2019-2020学年高二数学双测(人教必修5)第二章 数列单元测试(A卷基础篇)(原卷版)

合集下载

2019-2020学年高中数学人教A版必修5同步作业与测评:第二章 数列 单元质量测评 Word版含解析

2019-2020学年高中数学人教A版必修5同步作业与测评:第二章 数列 单元质量测评 Word版含解析

第二章 单元质量测评本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列3,5,9,17,33,…的通项公式a n 等于( ) A .2n B .2n +1 C .2n -1 D .2n +1 答案 B解析 由于3=2+1,5=22+1,9=23+1,…,所以通项公式是a n =2n +1.(或特值法,当n =1时只有B 项符合.)2.记等差数列的前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d =( ) A .2 B .3 C .6 D .7 答案 B解析 S 4-S 2=a 3+a 4=20-4=16,∴a 3+a 4-S 2=(a 3-a 1)+(a 4-a 2)=4d =16-4=12,∴d =3. 3.在数列{a n }中,a 1=2,2a n +1-2a n =1,则a 101的值为( ) A .49 B .50 C .51 D .52 答案 D解析 ∵2a n +1-2a n =1,∴a n +1-a n =12. ∴数列{a n }是首项a 1=2,公差d =12的等差数列. ∴a 101=2+12×(101-1)=52.4.在等差数列{a n }中,若a 1+a 2+a 3=32,a 11+a 12+a 13=118,则a 4+a 10=( )A .45B .50C .75D .60 答案 B解析 ∵a 1+a 2+a 3=3a 2=32,a 11+a 12+a 13=3a 12=118,∴3(a 2+a 12)=150,即a 2+a 12=50,∴a 4+a 10=a 2+a 12=50.5.公差不为零的等差数列{a n }的前n 项和为S n .若a 4是a 3与a 7的等比中项,S 8=32,则S 10等于( )A .18B .24C .60D .90 答案 C解析 由a 24=a 3a 7得(a 1+3d )2=(a 1+2d )(a 1+6d ),即2a 1+3d =0. ①又S 8=8a 1+562d =32,则2a 1+7d =8. ②由①②,得d =2,a 1=-3. 所以S 10=10a 1+902d =60.故选C .6.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的( )A .第5项B .第12项C .第13项D .第6项 答案 C解析 162是数列{a n }的第5项,则它是新数列{b n }的第5+(5-1)×2=13项. 7.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )A .54钱B .43钱C .32钱D .53钱 答案 B解析 依题意设甲、乙、丙、丁、戊所得钱分别为 a -2d ,a -d ,a ,a +d ,a +2d , 则由题意可知,a -2d +a -d =a +a +d +a +2d ,即a =-6d , 又a -2d +a -d +a +a +d +a +2d =5a =5,∴a =1, 则a -2d =a -2×⎝ ⎛⎭⎪⎫-a 6=43a =43.故选B .8.已知{a n }是等差数列,a 3=5,a 9=17,数列{b n }的前n 项和S n =3n ,若a m =b 1+b 4,则正整数m 等于( )A .29B .28C .27D .26 答案 A解析 因为{a n }是等差数列,a 9=17,a 3=5,所以6d =17-5,得d =2,a n =2n -1.又因为S n =3n ,所以当n =1时,b 1=3,当n ≥2时,S n -1=3n -1,b n =3n -3n -1=2·3n -1,由a m =b 1+b 4,得2m -1=3+54,得m =29,故选A .9.在各项均为正数的等比数列{a n }中,a 1=2且a 2,a 4+2,a 5成等差数列,记S n 是数列{a n }的前n 项和,则S 5=( )A .32B .62C .27D .81 答案 B解析 设各项均为正数的等比数列{a n }的公比为q , 又a 1=2,则a 2=2q ,a 4+2=2q 3+2,a 5=2q 4, ∵a 2,a 4+2,a 5成等差数列,∴4q 3+4=2q +2q 4, ∴2(q 3+1)=q (q 3+1),由q >0,解得q =2, ∴S 5=2(1-25)1-2=62.故选B .10.已知数列{a n }前n 项和为S n =1-5+9-13+17-21+…+(-1)n -1(4n -3),则S 15+S 22-S 31的值是( )A .13B .-76C .46D .76 答案 B解析 ∵S n =1-5+9-13+17-21+…+ (-1)n -1(4n -3), ∴S 14=7×(1-5)=-28, a 15=60-3=57, S 22=11×(1-5)=-44,S 30=15×(1-5)=-60, a 31=124-3=121,∴S 15=S 14+a 15=29,S 31=S 30+a 31=61. ∴S 15+S 22-S 31=29-44-61=-76.故选B .11.已知函数f (x )=⎩⎨⎧2x -1,x ≤0,f (x -1)+1,x >0,把方程f (x )=x 的根按从小到大的顺序排列成一个数列{a n },则该数列的通项公式为( )A .a n =n (n -1)2(n ∈N *)B .a n =n (n -1)(n ∈N *)C .a n =n -1(n ∈N *)D .a n =n -2(n ∈N *) 答案 C解析 令2x -1=x (x ≤0),易得x =0. 当0<x ≤1时,由已知得f (x -1)+1=x , 即2x -1-1+1=2x -1=x ,则x =1. 当1<x ≤2时,由已知得f (x )=x , 即f (x -1)+1=x ,即f (x -2)+1+1=x , 故2x -2+1=x ,则x =2. 因此,a 1=0,a 2=1,a 3=2, 结合各选项可知该数列的通项公式为 a n =n -1(n ∈N *).故选C .12.已知数列{a n }满足a n +1+(-1)n a n =2n -1,S n 为其前n 项和,则S 60=( ) A .3690 B .1830 C .1845 D .3660 答案 B解析 ①当n 为奇数时,a n +1-a n =2n -1, a n +2+a n +1=2n +1,两式相减得 a n +2+a n =2;②当n 为偶数时,a n +1+a n =2n -1, a n +2-a n +1=2n +1,两式相加得a n +2+a n =4n ,故S 60=a 1+a 3+a 5+…+a 59+(a 2+a 4+a 6+…+a 60) =2×15+(4×2+4×6+…+4×58) =30+4×450=1830.故选B .第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知数列{a n }中,a 1=10,a n +1=a n -12,则它的前n 项和S n 的最大值为________.答案 105解析 ∵a n +1-a n =-12,∴d =-12, 又a 1=10,∴a n =-n 2+212(n ∈N *). ∵a 1=10>0,d =-12<0,设从第n 项起为负数,则-n 2+212<0(n ∈N *). ∴n >21,于是前21项和最大,最大值为S 21=105.14.已知等比数列{a n }为递增数列,若a 1>0,且2(a n +a n +2)=5a n +1,则数列{a n }的公比q =________.答案 2解析 ∵{a n }是递增的等比数列,且a 1>0,∴q >1. 又∵2(a n +a n +2)=5a n +1,∴2a n +2a n q 2=5a n q .∵a n ≠0,∴2q 2-5q +2=0,∴q =2或q =12(舍去),∴公比q 为2. 15.在数列{a n }中,a 1=1,a 2=2,且a n +2-a n =1+(-1)n (n ∈N *),则a 1+a 2+…+a 51=________.答案 676解析 当n 为正奇数时,a n +2-a n =0,又a 1=1,则所有奇数项都是1;当n 为正偶数时,a n +2-a n =2,又a 2=2,则所有偶数项是首项和公差都是2的等差数列,所以a 1+a 2+…+a 51=(a 1+a 3+…+a 51)+(a 2+a 4+…+a 50)=26a 1+25a 2+25×242×2=676.16.某企业为节能减排,用9万元购进一台新设备用于生产,第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加3万元,该设备每年生产的收入均为21万元.设该设备使用了n (n ∈N *)年后,盈利总额达到最大值(盈利总额等于总收入减去总成本),则n 等于________.答案 7解析 设该设备第n 年的运营费用为a n 万元,则数列{a n }是以2为首项,3为公差的等差数列,则a n =3n -1.设该设备使用n 年的运营费用总和为T n , 则T n =n (2+3n -1)2=32n 2+12n .设n 年的盈利总额为S n ,则S n =21n -⎝ ⎛⎭⎪⎫32n 2+12n -9=-32n 2+412n -9.由二次函数的性质可知,当n =416时,S n 取得最大值,又n ∈N *, 故当n =7时,S n 取得最大值.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)设a ,b ,c 是实数,3a ,4b ,5c 成等比数列,且1a ,1b ,1c 成等差数列,求a c +c a 的值.解 ∵3a ,4b ,5c 成等比数列,∴16b 2=15ac . ① ∵1a ,1b ,1c 成等差数列, ∴2b =1a +1c . ②由①,得4b 2·15ac =64. ③ 将②代入③,得1a +1c 2·15ac =64,∴1a 2+1c 2+2ac ac =6415. ∴c a +a c =3415.18.(本小题满分12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n ,c n =a n -1.(1)求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.解 (1)证明:∵a 1=S 1,a n +S n =n , ① ∴a 1+S 1=1,得a 1=12. 又a n +1+S n +1=n +1, ②由①②两式相减得2(a n +1-1)=a n -1, 即a n +1-1a n -1=12,也即c n +1c n =12, 故数列{c n }是等比数列. (2)∵c 1=a 1-1=-12,∴c n =-12n ,a n =c n +1=1-12n , a n -1=1-12n -1.故当n ≥2时,b n =a n -a n -1=12n -1-12n =12n .又b 1=a 1=12也适合上式,∴b n =12n .19.(本小题满分12分)已知数列{a n }满足a 1=1,a 2=3,a n +2=3a n +1-2a n (n ∈N *).(1)证明:数列{a n +1-a n }是等比数列; (2)求数列{a n }的通项公式. 解 (1)证明:∵a n +2=3a n +1-2a n ,∴a n +2-a n +1=2(a n +1-a n ),∴a n +2-a n +1a n +1-a n=2.∵a 1=1,a 2=3,∴{a n +1-a n }是以a 2-a 1=2为首项,2为公比的等比数列.(2)由(1)得a n +1-a n =2n ,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+2+1=2n -1.故数列{a n }的通项公式为a n =2n -1.20.(本小题满分12分)2010年4月14日,冰岛南部艾雅法拉火山喷发,弥漫在欧洲上空多日的火山灰严重影响欧洲多个国家的机场正常运营.由于风向,火山灰主要飘落在该火山口的东北方向与东南方向之间的地区.假设火山喷发停止后,需要了解火山灰的飘散程度,为了测量的需要,现将距离火山喷口中心50米内的扇形面记为第1区、50米至100米的扇环面记为第2区、…、50(n -1)米至50n 米的扇环面记为第n 区,若测得第1区的火山灰每平方米的平均质量为1吨、第2区每平方米的平均质量较第1区减少了2%、第3区较第2区又减少了2%,依此类推,问:(1)离火山口1225米处的火山灰大约为每平方米多少千克?(结果精确到1千克)(2)第几区内的火山灰总质量最大?提示:当n 较大时,可用(1-x )n ≈1-nx 进行近似计算. 解 (1)设第n 区的火山灰为每平方米a n 千克, 依题意,数列{a n }为等比数列,且a 1=1000(千克), 公比q =1-2%=0.98, ∴a n =a 1×q n -1=1000×0.98n -1. ∵离火山口1225米处的位置在第25区,∴a 25=1000×(1-0.02)24≈1000×(1-24×0.02)=520,即离火山口1225米处的火山灰大约为每平方米520千克.(2)设第n 区的火山灰总质量为b n 千克,且该区的火山灰总质量最大. 依题意,第n 区的面积为14π{(50n )2-[50(n -1)]2}=625π(2n -1), ∴b n =625π(2n -1)×a n . 依题意得⎩⎨⎧b n ≥b n -1,b n ≥b n +1,解得49.5≤n ≤50.5.∵n ∈N *, ∴n =50,即第50区的火山灰总质量最大.21.(本小题满分12分)设数列{a n }的前n 项和为S n =2n 2,数列{b n }为等比数列,且a 1=b 1,b 2(a 2-a 1)=b 1.(1)求数列{a n }和{b n }的通项公式; (2)设c n =a nb n,求数列{c n }的前n 项和T n .解 (1)当n =1时,a 1=S 1=2; 当n ≥2时,a n =S n -S n -1=2n 2-2(n -1)2=4n -2, ∵当n =1时,a 1=4-2=2也适合上式, ∴{a n }的通项公式为a n =4n -2, 即{a n }是a 1=2,公差d =4的等差数列. 设{b n }的公比为q ,则b 1qd =b 1, ∴q =14.故b n =b 1q n -1=2×14n -1.即{b n }的通项公式为b n =24n -1. (2)∵c n =a n b n=4n -224n -1=(2n -1)4n -1,∴T n =c 1+c 2+…+c n =1+3×41+5×42+…+(2n -1)4n -1, 4T n =1×4+3×42+5×43+…+(2n -3)4n -1+(2n -1)4n .两式相减,得3T n =-1-2(41+42+43+…+4n -1)+(2n -1)4n =13[(6n -5)4n +5],∴T n =19[(6n -5)4n +5].22.(本小题满分12分)已知a 1=2,点(a n ,a n +1)在函数f (x )=x 2+2x 的图象上,其中n =1,2,3,….(1)证明:数列{lg (1+a n )}是等比数列; (2)设T n =(1+a 1)·(1+a 2)…(1+a n ),求T n ;(3)记b n =1a n +1a n +2,求数列{b n }的前n 项和S n ,并证明S n <1.解 (1)证明:由已知a n +1=a 2n +2a n ,∴a n +1+1=(a n +1)2, ∴lg (1+a n +1)=2lg (1+a n ),∴{lg (1+a n )}是公比为2的等比数列. (2)由(1)知lg (1+a n )=2n -1·lg (1+a 1) =2n -1·lg 3=lg 32n -1, ∴1+a n =32n -1,∴T n =(1+a 1)(1+a 2)…(1+a n )=320·321·322·…·32n -1=31+2+22+…+2n -1=32n -1. (3)∵点(a n ,a n +1)在函数f (x )=x 2+2x 的图象上, ∴a n +1=a 2n +2a n ,∴a n +1=a n (a n +2). ∴1a n +1=12⎝ ⎛⎭⎪⎫1a n -1a n +2,∴1a n +2=1a n -2a n +1,∴b n =1a n +1a n +2=1a n +1a n -2a n +1=2⎝ ⎛⎭⎪⎫1a n -1a n +1.∴S n =b 1+b 2+…+b n=2⎝ ⎛1a 1-1a 2+1a 2-1a 3+…+⎭⎪⎫1a n -1a n +1 =2⎝⎛⎭⎪⎫1a 1-1a n +1. ∵a n =32n -1-1,a 1=2,a n +1=32n -1, ∴S n =1-232n -1.32n-1>32-1=8>2,∴0<232n -1<1.∴S n <1.。

2019_2020学年高中数学第二章数列能力测试新人教A版必修5

2019_2020学年高中数学第二章数列能力测试新人教A版必修5

第二章 数列能力检测满分150分.考试时间120分钟.一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2019年山西太原期末)数列1,3,6,10,…的一个通项公式是( ) A .a n =n n +12B .a n =n n -12C .a n =n 2-(n -1) D .a n =n 2-1【答案】A【解析】观察数列1,3,6,10,…,可以发现1=1,3=1+2,6=1+2+3,10=1+2+3+4,…,第n 项为1+2+3+4+…+n =n n +12.∴a n =n n +12.故选A .2.已知等差数列{a n }的前n 项和为S n 且满足S 33-S 22=1,则数列{a n }的公差d 是( )A .-2B .-1C .1D .2【答案】D【解析】由S 33-S 22=1得a 1+a 2+a 33-a 1+a 22=a 1+d -2a 1+d 2=d2=1,∴d =2.3.已知3,a +2,b +4成等比数列,1,a +1,b +1成等差数列,则等差数列的公差为( ) A .4或-2 B .-4或2 C .4 D .-4【答案】C【解析】∵3,a +2,b +4成等比数列,1,a +1,b +1成等差数列,∴(a +2)2=3(b +4),2(a +1)=1+b +1,联立解得⎩⎪⎨⎪⎧a =-2,b =-4或⎩⎪⎨⎪⎧ a =4,b =8.当⎩⎪⎨⎪⎧a =-2,b =-4时,a +2=0,与3,a +2,b +4成等比数列矛盾,应舍去;当⎩⎪⎨⎪⎧a =4,b =8时,等差数列的公差为(a +1)-1=a =4.故选C .4.已知等差数列{a n }的公差d <0,若a 4·a 6=24,a 2+a 8=10,则该数列的前n 项和S n的最大值为( )A .50B .40C .45D .35【答案】C【解析】∵a 4+a 6=a 2+a 8=10,a 4·a 6=24,d <0,∴⎩⎪⎨⎪⎧a 4=6,a 6=4.∴d =a 6-a 46-4=-1,∴a n =a 4+(n -4)d =10-n .∴当n =9或10时S n 取到最大值,S 9=S 10=45.5.公差不为0的等差数列{a n },其前23项和等于其前10项和,a 8+a k =0,则正整数k =( )A .24B .25C .26D .27【答案】C【解析】由题意设等差数列{a n }的公差为d ,d ≠0,∵其前23项和等于其前10项和,∴23a 1+23×222d =10a 1+10×92d ,变形可得13(a 1+16d )=0.∴a 17=a 1+16d =0.由等差数列的性质可得a 8+a 26=2a 17=0,∴k =26.故选C .6.已知各项为正的等比数列{a n }中,a 4与a 14的等比中项为22,则a 7a 9a 11=( ) A .16 B .16 2 C .32 D .32 2【答案】B【解析】∵各项为正的等比数列{a n }中,a 4与a 14的等比中项为22,∴a 4a 14=(22)2=8.∴a 7a 11=a 29=8.∴a 7a 9a 11=16 2.故选B .7.如果数列{a n }满足a 1=2,a 2=1且a n -1-a n a n -1=a n -a n +1a n +1(n ≥2),则这个数列的第10项等于( )A .129B .1210 C .110 D .15【答案】D 【解析】∵a n -1-a n a n -1=a n -a n +1a n +1,∴1-a n a n -1=a n a n +1-1,a n a n -1+a n a n +1=2,∴1a n -1+1a n +1=2a n ,故⎩⎨⎧⎭⎬⎫1a n 是等差数列.又d =1a 2-1a 1=12,∴1a 10=12+9×12=5,故a 10=15.8.设等差数列{a n }的前n 项和为S n ,若2a 8=6+a 11,则S 9的值等于( ) A .54 B .45 C .36 D .27【答案】A【解析】∵2a 8=a 5+a 11,2a 8=6+a 11,∴a 5=6.∴S 9=9a 5=54.9.已知各项都为正数的等比数列{a n }中,a 2a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n +2>19的最大正整数n 的值为( ) A .3 B .4 C .5 D .6【答案】B【解析】∵a 2a 4=4,a n >0,∴a 3=2.∴a 1+a 2=12.∴⎩⎪⎨⎪⎧a 1+a 1q =12,a 1q 2=2,消去a 1,得1+qq2=6.∵q >0,∴q =12.∴a 1=8,∴a n =8×⎝ ⎛⎭⎪⎫12n -1=24-n .∴不等式a n a n +1a n +2>19化为29-3n>19,当n=4时,29-3×4=18>19,当n =5时,29-3×5=164<19.故选B . 10.(2019年内蒙古包头模拟)已知各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足n (n +1)S 2n +(n 2+n -1)S n -1=0(n ∈N *),则S 1+S 2+…+S 2019=( )A .12 019 B .12 020 C .2 0182 019 D .2 0192 020【答案】D【解析】∵n (n +1)S 2n +(n 2+n -1)S n -1=0(n ∈N *),∴(S n +1)[n (n +1)S n -1]=0.又S n>0,∴n (n +1)S n -1=0,∴S n =1nn +1=1n -1n +1.∴S 1+S 2+…+S 2 019=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝⎛⎭⎪⎫12 019-12 020=2 0192 020.11.已知数列3,7,11,…,139与2,9,16,…,142,则它们所有公共项的个数为( ) A .4 B .5 C .6 D .7【答案】B【解析】由题意可知数列3,7,11,…,139的通项公式为a n =4n -1,139是数列第35项.数列2,9,16,…,142的通项公式为b m =7m -5,142是数列第21项.设数列3,7,11,…,139的第n 项与数列2,9,16,…,142的第m 项相同,则4n -1=7m -5,n =7m -44=7m 4-1,∴m为4的倍数且m 不大于21,n 不大于35.由此可知,m 只能为4,8,12,16,20.此时n 的对应值为6,13,20,27,34.∴公共项的个数为5.故选B .12.(2019年福建厦门模拟)已知等差数列{a n }的公差d ≠0,{a n }的部分项ak 1,ak 2,…,ak n 构成等比数列,若k 1=1,k 2=5,k 3=17,则k n =( )A .2×3n -1-1 B .2×3n -1+1C .2×3n-1 D .2×3n+1【答案】A【解析】设等比数列ak 1,ak 2,…,ak n 的公比为q .因为k 1=1,k 2=5,k 3=17,所以a 1·a 17=a 25,即a 1(a 1+16d )=(a 1+4d )2,化简得a 1d =2d 2.又d ≠0,得a 1=2d ,所以q =a 5a 1=a 1+4da 1=2d +4d2d=3.一方面,ak n 作为等差数列{a n }的第k n 项,有ak n =a 1+(k n -1)d =2d +(k n -1)d =(k n +1)d ;另一方面,ak n 作为等比数列的第n 项,又有ak n =ak 1·q n -1=a 1·3n -1=2d ·3n -1,所以(k n +1)d =2d ·3n -1.又d ≠0,所以k n =2×3n -1-1.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.(2017年新课标Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. 【答案】-8【解析】设{a n }的公比为q ,则⎩⎪⎨⎪⎧a 1+a 2=a 11+q =-1,a 1-a 3=a 11-q2=-3,解得⎩⎪⎨⎪⎧a 1=1,q =-2,∴a 4=a 1q 3=-8.14.等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则{a n }的公比为________. 【答案】13【解析】∵S 1,2S 2,3S 3成等差数列,∴4S 2=S 1+3S 3.a n =a 1qn -1,即4(a 1+a 1q )=a 1+3(a 1+a 1q +a 1q 2),解得q =13.15.已知数列{a n }满足a n +1=12+a n -a 2n 且a 1=12,则该数列的前 2 017项的和等于________.【答案】3 0252【解析】∵a 1=12,a n +1=12+a n -a 2n ,∴a 2=1,从而a 3=12,a 4=1,即得a n =⎩⎪⎨⎪⎧12,n =2k -1k ∈N +,1,n =2k k ∈N +,故数列的前2 017项的和S 2 017=1 008×1+1 009×12=3 0252.16.(2018年江苏)已知集合A ={x |x =2n -1,n ∈N *},B ={x |x =2n ,n ∈N *}.将A ∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n +1成立的n 的最小值为________.【答案】27【解析】B ={2,4,8,16,32,64,128…},与A 相比,元素间隔大,所以从S n 中加了几个B 中元素考虑.1个:n =1+1=2,S 2=3,12a 3=36;2个:n =2+2=4,S 4=10,12a 5=60;3个:n =4+3=7,S 7=30,12a 8=108;4个:n =8+4=12,S 12=94,12a 13=204;5个:n =16+5=21,S 21=318,12a 22=396;6个:n =32+6=38,S 38=1 150,12a 39=780.发现21≤n ≤38时S n -12a n +1与0的大小关系发生变化,以下采用二分法查找:S 30=687,12a 31=612,所以所求n 应在22~29之间,S 25=462,12a 26=492,所以所求n 应在25~29之间,S 27=546,12a 28=540,所以所求n 应在25~27之间,S 26=503,12a 27=516.因为S 27>12a 28,而S 26<12a 27,所以使得S n >12a n+1成立的n 的最小值为27.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分10分)(2017年北京)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{a n }的通项公式; (2)求和:b 1+b 3+b 5+…+b 2n -1. 【解析】(1)设等差数列{a n }的公差为d . 因为a 2+a 4=10,∴2a 1+4d =10. 解得d =2. 所以a n =2n -1.(2)设等比数列{b n }的公比为q . 因为b 2b 4=a 5,所以b 21q 4=9. 解得q 2=3. 所以b 2n -1=b 1q2n -2=3n -1.从而b 1+b 3+b 5+…b 2n -1=1+3+32+…+3n -1=3n-12.18.(本小题满分12分)已知{a n }为等差数列,前n 项和为S n ,S 5=S 6且a 3=-6. (1)求数列{a n }的通项公式;(2)若等比数列{b n }满足b 2=6,6b 1+b 3=-5a 3,求{b n }的前n 项和T n .【解析】(1)由已知可得a 6=0,设等差数列的公差为d ,由题意可得⎩⎪⎨⎪⎧a 1+2d =-6,a 1+5d =0,解得d =2,a 1=-10,∴数列{a n }的通项公式为a n =2n -12. (2)设{b n }的公比为q ,由题设得⎩⎪⎨⎪⎧b 1q =6,6b 1+b 1q 2=30,解得⎩⎪⎨⎪⎧b 1=3,q =2或⎩⎪⎨⎪⎧b 1=2,q =3.1-2当b 1=2,q =3时,T n =21-3n1-3=3n-1.19.(本小题满分12分)等差数列{a n }满足:a 2+a 4=6,a 6=S 3,其中S n 为数列{a n }的前n 项和.(1)求数列{a n }的通项公式;(2)若k ∈N *且a k ,a 3k ,S 2k 成等比数列,求k 值. 【解析】(1)设等差数列{a n }的首项为a 1,公差为d , 由a 2+a 4=6,a 6=S 3,得⎩⎪⎨⎪⎧2a 1+4d =6,a 1+5d =3a 1+3d ,解得⎩⎪⎨⎪⎧a 1=1,d =1.∴a n =1+1×(n -1)=n . (2)S 2k =2k +2k2k -12=2k 2+k , 由a k ,a 3k ,S 2k 成等比数列,得 9k 2=k (2k 2+k ),解得k =4.20.(本小题满分12分)已知数列{a n }是公差不为零的等差数列,a 1=2且a 2,a 4,a 8成等比数列.(1)求数列{a n }的通项公式;(2)若{b n -(-1)na n }是等比数列且b 2=7,b 5=71,求数列{b n }的前n 项和T n . 【解析】(1)设数列{a n }的公差为d (d ≠0), ∵a 1=2且a 2,a 4,a 8成等比数列, ∴a 24=a 2a 8,即(2+3d )2=(2+d )(2+7d ), 解得d =2或d =0(舍去).∴a n =a 1+(n -1)d =2+2(n -1)=2n .(2)令c n =b n -(-1)na n ,设数列{c n }的公比为q , ∵b 2=7,b 5=71,a n =2n ,∴c 2=b 2-a 2=7-2×2=3,c 5=b 5+a 5=71+2×5=81.∴q 3=c 5c 2=813=27,故q =3.∴c n =c 2·q n -2=3×3n -2=3n -1,即b n -(-1)n a n =3n -1,∴b n =3n -1+(-1)n·2n .则T n =b 1+b 2+b 3+…+b n =(30+31+…+3n -1)+[-2+4-6+…+(-1)n·2n ],1-322当n 为奇数时,T n =1-3n1-3+2×n -12-2n =3n-2n -32.∴T n=⎩⎪⎨⎪⎧3n+2n -12,n 为偶数,3n-2n -32,n 为奇数.21.(本小题满分12分)(2019年山东莱芜模拟)已知等比数列{a n }满足a n +1+a n =9·2n -1,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和为S n . 【解析】(1)设等比数列{a n }的公比为q . ∵a n +1+a n =9·2n -1,∴a 2+a 1=9,a 3+a 2=18.∴q =a 3+a 2a 2+a 1=189=2. 又2a 1+a 1=9,∴a 1=3. ∴a n =3·2n -1,n ∈N *.(2)b n =na n =3n ·2n -1,∴13S n =1×20+2×21+…+(n -1)×2n -2+n ×2n -1.① ∴23S n =1×21+2×22+…+(n -1)×2n -1+n ×2n.② ①-②,得-13S n =1+21+22+…+2n -1-n ×2n =1-2n1-2-n ×2n =(1-n )2n-1.∴S n =3(n -1)2n+3.22.(本小题满分12分)数列{a n }是公比为12的等比数列且1-a 2是a 1与1+a 3的等比中项,前n 项和为S n ;数列{b n }是等差数列,b 1=8,其前n 项和T n 满足T n =nλ·b n +1(λ为常数且λ≠1).(1)求数列{a n }的通项公式及λ的值; (2)比较1T 1+1T 2+1T 3+…+1T n 与12S n 的大小.【解析】(1)由题意得,(1-a 2)2=a 1(1+a 3), ∴(1-a 1q )2=a 1(1+a 1q 2). ∵q =12,∴a 1=12,∴a n =⎝ ⎛⎭⎪⎫12n.∵⎩⎪⎨⎪⎧T 1=λb 2,T 2=2λb 3,∴⎩⎪⎨⎪⎧8=λ8+d ,16+d =2λ8+2d .∴λ=12,d =8.(2)由(1)得b n =8n ,∴T n =4n (n +1). ∴1T n =14⎝ ⎛⎭⎪⎫1n -1n +1. 令C n =1T 1+1T 2+…+1T n=14⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =14⎝ ⎛⎭⎪⎫1-1n +1,∴18≤C n <14. ∵S n =12⎝ ⎛⎭⎪⎫1-12n 1-12=1-⎝ ⎛⎭⎪⎫12n,∴12S n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n ,∴14≤12S n <12. ∴C n <12S n .。

2019-2020学年人教A版数学必修5第二章 数列 测试A卷(基础)

2019-2020学年人教A版数学必修5第二章 数列 测试A卷(基础)

2019-2020学年人教A 版数学必修5第二章 数列测试A 卷(基础)1、已知各项均为正数的数列{}n a 的前n 项和为n S ,若12a =,1121n n n nS aa S ++=-,则10S =( ) A.1022B.1024C.2046D.20482、已知数列{}n a 的前n 项和为n S ,nn S b n=,当11a =时,数列{}n b 为公差不为0的等差数列,且2b 是1b 与5b 的等比中项,则10a =( )A.190B.37C.17D.37或103、正项等差数列{}n a 的前n 项和为n S ,已知2375150a a a +-+=则9S =( )A.35B.36C.45D.544、设n S 为等差数列{}n a 的前n 项和,834S a =,72a =-,则9a =( ) A.-6B. -4C. -2D. 25、设等差数列{}n a 的前n 项之和为n S ,已知10100S =,则47a a +=( )A .12B .20C. 40D .1006、等比数列{}n a 的前n 项和为n S ,已知2533a a a =,且4a 与79a 的等差中项为2,则5S =( )A .1123B .112C .12127D .1217、记n S 为等比数列{}n a 的前n 项和,若数列1{2}n S a -也为等比数列,则43a a =( ) A.12B.1C.32D.28、记n S 为等比数列{}n a 的前n 项和,若2389a a =,5163a =,则( ) A .23nn a =B .13n n a -= C .312n n S -=D .213n n S -=9、记正项等比数列{}n a 的前n 项和为n S ,若()1243a a +=,6634S =,则7a =( )A.1256B.1128C.16D.3210、已知等比数列{}n a 的各项都为正数,且当3n ≥时,242410n n a a -=,则数列1lg a ,22lg a ,232lg a ,342lg a ,1,2lg ,n n a -L L 的前n 项和n S 等于( )A.2n n ⋅B.()1121n n -⋅--C.()121n n -⋅+D.21n +11、已知等差数列{}n a 前9项的和为27,108a =,则100a = .12、已知{}n a 为等差数列,n S 为其前n 项和,若1356,0a a a =+=,则6S =__________. 13、等比数列{}n a 的各项均为正数,且463718a a a a ++=,则31323339log log log log a a a a +++⋅⋅⋅+=__________.14、设等比数列{}n a 的前n 项和为n S ,若11a =,6350S S -=,则7a 的值为___________.15、已知等差数列{}n a 满足3577,26a a a =+=,{}n a 的前n 项和为n S . (1).求n a 及n S ; (2).记12111...n nT S S S =+++,求n T答案以及解析1答案及解析: 答案:B 解析:∵1121n n n nS aa S ++=-,221120n n n n S S a a +++-,即(()()1120n n n n S a S a ++-+=.由0n a >可知10n n S a +-=,∴ 1 0n n n S S S +-+=, 1 2n n S S +=,n S 是首项为2,公比为2的等比数列∴910221024S =⨯=,故选B 。

2020学年高中数学第二章数列单元质量测评(含解析)新人教A版必修5(最新整理)

2020学年高中数学第二章数列单元质量测评(含解析)新人教A版必修5(最新整理)

2019-2020学年高中数学第二章数列单元质量测评(含解析)新人教A版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019-2020学年高中数学第二章数列单元质量测评(含解析)新人教A版必修5)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019-2020学年高中数学第二章数列单元质量测评(含解析)新人教A版必修5的全部内容。

第二章单元质量测评本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列3,5,9,17,33,…的通项公式a n等于()A.2n B.2n+1 C.2n-1 D.2n+1答案B解析由于3=2+1,5=22+1,9=23+1,…,所以通项公式是a n=2n+1.(或特值法,当n=1时只有B项符合.)2.记等差数列的前n项和为S n,若S2=4,S4=20,则该数列的公差d=()A.2 B.3 C.6 D.7答案B解析S4-S2=a3+a4=20-4=16,∴a3+a4-S2=(a3-a1)+(a4-a2)=4d=16-4=12,∴d=3.3.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为( )A.49 B.50 C.51 D.52答案D解析∵2a n+1-2a n=1,∴a n+1-a n=错误!.∴数列{a n}是首项a1=2,公差d=12的等差数列.∴a101=2+错误!×(101-1)=52.4.在等差数列{a n}中,若a1+a2+a3=32,a11+a12+a13=118,则a4+a10=()A.45 B.50 C.75 D.60答案B解析∵a1+a2+a3=3a2=32,a11+a12+a13=3a12=118,∴3(a2+a12)=150,即a2+a12=50,∴a4+a10=a2+a12=50.5.公差不为零的等差数列{a n}的前n项和为S n.若a4是a3与a7的等比中项,S8=32,则S10等于()A.18 B.24 C.60 D.90答案C解析由a错误!=a3a7得(a1+3d)2=(a1+2d)(a1+6d),即2a1+3d=0.①又S8=8a1+错误!d=32,则2a1+7d=8.②由①②,得d=2,a1=-3.所以S10=10a1+902d=60.故选C.6.等比数列{a n}的通项为a n=2·3n-1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n},那么162是新数列{b n}的()A.第5项 B.第12项 C.第13项 D.第6项答案C解析162是数列{a n}的第5项,则它是新数列{b n}的第5+(5-1)×2=13项.7.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( ) A.错误!钱 B.错误!钱 C.错误!钱 D.错误!钱答案B解析依题意设甲、乙、丙、丁、戊所得钱分别为a-2d,a-d,a,a+d,a+2d,则由题意可知,a-2d+a-d=a+a+d+a+2d,即a=-6d,又a-2d+a-d+a+a+d+a+2d=5a=5,∴a=1,则a-2d=a-2×错误!=错误!a=错误!.故选B.8.已知{a n}是等差数列,a3=5,a9=17,数列{b n}的前n项和S n=3n,若a m=b1+b4,则正整数m等于( )A.29 B.28 C.27 D.26答案A解析因为{a n}是等差数列,a9=17,a3=5,所以6d=17-5,得d=2,a n=2n-1.又因为S n =3n ,所以当n =1时,b 1=3,当n ≥2时,S n -1=3n -1,b n =3n -3n -1=2·3n -1,由a m =b 1+b 4,得2m -1=3+54,得m =29,故选A .9.在各项均为正数的等比数列{a n }中,a 1=2且a 2,a 4+2,a 5成等差数列,记S n 是数列{a n }的前n 项和,则S 5=( )A .32B .62C .27D .81 答案 B解析 设各项均为正数的等比数列{a n }的公比为q , 又a 1=2,则a 2=2q ,a 4+2=2q 3+2,a 5=2q 4, ∵a 2,a 4+2,a 5成等差数列,∴4q 3+4=2q +2q 4, ∴2(q 3+1)=q (q 3+1),由q >0,解得q =2, ∴S 5=错误!=62.故选B .10.已知数列{a n }前n 项和为S n =1-5+9-13+17-21+…+(-1)n -1(4n -3),则S 15+S 22-S 31的值是( )A .13B .-76C .46D .76 答案 B解析 ∵S n =1-5+9-13+17-21+…+ (-1)n -1(4n -3),∴S 14=7×(1-5)=-28,a 15=60-3=57,S 22=11×(1-5)=-44, S 30=15×(1-5)=-60, a 31=124-3=121,∴S 15=S 14+a 15=29,S 31=S 30+a 31=61. ∴S 15+S 22-S 31=29-44-61=-76.故选B .11.已知函数f (x )=⎩⎨⎧2x-1x ≤0,f x -1+1x 〉0,把方程f (x )=x 的根按从小到大的顺序排列成一个数列{a n },则该数列的通项公式为( )A .a n =错误!(n ∈N *)B.a n=n(n-1)(n∈N*)C.a n=n-1(n∈N*)D.a n=n-2(n∈N*)答案C解析令2x-1=x(x≤0),易得x=0.当0〈x≤1时,由已知得f(x-1)+1=x,即2x-1-1+1=2x-1=x,则x=1.当1<x≤2时,由已知得f(x)=x,即f(x-1)+1=x,即f(x-2)+1+1=x,故2x-2+1=x,则x=2.因此,a1=0,a2=1,a3=2,结合各选项可知该数列的通项公式为a n=n-1(n∈N*).故选C.12.已知数列{a n}满足a n+1+(-1)n a n=2n-1,S n为其前n项和,则S60=() A.3690 B.1830 C.1845 D.3660答案B解析①当n为奇数时,a n+1-a n=2n-1,a n+a n+1=2n+1,两式相减得+2a n+a n=2;+2②当n为偶数时,a n+1+a n=2n-1,a n-a n+1=2n+1,两式相加得+2a n+a n=4n,故S60=a1+a3+a5+…+a59+(a2+a4+a6+…+a60)+2=2×15+(4×2+4×6+…+4×58)=30+4×450=1830.故选B.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知数列{a n}中,a1=10,a n+1=a n-错误!,则它的前n项和S n的最大值为________.答案105解析∵a n+1-a n=-错误!,∴d=-错误!,又a1=10,∴a n=-错误!+错误!(n∈N*).∵a1=10〉0,d=-错误!<0,设从第n项起为负数,则-错误!+错误!〈0(n∈N*).∴n〉21,于是前21项和最大,最大值为S21=105.14.已知等比数列{a n}为递增数列,若a1>0,且2(a n+a n+2)=5a n+1,则数列{a n}的公比q=________.答案2解析∵{a n}是递增的等比数列,且a1>0,∴q>1.又∵2(a n+a n+2)=5a n+1,∴2a n+2a n q2=5a n q.∵a n≠0,∴2q2-5q+2=0,∴q=2或q=错误!(舍去),∴公比q为2.15.在数列{a n}中,a1=1,a2=2,且a n+2-a n=1+(-1)n(n∈N*),则a1+a2+…+a51=________.答案676解析当n为正奇数时,a n+2-a n=0,又a1=1,则所有奇数项都是1;当n为正偶数时,a n-a n=2,又a2=2,则所有偶数项是首项和公差都是2的等差数列,所以a1+a2+…+a51=+2(a1+a3+…+a51)+(a2+a4+…+a50)=26a1+25a2+错误!×2=676.16.某企业为节能减排,用9万元购进一台新设备用于生产,第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加3万元,该设备每年生产的收入均为21万元.设该设备使用了n(n∈N*)年后,盈利总额达到最大值(盈利总额等于总收入减去总成本),则n等于________.答案7解析设该设备第n年的运营费用为a n万元,则数列{a n}是以2为首项,3为公差的等差数列,则a n=3n-1.设该设备使用n年的运营费用总和为T n,则T n=错误!=错误!n2+错误!n.设n年的盈利总额为S n,则S n=21n-错误!-9=-错误!n2+错误!n-9.由二次函数的性质可知,当n=错误!时,S n取得最大值,又n∈N*,故当n=7时,S n取得最大值.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)设a,b,c是实数,3a,4b,5c成等比数列,且错误!,错误!,错误!成等差数列,求错误!+错误!的值.解∵3a,4b,5c成等比数列,∴16b2=15ac.①∵错误!,错误!,错误!成等差数列,∴错误!=错误!+错误!.②由①,得错误!·15ac=64.③将②代入③,得错误!+错误!2·15ac=64,∴错误!+错误!+错误!ac=错误!.∴错误!+错误!=错误!.18.(本小题满分12分)数列{a n}的前n项和为S n,数列{b n}中,b1=a1,b n=a n-a n-1(n≥2),若a n+S n=n,c n=a n-1.(1)求证:数列{c n}是等比数列;(2)求数列{b n}的通项公式.解(1)证明:∵a1=S1,a n+S n=n, ①∴a1+S1=1,得a1=错误!.又a n+1+S n+1=n+1, ②由①②两式相减得2(a n+1-1)=a n-1,即错误!=错误!,也即错误!=错误!,故数列{c n}是等比数列.(2)∵c1=a1-1=-错误!,∴c n=-错误!,a n=c n+1=1-错误!,a n=1-错误!.-1故当n≥2时,b n=a n-a n-1=错误!-错误!=错误!.又b1=a1=错误!也适合上式,∴b n=错误!.19.(本小题满分12分)已知数列{a n}满足a1=1,a2=3,a n+2=3a n+1-2a n(n∈N*).(1)证明:数列{a n+1-a n}是等比数列;(2)求数列{a n}的通项公式.解(1)证明:∵a n+2=3a n+1-2a n,∴a n+2-a n+1=2(a n+1-a n),∴错误!=2.∵a1=1,a2=3,∴{a n+1-a n}是以a2-a1=2为首项,2为公比的等比数列.(2)由(1)得a n+1-a n=2n,∴a n=(a n-a n-1)+(a n-1-a n-2)+…+(a2-a1)+a1=2n-1+2n-2+…+2+1=2n-1.故数列{a n}的通项公式为a n=2n-1.20.(本小题满分12分)2010年4月14日,冰岛南部艾雅法拉火山喷发,弥漫在欧洲上空多日的火山灰严重影响欧洲多个国家的机场正常运营.由于风向,火山灰主要飘落在该火山口的东北方向与东南方向之间的地区.假设火山喷发停止后,需要了解火山灰的飘散程度,为了测量的需要,现将距离火山喷口中心50米内的扇形面记为第1区、50米至100米的扇环面记为第2区、…、50(n-1)米至50n米的扇环面记为第n区,若测得第1区的火山灰每平方米的平均质量为1吨、第2区每平方米的平均质量较第1区减少了2%、第3区较第2区又减少了2%,依此类推,问:(1)离火山口1225米处的火山灰大约为每平方米多少千克?(结果精确到1千克)(2)第几区内的火山灰总质量最大?提示:当n较大时,可用(1-x)n≈1-nx进行近似计算.解(1)设第n区的火山灰为每平方米a n千克,依题意,数列{a n}为等比数列,且a1=1000(千克),公比q=1-2%=0.98,∴a n=a1×q n-1=1000×0.98n-1.∵离火山口1225米处的位置在第25区,∴a25=1000×(1-0.02)24≈1000×(1-24×0.02)=520,即离火山口1225米处的火山灰大约为每平方米520千克.(2)设第n区的火山灰总质量为b n千克,且该区的火山灰总质量最大.依题意,第n区的面积为错误!π{(50n)2-[50(n-1)]2}=625π(2n-1),∴b n=625π(2n-1)×a n.依题意得错误!解得49.5≤n≤50.5.∵n∈N*,∴n=50,即第50区的火山灰总质量最大.21.(本小题满分12分)设数列{a n}的前n项和为S n=2n2,数列{b n}为等比数列,且a1=b1,b2(a2-a1)=b1.(1)求数列{a n}和{b n}的通项公式;(2)设c n=错误!,求数列{c n}的前n项和T n.解(1)当n=1时,a1=S1=2;当n≥2时,a n=S n-S n=2n2-2(n-1)2=4n-2,-1∵当n=1时,a1=4-2=2也适合上式,∴{a n}的通项公式为a n=4n-2,即{a n}是a1=2,公差d=4的等差数列.设{b n}的公比为q,则b1qd=b1,∴q=错误!.故b n=b1q n-1=2×错误!.即{b n}的通项公式为b n=错误!.(2)∵c n=错误!=错误!=(2n-1)4n-1,∴T n=c1+c2+…+c n=1+3×41+5×42+…+(2n-1)4n-1,4T n=1×4+3×42+5×43+…+(2n-3)4n-1+(2n-1)4n.两式相减,得3T n=-1-2(41+42+43+…+4n-1)+(2n-1)4n=错误![(6n-5)4n+5],∴T n=错误![(6n-5)4n+5].22.(本小题满分12分)已知a1=2,点(a n,a n+1)在函数f(x)=x2+2x的图象上,其中n =1,2,3,….(1)证明:数列{lg (1+a n)}是等比数列;(2)设T n=(1+a1)·(1+a2)…(1+a n),求T n;(3)记b n=错误!+错误!,求数列{b n}的前n项和S n,并证明S n<1.解(1)证明:由已知a n+1=a错误!+2a n,∴a n+1+1=(a n+1)2,∴lg (1+a n+1)=2lg (1+a n),∴{lg (1+a n)}是公比为2的等比数列.(2)由(1)知lg (1+a n)=2n-1·lg (1+a1)=2n-1·lg 3=lg 32n-1,∴1+a n=32n-1,∴T n=(1+a1)(1+a2)…(1+a n)=320·321·322·…·32n-1=31+2+22+…+2n-1=32n-1.(3)∵点(a n,a n+1)在函数f(x)=x2+2x的图象上,∴a n+1=a错误!+2a n,∴a n+1=a n(a n+2).∴错误!=错误!错误!,∴错误!=错误!-错误!,∴b n=错误!+错误!=错误!+错误!-错误!=2错误!.∴S n=b1+b2+…+b n=2(1a1-错误!+错误!-错误!+…+错误!=2错误!.∵a n=32n-1-1,a1=2,a n+1=32n-1,∴S n=1-错误!.32n-1>32-1=8〉2,∴0<232n-1<1.∴S n<1.。

2019-2020学年高中数学 第2章 数列章末达标测试 新人教A版必修5

2019-2020学年高中数学 第2章 数列章末达标测试 新人教A版必修5

第二章数列(本卷满分150分,考试用时120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知数列1,错误!,错误!,错误!,3,错误!,…,错误!,…,则错误!是这个数列的A.第10项B。

第11项C。

第12项D。

第21项解析观察可知该数列的通项公式为a n=错误!(事实上,根号内的数成等差数列,首项为1,公差为2),令21=2n-1,解得n=11,故选B。

答案B2。

一个各项均正的等比数列,其每一项都等于它后面的相邻两项之和,则公比q=A。

错误! B.错误! C.错误!D。

错误!解析由题意知a n=a n+1+a n+2=a n q+a n q2,即q2+q-1=0,解得q=错误! (负值舍去),故选C。

答案C3.等差数列{a n}中,a1+a4+a7=39,a3+a6+a9=27,则数列{a n}前9项的和S9等于A.66 B。

99 C.144 D。

297解析根据等差中项,2a4=a1+a7,2a6=a3+a9,代入,可得a4=13,a6=9,所以S9=错误!=错误!=错误!=99,故选B。

答案B4。

设{a n}是由正数组成的等比数列,S n为其前n项和,已知a2a4=1,S=7,则S5等于3A.错误!B。

错误!C。

错误!D。

错误!解析由题意得错误!解之,得错误!∴S5=错误!=错误!.答案B5。

在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,问:几日相逢A.8日B。

9日C。

12日D。

16日解析设n日相逢,则依题意得103n+错误!×13+97n+错误!×错误!=1 125×2,整理得n2+31n-360=0,解得n=9(负值舍去),故选B.答案B6.已知等差数列{a n}中,a1>0,前n项和是S n,且S14=S8,则当S n取得最大值时,n为A.8B.9 C。

2019-2020学年高中数学必修五第2章《数列》测试卷及答案

2019-2020学年高中数学必修五第2章《数列》测试卷及答案

2019-2020学年高中数学必修五第2章《数列》测试卷(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1下面四个数列中,既是无穷数列又是递增数列的是().A.1B.-1,2,-3,4,…C.-1,D.1解析:A项中数列是递减的无穷数列,B项中数列是摆动数列,D项中数列是递增的有穷数列.答案:C2若数列{a n}的前n项和S n=2n2-3n(n∈N*),则a4等于 ().A.11B.15C.17D.20解析:a4=S4-S3=20-9=11.答案:A3600是数列1×2,2×3,3×4,4×5,…的().A.第20项B.第24项C.第25项D.第30项解析:a1=1×2=1×(1+1),a2=2×3=2×(2+1),a3=3×4=3×(3+1),a4=4×5=4×(4+1),…,a n=n(n+1),令n(n+1)=600,解得a=24或a=-25(舍去),即600是数列{a n}的第24项.答案:B4在等比数列{a n}中,若a2a3a6a9a10=32,则的值为A.4B.2C.-2D.-4解析:设公比为q,由a2a3a6a9a10=32,得所以a6=2,所以答案:B5若{a n}为等差数列,S n是其前n项和,且S11则的值为A解析:S11则a6a6=答案:B6若数列{a n}是等差数列,其前n项和为S n,若a6=2,且S5=30,则S8等于().A.31B.32C.33D.34解析:设等差数列{a n}的公差为d,则有-解得-所以S8=8a1-=8-答案:B7若等比数列{a n}的各项均为正,a3,a5,-a4成等差数列,S n为{a n}的前n项和,则等于A.2B解析:设等比数列{a n}的公比为q,则有q>0.∵a3,a5,-a4成等差数列,∴a3-a4=2a5,∴a1q2-a1q3=2a1q4,即1-q=2q2,解得q=-1(舍去)或q答案:C8已知等差数列{a n}的前n项和为S n,若且A,B,C三点共线(该直线不过点O),则S2 020等于()A.1 009B.1 010C.2 009D.2 010解析:∵A,B,C三点共线,∴a1+a2 020=1.∴S2 020010.答案:B9已知在数列{a n}中,a1=1,a n=a n-1≥2),则数列{a n}的前9项和等于().A.20B.27C.36D.45答案:B10设数列{a n}满足a1=1,且a n+1-a n=n+1(n∈N*),则数列前项的和为A答案:B二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11在等差数列{a n}中,若a3+a4+a5+a6+a7=25,则a2+a8=.答案:1012若等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q=,前n项和S n=.解析:由题意知q∵a2+a4=a2(1+q2)=a1q(1+q2)=20,∴a1=2.n+1-2.∴S n--答案:22n+1-213若数列{a n}的前20项由如图所示的程序框图依次输出的a值构成,则数列{a n}的一个通项公式a n=.解析:由题中程序框图知a1=0+1=1,a2=a1+2=1+2,a3=a2+3=1+2+3,…,a n=a n-1+n,即a n=1+2+3+…+(n-1)+n答案:14已知数列{a n}的前n项和S n=n2+2n-1,则a1+a3+a5+…+a25=.解析:当n=1时,a1=S1=12+2×1-1=2;当n≥2时,S n-1=(n-1)2+2(n-1)-1=n2-2,所以a n=S n-S n-1=(n2+2n-1)-(n2-2)=2n+1.此时若n=1,则a n=2n+1=3≠a1,所以a n故a1+a3+a5+...+a25=2+(7+11+15+ (51)=2答案:35015中位数为1 012的一组数构成等差数列,其末项为2 020,则该数列的首项为.解析:由题意知,1 012为数列首项a1与2 020的等差中项,故012,解得a1=4.答案:4三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16(8分)在等差数列{a n}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{a n}的首项、公差及前n 项和.解设该数列公差为d,前n项和为S n.由已知,可得2a1+2d=8,(a1+3d)2=(a1+d)(a1+8d),所以,a1+d=4,d(d-3a1)=0,解得a1=4,d=0或a1=1,d=3,即数列{a n}的首项为4,公差为0,或首项为1,公差为3.所以,数列{a n}的前n项和S n=4n或S n-17(8分)已知数列{a n}是等差数列,a2=6,a5=18;数列{b n}的前n项和是T n,且T n(1)求数列{a n}的通项公式;(2)求数列{b n}的前n项和T n.解(1)设数列{a n}的公差为d,由题意,得解得a1=2,d=4.故a n=2+4(n-1)=4n-2.(2)当n=1时,b1=T1,由T1得b1当n≥2时,∵T n∴T n=1∴T n-T n-1∴b n∴数列{b n}是以为首项为公比的等比数列.∴T n --18(9分)在数列{a n}中,a a n+n∈N*.(1)求证:数列为等比数列(2)求数列{a n}的前n项和S n.(1)证明由a n+知是以为首项为公比的等比数列.(2)解由(1)知是首项为公比为的等比数列,a n∴S n①则②①-②,得S n=19(10分)已知{a n}是首项为19,公差为-2的等差数列,S n为{a n}的前n项和.(1)求通项公式a n及S n;(2)设{b n-a n}是首项为1,公比为3的等比数列,求数列{b n}的通项公式及其前n项和T n.解(1)因为{a n}是首项为19,公差为-2的等差数列,所以a n=19-2(n-1)=-2n+21,即a n=-2n+21,S n=19n--2)=-n2+20n,即S n=-n2+20n.(2)因为{b n-a n}是首项为1,公比为3的等比数列,所以b n-a n=3n-1,即b n=3n-1+a n=3n-1-2n+21,所以T n=b1+b2+…+b n=(30+a1)+(3+a2)+…+(3n-1+a n)=(30+3+…+3n-1)+(a1+a2+…+a n)-+20n-+20n.-20(10分)已知{a n}是等比数列,前n项和为S n(n∈N*),且(1)求{a n}的通项公式;(2)若对任意的n∈N*,b n是log2a n和log2a n+1的等差中项,求数列{(-1)的前项和解(1)设数列{a n}的公比为q.由已知,有解得q=2,或q=-1.知q≠-1,又由S6=a1·--得a1=1.所以a n=2n-1.所以a1·--(2)由题意,得b n log2a n+log2a n+1)log22n-1+log22n)=n即{b n}是首项为公差为1的等差数列.设数列{(-1)的前n项和为T n,则T2n=(+(-=b1+b2+b3+b4+…+b2n-1+b2nn2.。

2019-2020学年高中数学必修五《数列》测试卷及答案解析(基础题)

2019-2020学年高中数学必修五《数列》测试卷及答案解析(基础题)

2019-2020学年高中数学必修五《数列》测试卷姓名:成绩:一、本卷共12个小题,每题5分,共60分.在每个小题给出的四个选项中,只有一项是最符合题目要求的,请把正确答案填涂在答题卡上.1.已知等差数列{a n}的首项a1=1,公差d=2,则a4等于()A.5B.6C.7 D.9【解答】C2.已知{a n}为等差数列,a2+a8=12,则a5等于()A.4B.5C.6 D.7【解答】C3.等比数列{a n}中,a2=9,a5=243,{a n}的前4项和为()A.81 B.120 C.168 D.192【解答】解:因为==q3=27,解得q=3又a1===3,则等比数列{a n}的前4项和S4==120故选:B.4.等差数列a n中,已知前15项的和S15=90,则a8等于()A.B.12 C.D.6【解答】解:因为S15=15a1+d=15(a1+7d)=15a8=90,所以a8=6故选:D.5.已知等比数列{a n}的公比q=﹣,则等于()A.﹣B.﹣3 C.D.3【解答】解:∵====,∴==﹣3.故选:B.6.在数列{a n}中,若a1=1,a n+1=a n+2(n≥1),则该数列的通项公式a n=() A.2n+1 B.2n-1C.2n D.2(n-1)【解答】B.7.一个等比数列前n项的和为48,前2n项的和为60,则前3n项的和为()A.83 B.108 C.75 D.63【解答】解:等比数列的第一个n项的和为:48,第二个n项的和为60﹣48=12∴第三个n项的和为:12×=3∴前3n项的和为60+3=63故选:D.8.在等差数列{a n}中,a1=21,a7=18,则公差d=()A.12 B.13C.-12D.-13【解答】C9.在等差数列{a n}中,a2=5,a6=17,则a14=()A.45 B.41C.39 D.37X k b【解答】B10.已知m和2n的等差中项是4,2m和n的等差中项是5,则m和n的等差中项是()A.2 B.3C.6 D.9【解答】B11.若数列{a n}是等差数列,且a1+a4=45,a2+a5=39,则a3+a6=()A.24 B.27C.30 D.33【解答】D12.数列{a n}是等比数列,a2=2,,则数列{a n a n+1}的前n项的和为()A.16(1﹣4﹣n)B.16(1﹣2﹣n)C.D.。

2019_2020学年高中数学第二章数列检测试题新人教A版必修5

2019_2020学年高中数学第二章数列检测试题新人教A版必修5

第二章数列检测试题(时间:120分钟满分:150分)[选题明细表]知识点、方法题号通项公式与递推公式1,9,13,16等差数列及其性质3,6,7,10,12,17等比数列及其性质2,4,5,8,11,14数列求和15,19,22综合问题18,20,21一、选择题(本大题共12小题,每小题5分,共60分)1.数列,-,,-,…的一个通项公式为( D )(A)a n=(-1)n(B)a n=(-1)n(C)a n=(-1)n+1(D)a n=(-1)n+1解析:由已知中数列,-,,-,…可得数列各项的分母为2n,分子为2n+1,又因为数列所有的奇数项为正,偶数项为负,故可用(-1)n+1来控制各项的符号,故数列的一个通项公式为a n=(-1)n+1,故选D.2.已知{a n}是等比数列,a1=1,a4=2,则a3等于( B )(A)±2 (B)2(C)-2 (D)4解析:由等比数列的通项公式得2=1×q3解得q=,所以a3=1×q2=2.故选B.3.已知等差数列{a n}中,a5+a9=2,则S13等于( C )(A)11 (B)12(C)13 (D)不确定解析:S13===13.故选C.4.在等比数列{a n}中,a3=6,前三项和S3=18,则公比q的值为( C )(A)1 (B)-(C)1或-(D)-1或-解析:q=1时,a1=a2=a3=6,所以S3=18,符合条件.当q≠1时,由S3=18=6++,解得q=-.故选C.5.如果将2,5,10依次加上同一个常数后组成一个等比数列,那么该等比数列的公比是( D )(A)(B)(C)(D)解析:依题意得(5+t)2=(2+t)(10+t),解得t=2.5,所以公比q==.故选D.6.已知等差数列{a n}中,|a5|=|a9|,公差d>0,则使得前n项和S n取得最小值时的正整数n的值是( C )(A)4和5 (B)5和6(C)6和7 (D)7和8解析:依题意a5<0,a9>0,且a5+a9=0⇒2a1+12d=0⇒a1+6d=0,即a7=0,故前6项与前7项的和最小,故选C.7.设S n是公差不为0的等差数列{a n}的前n项和,若a1=2a8-3a4,则等于( A )(A)(B)(C)(D)解析:由题意可得,a1=2a1+14d-3a1-9d,所以a1=d,又====,故选A.8.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为( D )(A) f (B) f(C) f (D) f解析:由题知,这十三个单音的频率构成首项为f,公比为的等比数列,则第八个单音的频率为()7f= f.故选D.9.已知数列{a n}中,a1=1,a n+1=a n(1-na n+1),则数列{a n}的通项公式为( D )(A)a n=(B)a n=(C)a n=(D)a n=解析:原数列递推公式可化为-=n,令b n=,则b n+1-b n=n,因此b n=(b n-b n-1)+(b n-1-b n-2)+…+(b3-b2)+(b2-b1)+b1=(n-1)+(n-2)+…+2+1+1=.从而a n=.故选D.10.设S n是等差数列{a n}的前n项和,若=,则等于( A )(A)(B)(C)(D)解析:由题意S3,S6-S3,S9-S6,S12-S9成等差数列.因为=,不妨设S3=1,S6=3,则S6-S3=2,所以S9-S6=3,故S9=6,所以S12-S9=4,故S12=10.所以=.故选A.11.已知等比数列{a n}满足a n>0,n=1,2,…,且a5·a2n-5=22n(n≥3),则log2a1+log2a3+…+log2a2n-1等于( C )(A)n(2n-1) (B)(n+1)2(C)n2 (D)(n-1)2解析:因为a5·a2n-5==22n,且a n>0,所以a n=2n,因为a2n-1=22n-1,所以log2a2n-1=2n-1,所以log2a1+log2a3+…+log2a2n-1=1+3+5+…+(2n-1)==n2.故选C.12.等差数列{a n}的前16项和为640,前16项中偶数项和与奇数项和之比为22∶18,则公差d,的值分别是( D )(A)8,(B)9,(C)9,(D)8,解析:设S奇=a1+a3+…+a15,S偶=a2+a4+…+a16,则有S偶-S奇=(a2-a1)+(a4-a3)+…+(a16-a15)=8d,==.由解得S奇=288,S偶=352.因此d===8,==.故选D.二、填空题(本大题共4小题,每小题5分,共20分)13.在数列{a n}中,已知a1=1,a n+1-a n=2n(n∈N*),则a5等于.解析:a2=a1+2=3,a3=a2+4=7,a4=a3+8=15,a5=a4+16=31.答案:3114.设公比为q(q>0)的等比数列{a n}的前n项和为S n.若S2=3a2+2,S4=3a4+2,则q等于.解析:由S2=3a2+2,S4=3a4+2相减可得a3+a4=3a4-3a2,同除以a2可得2q2-q-3=0,解得q=或q=-1.因为q>0,所以q=.答案:15.已知数列{b n}的通项公式是b n=n,则++…+= .解析:++…+=++…+=×(-+-+…+- )=.答案:16.已知a1+2a2+22a3+…+2n-1a n=9-6n,则数列{a n}的通项公式是.解析:令S n=a1+2a2+22a3+…+2n-1a n,则S n=9-6n,当n=1时,a1=S1=3;当n≥2时,2n-1·a n=S n-S n-1=-6,所以a n=-.所以通项公式a n=答案:a n=三、解答题(本大题共6小题,共70分)17.(本小题满分10分)记S n为等差数列{a n}的前n项和,已知a1=-7,S3=-15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.解:(1)设{a n}的公差为d,由题意得3a1+3d=-15.由a1=-7得d=2.所以{a n}的通项公式为a n=a1+(n-1)d=2n-9.(2)由(1)得S n=·n=n2-8n=(n-4)2-16.所以当n=4时,S n取得最小值,最小值为-16.18.(本小题满分12分)已知{a n}为等差数列,且a3=-6,a6=0.(1)求{a n}的通项公式;(2)若等比数列{b n}满足b1=-8,b2=a1+a2+a3,求{b n}的前n项和公式.解:(1)设等差数列{a n}的公差为d.因为a3=-6,a6=0,所以解得a1=-10,d=2.所以a n=-10+(n-1)×2=2n-12.(2)设等比数列{b n}的公比为q.因为b2=a1+a2+a3=-24,b1=-8,所以-8q=-24,q=3.所以数列{b n}的前n项和公式为S n==4(1-3n).19.(本小题满分12分)已知数列{a n}满足a1=1,a n+1=2a n,数列{b n}满足b1=3,b2=6,且{b n-a n}为等差数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和T n.解:(1)由题意知数列{a n}是首项a1=1,公比q=2的等比数列,所以a n=2n-1.因为b1-a1=2,b2-a2=4,所以数列{b n-a n}的公差d=2,所以b n-a n=(b1-a1)+(n-1)d=2+2(n-1)=2n,所以b n=2n+2n-1.(2)T n=b1+b2+b3+…+b n=(2+4+6+…+2n)+(1+2+4+…+2n-1)=+=n(n+1)+2n-1.20.(本小题满分12分)成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{b n}中的b3,b4,b5.(1)求数列{b n}的通项公式;(2)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列.(1)解:设成等差数列的三个正数分别为a-d,a,a+d.依题意,得a-d+a+a+d=15,解得a=5.所以{b n}中的b3,b4,b5依次为7-d,10,18+d.依题意,(7-d)(18+d)=100,解得d=2或d=-13(舍去),所以b3=5,公比q=2,故b n=5·2n-3.(2)证明:由(1)知b1=,公比q=2,所以S n==5·2n-2-,则S n+=5·2n-2,因此S1+=,==2(n≥2).所以数列{S n+}是以为首项,公比为2的等比数列.21.(本小题满分12分)已知数列{a n}满足a1=,a n+1a n=2a n+1-1,令b n=a n-1.(1)求证:数列{}为等差数列;(2)设c n=.求证:数列{c n}的前n项和T n<n+. 证明:(1)由题意知,==-2,a n=2-,则-=-=-=-1,所以数列{}是首项为-2,公差为-1的等差数列.(2)由(1)可知,=-2+(n-1)×(-1)=-n-1,所以b n=-,代入a n=b n+1=1-=,所以===1+=1+(-),所以T n=c1+c2+…+c n=++…+=[1+(1-)]+[1+(-)]+…+[1+(-)]=n+(1+--)<n+.22.(本小题满分12分)已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1-b n)a n}的前n项和为2n2+n.(1)求q的值;(2)求数列{b n}的通项公式.解:(1)由a4+2是a3,a5的等差中项,得a3+a5=2a4+4,所以a3+a4+a5=3a4+4=28,解得a4=8.由a3+a5=20,得8(q+)=20,解得q=2或q=.因为q>1,所以q=2.(2)设c n=(b n+1-b n)a n,数列{c n}的前n项和为S n.由c n=解得c n=4n-1.由(1)可得a n=2n-1,所以b n+1-b n=(4n-1)×()n-1,故b n-b n-1=(4n-5)×()n-2,n≥2,b n-b1=(b n-b n-1)+(b n-1-b n-2)+…+(b3-b2)+(b2-b1)=(4n-5)×()n-2+ (4n-9)×()n-3+…+7×+3.设T n=3+7×+11×()2+…+(4n-5)×()n-2,n≥2,则T n=3×+7×()2+…+(4n-9)×()n-2+(4n-5)×()n-1,所以T n=3+4×+4×()2+…+4×()n-2-(4n-5)×()n-1,因此T n=14-(4n+3)·()n-2,n≥2,又b1=1,所以b n=15-(4n+3)·()n-2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列
单元测试(A 卷基础篇)(浙江专用)
学校:___________姓名:___________班级:___________考号:___________
满分:150分 考试时间:120分钟 题号 一


总分
得分
第Ⅰ卷(选择题)
评卷人
得 分
一.选择题(共10小题,满分50分,每小题5分) 1.(2018·新疆焉耆县第二中学高二期末)在等比数列中,已知
,,那么
( )
A.6
B.8
C.16
D.32
2.数列{}n a 是等差数列,11a =,48a =,则5a =( ) A .16
B .-16
C .32
D .
31
3
3.(2019·浙江高二期末)已知等差数列的前项和为,若,则
( )
A.36
B.72
C.91
D.182 4.(2019·新疆兵团建工师第四中学高二期中(理))数列2,5,11,20,x ,47...中的x 等于( ) A.28
B.32
C.33
D.27 5.(2019·奎屯市第一高级中学高一月考(理))在数列中,若



则该数列的通项为( ). A.
B.
C.
D.
6.(2019·上海市奉贤中学高一期末)等差数列{a n }的首项为a 1,公差为d ,S n 为前n 项和,则数列{}是( ) A .首项为a 1,公差为d 的等差数列 B .首项为a 1,公比为d 的等比数列
C.首项为a1,公差为的等差数列
D.首项为a1,公比为的等比数列
7.(2019·合肥市第十一中学高一期末)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯:
A.281盏B.9盏C.6盏D.3盏
8.(2019·奎屯市第一高级中学高一月考(理))已知数列中,,,则的值为( ).
A.9
B.6
C.0
D.3
9.(2019·奎屯市第一高级中学高一期末(理))某林区改变植树计划,第一年植树增长率,以后每年的植树增长率都是前一年植树增长率的,若成活率为,经过年后,林区的树木量是原来的树木量的多少倍?()
A. B. C. D.
10.(2019·乌鲁木齐市第四中学高一期中)已知数列、、、、成等差数列,、、、、成等比数列,则()
A. B. C. D.
第Ⅱ卷(非选择题)
评卷人
得 分
二.填空题(共7小题,单空每小题4分,两空每小题6分,共36分)
11.(2019·浙江高二期末)已知等比数列{}n a 中,141,8a a ==,则公比q =______;3a =______. 12.(2019·浙江高一期末)己知等差数列{}n a 满足:10a =,54a =,则公差d =______;24a a +=_______. 13.(2019·奎屯市第一高级中学高一月考(文))等差数列{}n a ,{}n b 的前n 项和分别是n S ,n T ,若
31
2n n S n T n +=,则1111
a b =_______. 14.(2019·浙江学军中学高一期中)记n S 为等差数列{}n a 的前n 项和,公差为d ,若4524a a +=,648S =.则d =____,n S =_____.
15.(2018·浙江高一期中)已知等差数列
的前项的和为,若

,则
_________.
16.(2019.浙江高一期中)已知数列{}n a 的首项111,(1,2,3, (1)
n n
a a a n a +===+,则4a =______;猜
想其通项公式是n a =______.
17.(2019·吉林省实验高一期末(文))已知数列{}n a 的前n 项和为n S ,11a =,121n n S a +=-,则
n S =__________.
评卷人
得 分
三.解答题(共5小题,满分64分,18--20每小题12分,21,22每小题14分)
18.(2019·奎屯市第一高级中学高一月考(理))在等差数列{}n a 中,138a a +=,且4a 为2a 和9a 的等比中项,求数列{}n a 的首项、公差及前n 项和.
19.(2019·新疆兵团农八师一四三团第一中学高一期中)已知{}n a 是等差数列,25a =,514a =. (1)求{}n a 的通项公式;
(2)设{}n a 的前n 项和155n S =,求n 的值.
20.(2019·云南高一期末)在等差数列{}n a 中,38a =,724a a a =+.
(1)求数列{}n a 的通项公式; (2)设1
n n
b na =
,求数列{}n b 的前n 项和n S . 21.(2019·内蒙古高一期末(理))设等差数列{}n a 满足1231233,8a a a a a a ++=-⋅⋅=. (1)求数列{}n a 的通项公式;
(2)若213,,a a a 成等比数列,求数列{}5n a -的前n 项和n S .
22.(2019·乌鲁木齐市第四中学高一期中)已知递增等比数列{}n a ,3432a a =,1633a a +=,另一数列{}
n b 其前n 项和2n S n n =+. (1)求{}n a 、{}n b 通项公式;
(2)设n n b a ⎧⎫
⎨⎬⎩⎭
其前n 项和为n T ,求n T .。

相关文档
最新文档