要种一块面积为615.44 m 2的圆形草地以美化家庭,它的半径应是多少米? (n 取3.14 )平方根跟踪练习(二)、选择题1 .下列说法中不正确的是()4. 下列各式中,正确的彳、数是()①,0.9 =03 ②③・32的平方根是一 3;A.・2是2的平方根B.2是2的平方根 C.2的平方根是,2D.2的算术平方根是2 .丄的平方根是()4 A. 1 16 3“° * —的平方根是25 A.B. 1c8 2兰一”,用数学式子可以表示为() 5B.「2;Dr 25④-5 2的算术平方根是一A.1 个B.27 13⑤■一是1左曾丿平方根.C.3 个D.45三、解答题10.求下列各式的值:(3)- 121\ 4跟踪练习一答案一、选择题7. x> 0; x< 51. C.2. C.8. 13. A.9. 2; 3 ;.. n二、填空题10.0 和14.三、解答题5. 0.91113; 0.16 ; 了;255•若a是(_4f的平方根,匕的一个平方根是2,则代数式a+ b的值为()A.8B.OC.8D.4 或一4二、填空题6.7. 如果某数的一个平方根是-6,那么这个数为__________ 如果正数m的平方根为x 1和x・3,贝U m的值是.的算术平方根是,J (・9$的平方根是.9. 若b 二疼1 - a • ._a -14 ‘则ab的平方根是.(1)..225 (2)- ' .0.0004⑷一讥0.12⑸应81 —西04 (6) J412—40212146. 3; 5; 2;- 4; 31214跟踪练习二答案一、选择题1. C2. D3. B4. A5. C二、填空题6. 367. 48.23或・39. 2或・2三、解答题10. (1) 15(2)-0.02(3) _ ・2(4)・0.1(5)0.7(6)92。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【基础知识巩固】
一、平方根、算数平方根和立方根
1、平方根
(1)平方根的定义:如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根.即:
如果a x =2,那么x 叫做a 的平方根.
(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。

(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3
(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;
一个负数没有平方根,即负数不能进行开平方运算
(5)符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;
正数a 的负的平方根可用-a 表示.
(6)a x =2 <—> a x ±=
a 是x 的平方 x 的平方是a
x 是a 的平方根 a 的平方根是x
2、算术平方根
(1)算术平方根的定义: 一般地,如果一个正数x 的平方等于a ,2
个正数x 叫做a 的算术平方根.a “根号
a”,a 叫做被开方数.
规定:0的算术平方根是0.
也就是,在等式a x =2 (x≥0)中,规定a x =。

(2)a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;
当a 不是一个完全平方数时,a 是一个无限不循环小数。

(3)当被开方数扩大时,它的算术平方根也扩大;
当被开方数缩小时与它的算术平方根也缩小。

一般来说,被开放数扩大(或缩小)a 倍,算术平方根扩大(或缩小)a 倍,例如错误!未找到引用源。

=5,错误!未找到引用源。

=50。

(4)夹值法及估计一个(无理)数的大小 (5)a x =2 (x≥0) <—> a x =
a 是x 的平方 x 的平方是a
x 是a 的算术平方根 a 的算术平方根是x
(6)正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0) 0≥a
==a a 2 ;注意a 的双重非负性:
-a (a <0) a ≥0
(7)平方根和算术平方根两者既有区别又有联系:
区别在于正数的平方根有两个,而它的算术平方根只有一个;
联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。

3、立方根
(1)立方根的定义:如果一个数x 的立方等于a ,这个数叫做a 的立方根(也叫做三
次方根),即如果3x a =,那么x 叫做a 的立方根
(2)一个数a 的立方根,记作3a ,读作:“三次根号a ”,
其中a 叫被开方数,3叫根指数,不能省略,若省略表示平方。

(3) 一个正数有一个正的立方根;
0有一个立方根,是它本身;
一个负数有一个负的立方根;
任何数都有唯一的立方根。

(4)利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,
求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,即
()330a a a -=->。

(5)a x =3 <—> 3a x =
a 是x 的立方 x 的立方是a
x 是a 的立方根 a 的立方根是x
(6)33a a -=-,这说明三次根号内的负号可以移到根号外面。

【典型例题分析】
知识点一:有关概念的识别
1、下列说法中正确的是( )
A 、的平方根是±3
B 、1的立方根是±1
C 、=±1
D 、是5的平方根的相反数
2、下列语句中,正确的是( )
A .一个实数的平方根有两个,它们互为相反数
B .负数没有立方根
C .一个实数的立方根不是正数就是负数
D .立方根是这个数本身的数共有三个
3、下列说法中:①3±都是27的立方根,②y y =33,③64的立方根是2,④()4832±=±。

其中正确的有 ( )
A 、1个
B 、2个
C 、3个
D 、4个
4、()2
0.7-的平方根是( ) A .0.7- B .0.7± C .0.7 D .0.49
5、下列各组数中,互为相反数的组是( )
A 、-2与2)2(-
B 、-2和38-
C 、-2
1与2 D 、︱-2︱和2
知识点二:计算类题型
1、25的算术平方根是_______;平方根是_____. -27立方根是_______.
___________, ___________,___________. 2、=-2)4( ; =-33)6( ; 2)196(= . 38-= .
3、① 2+32—52 ② 7(
71-7)
③ |23- | + |23-|- |12- | ④ 41)2(823-
-+
4、(1)
327-+2)3(--31- (2)33364
631125.041027-++---
(3)
知识点三:利用平方根和立方根解方程
1、(1)(2x-1)2-169=0; (2)12142=x (3)125)2(3=+x
知识点四:关于有意义的题
a a 0;a a ≥0。

要使 1
a 有意义,必须满足a ≠0.
1、若a 的算术平方根有意义,则a 的取值范围是( )
A 、一切数
B 、正数
C 、非负数
D 、非零数
2、要使62-x 有意义,x 应满足的条件是
3、当________x 时,式子21
--x x 有意义。

知识点五:有关平方根的解答题
1、一个正数a 的平方根是3x ―4与2―x ,则a 是多少?
2、若5a +1和a -19是数m 的平方根,求m 的值。

3、已知x 、y 都是实数,且334y x x =--,求x y 的平方根。

知识点六:非负性的应用
1、已知实数x ,y 满足 2x -+(y+1)2=0,则x-y 等于 解答:根据题意得,x-2=0,y+1=0,
解得x=2,y=-1,
所以,x-y=2-(-1)=2+1=3.
2、已知a 、b 满足0382=-++b a ,解关于x 的方程()122-=++a b x a 。

3、若
0)13(12=-++-y x x ,求25y x +的值。

4、若a 、b 、c 满足01)5(32=-+++-c b a ,求代数式
a
c b -的值。

5、已知a 31-和︱8b -3︱互为相反数,求(ab )-2-27 的值。

【重点知识巩固】
考点、平方根、算术平方根、立方根
1、概念、定义
(1)如果一个正数x 的平方等于a ,即,那么这个正数x 叫做a 的算术平方根。

(2)如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

如果

那么x叫做a的平方根。

(3)如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。

如果,那么x叫做a的立方根。

2、运算名称
(1)求一个正数a的平方根的运算,叫做开平方。

平方与开平方互为逆运算。

(2)求一个数的立方根的运算,叫做开立方。

开立方和立方互为逆运算。

3、运算符号
(1)正数a的算术平方根,记作“a”。

(2)a(a≥0)的平方根的符号表达为。

(3)一个数a的立方根,用表示,其中a是被开方数,3是根指数。

4、运算公式
4、开方规律小结
,a的算术平方根a;正数的平方根有两个,它们互(1)若a≥0,则a的平方根是a
为相反数,其中正的那个叫它的算术平方根;0的平方根和算术平方根都是0;负数没有平方根。

实数都有立方根,一个数的立方根有且只有一个,并且它的符号与被开方数的符号相同。

正数的立方根是正数,负数的立方根是负数,0的立方根是0。

(2)若a<0,则a没有平方根和算术平方根;若a为任意实数,则a的立方根是。

(3)正数的两个平方根互为相反数,两个互为相反数的实数的立方根也互为相反数。

enjoy the trust of 得到...的信任have / put trust in 信任in trust 受托的,代为保管的
take ...on trust对...不加考察信以为真trust on 信赖give a new turn to对~~予以新的看法turn a round / round 转身,转过来,改变意见turn back折回,往回走turn … away 赶走……,辞退……,把……打发走,转脸不睬,使转变方向turn to…转向……,(for help)向……求助,查阅,变成;着手于think through…思考……直到得出结论,想通think of想到,想起,认为,对……有看法/想法。

相关文档
最新文档