机械原理——第9章 凸轮机构及其设计

合集下载

机械原理第九章凸轮机构及其设计

机械原理第九章凸轮机构及其设计

凸轮的设计和参数选择
设计原则
凸轮的设计应考虑载荷、速度 和精度等因素,并满足运动学 和强度学的要求。
参数选择
凸轮的参数包括凸轮半径、凸 轮轴角度和凸轮顶点位置等, 应根据具体需求进行选择。
优化方法
通过数学模型和仿真分析,可 以优化凸轮的形状和参数,以 提高凸轮机构的性能。
凸轮机构的运动分析
1
转动运动
通过凸轮的旋转,实现机构的直线或曲线运动。
2
滑动运动
随着凸轮轮廓的变化,机构的接触点会产生水平或竖直方向的滑动运动。
3
摇摆运动
凸轮的摇杆或滚柱可以实现机构的摇摆运动。
凸轮机构的布置和设计原则
1 布置方式
根据机构的运动要求和空间限制,选择合适 的凸轮布置方式,如列状、行状或环状。
2 设计原则
在凸轮机构的设计过程中,要考虑机构的刚 度、强度和稳定性等因素,以提高机构的性 能。
凸轮机构的应用案例
发动机气门机构
凸轮机构用于控制发动机气门的 开闭,保证发动机的正常运行。
印刷机印版定位
凸轮机构用于实现印刷机印版的 准确定位,提高印刷质量。
纸张折叠机构
凸轮机构用于纸张折叠机构,实 现精确的折叠操作。
小结和要点
1 2 3 4
5
6
凸轮机构是一种常见的机械传动机构。 凸轮机构具有多种分类和特点。 凸轮的设计和参数选择需要考虑多个因素。 凸轮机构的运动分析可以通过几何和动力学方法 实现。 凸轮机构的布置和设计应根据具体要求进行选择。
凸轮机构在多个领域都有广泛应用。

凸轮机构是机械工程中常见的一种机构,用于将轮系运动转化为直线或曲线 的机械动作。它具有简单可靠的特点,广泛应用于各个领域。

第9章_凸轮机构及其设计

第9章_凸轮机构及其设计
是在圆柱面上开有曲线凹 槽或在圆柱端面上具有曲线轮 廓的构件。 它是一种空间凸轮机构。 行程可较大,但结构较复杂。e
ω
V
V
ω
ω
2、按推杆末端(the follower end)形状分:(如图9-5) 1)尖顶(knife-edge)推杆(图a、b): (a) (a) 结构简单,因是点接触,又是滑动 (d 摩擦,故易磨损。只宜用在受力不 (a)(a) ( (a) 大的低速凸轮机构中,如仪表机构。 图a) 图b)
▲ 注意:
1)所有运动过程的推杆位 移s是从行程的最近位臵 开始度量。回程时,推 杆的位移s是逐渐减小的。 2)凸轮的转角δ是从各个 运动过程的开始来度量。 如:在推程时,δ是从推程开始时进行度量;
在回程时,δ是从回程开始时进行度量。
3)有的凸轮δ01=0° (无远休),有的δ02=0°(无近休), 有的同时无远休和无近休。 e
2)运动线图——用于图解法
s = s(δ)—位移线图;如图9-8b所示。 v = v(δ)—速度线图; a = a(δ)—加速度线图。
图9-8
推杆的运动规律可分为基本运动规律和组合运动规律。 e
一)基本(Basic)运动规律
1、等速运动规律(一次多项式运动规律) v=常数。 s 1)方程: s=hδ/δ0 推程 v=hω/δ0 a=0 (9-3a) (δ:0~δ0)
对心直动尖顶 推杆盘形凸轮 机构
偏臵直动尖顶 推杆盘形凸轮 机构
对心直动滚子 直动平底推杆 推杆盘形凸轮 盘形凸轮机构 机构
摆动尖顶推杆 盘形凸轮机构
摆动滚子推杆 盘形凸轮机构
摆动平底推杆 盘形凸轮机构
上面介绍的是一些传统的凸轮机构,目前还研究出了 一些新型的凸轮机触,增加了接触面积, 提高了凸轮机构的承载能力。

第九章凸轮机构及其设计

第九章凸轮机构及其设计

第九章凸轮机构及其设计第一节凸轮机构的应用、特点及分类1.凸轮机构的应用在各种机械,特别是自动机械和自动控制装置中,广泛地应用着各种形式的凸轮机构。

例1内燃机的配气机构当凸轮回转时,其轮廓将迫使推杆作往复摆动,从而使气阀开启或关闭(关闭是借弹簧的作用),以控制可燃物质在适当的时间进入气缸或排出废气。

至于气阀开启和关闭时间的长短及其速度和加速度的变化规律,则取决于凸轮轮廓曲线的形状。

例2自动机床的进刀机构当具有凹槽的圆柱凸轮回转时,其凹槽的侧面通过嵌于凹槽中的滚子迫使推杆绕其轴作往复摆动,从而控制刀架的进刀和退刀运动。

至于进刀和退刀的运动规律如何,则决定于凹槽曲线的形状。

2.凸轮机构及其特点(1)凸轮机构的组成凸轮是一个具有曲线轮廓或凹槽的构件。

凸轮通常作等速转动,但也有作往复摆动或移动的。

推杆是被凸轮直接推动的构件。

因为在凸轮机构中推杆多是从动件,故又常称其为从动件。

凸轮机构就是由凸轮、推杆和机架三个主要构件所组成的高副机构。

(2)凸轮机构的特点1)优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。

2)缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。

3.凸轮机构的分类凸轮机构的类型很多,常就凸轮和推杆的形状及其运动形式的不同来分类。

(1)按凸轮的形状分1)盘形凸轮(移动凸轮)2)圆柱凸轮盘形凸轮是一个具有变化向径的盘形构件绕固定轴线回转。

移动凸轮可看作是转轴在无穷远处的盘形凸轮的一部分,它作往复直线移动。

圆柱凸轮是一个在圆柱面上开有曲线凹槽,或是在圆柱端面上作出曲线轮廓的构件,它可看作是将移动凸轮卷于圆柱体上形成的。

盘形凸轮机构和移动凸轮机构为平面凸轮机构,而圆柱凸轮机构是一种空间凸轮机构。

盘形凸轮机构的结构比较简单,应用也最广泛,但其推杆的行程不能太大,否则将使凸轮的尺寸过大。

(2)按推杆的形状分1)尖顶推杆。

这种推杆的构造最简单,但易磨损,所以只适用于作用力不大和速度较低的场合(如用于仪表等机构中)。

机械原理9凸轮机构设计

机械原理9凸轮机构设计

δ0
ω
作者:潘存云教授
φ
工件
2.选择运动规律 选择原则: 2) 机器的工作过程对推杆运动有要求,则应严格按工 作要求的运动规律来设计凸轮廓线。如刀架进给凸轮。
ω δ0
作者:潘存云教授
h
3) 对高速凸轮,要求有较好的动力特性,除了避 免出现刚性或柔性冲击外,还应当考虑Vmax和 amax。
高速重载凸轮要选Vmax和amax比较小的理由:
a=2πhω2 sin(2πδ/δ0)/δ20
12 θ=2πδ/δ0
34
δ0
5
回程:
v
vmax=2hω/δ0
s=h[1-δ/δ’0+sin(2πδ/δ’0)/2π]
v=hω[cos(2πδ/δ’0)-1]/δ’0 a=-2πhω2 sin(2πδ/δ’0)/δ’20 a amax=6.28hω2/δ02
第九章 凸轮机构及其设计
§9-1 凸轮机构的应用和分类 §9-2 推杆的运动规律
§9-3 凸轮轮廓曲线的设计
§9-4 凸轮机构基本尺寸的确定
§9-1 凸轮机构的应用和分类
结构:三个构件、盘(柱)状曲线轮廓、从动件呈杆状。
作用:将连续回转 => 从动件直线移动或摆动。
优点:可精确实现任意运动规律,简单紧凑。 实例 缺点:高副,线接触,易磨损,传力不大。 比较
s =h-2hδ2/δ’20 v =-4hωδ/δ’20 a =-4hω2/δ’20
回程等减速段运动方程为:
s =2h(δ’0-δ)2/δ’20 v =-4hω(δ’0-δ)/δ’20 a =4hω2/δ’20
(3)五次多项式运动规律
一般表达式:
s =C0+ C1δ+ C2δ2+ C3δ3+ C4δ4+C5δ5 v =ds/dt = C1ω+ 2C2ωδ+ 3C3ωδ2+ 4C4ωδ3+ 5C5ωδ4 a =dv/dt = 2C2ω2+ 6C3ω2δ+12C4ω2δ2+20C5ω2δ3

第九章凸轮机构

第九章凸轮机构
设计凸轮轮廓曲线。
三、直动从动件盘形凸轮轮廓的绘制
1.对心直动尖底从动件盘形凸轮
已知:凸轮的基圆半径r0,角速度ω

和从动件的运动规律,
试用反转法设计该凸轮轮廓曲线。
ω
8’ 9’
7’
11’
5’ 3’
1’
12’
13’ 14’ห้องสมุดไป่ตู้
1 3 5 78 9 1113 15
设计步骤小结:
①选比例尺μl作基圆r0。 ②在位移线图上等分各运动角。原则是:陡密缓疏。 ③确定反转后,确定从动件尖底在各等份点的位置。 ④将各尖底点连接成一条光滑曲线:即凸轮轮廓曲线。
1.0
等加等减速
2.0
五次多项式 余弦加速度
1.88 1.57
正弦加速度 改进正弦加速度
2.0 1.76
amax
冲击 推荐应用范围
(hω 2/δ 20)×

刚性 低速轻载
4.0
柔性 中速轻载
5.77 4.93
无 高速中载 柔性 中速中载
6.28 5.53
无 高速轻载 无 高速重载
§9-3 凸轮轮廓曲线的设计——作图法
h a
求得:C0=C1=C2=0,
C3=10h/δ
3 0
,
δ
C4=-15h/δ
4 0
,
C5=6h/δ
5 0
δ0
位移方程:
s=10h(δ /δ 0)3-15h (δ /δ 0)4+6h (δ /δ 0)5
无冲击,适用于高速凸轮。
(二) 三角函数运动规律 1.余弦加速度(简谐)运动规律
5 4
6
s
(1)推程: s=h[1-cos(πδ/δ0)]/2

第9章 凸轮机构及其设计(有答案)

第9章 凸轮机构及其设计(有答案)

1.图示凸轮机构从动件推程运动线图是由哪两种常用的基本运动规律组合而成?并指出有无冲击。

如果有冲击,哪些位置上有何种冲击?从动件运动形式为停-升-停。

(1) 由等速运动规律和等加速等减速运动规律组合而成。

(2) 有冲击。

(3) ABCD 处有柔性冲击。

2. 有一对心直动尖顶从动件盘形凸轮机构,为改善从动件尖端的磨损情况,将其尖端改为滚子,仍使用原来的凸轮,这时该凸轮机构中从动件的运动规律有无变化?简述理 由。

(1) 运动规律发生了变化。

(见下图 )(2)采用尖顶从动件时,图示位置从动件的速度v O P 2111=ω,采用滚子从动件时,图示位置的速度'='v O P 2111ω,由于O P O P v v 111122≠'≠',;故其运动规律发生改变。

3. 在图示的凸轮机构中,画出凸轮从图示位置转过60︒时从动件的位置及从动件的位移s。

总分5分。

(1)3 分;(2)2 分(1) 找出转过60︒的位置。

(2) 标出位移s。

4. 画出图示凸轮机构从动件升到最高时的位置,标出从动件行程h,说明推程运动角和回程运动角的大小。

总分5分。

(1)2 分;(2)1 分;(3)1 分;(4)1 分(1) 从动件升到最高点位置如图示。

(2) 行程h如图示。

(3)Φ=δ0-θ(4)Φ'=δ'+θ120时是渐开线,5.图示直动尖顶从动件盘形凸轮机构,凸轮等角速转动,凸轮轮廓在推程运动角Φ=︒从动件行程h=30 mm,要求:(1)画出推程时从动件的位移线图s-ϕ;(2)分析推程时有无冲击,发生在何处?是哪种冲击?-总分10分。

(1)6 分;(2)4 分(1)因推程时凸轮轮廓是渐开线,其从动件速度为常数v=r0⋅ω,其位移为直线,如图示。

(2) 推程时,在A 、B 处发生刚性冲击。

6. 在图示凸轮机构中,已知:AO BO ==20mm ,∠AOB =60ο;CO =DO =40mm ,∠=COD 60ο;且A B (、CD (为圆弧;滚子半径r r =10mm ,从动件的推程和回程运动规律均为等速运动规律。

机械原理第9章凸轮机构及其设计

机械原理第9章凸轮机构及其设计

第二十一页,编辑于星期日:十四点 分。
②等减速推程段:
当δ =δ0/2 时,s = h /2,h/2 = C0+C1δ0/2+C2δ02/4 当δ = δ0 时,s = h ,v = 0,h = C0+C1δ0+C2δ02
0 = ωC1+2ωC2δ ,C1=-2 C2δ0 C0=-h,C1= 4h/δ0, C2=-2h/δ02
如图所示,选取Oxy坐标系,B0 点为凸轮廓线起始点。当凸轮转过δ 角度时,推杆位移为s。此时滚子中 心B点的坐标为
x (s0 s) sin e cos
y
(s0
s) cos
A7
C8 A6 C7
w
A8
-w
A9
C9 B8 B9 B7 r0
C10
B12100 ° B0
O
B1 a B2
C1 L C2φ1φ0
A10 A0
φ
Φ
o
2
1
2 3 456
180º
7 8 9 10
60º 120º
δ
(1)作出角位移线图;
(2)作初始位置;
A5
C6
B6 B1580°B4
C4
C5
φ3
φC23
A1
↓对心直动平底推杆盘形凸 轮机构
↑偏置直动尖端推杆盘形凸轮机 构
第十一页,编辑于星期日:十四点 分。
↑尖端摆动凸轮机构
↓平底摆动凸轮机构
↑滚子摆动凸轮机构
第十二页,编辑于星期日:十四点 分。
(4)按凸轮与从动件保持接触的方式分
力封闭型凸轮机构
利用推杆的重力、弹簧力或其他外力使推杆与凸轮保持接
触的
此外,还要考虑机构的冲击性能。

第9章 凸轮机构及

第9章  凸轮机构及

练习----1、2
1、如图所示,一对心直动尖顶从动件 盘形凸轮机构中,凸轮的实际轮廓 线为一圆,圆心在A点,半径为R, 凸轮逆时针方向转动。试在上标出: (1)凸轮的基圆半径 (2)从动件的 升程h (3)该位置的压力角 2、绘制下列机构图示位置的压力角。
3、
图示盘型凸轮机构,已知凸轮1为以C为中心的偏心圆盘。 1)画出凸轮的基圆,并标出基圆半径。 2)画出凸轮轮廓上的D点与从动件的尖顶接触时,机构的压力角α。 3)标出机构在图示位置时,凸轮1与从动件2间的瞬心P12。

210
120Biblioteka 时,凸轮廓线上B点如图b。
(4) 时有刚性冲击, 时有柔性冲击。

210 时无冲击,

330
( )

( )
凸轮转角
从动件运动规律
0 ~ 120
120 ~ 150
150 ~ 330
330 ~ 360
按余弦加速运动规律 回到最低位置
静止不动
6、
()
解6
线图见图a。 (2) 0 ~ 120 ,从动件按等速运动规律上升到最高点; , 从动件在最高位停止不动。 120 ~ 150 (1) S (3)
K
解4
5、
试将图a)、b)所示直动平底从动件盘形凸轮机构的压力角数值填 入括号内。 a) =( );

b)

=(
)。
6、
某偏置直动尖顶从动件盘形凸轮机构,已画出部分从动件位移线图 (图a)。 (1)根据表中给出的运动规律将位移线图补齐。 (2)按图a中给出的位移线图,将其运动规律填写在表中相应的空格 中。 (3)凸轮以逆时针方向回转,图b中B0点为从动件最低位置(凸轮廓 线的起点), 试用反转法作 出时,凸轮廓线上对应 点B的位置 (求作过程必须表达清楚)。 (4)凸轮转到 120 , ,330 时机构有无冲击?为何种冲击? 210

机械原理课件9 凸轮机构

机械原理课件9 凸轮机构

1、凸轮廓线设计的基本原理
• 解析法、作图法 • 相对运动原理法:(也称反转法) • 此时,凸轮保持不动
• 对整个系统施加 -ω
运动
• 而从动件尖顶复合运动的 轨迹即凸轮的轮廓曲线。

A A A A A A A A
1 2
3’ 2’ 1’
ω
r0
1
O
2 3
3
2.用作图法设计凸轮廓线
1)对心直动尖顶从动件盘形凸轮
e
对心平底推杆凸轮机构
平底摆杆凸轮机构
从动件与凸轮之间易形成油膜,润滑状况好,受力平稳, 传动效率高,常用于高速场合。但与之相配合的凸轮轮廓 必须全部外凸。
偏心平底推杆凸轮机构
滚子摆杆凸轮机构
e
§9-2 推杆的运动规律
一.推杆常用的运动规律
凸轮机构设计的基本任务: 1)根据工作要求选定凸轮机构的形式; 2)推杆运动规律; 3)合理确定结构尺寸; 4)设计轮廓曲线。
a
2h 2
02
2 sin 0

R= 2
h
A 0 1 v
2
3 4
5
6
7
8

回程: s=h[1-δ /δ
0
′)/2π
0

+sin(2π δ /δ
0
0
]

v=hω [cos(2π δ /δ 0’)-1]/δ a=-2π
hω 2 sin(2π δ /δ

FI ma 0
(1).对心直动尖顶从动件盘形凸轮
s
h
对心直动尖顶从动件凸轮机构 中,已知凸轮的基圆半径rmin, 角速度ω和从动件的运动规律, 设计该凸轮轮廓曲线。 设计步骤小结:

第9章 凸轮机构及其设计.ppt

第9章 凸轮机构及其设计.ppt
当根单据击凸轮此机构处的工编作要辑求和母结版构条标件选题定了样其机式构的型式、
基本尺寸、推杆的运动规律和凸轮的转向之后,就可以进行凸轮 轮廓曲线的设计了。
•凸单轮廓击线此设处计的编方辑法母: 作版图文法本和解样析式法 •1.第凸二轮级廓线设计的基本原理
•无第论是三采级用作图法还是解析法设计凸轮廓线,所依据的基本 原理•都例第是偏反四置转级直法动原尖理顶。推杆盘形凸轮机构
可用•来单求摆击动此推处杆的编角辑位母移了版。文本样式 (• 3第)直二动级推杆圆柱凸轮廓线的设计 •3.第用三解级析法设计凸轮的轮廓曲线
律和•用已第解知析的四法机级设构计参凸数轮,廓求线凸,轮就廓是线根的据方工程作式所,要并求精的确推地杆计运算动出规凸 轮廓•线第上各五点级的坐标值。
(1)偏置直动滚子推杆盘形凸轮机构 (2)对心直动平底推杆盘形凸轮机构 (3)摆动滚子推杆盘形凸轮机构
(• 2第)三四角级函数运动规律 •1)第余推五弦程级加时速:度s=运h动[1-规c律os((π简δ /谐δ0)运]/2动规律)
在始、末两瞬时有柔性冲击。
2)正弦加速度运动规律(摆线运动规律)
推程时:s=h[(δ /δ0)-sin(2π δ /δ0) /(2π)]
6
推杆的运动规律(4/4)
既无刚性冲击,又无柔性冲击。
([α]<<αc)
•许第用压三力级角[α]的一般取值为 •推第程四时:级直动推杆[α]=30° • 第五级 摆动推杆[α]=35 °~ 45°
回程时: [α]=70 °~ 80°
13
凸轮机构基本尺寸的确定(3/7)
(21.)单凸凸轮轮击基机圆此构半的处径压的力编确角定与辑基圆母半径版的标关系题样式
r0≥{[(ds/dδ - e)/tan[α] - s]2+e2}1/2

机械原理课程教案—凸轮机构及其设计

机械原理课程教案—凸轮机构及其设计

一、教案概述机械原理课程教案—凸轮机构及其设计教学目标:1. 使学生了解凸轮机构的定义、分类和应用;2. 使学生掌握凸轮的轮廓曲线及其设计方法;3. 使学生熟悉凸轮机构的设计步骤和注意事项。

教学内容:1. 凸轮机构的定义和分类;2. 凸轮的轮廓曲线及其设计;3. 凸轮机构的设计步骤;4. 凸轮机构的应用实例。

教学重点:1. 凸轮机构的分类和应用;2. 凸轮的轮廓曲线及其设计方法;3. 凸轮机构的设计步骤。

教学难点:1. 凸轮的轮廓曲线的设计方法;2. 凸轮机构的设计步骤。

教学准备:1. 教学PPT;2. 凸轮机构的相关图纸和实例;3. 设计软件(如AutoCAD、SolidWorks等)。

教学方法:1. 讲授法:讲解凸轮机构的定义、分类和应用;2. 案例分析法:分析凸轮机构的设计实例;3. 实践操作法:引导学生利用设计软件进行凸轮机构的设计。

二、教学过程1. 导入:通过展示凸轮机构的实例,引导学生思考凸轮机构的定义和作用。

2. 讲解凸轮机构的定义、分类和应用。

3. 讲解凸轮的轮廓曲线及其设计方法。

4. 讲解凸轮机构的设计步骤。

5. 分析凸轮机构的设计实例。

6. 练习:引导学生利用设计软件进行凸轮机构的设计。

三、教学评价1. 课堂问答:检查学生对凸轮机构的定义、分类和应用的掌握情况。

2. 设计练习:评估学生对凸轮机构设计方法的掌握程度。

3. 课后作业:布置相关设计题目,检查学生对凸轮机构设计的实际操作能力。

四、教学拓展1. 介绍其他常见的机械传动机构,如齿轮传动、皮带传动等;2. 介绍凸轮机构的应用领域,如汽车、机械制造等。

五、教学资源1. 教学PPT;2. 凸轮机构的相关图纸和实例;3. 设计软件(如AutoCAD、SolidWorks等)。

六、教学进度安排1. 课时:2课时(90分钟);2. 教学环节:讲解、案例分析、练习。

六、教学内容6. 凸轮机构的动态特性分析a. 运动规律b. 压力角与传动角c. 凸轮与从动件的接触条件d. 凸轮机构的效率与功耗7. 凸轮机构的强度计算a. 凸轮的接触应力b. 从动件的弯曲应力c. 凸轮机构的疲劳寿命d. 安全系数的确定8. 凸轮机构的实验研究a. 实验目的与意义b. 实验设备与方法c. 实验结果分析9. 凸轮机构的设计案例分析a. 案例一:单凸轮机构设计b. 案例二:双凸轮机构设计c. 案例三:组合凸轮机构设计d. 案例讨论与总结10. 凸轮机构的应用与创新a. 凸轮机构的实际应用场景b. 凸轮机构在现代工业中的挑战与机遇c. 凸轮机构的设计创新d. 未来发展趋势与展望七、教学过程1. 导入:通过展示凸轮机构的动态特性实验,引导学生关注凸轮机构的动态特性分析。

第九章_凸轮机构及其设计(公开课)

第九章_凸轮机构及其设计(公开课)
条件下,尽可能取较大的导轨长度和较小的悬臂尺 寸;当为滚子推杆时,应恰当地选取滚子半径;当 为平底推杆时,应正确地确定平底尺寸等等。 当然,上述各尺寸的确定,还必须考虑到强度和 工艺等方面的要求。合理选择这些尺寸是保证凸轮 机构具有良好工作性能的重要因素。
由于凸轮与平底 的接触面间易形成 油膜,润滑较好, 故常用于高速传动 中。
按推杆的运动形式分 直动推杆 摆动推杆
综合各分类方法,可等到不同类型的凸轮机构
对心直动尖顶推杆 偏置直动滚子推杆 对心直动平底推杆
摆动尖顶推杆
摆动滚子推杆
摆动平底推杆
按凸轮与推杆保持高副接触的方式分 力封闭的凸轮机构
弹簧力封闭 利用弹簧力使推杆与凸轮
第九章
凸轮机构及其设计
第九章
§9-1
凸轮机构及其设计
凸轮机构的应用和分类
§9-2 推杆的运动规律
§9-3 凸轮轮廓曲线的设计
§9-4 凸轮机构基本尺寸的确定
• 基本要求
– 掌握推杆常用的运动规律及其特性 – 能合理确定凸轮机构的基本尺寸 – 掌握凸轮廓线设计的基本原理及其方法
• 重点内容
– 推杆常用运动规律的特点及其选择原则 – 凸轮轮廓曲线的设计
1) 偏置直动尖顶推杆
2) 偏置直动滚子推杆
3) 对心直动平底推杆
2、摆动推杆盘形凸轮机构设计: 3、直动推杆圆柱凸轮机构设计:
三、用解析法设计凸轮廓线:
§9-4 凸轮机构基本尺寸的确定
一、 凸轮机构中的作用力和凸轮机构的压力角:
凸轮机构压力角α:是指推杆所受的正压力方向(沿凸轮廓 线在接触点的法线方向)与其作用点速度方向之间的夹角。
二、 凸轮基圆半径的确定 : 三、滚子推杆滚子半径的选择: 四、平底推杆平底尺寸的确定:

机械原理 第 章 凸轮机构及其设计

机械原理 第 章 凸轮机构及其设计

13 14
1) 将位移曲线若干等分;
2) 沿-w方向将偏距圆作相应等分;
3) 沿导路方向截取相应的位移,得 到一系列点;
4) 光滑联接。
5)偏置直动滚子从动件盘形凸轮机构
取长度比例尺l绘图
s
h
w h/2
13 12 11
10 w
9
8 7
14 1 2
3 4 5 6
O 1 2 3 /2 5 6 7 5 /4 10 11 127 /4 2
↑对心直动尖端推杆盘形 凸轮机构
↓对心直动滚子推杆盘形 凸轮机构
↑偏置直动尖端推杆盘形凸 轮机构
↓对心直动平底推杆盘形 凸轮机构
↑尖端摆动凸轮机构 ↓平底摆动凸轮机构
↑滚子摆动凸轮机构
(4)按凸轮与从动件保持接触的方式分 力封闭型凸轮机构
利用推杆的重力、弹簧力或其他外力使推杆与凸轮保持 接触的
刚性冲击 柔性冲击 无冲击 柔性冲击 无冲击
适用场合
低速轻载 中速轻载 高速中载 中低速中载 中高速轻载
除上述以外,还有其它运动规律,或将上述常用运动规律组 合使用。如“改进梯形加速度运动规律”、“变形等速运动规 律”。
3.推杆运动规律的选择
1)只要求当凸轮转过某一角度δ0时,推杆完成一行程h或φ。
4
89
13 14
取长度比例尺l绘图
14 1
13
2
12 w
3
11
4
10
5
9
6
7
实际廓线
理论廓线
4)偏置直动尖端推杆盘形凸轮机构
取长度比例尺l绘图
s
h
w h/2
13 12 11
10 w
9

第九章 凸轮机构及其设计

第九章 凸轮机构及其设计

(3)在选择从动件的运动规律时,除要考虑刚性冲击与柔 性冲击外,还应该考虑各种运动规律的速度幅值 vmax 、加 速度幅值 amax 及其影响加以分析和比较。
vmax
从动件动量 mvmax
amax
从动件惯性力 ma
max
对于重载凸轮机构,应选择 max 值较小的运动规律; 对于高速凸轮机构,宜选择 max 值较小的运动规律。
导轨 长度
F G /[cos( 1 ) ( 1 2b / l ) sin( 1 ) tan 2 ]
推程: []=30o, 直动推杆 []=35o~45o 摆动推杆 回程: []=70o 左右。
悬臂 长度
2. 凸轮基圆半径确定 (凸轮机构压力角与基圆半径有关 )
摆动
ψ
o
Φ0
h

反转法

Φs
Φ0
Φs
ψ0 ψ
3、解析法设计凸轮轮廓曲线 ① 偏置直动滚子推杆盘形凸轮机构
建立oxy坐标系,B0 点为凸轮 推程段廓线起始点。 rr ----滚子半径
x ( s0 s) sin e cos y ( s0 s) cos e sin
正弦加速度(摆线)运动规律
h


Φ0 Φs Φ0 Φs
无刚性冲击及柔性冲击
1.3 组合运动规律
例如:可在等速 运动规律的两端 点进行修正,用 其它规律连接, 以避免刚性冲击。
二、推杆运动规律的选择 原则:
•满足机器的工作要求; •凸轮机构要具有良好的动力特性; •凸轮便于加工。
1)机器的工作过程只要求凸轮转过某一角度时,推杆完成 某一行程或角行程,对推杆的运动规律不作要求。 2)机器的工作过程对推杆的运动规律有完全确定的要求。

机械原理课件第九章凸轮机构及其设计

机械原理课件第九章凸轮机构及其设计
ω
rb

1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′ 10′
0 1 2 3 4 5 6 7 8 9 10
δ0
δS

1′ 2′
12
3′
3
ω
d0
rb
δ′0
A1
A2 A3
δ
δ′S
§9-4 盘形凸轮机构基本尺寸的确定 一、凸轮机构中的作用力和凸轮机构的 压力角
依据力平衡条件,分别由∑F x= 0、 ∑F y= 0、∑M B= 0,有
在设计凸轮时,如何选取凸轮基本尺寸(rb ,e )保证
凸轮机构的最大压力角max小于或等于许用压力角[]是
工作中一个应注意的问题。
三、滚子半径的选择
ra = r + rr
1. 凸轮轮廓的内凹部分
设:实际轮廓曲率半径r a
显然:ra > r
结论:实际廓线始终存在。
理论轮廓曲率半径 r
滚子半径rr
-∞
加加速度
δ 位置:发生在 运动的起始点 、中间点和终 止点。
δ
δ
C

δ
3. 余弦加速度(简谐)运动规律
s 56
4
a = 2hw2cos(d/d0 )/(2d20 )
特点:存在柔冲击。
h
3
2
s
1 q
01
2345
δ0
δ
v
位置:发生在运动的起始
δ
点和终止点。 a
δ
da dt ∞
δ
-∞
4. 正弦加速度(摆线)运动规律
s 摆线
a = 2hw2sin(2d/d0 )/d20)
h
特点:既无柔性更无刚性 冲击。

第九章凸轮机构及其设计9-1、2

第九章凸轮机构及其设计9-1、2

3、按推杆运动形式分:
1)直动推杆:推杆作往复直线运动。 对心直动:推杆导路通过凸轮回转中心。 偏置直动:推杆导路不通过凸轮回转中心。 2)摆动推杆:推杆作往复摆动,
ee
4、按凸轮与推杆保持接触的方法分: 1)力封闭(力锁合)的凸轮机构 2)几何形状封闭(几何锁合)的 凸轮机构
a—沟槽式凸轮机构:利用凸轮上的 凹槽与推杆的滚子来保持接触; b—等宽凸轮机构: 与凸轮廓线相切的任意 平行线间的距离始终等 于推杆内框上、下壁间 的距离。
回程
2 s=h-2hδ 2/ δ 0 2 等加速段 v=-4hω δ / δ 0 2 a=-4hω 2/ δ 0
(9-6,a) (δ :0~ δ 0 /2 )
s= 2h( δ 0 -δ )2/ δ 02 (9-6,b) 2 δ δ δ δ v= - 4h ω ( δ )/ 等减速段 (δ : 0 0 0 /2~ 0) 2 a= 4hω 2/ δ 0
二 、 推杆的常用运动规律 (等速运动规律、等加等减 速运动规律、余弦加速度(简谐)运动规律正弦加 速度(摆线)运动规律) 1、等速运动规律 v=常数 1)方程: s=hδ /δ 0 (9-3,a) 推程 v=hω /δ 0 (δ :0~δ 0) a=0 s=h(1-δ /δ 0′) 回程 v=-hω /δ 0′ a=0 (9-3,b) (δ :0~δ 0′)
1
2
3
c—等径凸轮机构:在过凸轮轴心所作任一径向线上与凸 轮廓线相切的两滚子中心间的距离处 处相等。
d—共轭凸轮(主回凸轮)机构:用两个固结在一起的凸 轮来控制同一推杆,从而 形成几何形状封闭。
等径凸轮机构
共轭凸轮
新型的凸轮机构,如:
1)凹圆弧推杆盘形凸轮机构:面接触,增加了接触面积, 提高了凸轮机构的承载能力。 2)嵌状圆柱凸轮:有一个圆柱母体,在母体上再嵌入几 个圆柱。加工方便。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 机器的工作过程对推杆运动有要求,则应严格按工作要求 的运动规律来设计凸轮廓线。如刀架进给凸轮。
3. 对高速凸轮,要求有较好的动力特性,除了避免出现刚性 或柔性冲击外,还应当考虑Vmax和 amax。
高速重载凸轮要选Vmax和amax比较小的理由: ①Vmax↑→动量mv↑, 若机构突然被卡住,则冲击力将很大 (F=mv/t)。 对重载凸轮,则适合选用Vmax较小的运动规律。 ②amax↑→惯性力F=-ma↑ , Pn↑ 对强度和耐磨性要求↑。 对高速凸轮,希望amax 愈小愈好。
中速轻载
高速中载 中速中载 高速轻载 高速重载
§9-3 凸轮轮廓曲线的设计
1.凸轮廓线设计方法的基本原理 2.用作图法设计凸轮廓线 1)对心直动尖顶推杆盘形凸轮 2)对心直动滚子推杆盘形凸轮 3)对心直动平底推杆盘形凸轮 4)偏置直动尖顶推杆盘形凸轮 5)摆动尖顶推杆盘形凸轮机构 6)直动推杆圆柱凸轮机构 7)摆动推杆圆柱凸轮机构
a
vmax=2hω/δ0
δ
amax=6.28hω2/δ02
δ
无冲击
3、改进型运动规律
将几种运动规律组合,以改善运动特性。 s h o v
δ
δ
0 t
o a
o
δ
+∞
δ
-∞
正弦改进等速
二、选择运动规律
选择原则:
1.机器的工作过程只要求凸轮转过一角度δt时,推杆完成一 行程h(直动推杆)或φ(摆动推杆),对运动规律并无严 格要求。则应选择直线或圆弧等易加工曲线作为凸轮的轮廓 曲线。如夹紧凸轮。
v=hω[1-cos(2πδ/δ0)]/δ0
s h
1 2 3 4 5 6
r=h/2π
0
δ
a=
2πhω2
sin(2πδ/δ0
)/δ2
θ=2πδ/δ0
δ0
回程: v s=h[1-δ/δ’0+sin(2πδ/δ’0)/2π] v=hω[cos(2πδ/δ’0)-1]/δ’0 a=-2πhω2 sin(2πδ/δ’0)/δ’20
2)对心直动滚子推杆盘形凸轮 对心直动滚子推杆凸轮机构中,已知凸轮 的基圆半径rmin,角速度ω和推杆的运动 规律,设计该凸轮轮廓曲线。
7’ 5’ 3’ 1’ 8’ 9’ 11’ 12’ 13’ 14’ 9 11 13 15

ω
1 3 5 78
设计步骤: ①选比例尺μl 作基圆 rmin 。 ②反向等分各运动角。原则是:陡密缓疏。
运动规律 等 速 从动件常用运动规律特性比较 Vmax amax 冲击
(hω/δ0) (hω/δ02)
推荐应用范围 低速轻载
1.0

刚性
等加等减速
五次多项式 余弦加速度 正弦加速度 改进正弦加速度
2.0
1.88 1.57 2.0 1.76
4.0
5.77 4.93 6.28 5.53
柔性
无 柔性 无 无
4)偏置直动尖顶推杆盘形凸轮 偏置直动尖顶推杆凸轮机构中,已知 凸轮的基圆半径rmin,角速度ω和推杆 的运动规律和偏心距e,设计该凸轮轮 廓曲线。
8’ 9’ 11’ 12’ 13’ 14’ 9 11 13 15
e -ω ω A
k12 k11 k10 k9 k15 k14 k13
7’ 5’ 3’
15’ 15 14’ 14 13’ 12’
同理得回程运动方程: s=h(1-δ/δ h ) v=-hω/δh a=0 b)二次多项式(等加等减速)运动规律 位移曲线为一抛物线。加、减速各占一半。 s 推程加速上升段边界条件: 起始点:δ=0, s=0, v= 0 中间点:δ=δt/2,s=h/2 1 2 3 4 5 δt 求得:C0=0, C1=0,C2=2h/δt2
理论轮廓
实际轮廓
③确定反转后,从动件滚子中心在各等份点的位置。 ④将各中心点连接成一条光滑曲线。 ⑤作各位置滚子圆的内(外)包络线(中心轨迹的等距曲线)。
3)对心直动平底推杆盘形凸轮 对心直动平底推杆凸轮机构中,已知 凸轮的基圆半径rmin,角速度ω和推杆 的运动规律,设计该凸轮轮廓曲线。
7’ 5’ 3’ 1’ 8’ 9’ 11’ 12’ 13’ 14’ 9 11 13 15 14’ 15
1 2’ 1 3
4” A A
4
5”
6”
7”
A
5
2”
6
3” A A A A
7 8 9 0
中线
8” 9” 0”
0’
9’
0”
1”
R
V=ωR
50分钟
§9-4 凸轮机构基本尺寸的确定
上述设计廓线时的凸轮结构参数rmin、e、rT等,是预先给定的。 实际上,这些参数也是根据机构的受力情况是否良好、动作 是否灵活、尺寸是否紧凑等因素由设计者确定的。
1.凸轮压力角和基圆半径的确定
2.滚子半径的确定 3.平底尺寸l 的确定
1、 凸轮机构的压力角
定义:正压力与推杆上力作用点B速度方向间的夹角α
Ff 压力角与作用力的关系 不考虑摩擦时,作用力沿法线方向。 n F F’ F’----有用分力, 沿导路方向 α F”----有害分力,垂直于导路 B F” F”=F’ tg α F’ 一定时, α↑ → F”↑, ω 若α大到一定程度时,会有: O
δ
8
ω
-V
3’
2’ 4’
5’
6’ 7’
v
s
β
1’ 1 2 3 4 5 6
β'
8
7 " β
2πR
R
V=ωR
7)摆动推杆圆柱凸轮机构 已知:圆柱凸轮的半径R,滚子 半径 rr 从动件的运动规律,设计 该凸轮机构。
φ
0
ω
1 2πR
2 3 4 5 6789 0 2π R
-V
δ
A
φ
2rr φ
A A0
4’,5’,6’ 7’ 3’ 2’ 8’ A A A
1.凸轮廓线设计方法的基本原理 反转原理: 给整个凸轮机构施以 -ω 时,不影响 各构件之间的相对运动,此时,凸轮 将静止,而从动件尖顶复合运动的轨 迹即凸轮的轮廓曲线。 依据此原理可以用几何作图的方法 设计凸轮的轮廓曲线,例如:

ω
尖顶凸轮绘制动画 滚子凸轮绘制动画
2.用作图法设计凸轮廓线
1)对心直动尖顶推杆盘形凸轮
刀架
2
o
1
内燃机气门机构 靠弹簧力封闭
机床进给机构 几何形状封闭
等 宽 凸 轮 凹槽凸轮
W
等 径 凸 轮
r1
r2
r1+r2 =const
主 回 凸 轮
§9-2 推杆的运动规律
凸轮机构设计的基本任务是根据工作要求选定凸轮机构的形式、 推杆运动规律、合理确定结构尺寸、设计轮廓曲线。而根据工 作要求选定推杆运动规律,是设计凸轮轮廓曲线的前提。 一、推杆的常用运动规律 名词术语: 基圆、 基圆半径、推程、 推程运动角、 远休止角、回程、 回程运动角、近休止角。
1’
1 3 5 78
k1 13 k 12 k32 k8 k7k6 k5k4 11 10 9
O
11’ 10’ 9’
5)摆动尖顶推杆盘形凸轮机构
摆动尖顶推杆凸 轮机构中,已知 凸轮的基圆半径 rmin,角速度ω, 摆动推杆长度l 以及摆杆回转中 心与凸轮回转中 心的距离d,摆 杆角位移方程, 设计该凸轮轮廓 曲线。
s
B’ h A D
δs’
运动规律:推杆在推程或回程 时,其位移S、速度V、和加速 度a 随时间t 的变化规律。
rmin
δt
o δt δs ω
B
t δh δs’ δ
δh
S=S(t) V=V(t) a=a(t)
分类:多项式、三角函数。
δs
C
1.多项式运动规律 一般表达式:s=C0+ C1δ+ C2δ2+…+Cnδn (1) 求一阶导数得速度方程:v=ds/dt = C1ω+ 2C2ωδ+…+nCnωδn-1 求二阶导数得加速度方程: 2δn-2 a =dv/dt =2 C2ω2+ 6C3ω2δ…+n(n-1)Cn ω s 其中:δ-凸轮转角,dδ/dt=ω-凸轮角速度, Ci-待定系数。 h 边界条件: 凸轮转过推程运动角δt-从动件上升h δt δ 凸轮转过回程运动角δh-从动件下降h v a)一次多项式(等速运动)运动规律 在推程起始点:δ=0, s=0 δ 在推程终止点:δ=δt,s=h a 代入得:C0=0, C1=h/δt +∞ 推程运动方程: s=hδ/δt δ v= hω/δt -∞ 刚性冲击 a=0
加速段推程运动方程为: s =2hδ2/δt2 v =4hωδ/δt2 a =4hω2/δt2 推程减速上升段边界条件: 中间点:δ=δt/2,s=h/2 终止点:δ=δt, s=h, v= 0 求得:C0=-h, C1=4h/δt,C2=-2h/δt2
v
h/2 h/2 6 δ
2hω/δt δ
a
4hω2/δt2
回程: s=h[1+cos(πδ/δh)]/2 v=-πhωsin(πδ/δh)δ/2δh a=-π2hω2 cos(πδ/δh)/2δh2
4 3 2
5 6
s
h
1
δ
1 2
δt
3
4
5
6
v
Vmax=1.57hω/δt
δ
a
δ
在起始和终止处理论上 a为有限值, 产生柔性冲击。
b)正弦加速度(摆线)运动规律 推程: s=h[δ/δ0-sin(2πδ/δ0)/2π]
4’ 3’ 2’ 1’ 1 2 3 4 7’ 8’ 5 6 7 8 5’ 6’
相关文档
最新文档