人教版九年级数学精品专题14.圆中的最值问题
圆中最值问题10种求法
圆中最值的十种求法在圆中求最值是中考的常见题型,也是中考中的热点、难点问题,有的学生对求最值问题感到束手无策,主要原因就是对求最值的方法了解不多,思路不够灵活.现对在圆中求最值的方法,归纳如下:一、利用对称求最值1.如图:⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值.[分析]:延长AO交⊙O于D,连接CD交⊙O于P,即此时PA+PC最小,且PA+PC的最小值就等于弦CD的长.解:延长AO交⊙O于D,连接CD交OB于P连接PA,过O作OE⊥CD,垂足为E在△OCD中,因为∠AOC=60°所以∠D=∠C=30°在Rt△ODE中 cos30°=即DE=2×cos30°= 所以CD=2DE=2即PA+PC的最小值为2.二、利用垂线段最短求最值2.如图:在直角坐标系中,点A的坐标为(-3,-2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则PQ长度的最小值为 .[分析]:连接AQ、PA,可知AQ⊥PQ. 在Rt△PQA中,PQ=,求PQ的最小值转化为求PA的最小值,根据垂线段最短易求PA的最小值为2。
解:连接PA、QA因为PQ切⊙A于点Q 所以PQ⊥AQ在Rt△APQ中,PQ2=PA2-AQ2即PQ=又因为A(-3,-2) ,根据垂线段最短。
所以PA的最小值为2所以PQ的最小值=三、利用两点之间线段最短求最值3.如图:圆锥的底面半径为2,母线PB的长为6,D为PB的中点,一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为( )A.B.2 C.3 D.3[分析]:因为圆锥的侧面是曲面蚂蚁从A爬行到点D,不好求爬行的最小值,要把立体图形展开为平面图形,再利用两点之间线段最短来解决问题.解:圆锥的侧面展开图如图2,连接AB根据题意得:弧AC的长为2πr=2π·2=4π,PA=6因为4π= 所以n=120°即∠APB=60°又因为PA=PB所以△PAB是等边三角形因为D为PB中点所以AD⊥PB PD=DB=3在Rt△PAD中,AD=,故选C。
初中数学九年级(初三)圆中的最值问题(讲义)
P
F
O
EA
x
1
二、圆与将军饮马 1、如图,CD 是⊙O 的直径,点 A 是半圆上的三等分点,B 是弧 AD 的中点,P 点为直线 CD 上的一个动 点,CD=4. (1)求 AP+BP 的最小值; (2)求 AP﹣BP 的最大值.
2、如图,已知圆 O 的面积为 3π,AB 为直径,弧 AC 的度数为 80°,弧 BD 的度数为 20°,点 P 为直径 AB 上任一点,则 PC+PD 的最小值为_________.
【归纳】 1、垂线段、对称; 4、随动点问题
圆中的最值问题
2、构建函数(不等式); 5、最大角问题
3、弦角问题;
【讲练】 一、垂线段最短 1、如图,已知 AB 是⊙O 的弦,C 是⊙O 上的一个动点,连接 AC、BC,∠C=60°,⊙O 的半径为 2,则 △ABC 面积的最大值是_________. 2、如图,半圆 O 的半径为 1,AC⊥AB,BD⊥AB,且 AC=1,BD=3,P 是半圆上任意一点,则封闭图形 ABDPC 面积的最大值是_________. 3、如图,在平面直角坐标系 xOy 中,直线 AB 经过点 A(﹣4,0)、B(0,4),⊙O 的半径为 1(O 为坐 标原点),点 P 在直线 AB 上,过点 P 作⊙O 的一条切线 PQ,Q 为切点,则切线长 PQ 的最小值为_________.
2、如图,△ABC 中,∠BAC=60°,∠ABC=45°,AB=2 2,D 是线段 BC 上的一个动点,以 AD 为直径 作⊙O 分别交 AB、AC 于 E、F,连接 EF,则线段 EF 长度的最小值为___________.
2、如图,△ABC 中,∠ABC=45°,AC=2,半径为 5的⊙O 始终过 A、C 两点,连接 OB,则线段 OB 长 度的最大值为____________.
人教版九年级上圆中常见最值问题解法探索
圆中常见最值问题解法探索最值问题成为中考的典型考题,也是各章创新考题之一.下面就把圆中常见的最值问题归纳一下,供学习时借鉴.一、直径最大弦型最大值模型1. 最值的源体是圆的弦例1 (2019年东营)如图1,AC 是⊙O 的弦,AC=5,点B 是⊙O 上的一个动点,且∠ABC=45°,若点M 、N 分别是AC 、BC 的中点,则MN 的最大值是 .解析:因为点M ,N 分别是BC ,AC 的中点,所以MN=21AB ,所以当弦AB 取得最大值时,MN 就取得最大值,因为直径是圆中最大的弦,所以当弦AB 是直径时,AB 最大,如图1,连接 AO 并延长交⊙O 于点B ′,连接CB ′,因为AB ′是⊙O 的直径,所以∠ACB ′=90°.因为∠ABC=45°,AC=5,所以∠AB ′C=45°,所以AB ′=2255 =52,所以MN 的最大值为最大MN =225.所以应该填.点评:当线段是圆的某条弦时,熟记直径是圆中最大的弦是解题的关键.2.动点到定弦的最大值例2(2019•广元)如图2,△ABC 是⊙O 的内接三角形,且AB 是⊙O 的直径,点P 为⊙O 上的动点,且∠BPC=60°,⊙O 的半径为6,则点P 到AC 距离的最大值是 .解析:如图2,过O 作OM ⊥AC 于M ,延长MO 交⊙O 于P ,则此时,点P 到AC 的距离最大,且点P 到AC 距离的最大值=PM ,因为OM ⊥AC ,∠A=∠BPC=60°,⊙O 的半径为6,所以OP=OA=6,所以OM=23OA =23×6=33,所以PM=OP+OM=6+33,所以点P 到AC 距离的最大值是6+33,所以答案为6+33.点评:圆上动点到定弦距离的最大值就是垂直平分线弦的直径的两个端点到弦的距离,这是垂径定理的应用,也是直径是圆中最大的弦的应用.此法也是用于在拱形中计算最值. 跟踪专练(2019年杭州)如图3,已知锐角三角形ABC 内接于⊙O ,OD ⊥BC 于点D ,连接OA 。
初中圆的最值问题三种解法
在初中数学中,圆的最值问题可以通过三种不同的解法来求解。
以下是三种常见的解法:
1. 几何解法:
首先,确定问题中圆的相关条件,例如圆的半径或圆心坐标等。
然后,利用几何性质和定理来分析问题。
对于圆的最值问题,常常使用切线和切线长度来解决。
通过找到与切线相关的角度和长度关系,可以求得圆的最大值或最小值。
2. 代数解法:
这种方法使用代数方程和函数来解决圆的最值问题。
首先,将圆的方程转化为合适的形式,例如标准方程或一般方程。
然后,利用代数的方法,对方程进行求导或化简,找到函数的最值点。
最后,将最值点带入原始问题中,求得圆的最大值或最小值。
3. 组合解法:
这种方法结合了几何和代数的思想。
首先,利用几何性质和定理来确定问题中的几何关系。
然后,将几何关系转化为代数方程或函数。
接下来,通过代数的方法求解方程或函数的最值点。
最后,将最值点代入几何关系中,求得圆的最大值或最小值。
圆中最值问题(解析版)
圆中最值问题一、点到直线的最值问题原理:垂线段最短.1、如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为().A. B. C. 3 D. 2答案:B解答:∵PQ切⊙O于点Q,∴∠OQP=90°,∴PQ2=OP2-OQ2,而OQ=2,∴PQ2=OP2-4,即,当OP最小时,PQ最小,∵点O到直线l的距离为3,∴OP的最小值为3,∴PQ选B.2、在平面直角坐标系中,以原点O为圆心的圆过点),直线y=kx-3k+4与⊙O交于B,C两点,则弦BC 的长的最小值为().A. 5B.C.D.答案:D解答:直线y=kx-3k+4必过点D(3,4),∴最短的弦CB是过点D且与该圆直径垂直的弦.∵点D的坐标是(3,4),∴OD=5.∵以原点O为圆心的圆过点,∴圆的半径为BC的长的最小值为3、如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为______.答案:3解答:当OM⊥AB时,OM最小,此时.4、如图,在Rt△AOB中,O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ (点Q为切点),切线PQ的最小值为______.解答:连接OP,OQ,如图所示,∵PQ是O的切线,∴OQ⊥PQ,根据勾股定理知:PQ2=OP2-OQ2,∴当PO⊥AB时,线段PQ最短,∵在Rt△AOB中,,∴OA=8,∴S△AOB=12OA·OB=12AB·OP,即OP=OA OBAB⋅=4,∴5、如图,直线y=kx-3k+4与⊙O交于B、C两点,若⊙O的半径为13,求弦BC长度的最小值.答案:24.解答:y=kx-3k+4必过点D(3,4),∴最短的弦BC是过点D且与该圆直径垂直的弦,∴OD=5,OB=13,∴BD=12,∴BC的长的最小值为24.二、点到圆的最值问题原理:定点与圆上的动点之间的距离:当定点、动点和圆心三点共线时有最大或最小值.AP max=OA+r,AP min=|OA-r|.6、已知点P到圆上各点的最大距离为5,最小距离为1,则圆的的半径为().A. 2或3B. 3C. 4D. 2或4答案:A解答:当点P在圆内,则圆的直径=5+1=6,所以圆的半径=3;当点P在圆外,则圆的直径=5-1=4,所以圆的半径=2.通常构造辅助圆求点到圆的最值问题7、(2021·南平延平区模拟)如图,Rt△ABD中,∠D=90°,AB=8,BD=4,在BD延长线上取一点D,使得DC=BD,在直线AD左侧有一动点P满足∠P AD=∠PDB,连接PC,则线段CP长的最大值为______.答案:解答:如图,取AD的中点O,连接OP,OC.∵∠P AD=∠PDB,∠PDB+∠ADP=90°,∴∠P AD+∠ADP=90°,∴∠APD=90°.∵AO=OD,∴PO=OA=OD.∵AD==∴OP=∵BC=CD=4,OD=∴OC===∵PC≤OP+OC∴PC≤∴PC的最大值为8、(2021·佛山三水区校级二模)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是△ABC内部的一个动点,且满足∠ACD=∠CBD,则AD的最小值为______.答案:2解答:∵∠ACB=90°,∴∠BCD+∠DCA=90°.∵∠DBC=∠DCA,∴∠CBD+∠BCD=90°,∴∠BDC=90°,∴点D在以BC为直径的☉O上,连接OA交☉O于点D,此时DA最小,在Rt△CAO中,∵∠OCA=90°,AC=4,OC=3,OA==∴5∴DA=OA-OD=5-3=2.故答案为29、如图,在△ABC中,∠BCA=90°,AC=BC=2,点P是同一平面内的一个动点,且满足∠BPC=90°,连接AP,求线段AP的最小值和最大值.答案:解答:解:如图,以BC为直径作圆O,连结AO交圆于两点P1,P2,则AP 1最小,AP 2最大.∵AP 1•AP 2=AC 2,AC =2,P 1P 2=2,∴AP 1(AP 1+2)=4,解得AP 1=51±-(负值舍去),∴AP 2=51251+=++-.故线段AP 的最小值和最大值分别是51+-和51+.10、如图,在矩形ABCD 中,AB =3,BC =2,M 是AD 边的中点,N 是AB 边上的动点,将△AMN 沿MN 所在直线折叠,得到△A ′MN ,连接A ′C ,求线段A ′C 的最小值.答案:解答:解:∵四边形ABCD 是矩形∴AB =CD =3,BC =AD =2,∵M 是AD 边的中点,∴AM =MD =1∵将△AMN 沿MN 所在直线折叠,∴AM =A 'M =1∴点A '在以点M 为圆心,AM 为半径的圆上,∴如图,当点A '在线段MC 上时,A 'C 有最小值, ∵1022=+=CD MD MC ,∴A ′C 的最小值=MC -MA '=110-.11、如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A ′MN ,连接A ′C ,请求出A ′B 长度的最小值.答案:解答:解:如图,由折叠知A ′M =AM ,又M 是AD 的中点,可得MA =MA ′=MD ,故点A ′在以AD 为直径的圆上,由模型可知,当点A ′在BM 上时,A ′B 长度取得最小值,∵边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,∴BM =3122=-,故A ′B 的最小值为13-12、如图,在矩形ABCD 中,AB =3,BC =4,点E 是AB 边上一点,且AE =2,点F 是边BC 上的任意一点,把△BEF 沿EF 翻折,点B 的对应点为G ,连接AG ,CG ,求四边形AGCD 的面积的最小值.答案:解答:∵四边形ABCD 是矩形,∴CD =AB =3,AD =BC =4,∠ABC =∠D =90°,根据勾股定理得,AC =5,∵AB =3,AE =2,∴点F 在BC 上的任何位置时,点G 始终在AC 的下方,设点G 到AC 的距离为,∵S 四边形AGCD =S △ACD +S △ACG =AD ×CD +AC ×=×4×3+21×5×h =25h +6, ∴要四边形AGCD 的面积最小,即h 最小,∵点G 是以点E 为圆心,BE =1为半径的圆上在矩形ABCD 内部的一部分点,h 2121h 21∴EG ⊥AC 时,h 最小,即点E ,点G ,点H 共线. 由折叠知∠EGF =∠ABC =90°,延长EG 交AC 于H ,则EH ⊥AC ,在Rt △ABC 中,sin ∠BAC =54=AC BC , 在Rt △AEH 中,AE =2,sin ∠BAC =54=AE EH , ∴EH =54AE =58, ∴h =EH -EG =58-1=53,∴S 四边形AGCD 最小=25h +6=5325⨯+6=215.。
圆中最值问题10种求法(供参考)
圆中最值的十种求法在圆中求最值是中考的常见题型,也是中考中的热点、难点问题,有的学生对求最值问题感到束手无策,主要原因就是对求最值的方法了解不多,思路不够灵活.现对在圆中求最值的方法,归纳如下:一、利用对称求最值1.如图:⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值.[分析]:延长AO交⊙O于D,连接CD交⊙O于P,即此时PA+PC最小,且PA+PC的最小值就等于弦CD的长.解:延长AO交⊙O于D,连接CD交OB于P连接PA,过O作OE⊥CD,垂足为E在△OCD中,因为∠AOC=60°所以∠D=∠C=30°在Rt△ODE中cos30°=即DE=2×cos30°= 所以CD=2DE=2即PA+PC的最小值为2.二、利用垂线段最短求最值2.如图:在直角坐标系中,点A的坐标为(-3, -2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则PQ长度的最小值为.[分析]:连接AQ、PA,可知AQ⊥PQ. 在Rt△PQA中,PQ=,求PQ的最小值转化为求PA的最小值,根据垂线段最短易求PA的最小值为2.解:连接PA、QA因为PQ切⊙A于点Q 所以PQ⊥AQ在Rt△APQ中,PQ2=PA2-AQ2即PQ=又因为A(-3,-2) ,根据垂线段最短。
所以PA的最小值为2所以PQ的最小值=三、利用两点之间线段最短求最值3.如图:圆锥的底面半径为2,母线PB的长为6,D为PB的中点,一只蚂蚁从点A 出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为( )A.B.2C.3D.3[分析]:因为圆锥的侧面是曲面蚂蚁从A爬行到点D,不好求爬行的最小值,要把立体图形展开为平面图形,再利用两点之间线段最短来解决问题.解:圆锥的侧面展开图如图2,连接AB根据题意得:弧AC的长为2πr=2π·2=4π,PA=6因为4π= 所以n=120°即∠APB=60°又因为PA=PB所以△PAB是等边三角形因为D为PB中点所以AD⊥PB PD=DB=3在Rt△PAD中,AD=,故选C.四、利用直径是圆中最长的弦求最值4.如图:半径为2.5的⊙O中,直径AB的两侧有定点C和动点P,已知BC:CA=4:3,点P在劣弧AB上运动,过点C作CP的垂线,与PB的延长线交于点Q,(1)求∠P的正切值;(2)当CP⊥AB时,求CD和CQ的长;当点P运动到什么位置时,CQ取得最大值,并求出此时CQ的长.[分析]:易证明△ACB∽△PCQ,所以,即CQ=PC. 当PC最大时,CQ最大,而PC是⊙O 的动弦,当PC是⊙O的直径时最大.五、利用弧的中点到弦的距离最大求最值5.如图:已知⊙O的半径为2,弦BC的长为2,点A为弦BC所对优弧上任意一点,(B、C两点除外),求△ABC面积的最大值.[分析]:设BC边上的高为h因为S△ABC=BC h=×2h=h当h最大时S△ABC最大,当点A在优弧的中点时h最大.解:当点A为优弧的中点时,作AD⊥BC于D连接BO 即BD=CD=在Rt△BDO中,OD2=OB2-BD2=22-()2=1所以OD=1 所以AD=2+1=3所以S△ABC=×BC·AD=×2×3=3即△ABC面积的最大值为3六、利用周长一定时,圆的面积最大求最值6.用48米长的篱笆材料,在空地上围成一个绿化场地,现有两种方案:一种是围成正方形的场地,另一种是围成圆形场地,试问选用哪一种方案,围成的场地面积较大?并说明理由.[分析]:周长一定的几何图形,圆的面积最大.解:围成圆形场地的面积较大设S1、S2分别表示围成的正方形场地、圆形场地的面积则S1=()2=144 S2=π·()2=因为π<4 所以>所以>=144 所以S2>S1 所以应选用围成圆形场地的方案面积较大七、利用判别式求最值7.如图:在半径为1的⊙O中,AB是弦,OM⊥AB,垂足为M,求OM+AB的最大值.[分析]:可设AM=x,把OM用x的代数式表示出来,构造关于x的一元二次方程,然后利用判别式来求最值.解:设AM=x,在Rt△OAM中OM=所以OM+AB=+2x=a整理得:5x2-4ax+(a2-1)=0因为△=(-4a)2-4×5×(a2-1)≥0即a2≤5 所以a≤所以OM+AB的最大值为八、利用一条弧所对的圆周角大于圆外角求最值8.如图:海边立有两座灯塔A、B,暗礁分布在经过A、B两点的弓形(弓形的弧是⊙O的一部分)区域内,∠AOB=80°,为避免触礁,轮船P与A、B的张角∠APB的最大值为.[分析]:连接AC,易知∠ACB=∠AOB=40°,又因为∠ACB≥∠P,所以∠P的最大值为40°.解:如图:连接AC,根据圆周角定理可知∠ACB=∠AOB=×80°=40°又因为∠ACB≥∠P 即∠APB≤40°所以∠APB的最大值为40°九、利用经过⊙O内一定点P的所有弦中,与OP垂直的弦最短来求最值9.如图:⊙O的半径为5cm,点P为⊙O内一点,且OP=3cm,则过点P的弦AB长度的最小值为cm.[分析]:过P作AB⊥OP,交⊙O于A、B,则AB的长最小.解:在Rt△OAP中,AP=所以AB=2AP=2×4=8所以AB的最小值为8十、利用经过圆外一点与圆心的直线与⊙O的两个交点与点P的距离最大或最小求最值10.如图:点P为⊙O外一点,PQ切⊙O于点Q,⊙O的半径为3cm,切线PQ的长为4cm,则点P与⊙O上各点的连线长度的最大值为,最小值为.[分析]:过P、O两点作直线交⊙O于A、B,则PA的长度最大,PB的长度最小.解:连接OQ 因为PQ切⊙O于Q所以OQ⊥PQ在Rt△PQO中PQ2+OQ2=OP2即42+32=OP2 所以OP=5所以PB=5-3=2 PA=6+2=8所以点P与⊙O上各点连线长度的最大为8cm,最小值为2cm.。
初三有关圆的最值问题专题
初三有关圆的最值问题专题初三数学中,有关圆的最值问题是一个常见的题型。
在这种问题中,通常需要求解出一些与圆相关的特征的最值,比如圆的周长、面积、半径等。
下面是一些关于圆的最值问题的参考内容。
1. 圆的周长最值问题:圆的周长公式为C=2πr,其中r为圆的半径。
要求圆的周长的最大值或最小值,可以采用以下方法:- 最大值问题:对于给定的圆心,令圆的半径r尽可能地大。
当r趋向于正无穷时,圆的周长也会趋向于正无穷。
- 最小值问题:对于给定的圆心,令圆的半径r尽可能地小。
当r趋向于0时,圆的周长也会趋向于0。
2. 圆的面积最值问题:圆的面积公式为S=πr²。
要求圆的面积的最大值或最小值,可以采用以下方法:- 最大值问题:对于给定的圆心,令圆的半径r尽可能地大。
当r趋向于正无穷时,圆的面积也会趋向于正无穷。
- 最小值问题:对于给定的圆心,令圆的半径r尽可能地小。
当r趋向于0时,圆的面积也会趋向于0。
3. 圆的半径最值问题:圆的半径是一个与圆心距离相等的线段。
要求圆的半径的最大值或最小值,可以采用以下方法:- 最大值问题:对于给定的边界条件,通过几何推导或利用数学方法求解出最大的半径。
- 最小值问题:对于给定的边界条件,通过几何推导或利用数学方法求解出最小的半径。
需要注意的是,在实际问题中,我们常常会遇到给定某些条件下求圆的最值问题。
这种情况下,需要结合所给条件进行分析,推导出适用的公式,并通过求导等方法进行解答。
总结起来,圆的最值问题是初三数学中的一个重点,需要掌握圆的周长、面积、半径等概念,并能够通过数学方法解答出相关的最值问题。
熟练掌握圆的最值问题的求解方法,对于后续数学知识的学习和应用都是有很大帮助的。
【初三数学】圆中的最值问题(2)
【初三数学】圆中的最值问题(2)
中小学微学堂
中小学微课与各科学习资料
44篇原创内容
公众号
往期回顾
【初三数学】圆中的最值问题(1)
思考一下,再往下看。
先看一个定理:
在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等。
在同圆或等圆中,大弧所对的圆周角大
继续分析:
如果圆周角的度数不变的时候,改变圆的半径,那么它所对的弦长怎么变呢?
可以看出半径越大,圆周角对的弦也越大.
由下面的解释可知:
简略解答:
来源网络|侵删温馨提示。
初三专题 圆中的最值问题
初三专题圆中的最值问题一.选择题(共18小题)1.如图,线段AB=4,C为线段AB上的一个动点,以AC、BC为边作等边△ACD和等边△BCE,⊙O外接于△CDE,则⊙O半径的最小值为()A.4B.C.D.22.如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C、D两点,点E为⊙G上一动点,CF⊥AE于F.当点E从点B出发顺时针运动到点D时,点F所经过的路径长为()A.B.C.D.3.如图,▱ABCD的对角线AC,BD相交于点O,E是以A为圆心,以2为半径为圆上一动点,连接CE,点P为CE的中点,连接BP,若AC=a,BD=b,则BP的最大值为()A.+1B.+1C.D.+14.如图,在平面直角坐标系xOy中,A(﹣2,0),B(0,2),⊙O的半径为1,点C为⊙O上一动点,过点B作BP⊥直线AC,垂足为点P,则P点纵坐标的最大值为()A.B.C.2D.5.如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=2,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为()A.2﹣2B.C.D.6.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,D为AB上不与AB重合的一个动点,过点D分别作DE⊥AC于点E,DF⊥BC于点F,则线段EF的最小值为()A.3B.4C.D.7.在等腰直角三角形ABC中,∠BAC=90°,BC=6,点P是线段BC上的一个动点,过点P分别作AB、AC的垂线交AB、AC于点M、N,连接MN,则MN的最小值为()A.4B.3C.2D.18.如图,在矩形ABCD中,AB=3,BC=4,O为矩形ABCD的中心,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP,则△AOP面积的最大值为()A.4B.C.D.9.如图,矩形ABCD中,AB=2,BC=3,分别以A、D为圆心,1为半径画圆,E、F分别是⊙A、⊙D上的一动点,P是BC上的一动点,则PE+PF的最小值是()A.2B.3C.4D.510.如图,△ABC内接于⊙O,AB是⊙O的直径,AB=10,AC=BC,点E,F 分别是边AC,BC的中点,点P是线段EF上的一个动点,连接AP、OP,则△AOP的周长的最小值为()A.5B.5+5C.10D.1511.如图,点D,E分别是⊙O的内接正三角形ABC的AB,AC边的中点,若DE=,则⊙O的半径为()A.B.C.1D.212.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是()A.4.75B.4.8C.5D.413.如图,已知∠AOB=60°,半径为2的⊙M与边OA、OB相切,若将⊙M 水平向左平移,当⊙M与边OA相交时,设交点为E和F,且EF=6,则平移的距离为()A.2B.2或6C.4或6D.1或5 14.已知⊙O的半径为1,圆心0到直线l的距离为2,过l上任一点A作⊙O 的切线,切点为B,则线段AB的最小值为()A.1B.C.D.215.如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(﹣1,0),半径为1.若D是⊙O上的一个动点,线段DA与y轴交于点E,则△ABE面积的最大值为()A.2+B.2+C.1D.216.如图,已知A、B两点的坐标分别为(﹣2,0)、(0,1),⊙C的圆心坐标为(0,﹣1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是()A.3B.C.D.417.如图,已知A、B两点的坐标分别为(﹣2,0)、(0,1),⊙C的圆心坐标为(0,﹣1),半径为1,E是⊙C上的一动点,则△ABE面积的最大值为()A.2+B.3+C.3+D.4+18.如图∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为()A.3B.6C.D.二.填空题(共11小题)19.如图,已知线段AB=6,C为线段AB上的一个动点(不与A、B重合),将线段AC绕点A逆时针旋转120°得到AD,将线段BC绕点B顺时针旋转120°得到BE,⊙O外接于△CDE,则⊙O的半径最小值为.20.如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O是一动点且P在第一象限内,过P作⊙O切线与x轴相交于点A,与y 轴相交于点B.则线段AB的最小值是.21.如图,⊙O的半径为1,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为.22.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,⊙C的半径为1,点P 是斜边AB上的点,过点P作⊙C的一条切线PQ(点Q是切点),则线段PQ 的最小值为.23.如图,矩形ABCD中,AB=6,BC=5,以D为圆心,2为半径画⊙D,E是圆⊙D上一动点,P是BC上一动点,则PE+PA最小值是.24.如图,在矩形ABCD中,AB=3,AD=4,点E是边BC的中点,连接AE,与对角线BD交于点F.点M是AD边上的一个动点,连接MF、MC,则MF+MC的最小值为.25.如图,已知A,B两点的坐标分别为(2,0),(0,2),⊙C的圆心坐标为(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是.26.如图,已知A、B两点的坐标分别为(﹣4,0)、(0,4),⊙C的圆心坐标为C(2,0),半径为2.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最大值是.27.如图,平面直角坐标系中,分别以点M(2,3)、N(3,﹣5)为圆心,以l、2为半径作⊙M、⊙N,A、B分别是⊙M、⊙N上的动点,P为y轴上的动点,则PA+PB的最小值等于.28.如图,平面直角坐标系中,分别以点A(2,3)、点B(3,4)为圆心,以1、3为半径作⊙A、⊙B,M,N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值为.29.如图,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于.三.解答题(共1小题)30.问题情境:如图1,P是⊙O外的一点,直线PO分别交⊙O于点A、B,则PA是点P到⊙O上的点的最短距离.(1)探究:如图2,在⊙O上任取一点C(不为点A、B重合),连接PC、OC.试证明:PA <PC.(2)直接运用:如图3,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是上的一个动点,连接AP,则AP的最小值是.(3)构造运用:如图4,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,请求出A′B长度的最小值.解:由折叠知A′M=AM,又M是AD的中点,可得MA=MA′=MD,故点A′在以AD为直径的圆上.(请继续完成解题过程)(4)综合应用:(下面两小题请选择其中一道完成)①如图5,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.②如图6,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于.初三专题圆中的最值问题参考答案与试题解析一.选择题(共18小题)1.如图,线段AB=4,C为线段AB上的一个动点,以AC、BC为边作等边△ACD和等边△BCE,⊙O外接于△CDE,则⊙O半径的最小值为()A.4B.C.D.2【分析】分别作∠A与∠B角平分线,交点为P.由三线合一可知AP与BP为CD、CE垂直平分线;再由垂径定理可知圆心O在CD、CE垂直平分线上,则交点P与圆心O重合,即圆心O是一个定点;连OC,若半径OC最短,则OC⊥AB,由△AOB为底边4,底角30°的等腰三角形,可求得OC=.【解答】解:如图,分别作∠A与∠B角平分线,交点为P.∵△ACD和△BCE都是等边三角形,∴AP与BP为CD、CE垂直平分线.又∵圆心O在CD、CE垂直平分线上,则交点P与圆心O重合,即圆心O是一个定点.连接OC.若半径OC最短,则OC⊥AB.又∵∠OAC=∠OBC=30°,AB=4,∴OA=OB,∴AC=BC=2,∴在直角△AOC中,OC=AC•tan∠OAC=2×tan30°=.故选:B.【点评】本题考查了圆的综合题.需要掌握等边三角形的“三线合一”的性质,三角形的外接圆圆心为三角形的垂心,点到直线的距离垂线段最短以及解直角三角形等知识点.难度不大,注意数形结合数学思想的应用.2.如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C、D两点,点E为⊙G上一动点,CF⊥AE于F.当点E从点B出发顺时针运动到点D时,点F所经过的路径长为()A.B.C.D.【分析】连接AC,AG,由OG垂直于AB,利用垂径定理得到O为AB的中点,由G的坐标确定出OG的长,在直角三角形AOG中,由AG与OG的长,利用勾股定理求出AO的长,进而确定出AB的长,由CG+GO求出OC的长,在直角三角形AOC中,利用勾股定理求出AC的长,由CF垂直于AE,得到三角形ACF始终为直角三角形,点F的运动轨迹为以AC为直径的半径,如图中红线所示,当E位于点B时,CO⊥AE,此时F与O重合;当E位于D 时,CA⊥AE,此时F与A重合,可得出当点E从点B出发顺时针运动到点D时,点F所经过的路径长,在直角三角形ACO中,利用锐角三角函数定义求出∠ACO的度数,进而确定出所对圆心角的度数,再由AC的长求出半径,利用弧长公式即可求出的长.【解答】解:连接AC,AG,∵GO⊥AB,∴O为AB的中点,即AO=BO=AB,∵G(0,1),即OG=1,∴在Rt△AOG中,根据勾股定理得:AO==,∴AB=2AO=2,又CO=CG+GO=2+1=3,∴在Rt△AOC中,根据勾股定理得:AC==2,∵CF⊥AE,∴△ACF始终是直角三角形,点F的运动轨迹为以AC为直径的半圆,当E位于点B时,CO⊥AE,此时F与O重合;当E位于D时,CA⊥AE,此时F与A重合,∴当点E从点B出发顺时针运动到点D时,点F所经过的路径长,在Rt△ACO中,tan∠ACO==,∴∠ACO=30°,∴度数为60°,∵直径AC=2,∴的长为=π,则当点E从点B出发顺时针运动到点D时,点F所经过的路径长π.故选:B.【点评】此题属于圆综合题,涉及的知识有:坐标与图形性质,勾股定理,锐角三角函数定义,弧长公式,以及圆周角定理,其中根据题意得到点E从点B出发顺时针运动到点D时,点F所经过的路径长是解本题的关键.3.如图,▱ABCD的对角线AC,BD相交于点O,E是以A为圆心,以2为半径为圆上一动点,连接CE,点P为CE的中点,连接BP,若AC=a,BD=b,则BP的最大值为()A.+1B.+1C.D.+1【分析】连接OP,根据平行四边形对角线互相平分知AO=CO=AC=a、BO=DO=BD=b,由点P为CE中点得知随着点E的运点,点P的运动轨迹是以O为圆心、1为半径的圆,据此解答可得.【解答】解:如图,连接OP,∵四边形ABCD是平行四边形,∴AO=CO=AC=a,BO=DO=BD=b,∵点P为CE中点,∴OP∥AE,且OP=AE=1,∴随着点E的运点,点P的运动轨迹是以O为圆心、1为半径的圆,则当⊙O与OD交于点P时,BP最大,为BO+OP=+1,故选:B.【点评】本题主要考查圆的综合问题,掌握平行四边形的性质、中位线定理及点的运动轨迹问题是解题的关键.4.如图,在平面直角坐标系xOy中,A(﹣2,0),B(0,2),⊙O的半径为1,点C为⊙O上一动点,过点B作BP⊥直线AC,垂足为点P,则P点纵坐标的最大值为()A.B.C.2D.【分析】当AC与⊙O相切于点C时,P点纵坐标的最大值,如图,直线AC交y轴于点D,连结OC,作CH⊥x轴于H,PM⊥x轴于M,DN⊥PM于N,由切线性质得OC⊥AC,在△AOC中判断∠OAC=30°,∠AOC=60°,再在Rt△AOD中利用含30度的直角三角形三边的关系得到OD=OA=,则在Rt△BDP中,由于∠BDP=∠ADO=60°,则可计算出DP=BD=1﹣,然后在Rt△DPN中计算出PN=DP=﹣,最后计算PN+MN,从而可得到P点纵坐标的最大值.【解答】解:当AC与⊙O相切于点C时,P点纵坐标的最大值,如图,直线AC交y轴于点D,连结OC,作CH⊥x轴于H,PM⊥x轴于M,DN⊥PM 于N,∵AC为切线,∴OC⊥AC,在△AOC中,∵OA=2,OC=1,∴∠OAC=30°,∠AOC=60°,在Rt△AOD中,∵∠DAO=30°,∴OD=OA=,在Rt△BDP中,∵∠BDP=∠ADO=60°,∴DP=BD=(2﹣)=1﹣,在Rt△DPN中,∵∠PDN=30°,∴PN=DP=﹣,而MN=OD=,∴PM=PN+MN=1﹣+=,即P点纵坐标的最大值为.故选:B.【点评】本题考查了圆的综合题:熟练掌握切线的性质和含30度的直角三角形三边的关系;理解坐标与图形性质,题目比较好,有一定的难度.5.如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=2,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为()A.2﹣2B.C.D.【分析】连结AE,如图1,先根据等腰直角三角形的性质得到AB=AC=2,再根据圆周角定理,由AD为直径得到∠AED=90°,接着由∠AEB=90°得到点E 在以AB为直径的⊙O上,于是当点O、E、C共线时,CE最小,如图2,在Rt△AOC中利用勾股定理计算出OC=,从而得到CE的最小值为﹣1.【解答】解:连结AE,如图1,∵∠BAC=90°,AB=AC,BC=2,∴AB=AC=2,∵AD为直径,∴∠AED=90°,∴∠AEB=90°,∴点E在以AB为直径的⊙O上,∵⊙O的半径为1,连接OE,OC,∴OE=AB=1在Rt△AOC中,∵OA=2,AC=4,∴OC==,由于OC=,OE=1是定值,点E在线段OC上时,CE最小,如图2,∴CE=OC﹣OE=﹣1,即线段CE长度的最小值为﹣1.故选:C.【点评】本题考查了圆的综合题:熟练掌握圆周角定理和等腰直角三角形的性质;会利用勾股定理计算线段的长.解决本题的关键是确定E点运动的规律,从而把问题转化为圆外一点到圆上一点的最短距离问题.6.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,D为AB上不与AB重合的一个动点,过点D分别作DE⊥AC于点E,DF⊥BC于点F,则线段EF的最小值为()A.3B.4C.D.【分析】连接CD,利用勾股定理列式求出AB,判断出四边形CFDE是矩形,根据矩形的对角线相等可得EF=CD,再根据垂线段最短可得CD⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出方程求解即可.【解答】解:如图,连接CD.∵∠ACB=90°,AC=6,BC=8,∴AB==10,∵DE⊥AC,DF⊥BC,∠C=90°,∴四边形CFDE是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时,线段CD的值最小,即线段EF的值最小,=BC•AC=AB•CD,此时,S△ABC即×8×6=×10•CD,解得CD=,∴EF=.故选:D.【点评】本题考查了矩形的判定与性质,垂线段最短的性质,勾股定理,判断出CD⊥AB时,线段EF的值最小是解题的关键,难点在于利用三角形的面积列出方程.7.在等腰直角三角形ABC中,∠BAC=90°,BC=6,点P是线段BC上的一个动点,过点P分别作AB、AC的垂线交AB、AC于点M、N,连接MN,则MN的最小值为()A.4B.3C.2D.1【分析】首先证明四边形PMAN是矩形,可得MN=PA,根据垂线段最短即可解决问题;【解答】解:∵PM⊥AB,PN⊥AC,∴∠PMA=∠PNA=∠A=90°,∴四边形PMAN是矩形,∴MN=PA,∴当PA⊥BC时,PA的值最小,此时∵AB=AC,PA⊥BC,∴PB=PC,∴PA=BC=3,∴MN的最小值为3,故选:B.【点评】本题考查等腰直角三角形的性质、矩形的判定和性质、垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.如图,在矩形ABCD中,AB=3,BC=4,O为矩形ABCD的中心,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP,则△AOP面积的最大值为()A.4B.C.D.【分析】当P点移动到平行于OA且与⊙D相切时,△AOP面积的最大,由于P 为切点,得出MP垂直与切线,进而得出PM⊥AC,根据勾股定理先求得AC 的长,进而求得OA的长,根据△ADM∽△ACD,求得DM的长,从而求得PM的长,最后根据三角形的面积公式即可求得;【解答】解:当P点移动到平行于OA且与⊙D相切时,△AOP面积的最大,如图,∵P是⊙D的切线,∴DP垂直与切线,延长PD交AC于M,则DM⊥AC,∵在矩形ABCD中,AB=3,BC=4,∴AC==5,∴OA=,∵∠AMD=∠ADC=90°,∠DAM=∠CAD,∴△ADM∽△ACD,∴=,∵AD=4,CD=3,AC=5,∴DM=,∴PM=PD+DM=1+=,∴△AOP的最大面积=OA•PM=××=,故选:D.【点评】本题考查了圆的切线的性质,矩形的性质,平行线的性质,勾股定理的应用以及三角形相似的判定和性质,本题的关键是判断出P处于什么位置时面积最大;9.如图,矩形ABCD中,AB=2,BC=3,分别以A、D为圆心,1为半径画圆,E、F分别是⊙A、⊙D上的一动点,P是BC上的一动点,则PE+PF的最小值是()A.2B.3C.4D.5【分析】以BC为轴作矩形ABCD的对称图形A′BCD′以及对称圆D′,连接AD′交BC于P,交⊙A、⊙D′于E、F′,连接PD,交⊙D于F,EF′就是PE+PF 最小值;根据勾股定理求得AD′的长,即可求得PE+PF最小值.【解答】解:如图,以BC为轴作矩形ABCD的对称图形A′BCD′以及对称圆A′,连接A′D交BC于P,则DE′就是PE+PD最小值;∵矩形ABCD中,AB=2,BC=3,圆A的半径为1,∴A′D′=BC=3,AA′=2AB=4,AE=D′F′=1,∴AD′=5,EF′=5﹣2=3∴PE+PF=PF′+PE=EF′=3,故选:B.【点评】本题考查了轴对称﹣最短路线问题,勾股定理的应用等,作出对称图形是本题的关键.10.如图,△ABC内接于⊙O,AB是⊙O的直径,AB=10,AC=BC,点E,F 分别是边AC,BC的中点,点P是线段EF上的一个动点,连接AP、OP,则△AOP的周长的最小值为()A.5B.5+5C.10D.15【分析】连接:OC,PC.先证明EF为OC的垂直平分线,从而可得到PC=OP,然后依据三角形的三边关系可知当点A、P、C在一条直线上时,AP+OP有最小值,然后由OA为定值可知当AP+OP最小时,△APO的周长最小.【解答】解:连接:OC,PC.∵AC=BC,AO=OB,OC=OC,∴△AOC≌△BOC,∴∠AOC=∠BOC=90°.∴OC⊥AB.∵点E,F分别是边AC,BC的中点,∴EF∥AB.∴OC⊥EF,且CG=OG.∴GP为CO的垂直平分线,∴CP=OP.∴AP+OP=AP+CP.∴当点A、P、C在一条直线上时(点P与点E重合时),AP+OP有最小值.又∵OA为定值,∴当AP+OP最小时,△APO的周长有最小值.∴△APO的周长最小值=AO+AC=AO+OA=5+5.故选:B.【点评】本题主要考查的是三角形的外接圆与外心、找出△APO周长取得最小值的条件是解题的关键.11.如图,点D,E分别是⊙O的内接正三角形ABC的AB,AC边的中点,若DE=,则⊙O的半径为()A.B.C.1D.2【分析】连接OB、OC,作OF⊥BC于F,根据三角形中位线定理求出BC,根据圆周角定理得到∠BOC=120°,利用余弦的概念计算即可.【解答】解:连接OB、OC,作OF⊥BC于F,则BF=CF=BC,∵点D,E分别AB,AC边的中点,∴BC=2DE=2,由圆周角定理得,∠BOC=2∠A=120°,∴∠OBF=30°,∴OB==2,故选:D.【点评】本题考查的是三角形的外接圆与外心,掌握三角形中位线定理、圆周角定理以及锐角三角函数的定义是解题的关键.12.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是()A.4.75B.4.8C.5D.4【分析】设QP的中点为F,圆F与AB的切点为D,连接FD,连接CF,CD,则有FD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形,FC+FD=PQ,由三角形的三边关系知,FC+FD>CD;只有当点F在CD上时,FC+FD=PQ 有最小值,最小值为CD的长,即当点F在直角三角形ABC的斜边AB的高CD上时,PQ=CD有最小值,由直角三角形的面积公式知,此时CD=BC•AC ÷AB=4.8.【解答】解:如图,设QP的中点为F,圆F与AB的切点为D,连接FD、CF、CD,则FD⊥AB.∵AB=10,AC=8,BC=6,∴∠ACB=90°,FC+FD=PQ,∴FC+FD>CD,∵当点F在直角三角形ABC的斜边AB的高CD上时,PQ=CD有最小值,∴CD=BC•AC÷AB=4.8.故选:B.【点评】本题利用了切线的性质,勾股定理的逆定理,三角形的三边关系,直角三角形的面积公式求解.13.如图,已知∠AOB=60°,半径为2的⊙M与边OA、OB相切,若将⊙M 水平向左平移,当⊙M与边OA相交时,设交点为E和F,且EF=6,则平移的距离为()A.2B.2或6C.4或6D.1或5【分析】讨论:当将⊙M水平向左平移,当点M运动到M′位置时,作MC⊥OA 于C点,M′H⊥OA于H,M′Q⊥MC于Q,连结M′E,根据切线的性质得MM′∥OB,MC=2,再根据垂径定理得EH=EF=3,在Rt△EHM′中利用勾股定理计算出HM′=,则CQ=M′H=,所以MQ=2﹣=,然后利用含30°的直角三角形三边的关系可得到MM′;当将⊙M水平向左平移,当点M运动到M″位置时,作MC⊥OA于C点,M″H ⊥OA于H,M″M交OA于D点,同理得到MC=2,M′H=,利用平行线的性质得∠MDC=∠M″DH=∠AOB=60°,则∠HM″D=30°,∠CMD=30°,根据含30°的直角三角形三边的关系可得到M″D和MD,则可得到MM″=6.【解答】解:当将⊙M水平向左平移,当点M运动到M′位置时,如图作MC⊥OA于C点,M′H⊥OA于H,M′Q⊥MC于Q,连结M′E,∵⊙M与边OB、OA相切,∴MM′∥OB,MC=2,∵M′H⊥OA,∴EH=FH=EF=×6=3,在Rt△EHM′中,EM′=2,∴HM′==,∵M′Q⊥MC,∴四边形M′QCH为矩形,∴CQ=M′H=,∴MQ=2﹣=,∵∠QMM′=∠AOB=60°,∴∠QM′M=30°,∴M′Q==1,∴MM′=2;当将⊙M水平向左平移,当点M运动到M″位置时,如图2,作MC⊥OA于C点,M″H⊥OA于H,M″M交OA于D点,易得MC=2,M′H=,∵∠MDC=∠M″DH=∠AOB=60°,∴∠HM″D=30°,∠CMD=30°,在Rt△HM″D中,M″D=,则DH==1,∴M″D=2DH=2,在Rt△CDM中,CM=2,则DC==2,∴DM=2DC=4,∴MM″=2+4=6,综上所述,当⊙M平移的距离为2或6.故选:B.【点评】本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了垂径定理以及含30°的直角三角形三边的关系.14.已知⊙O的半径为1,圆心0到直线l的距离为2,过l上任一点A作⊙O 的切线,切点为B,则线段AB的最小值为()A.1B.C.D.2【分析】先连接OB,易知△AOB是直角三角形,再利用勾股定理即可求出AB.【解答】解:如右图所示,OA⊥l,AB是切线,连接OB,∵OA⊥l,∴OA=2,又∵AB是切线,∴OB⊥AB,在Rt△AOB中,AB===.故选:C.【点评】本题考查了切线的性质、勾股定理.解题的关键是连接OB,构造直角三角形.15.如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(﹣1,0),半径为1.若D是⊙O上的一个动点,线段DA与y轴交于点E,则△ABE面积的最大值为()A.2+B.2+C.1D.2【分析】由题意可得当AD和⊙C相切时,△ABE的面积最大,画出此时的图形,然后由已知条件和三角形的相似,可以求得此时的△ABE面积的最大值.【解答】解:由题意可得,当AD与⊙C相切时,△ABE的面积最大,此时点D 在D1的位置,如下图所示,连接CD1,则∠CD1A=90°,∴△CD1A∽△OE1A,∴∵OA=2,AC=3,CD1=1,∴,∴,∴=2+,故选:B.【点评】本题考查切线的性质、一次函数图象上点的坐标特征、三角形的相似、最值,解题的关键是明确题意画出相应的图形,求出相应的图形的面积.16.如图,已知A、B两点的坐标分别为(﹣2,0)、(0,1),⊙C的圆心坐标为(0,﹣1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是()A.3B.C.D.4【分析】当射线AD与⊙C相切时,△ABE面积的最大.设EF=x,由切割线定理表示出DE,可证明△CDE∽△AOE,根据相似三角形的性质可求得x,然后求得△ABE面积.【解答】解:当射线AD与⊙C相切时,△ABE面积的最大.连接AC,∵∠AOC=∠ADC=90°,AC=AC,OC=CD,∴Rt△AOC≌Rt△ADC,∴AD=AO=2,连接CD,设EF=x,∴DE2=EF•OE,∵CF=1,∴DE=,∴△CDE∽△AOE,∴=,即=,解得x=,S△ABE===.故选:B.【点评】本题是一个动点问题,考查了切线的性质和三角形面积的计算,解题的关键是确定当射线AD与⊙C相切时,△ABE面积的最大.17.如图,已知A、B两点的坐标分别为(﹣2,0)、(0,1),⊙C的圆心坐标为(0,﹣1),半径为1,E是⊙C上的一动点,则△ABE面积的最大值为()A.2+B.3+C.3+D.4+18.如图∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为()A.3B.6C.D.【分析】连接AO并延长,与圆O交于P点,当AF垂直于ED时,线段DE长最大,设圆O与AB相切于点M,连接OM,PD,由对称性得到AF为角平分线,得到∠FAD为30度,根据切线的性质得到OM垂直于AD,在直角三角形AOM中,利用30度角所对的直角边等于斜边的一半求出AO的长,由AO+OP求出AP的长,即为圆P的半径,由三角形AED为等边三角形,得到DP为角平分线,在直角三角形PFD中,利用30度所对的直角边等于斜边的一半求出PF的长,再利用勾股定理求出FD的长,由DE=2FD求出DE的长,即为DE的最大值.【解答】解:连接AO并延长,与ED交于F点,与圆O交于P点,此时线段ED最大,连接OM,PD,可得F为ED的中点,∵∠BAC=60°,AE=AD,∴△AED为等边三角形,∴AF为角平分线,即∠FAD=30°,在Rt△AOM中,OM=1,∠OAM=30°,∴OA=2,∴PD=PA=AO+OP=3,在Rt△PDF中,∠FDP=30°,PD=3,∴PF=,根据勾股定理得:FD==,则DE=2FD=3.故选:D.【点评】此题考查了切线的性质,等边三角形的判定与性质,勾股定理,含30度直角三角形的性质,熟练掌握切线的性质是解本题的关键.二.填空题(共11小题)19.如图,已知线段AB=6,C为线段AB上的一个动点(不与A、B重合),将线段AC绕点A逆时针旋转120°得到AD,将线段BC绕点B顺时针旋转120°得到BE,⊙O外接于△CDE,则⊙O的半径最小值为3.【分析】如图,连接OD、OA、OC、OB、OE.只要证明△AOB是等边三角形,即可推出当OC⊥AB时,OC的长最短,此时OC=OA•sin60°;【解答】解:如图,连接OD、OA、OC、OB、OE.∵OA=OA,OD=OC,AD=AC,∴△OAD≌△OAC,∴∠OAC=∠OAD=∠CAD=60°,同法可证:∠OBC=∠OBE=∠ABE=60°,∴△AOB是等边三角形,∴当OC⊥AB时,OC的长最短,此时OC=OA•sin60°=3,故答案为3.【点评】本题考查三角形的外心,全等三角形的判定和性质、等边三角形的判定和性质、垂线段最短等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考填空题中的压轴题.20.如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O是一动点且P在第一象限内,过P作⊙O切线与x轴相交于点A,与y 轴相交于点B.则线段AB的最小值是4..【分析】如图,设AB的中点为C,连接OP,由于AB是圆的切线,故△OPC 是直角三角形,有OP<OC,所以当OC与OP重合时,OC最短;【解答】解:(1)线段AB长度的最小值为4,理由如下:连接OP,∵AB切⊙O于P,∴OP⊥AB,取AB的中点C,∴AB=2OC;当OC=OP时,OC最短,即AB最短,此时AB=4.故答案为:4.【点评】本题利用了切线的性质,等腰直角三角形的性质求解,属于基础性题目.21.如图,⊙O的半径为1,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为2.【分析】因为PQ为切线,所以△OPQ是Rt△.又OQ为定值,所以当OP最小时,PQ最小.根据垂线段最短,知OP=3时PQ最小.根据勾股定理得出结论即可.【解答】解:∵PQ切⊙O于点Q,∴∠OQP=90°,∴PQ2=OP2﹣OQ2,而OQ=1,∴PQ2=OP2﹣1,即PQ=,当OP最小时,PQ最小,∵点O到直线l的距离为3,∴OP的最小值为3,∴PQ的最小值为=2.故答案为2.【点评】此题综合考查了切线的性质及垂线段最短等知识点,如何确定PQ最小时点P的位置是解题的关键,难度中等偏上.22.如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=2,⊙C的半径为1,点P 是斜边AB上的点,过点P作⊙C的一条切线PQ(点Q是切点),则线段PQ的最小值为.【分析】当PC⊥AB时,线段PQ最短;连接CP、CQ,根据勾股定理知PQ2=CP2﹣CQ2,先求出CP的长,然后由勾股定理即可求得答案.【解答】解:连接CP、CQ;如图所示:∵PQ是⊙C的切线,∴CQ⊥PQ,∠CQP=90°,根据勾股定理得:PQ2=CP2﹣CQ2,∴当PC⊥AB时,线段PQ最短,∵在Rt△ACB中,∠A=30°,BC=2,∴AB=2BC=4,AC=2,∴CP===,∴PQ==,∴PQ的最小值是;故答案为:.【点评】本题考查了切线的性质以及勾股定理的运用;注意掌握辅助线的作法,注意当PC⊥AB时,线段PQ最短是关键.23.如图,矩形ABCD中,AB=6,BC=5,以D为圆心,2为半径画⊙D,E是圆⊙D上一动点,P是BC上一动点,则PE+PA最小值是11.【分析】以BC为轴作矩形ABCD的对称图形A′BCD′以及对称圆D′,连接AD'交BC于P,交⊙D'于E,则AE′就是PE+PD最小值;根据勾股定理求得AD'的长,即可求得PE+PA最小值.【解答】解:如图,以BC为轴作矩形ABCD的对称图形A′BCD′以及对称圆D′,连接AD'交BC于P,交⊙D'于E,则AE′就是PE+PA最小值,∵矩形ABCD中,AB=6,BC=5,圆D的半径为2,∴AD=BC=5,DD′=2DC=12,∴由勾股定理得:AD'===13,∵D'E'=2,∴AE′=13﹣2=11,∴PE+PA=PE′+PA=AE′=11,故答案为11.【点评】本题考查了轴对称﹣最短路线问题,勾股定理的应用等,作出对称图形,确定点P的位置是本题的关键.24.如图,在矩形ABCD中,AB=3,AD=4,点E是边BC的中点,连接AE,与对角线BD交于点F.点M是AD边上的一个动点,连接MF、MC,则MF+MC的最小值为.【分析】作点C关于AD的对称点C',连接C'F,利用相似三角形的性质和勾股定理解答即可.【解答】解:作点C关于AD的对称点C',连接C'F,过F作FP⊥CD于P,∵矩形ABCD,∴BE∥AD,∴△BEF∽△ADF,∴,∴△BFE的高:△ADF的高=1:2,∴,∴DP=2,∵,∴FP=,在Rt△C'FP中,C'F=,即MF+MC的最小值为,故答案为:【点评】此题主要考查轴对称、矩形的性质、相似三角形的性质,考查知识点比较多,综合性比较强,另外要注意辅助线的作法.25.如图,已知A,B两点的坐标分别为(2,0),(0,2),⊙C的圆心坐标为(﹣1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是2﹣.26.如图,已知A、B两点的坐标分别为(﹣4,0)、(0,4),⊙C的圆心坐标为C(2,0),半径为2.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最大值是2+8.【分析】由于OA的长为定值,若△ABE的面积最大,则BE的长最长,此时AD与⊙相切且位于x轴的下方;可连接CD,在Rt△ADC中,由勾股定理求得AD的长,即可得到△ADC的面积;易证得△AEO∽△ACD,可以求出OE的长,进而可得出△AOB和△AOE的面积和,由此得解.【解答】解:若△ABE的面积最大,则AD与⊙C相切,连接CD,则CD⊥AD;∴△AEO∽△ACD∴∵A(﹣4,0)、B(0,4)、C(2,0),∴AC=6,AO=4,CD=2,∴AD=4,∴,∴OE=,∴△ABE的最大面积为:×4×+×4×4=2+8,故答案为:2+8【点评】本题考查了直线与圆的位置关系,坐标与图形的性质,三角形的面积公式的运用.27.如图,平面直角坐标系中,分别以点M(2,3)、N(3,﹣5)为圆心,以l、2为半径作⊙M、⊙N,A、B分别是⊙M、⊙N上的动点,P为y轴上的动点,则PA+PB的最小值等于﹣3.【分析】作⊙M关于y轴的对称⊙M′,连接NM′分别交⊙M′和⊙N于A、B,交y轴于P,如图,根据两点之间线段最短得到此时PA+PB最小,再利用对称确定M′的坐标,接着利用两点间的距离公式计算出M′N的长,然后用M′N 的长减去两个圆的半径即可得到AB的长,即得到PA+PB的最小值.【解答】解:作⊙M关于y轴的对称⊙M′,连接NM′分别交⊙M′和⊙N于A、B,交y轴于P,如图,则此时PA+PB最小,。
期末拔高专题人教版九年级上册数学 圆中的最值问题
拔高专题 圆中的最值问题图(1)探究点一:点与圆上的点的距离的最值问题例1:如图,A 点是⊙O 上直径MN 所分的半圆的一个三等分点,B 点是弧AN 的中点,P 点是MN 上一动点,⊙O 的半径为3,求AP+BP 的最小值。
解:作点A 关于MN 的对称点A ′,连接A ′B ,交MN 于点P ,连接OA ′,AA ′. ∵点A 与A ′关于MN 对称,点A 是半圆上的一个三等分点, ∴∠A ′ON=∠AON=60°,PA=PA ′,∵点B 是弧AN 的中点,∴∠BON=30°,∴∠A ′OB=∠A ′ON+∠BON=90°,又∵OA=OA ′=3, ∴A ′.∵两点之间线段最短,∴PA+PB=PA ′+PB=A ′.【教师总结】解决此题的关键是确定点P 的位置.根据轴对称和两点之间线段最短的知识,把两条线段的和转化为一条线段,即可计算。
探究点二:直线与圆上点的距离的最值问题例2:如图,在Rt △AOB 中,,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),求切线PQ 的最小值解:连接OP 、OQ .∵PQ 是⊙O 的切线,∴OQ ⊥PQ ;根据勾股定理知PQ 2=OP 2-OQ 2,∴当PO ⊥AB 时,线段PQ 最短,∵在Rt △AOB 中,OA=OB=3 ,∴OA=6,∴OP=•OA OBAB=3,∴.【变式训练】如图,在平面直角坐标系中,以坐标原点O 为圆心,2为半径画⊙O ,P 是⊙O 是一动点且P 在第一象限内,过P 作⊙O 切线与x 轴相交于点A ,与y 轴相交于点B .求线段AB 的最小值.解:(1)线段AB 长度的最小值为4, 理由如下: 连接OP ,∵AB 切⊙O 于P , ∴OP ⊥AB ,取AB 的中点C , ∴AB=2OC ;当OC=OP 时,OC 最短, 即AB 最短, 此时AB=4.【教师总结】结合切线的性质以及辅助线的作法,利用“垂线段最短”是解决此类问题的关键。
2024年九年级数学中考一轮复习考点突破课件:与圆有关的最值问题
A. 4.75
B. 4.8
B )
D. 4 2
C. 5
第1题
1
2
3
4
5
6
7
2.
3
如图,直线y= x-3与x轴、y轴分别交于A,B两点,P是以点C(0,
4
1)为圆心,1为半径的圆上一动点,连接PA,PB,则△PAB面积的最小
值为(
A. 6
B )
动点,以AD为直径作☉O,分别交AB,AC于点E,F,连接EF,则线段EF长的最小值为 Nhomakorabea2
.
第6题
1
2
3
4
5
6
7
7. 如图,在Rt△ABC中,AB=3,∠ABC=90°,∠ACB=30°,将△ABC
绕点B按顺时针方向旋转,得到△A'BC',点A,C的对应点分别为A',
C',D是A'C'的中点,求旋转的过程中,点D到直线AC距离的最大值.
BC=2 ,∴
BH= BC=
=90°.∴ AH=
.∴
−
.∵ AH⊥BC,∴ ∠AHB
=1.∴
sin∠ABC= =
∠ABC=∠ACB=30°,∠BAC=120°.∵ ∠BDC
∠BDC= ∠BAC.∴
=60°,∴
点D在以点A为圆心,
AB长为半径的☉A上运动.作☉A,延长HA交☉A于点
B. 5.5
C. 5
D. 4.5
第2题
1
2
3
4
5
第14讲 圆中最值(教师版)
第14讲圆中最值知识导航点到直线的距离最短问题如图,直线l外一定点到直线的最短距离是过点作,线段的长度就是点到直线的最近距离.如图,在圆上运动,过圆心作直线l的垂线交圆于、两点,则运动到点时到直线距离最大.点到圆上一点的距离最值(关键点:过圆心)圆外一点到圆上一点的距离最值问题圆内一点到圆上一点的距离最值问题如图线段的长度是的最小值,线段的长度是的最大值(线段和线段所在的直线均过圆心).如图线段的长度是的最小值,线段的长度是的最大值(线段和线段所在的直线均过圆心).经典例题一、单线段最值+面积最值答案解析标注【题型】 三角形 > 勾股定理 > 勾股定理应用 > 题型:勾股定理的综合应用如图,已知矩形中,,,是以为直径的半圆上的一个动点,连接,则的最大值是 .1将以为直径的⊙补充完整,如图所示,∵点在⊙O 外,∴当点、、三点共线时,的值最大.∵为⊙的直径,,∴.在 中,,,∴,∴此时.故答案为:.如图,边长为的正方形中,以为圆心,为半径作,将一块直角三角板直角顶点放置在(不包括端点、)上滑动,一条直角边通过顶点,另一条直角边与边相交于点,连接,则周长的最小值为 .2例题1答案解析标注【题型】 三角形 > 等腰三角形 > 等腰等边综合 > 题型:等边三角形的性质略.答案解析如图,在平面直角坐标系中,已知点、、,点在以为圆心,为半径的圆上运动,且始终满足,则的最大值是 .3如图,连接,∵点、点、,∴,,∴,∵,∴,要最大,就是点到上的一点的距离最大,∴点在延长线上,标注【题型】 四边形 > 四边形综合 > 中点类 > 题型:直角三角形斜边中线性质以及应用∵,,∴,∴的最大值是,故答案为:.答案解析A. B. C. D.如图,点,半径为,,,点是上的动点,点是的中点,则的最小值是( ).4B如图,连接交于,连接,标注【题型】 圆 > 与圆有关的位置关系 > 点与圆 > 题型:判断点和圆的位置关系由勾股定理得:,∵,,∴,∴当最小时,最小,∴当运动到时,最小,此时的最小值,故选.答案解析xyO在平面直角坐标系中,,是以为圆心,为半径的上一动点,、,连接、,则最大值是 .5设,∵,,∴,∵,∴.标注【题型】 圆 > 与圆有关的位置关系 > 圆中证明与计算 > 题型:与圆有关的动点问题当点处于与圆的交点上时,取得最值,∴的长度为:,∴.故答案为:.答案解析1如图,已知⊙的弦长为,是⊙上一点,若,则的面积的最大值为 .(1)如图,⊙的半径是,直线与⊙相交于,两点,、是⊙上的两个动点,且在直线的异侧,若,则四边形面积的最大值是 .(2)(1)(2)(1)过作于,∵弦已确定,∴要使的面积最大,只要取最大值即可,如图所示,当过圆心时,最大,例题2∵,过,∴(垂径定理),∴,∵,∴,∴,∴,∴,故答案为:.(2)过点作于,交于、两点,连结、、、、、,如图,∵,∴,∴为等腰直角三角形,∴,∵∴当点到的距离最大,的面积最大;当点到的距离最大时,的面积最大,即点运动到点,点运动到点,此时四边形面积的最大值四边形标注【题型】 综合类问题 > 最短路径问题 > 题型:圆中最值.故答案为:.四边形答案解析如图,已知⊙经过点、.直线()与⊙分别交于点、,则四点、、、组成的四边形面积的最大值为 .2图当,如图,作轴于,轴于,设,则,∵⊙经过点、,∴⊙的半径为,在中,∵,∴,同理可得,四边形标注【题型】 圆 > 与圆有关的位置关系 > 圆中证明与计算 > 题型:圆内接四边形综合图,∵,∴,即此时的最大值为.当,如图,作轴于,轴于,设,则,同理可得,,,,∵,∴,即此时的最大值为,综上所述,四点、、、组成的四边形面积的最大值为.故答案为.四边形四边形如图,直线与坐标轴交于、两点,的半径为,点是上动点,面积的最大值为.1例题3答案解析标注【题型】 圆 > 与圆有关的位置关系 > 圆中证明与计算 > 题型:圆与勾股如图,直线与坐标轴交于、两点,,,,在中,根据勾股定理得,,中,是定值,要使的面积最大,即上的点到的距离最大,∴过点作于,的延长线交于,此时的面积最大,,,的半径为,,.故答案为.,如图,平面直角坐标系中,点的坐标为,的半径为,过点的直线与的交点分别为、,则的面积的最大值为 .2答案解析标注【题型】 三角形 > 全等三角形 > 全等三角形性质 > 题型:周长与面积∵为圆的直径,∴,∴当点到的距离最大时,的面积的最大值,即时,的面积的最大值,最大值为.故答案为.经典例题答案解析如图,是⊙的直径,,,点为弧的中点,点是直径上的一个动点,则的最小值为 .1过作关于直线的对称点,连接,二、圆中的将军饮马例题4标注【题型】 圆 > 圆的相关概念 > 圆基础 > 题型:圆周角定理以及应用由轴对称的性质可知即为的最小值,连接,,.∵关于直线对称,∴.∵,∴,,∴.过作于,在中,,∴,即的最小值.答案解析如图,平面直角坐标系中,分别以点,为圆心,以、为半径作⊙、⊙,、分别是⊙、⊙上的动点,为轴上的动点,则的最小值等于 .2作⊙关于轴的对称⊙,连接分别交⊙和⊙于、,交轴于,如图,标注【题型】 函数 > 平面直角坐标系 > 坐标系综合 > 题型:坐标系中的动点问题则此时最小,∵点坐标,∴点坐标,∵点,∴,∴,∴的最小值为.Q 1答案解析如图,中,,,,是线段上的一个动点,以为直径作分别交、于、,连结,则线段长度的最小值为 .1由垂线段的性质可知,当为的边上的高时,直径最短,三、与弦有关的最值例题5标注【题型】 圆 > 圆的相关概念 > 圆基础 > 题型:垂径定理以及应用如图,连接,,过点作,垂足为,∵在中,,,∴,即此时圆的直径为,由圆周角定理可知,∴在中,,由垂径定理可知,故答案为:.答案解析如图,点在以为直径的半圆上,,,点在线段上运动,点与点关于对称,于点,并交的延长线于点.则线段的最小值为 .ABOCDEF2连接,当时,取得最小值,ABOCDEF∵是半圆的直径,∴.标注【题型】 综合类问题 > 最短路径问题 > 题型:垂线段最短∵,,∴,.∵,,∴.根据“点到直线之间,垂线段最短”可得:点在线段上运动时,的最小值为.∵点与点关于对称,∴,∴,∵,,∴,∴,∴.∴线段的最小值为.答案解析A. B. C. D.如图,为⊙内一定点,为⊙上一个动点,射线、分别与⊙交于、两点.若⊙的半径长为,,则弦的最大值为( ).3A 过点作于,如图:∵为圆心,∴,标注【题型】 圆 > 圆的相关概念 > 圆基础 > 题型:垂径定理以及应用∴,∵,∴,∴当、重合时,即垂直时,取最大值,最大值为.答案解析如图,的半径为,为的内接三角形,且,,点在劣弧上运动(不与、重合),连接并延长,在并延长线上取一点,使得,则最大值是 .1∵由圆周角定理,,∵,∴,连接,过作,∵是等腰三角形,例题6标注【题型】 圆 > 与圆有关的位置关系 > 圆与多边形 > 正多边形与圆∴在上,是中点,∵,,∴,∴,,∴,∵,∴,∴当为圆的直径时,最大,.故答案为:.答案解析如图,在⊙上有定点和动点,位于直径的两侧,过点作的垂线与的延长线交于点.已知⊙的直径为,,则的最大值为 .2∵线段为⊙的直径,∴∵,∴,又∵(同弦圆周角相等),∴,∴.在中,,∴,标注【题型】 圆 > 圆的相关概念 > 圆基础 > 题型:圆周角定理以及应用∴.∵线段是⊙内一弦,∴当过圆心时,最大,且此时.∴,故答案为:.已知的半径为,为的一条弦,连接、,为内一定点,且.的最大面积为 .(1)若过定点,且,,则的最大面积为 .(2)若过定点,且,,则的最大面积为 .(3)例题7答案解析标注【题型】 圆 > 与圆有关的位置关系 > 圆中证明与计算 > 题型:圆与等腰+平行线(1)(2)(3)(1)略.(2)略.(3)略.古印度人和阿拉伯人在数字、零和代数方面的成就印度在亚洲的南部。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拔高专题圆中的最值问题
一、基本模型构建
常见模型
图(1) 图(2)
思考图(1)两点之间线段最短;
图(2)垂线段最短。
.在直线L上的同侧有两个点
A、B,在直线L上有到A、B
的距离之和最短的点存在,可
以通过轴对称来确定,即作出
其中一点关于直线L的对称
点,对称点与另一点的连线与
直线L的交点就是所要找的点.二、拔高精讲精练
探究点一:点与圆上的点的距离的最值问题
例1:如图,A点是⊙O上直径MN所分的半圆的一个三等分点,B点是弧AN的中点,P 点是MN上一动点,⊙O的半径为3,求AP+BP的最小值。
解:作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,AA′.
∵点A与A′关于MN对称,点A是半圆上的一个三等分点,
∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN的中点,
∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=3,
∴A′B=32.∵两点之间线段最短,∴PA+PB=PA′+PB=A′B=32.
【教师总结】解决此题的关键是确定点P的位置.根据轴对称和两点之间线段最短的知识,把两条线段的和转化为一条线段,即可计算。
探究点二:直线与圆上点的距离的最值问题
例2:如图,在Rt△AOB中,OA=OB=32,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),求切线PQ的最小值
解:连接OP、OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2-OQ2,∴当PO⊥AB时,线段PQ最短,∵在Rt△AOB中,OA=OB=3 2,
∴AB=2OA=6,∴OP=
•
OA OB
AB
=3,∴PQ=22
OP OQ
=22.
【变式训练】如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O是一动点且P在第一象限内,过P作⊙O切线与x轴相交于点A,与y轴相交于点B.求线段AB的最小值.
解:(1)线段AB长度的最小值为4,
理由如下:
连接OP,
∵AB切⊙O于P,
∴OP⊥AB,
取AB的中点C,
∴AB=2OC;
当OC=OP时,OC最短,
即AB最短,
此时AB=4.
【教师总结】结合切线的性质以及辅助线的作法,利用“垂线段最短”是解决此类问题的关键。