(完整版)等差数列知识点整理与经典例题解
小学奥数 等差数列(1) 知识点+例题+练习 (分类全面)
巩固、从2开始的连续100个偶数的和是。
例4、求下列方阵中100个数的和。
0、1、2、3、……8、9;
1、2、3、4、……9、10;
2、3、4、5、……10、11;
……
9、10、11、12、……17、18。
巩固、求下列方阵中所有各数的和:
1、2、3、4、……49、50;
2、3、4、5、……50、51;
例6、若干人围成16圈,一圈套一圈,从外向内圈人数依次少6人,如果共有912人,问最外圈有多少人?最内圈有多少人?
巩固、若干人围成8圈,一圈套一圈,从外向内各圈人数依次少4人,如果共有304人,最外圈有几人?
巩固、一个五层书架共放了600本书,已知下面一层都比上面一层多10本书。最上面一层放多少本书,最下面一层多少放本书?
教学过程
1、数列:按一定顺序排成的一列数叫做数列。数列中的每一个数都叫做项,第一项称
为首项,最后一项称为末项。数列中共有的项的个数叫做项数。
2、等差数列与公差:一个数列,从第二项起,每一项与与它前一项的差都相等,这
样的数列的叫做等差数列,其中相邻两项的差叫做公差。
3、常用公式
等差数列的总和=(首项+末项) 项数 2
3、一些同样粗细的圆木,像如图所示一样均匀地堆放在一起,第一层有3根,下一层比上一层多1根,已知最下面一层有70根。一共有多少根圆木?
4、有60把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多试多少次?
5、一辆公共汽车有66个座位,空车出发后,第一站上一位乘客,第二站上两位乘客,第三站上三位乘客,依次类推,第几站后,车上坐满乘客?
6、在等差数列0、3、6、9、12、……、45是这个数列的第项。
(完整版)等差数列知识点及类型题
等差数列知识点及类型题一、数列由n a 与n S 的关系求n a由n S 求n a 时,要分n=1和n ≥2两种情况讨论,然后验证两种情况可否用统一的解析式表示,若不能,则用分段函数的形式表示为11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩。
〖例1〗根据下列条件,确定数列{}n a 的通项公式。
nn n S a a 222,0=+>分析:将无理问题有理化,而后利用n a 与n S 的关系求解。
二、等差数列及其前n 项和(一)等差数列的判定1、等差数列的判定通常有两种方法:第一种是利用定义,1()(2)n n a a d n --=≥常数,第二种是利用等差中项,即112(2)n n n a a a n +-=+≥。
2、解选择题、填空题时,亦可用通项或前n 项和直接判断。
(1)通项法:若数列{n a }的通项公式为n 的一次函数,即n a =An+B,则{n a }是等差数列;(2)前n 项和法:若数列{n a }的前n 项和n S 是2n S An Bn =+的形式(A ,B 是常数),则{n a }是等差数列。
注:若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可。
〖例2〗已知数列{n a }的前n 项和为n S ,且满足111120(2),2n n n n S S S S n a ---+=≥=g (1)求证:{1nS }是等差数列; (2)求n a 的表达式。
【变式】已知数列{a n }的各项均为正数,a 1=1.其前n 项和S n 满足2S n =2pa 2n +a n-p (p ∈R), 则{a n }的通项公式为________.(二)等差数列的基本运算1、等差数列的通项公式n a =1a +(n-1)d 及前n 项和公式11()(1)22n n n a a n n S na d +-==+,共涉及五个量1a ,n a ,d,n, n S ,“知三求二”,体现了用方程的思想解决问题;2、数列的通项公式和前n 项和公式在解题中起到变量代换作用,而1a 和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法。
(完整版)高考等差等比数列知识点总结
1高考数列知识点等差数列1.等差数列的定义:d aa n n=--1(d 为常数)(2≥n );2.等差数列通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈ , 首项首项首项::1a ,公差,公差:d :d :d,末项,末项,末项::n a推广: d m n a a m n )(-+=. 从而mn a a d m n --=; 3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2(2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22dn a d n =+-2An Bn =+(其中(其中A A 、B 是常数,所以当是常数,所以当d d ≠0时,时,S S n 是关于是关于n n 的二次式且常数项为的二次式且常数项为00) 特别地()()()12121121212n n n n a a S n a +++++==+5.等差数列的判定方法(1) 定义法:若d a a n n=--1或d a an n =-+1(常数*∈N n )⇔ {}n a 是等差数列.是等差数列. (2) 等差中项:数列{}na 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a .(3) 数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。
是常数)。
(4) 数列{}n a 是等差数列⇔2n S An Bn =+,(其中(其中A A 、B 是常数)6.等差数列的证明方法定义法:若d a a n n=--1或d a an n =-+1(常数*∈N n )⇔ {}n a 是等差数列7.等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函的一次函 数,数,且斜率为公差d ;前n 和211(1)()222n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。
等差数列知识点、例题。练习
等差数列知识点、例题。
练习数列的概念和性质(一)练习一、定义:按一定次序排成的一列数叫做数列.:1. 从函数的角度看,数列可以是定义域为N*(或它的有限子集)的函数,当自变量从小到大依次取值时对应的一列函数值;2. 如果两个数列的数完全相同而顺序不同,则它们不是相同的数列;3. 在同一个数列中,一个数可以重复出现;4. 数列中的每一个数叫做这个数列的项,各项依次叫做第1项,第2项。
. 二、数列的表示:通项公式:an f(n)1.解析法递推公式:an 1 f(an)一、巩固提高1. 数列1,3,6,10,15,。
的通项an可以等于( ) (A)n2 (n 1) (B)n(n 1)n(n+1)2(C) (D) n 2n+2 222. 数列-1,0,-13,0,-25,0,-37,0,。
的通项an可以等于( )nn(-1)1(-1)1(6n 5) (B)(6n 5) (A)22nn(-1)1(-1)1(6n 5) (D) (6n 5) (C)223..巳知数列{an}的首项a1=1,an 1 2an 1(n 2),则a5为( )(A) 7 (B)15 (C)30 (D)31 二、能力提升5. 根据数列的前几项,写出数列{an}的一个通项公式: (1)__,,,,,。
; 3__4,,,。
; __(2)2,-6,12,-20,30,。
; (3)一、巩固提高数列的概念和性质(二)练习1.若数列{an}的前n项和Sn 2n 1,则a1与a5的值依次为( )2(A) 2,14 (B)2,18 (C)3,4 (D)3,18 2.若数列{an}的前n项和Sn 4n2 n 2,则该数列的通项公式为( ) (A)an 8n 5 (n N*) (B) an 8n 5(n N*)(n 1) 5(C)an 8n 5(n 2) (D)an *8n 5(n 2,n N)5.已知数列{an}满足a1=1,当n 2时,恒有a1a2。
等差数列及其前n项和知识点总结、经典高考题解析
等差数列及其前n项和【考纲说明】1、理解等差数列的概念,学习等差数列的基本性质.2、探索并掌握等差数列的通项公式与前n项和公式.3、体会等差数列与一次函数的关系.4、本部分在高考中占5-10分左右.【趣味链接】高斯7岁那年,父亲送他进了耶卡捷林宁国民小学,读书不久,高斯在数学上就显露出了常人难以比较的天赋,最能证明这一点的是高斯十岁那年,教师彪特耐尔布置了一道很繁杂的计算题,要求学生把1到100的所有整数加起来,教师刚叙述完题目,高斯即刻把写着答案的小石板交了上去。
彪特耐尔起初并不在意这一举动,心想这个小家伙又在捣乱,但当他发现全班唯一正确的答案属于高斯时,才大吃一惊。
而更使人吃惊的是高斯的算法,他发现:第一个数加最后一个数是101,第二个数加倒数第二个数的和也是101,……共有50对这样的数,用101乘以50得到5050。
这种算法是教师未曾教过的计算等级数的方法,高斯的才华使彪特耐尔十分激动,下课后特地向校长汇报,并声称自己已经没有什么可教高斯的了。
【知识梳理】一、等差数列的相关概念1、等差数列的概念如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.通常用字母d表示。
2、等差中项如果a , A, b成等差数列,那么A叫做a与b的等差中项.即:或2A=a,b2推广:2耳=a n-1 ' a n 1(n - 2)= 2a n 1 =久'a n 23、等差数列通项公式若等差数列、a n』的首项是印,公差是d,则a n= ◎■ n -1 d .a — a推广:a n =a m(n - m)d ,从而d n m。
n — m4、等差数列的前n项和公式n3i Qi n n T等差数列的前n 项和的公式:① S n:②S n = nad .2 25、等差数列的通项公式与前 n 项的和的关系s n = 14=(o (数列{a n }的前n 项的和为% =旦+a2+||| +K).5 -乳,n- 2二、等差数列的性质 1、 等差数列与函数的关系当公差d = 0时,(1) 等差数列的通项公式 a n =31 - (n -1)d =dn -印-d 是关于n 的一次函数,斜率为d ; (2) 前n 和s n 二na 1 -卫d n 2 raLgin 是关于n 的二次函数且常数项为 0。
高一等差数列及其前n项和知识点+例题+练习 含答案
1.等差数列的定义 一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母__d __表示.2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d .3.等差中项如果A =a +b 2,那么A 叫做a 与b 的等差中项. 4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d .(4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d . 6.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A 、B 为常数).7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最__大__值;若a 1<0,d >0,则S n 存在最__小__值.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( √ )(3)等差数列{a n }的单调性是由公差d 决定的.( √ )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( × )(5)数列{a n }满足a n +1-a n =n ,则数列{a n }是等差数列.( × )(6)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.( √ )1.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n =________________________________________________________________________. 答案 6解析 设等差数列{a n }的公差为d ,∵a 1+a 9=a 4+a 6=-6,且a 1=-11,∴a 9=5,从而d =2.∴S n =-11n +n (n -1)=n 2-12n ,∴当n =6时,S n 取最小值.2.一个首项为23,公差为整数的等差数列,如果前6项均为正数,从第7项起为负数,则它的公差为________.答案 -4解析 a n =23+(n -1)d ,由题意知⎩⎪⎨⎪⎧ a 6>0,a 7<0, 即⎩⎪⎨⎪⎧23+5d >0,23+6d <0,解得-235<d <-236, 又d 为整数,所以d =-4.3.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=________.答案 88解析 S 11=11(a 1+a 11)2=11(a 4+a 8)2=88.4.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7=________.答案 28解析 ∵a 3+a 4+a 5=3a 4=12,∴a 4=4,∴a 1+a 2+…+a 7=7a 4=28.5.(2014·北京)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.答案 8解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.题型一 等差数列基本量的运算例1 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为________.(2)已知在等差数列{a n }中,a 2=7,a 4=15,则前10项和S 10=________.答案 (1)52 (2)210 解析 (1)由2a n +1=1+2a n 得a n +1-a n =12, 所以数列{a n }是首项为-2,公差为12的等差数列, 所以S 10=10×(-2)+10×(10-1)2×12=52. (2)因为a 2=7,a 4=15,所以d =4,a 1=3,故S 10=10×3+12×10×9×4=210. 思维升华 (1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(1)(2015·课标全国Ⅱ改编)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=________________________________________________________________________.(2)已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是________. 答案 (1)5 (2)2解析 (1)∵{a n }为等差数列,∴a 1+a 5=2a 3,∴a 1+a 3+a 5=3a 3=3,得a 3=1,∴S 5=5(a 1+a 5)2=5a 3=5. (2)∵S n =n (a 1+a n )2,∴S n n =a 1+a n 2,又S 33-S 22=1, 得a 1+a 32-a 1+a 22=1,即a 3-a 2=2, ∴数列{a n }的公差为2.题型二 等差数列的判定与证明例2 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *). (1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由.(1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *), b n =1a n -1(n ∈N *), 所以b n +1-b n =1a n +1-1-1a n -1=1(2-1a n)-1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52. 所以数列{b n }是以-52为首项,1为公差的等差数列. (2)解 由(1)知b n =n -72, 则a n =1+1b n =1+22n -7.设f (x )=1+22x -7, 则f (x )在区间(-∞,72)和(72,+∞)上为减函数. 所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3.引申探究例2中,若条件变为a 1=35,na n +1=(n +1)a n +n (n +1),探求数列{a n }的通项公式. 解 由已知可得a n +1n +1=a n n+1, 即a n +1n +1-a n n =1,又a 1=35, ∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列, ∴a n n =35+(n -1)·1=n -25, ∴a n =n 2-25n . 思维升华 等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.(1)若{a n }是公差为1的等差数列,则{a 2n -1+2a 2n }是________.①公差为3的等差数列 ②公差为4的等差数列③公差为6的等差数列 ④公差为9的等差数列(2)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为______________. 答案 (1)③ (2)a n =1n解析 (1)∵a 2n -1+2a 2n -(a 2n -3+2a 2n -2)=(a 2n -1-a 2n -3)+2(a 2n -a 2n -2)=2+2×2=6,∴{a 2n -1+2a 2n }是公差为6的等差数列.(2)由已知式2a n +1=1a n +1a n +2可得 1a n +1-1a n =1a n +2-1a n +1,知{1a n }是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n . 题型三 等差数列的性质及应用命题点1 等差数列的性质例3 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.(2)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________.答案 (1)10 (2)60解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,即a 5=5,a 2+a 8=2a 5=10.(2)∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20,∴S 30-30=10+2×10=30,∴S 30=60.命题点2 等差数列前n 项和的最值例4 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值.解 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d , ∴d =-53. 方法一 由a n =20+(n -1)×⎝⎛⎭⎫-53 =-53n +653. 得a 13=0.即当n ≤12时,a n >0,当n ≥14时,a n <0.∴当n =12或13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝⎛⎭⎫-53 =130.方法二 S n =20n +n (n -1)2·⎝⎛⎭⎫-53 =-56n 2+1256n =-56⎝⎛⎭⎫n -2522+3 12524. ∵n ∈N *,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130.方法三 由S 10=S 15得a 11+a 12+a 13+a 14+a 15=0.∴5a 13=0,即a 13=0.∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 引申探究例4中,若条件“a 1=20”改为a 1=-20,其他条件不变,求当n 取何值时,S n 取得最小值,并求出最小值.解 由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0,∴a 13=0.又a 1=-20,∴a 12<0,a 14>0,∴当n =12或13时,S n 取得最小值,最小值S 12=S 13=13(a 1+a 13)2=-130. 思维升华 (1)等差数列的性质:①项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a n m -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.②和的性质:在等差数列{a n }中,S n 为其前n 项和,则a .S 2n =n (a 1+a 2n )=…=n (a n +a n +1);b .S 2n -1=(2n -1)a n .(2)求等差数列前n 项和S n 最值的两种方法:①函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.②邻项变号法:a .当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值S m ; b .当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值S m . (1)等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n 的值是________.(2)设数列{a n }是公差d <0的等差数列,S n 为前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,n 的值为________.(3)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________. 答案 (1)6 (2)5或6 (3)110解析 (1)依题意得2a 6=4,2a 7=-2,a 6=2>0,a 7=-1<0;又数列{a n }是等差数列,因此在该数列中,前6项均为正数,自第7项起以后各项均为负数,于是当S n 取最大值时,n =6.(2)由题意得S 6=6a 1+15d =5a 1+10d ,所以a 6=0,故当n =5或6时,S n 最大.(3)因为等差数列{a n }的首项a 1=20,公差d =-2,代入求和公式得,S n =na 1+n (n -1)2d =20n -n (n -1)2×2 =-n 2+21n =-⎝⎛⎭⎫n -2122+⎝⎛⎭⎫2122, 又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110.6.等差数列的前n 项和及其最值典例 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10=________.(2)在等差数列{a n }中,S 10=100,S 100=10,则S 110=________.(3)等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________. 思维点拨 (1)求等差数列前n 项和,可以通过求解基本量a 1,d ,代入前n 项和公式计算,也可以利用等差数列的性质:a 1+a n =a 2+a n -1=…;(2)求等差数列前n 项和的最值,可以将S n 化为关于n 的二次函数,求二次函数的最值,也可以观察等差数列的符号变化趋势,找最后的非负项或非正项.解析 (1)由题意得a 3+a 8=9,所以S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×92=45. (2)方法一 设数列{a n }的公差为d ,首项为a 1,则⎩⎨⎧ 10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎨⎧ a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110. 方法二 因为S 100-S 10=(a 11+a 100)×902=-90, 所以a 11+a 100=-2,所以S 110=(a 1+a 110)×1102=(a 11+a 100)×1102=-110. (3)因为⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,所以⎩⎪⎨⎪⎧a 5>0,a 6<0,所以S n 的最大值为S 5.答案 (1)45 (2)-110 (3)S 5温馨提醒 (1)利用函数思想求等差数列前n 项和S n 的最值时,要注意到n ∈N *;(2)利用等差数列的性质求S n ,突出了整体思想,减少了运算量.[方法与技巧]1.在解有关等差数列的基本量问题时,可通过列关于a 1,d 的方程组进行求解.2.证明等差数列要用定义;另外还可以用等差中项法,通项公式法,前n 项和公式法判定一个数列是否为等差数列.3.等差数列性质灵活使用,可以大大减少运算量.4.在遇到三个数成等差数列问题时,可设三个数为(1)a ,a +d ,a +2d ;(2)a -d ,a ,a +d ;(3)a -d ,a +d ,a +3d 等,可视具体情况而定.[失误与防范]1.当公差d ≠0时,等差数列的通项公式是n 的一次函数,当公差d =0时,a n 为常数.2.公差不为0的等差数列的前n 项和公式是n 的二次函数,且常数项为0.若某数列的前n 项和公式是常数项不为0的二次函数,则该数列不是等差数列,它从第二项起成等差数列.A 组 专项基础训练(时间:40分钟)1.(2015·课标全国Ⅰ改编)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=________________________________________________________________________. 答案 192解析 ∵公差为1,∴S 8=8a 1+8×(8-1)2×1=8a 1+28,S 4=4a 1+6. ∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12, ∴a 10=a 1+9d =12+9=192. 2.(2015·北京改编)设{a n }是等差数列,下列结论中正确的是________.①若a 1+a 2>0,则a 2+a 3>0;②若a 1+a 3<0,则a 1+a 2<0;③若0<a 1<a 2,则a 2>a 1a 3;④若a 1<0,则(a 2-a 1)(a 2-a 3)>0.答案 ③解析 设等差数列{a n }的公差为d ,若a 1+a 2>0,a 2+a 3=a 1+d +a 2+d =(a 1+a 2)+2d ,由于d 正负不确定,因而a 2+a 3符号不确定,故①错;若a 1+a 3<0,a 1+a 2=a 1+a 3-d =(a 1+a 3)-d ,由于d 正负不确定,因而a 1+a 2符号不确定,故②错;若0<a 1<a 2,可知a 1>0,d >0,a 2>0,a 3>0,所以a 22-a 1a 3=(a 1+d )2-a 1(a 1+2d )=d 2>0,所以a 2>a 1a 3,故③正确;若a 1<0,则(a 2-a 1)·(a 2-a 3)=d ·(-d )=-d 2≤0,故④错.3.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =________. 答案 5解析 ∵数列{a n }为等差数列,且前n 项和为S n ,∴数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列. ∴S m -1m -1+S m +1m +1=2S m m ,即-2m -1+3m +1=0, 解得m =5,经检验为原方程的解.4.数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8=________.答案 3解析 设{b n }的公差为d ,∵b 10-b 3=7d =12-(-2)=14,∴d =2.∵b 3=-2,∴b 1=b 3-2d =-2-4=-6.∴b 1+b 2+…+b 7=7b 1+7×62d =7×(-6)+21×2=0.又b 1+b 2+…+b 7=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=a 8-a 1=a 8-3=0, ∴a 8=3.5.已知数列{a n }满足a n +1=a n -57,且a 1=5,设{a n }的前n 项和为S n ,则使得S n 取得最大值的序号n 的值为________.答案 7或8解析 由题意可知数列{a n }是首项为5,公差为-57的等差数列,所以a n =5-57(n -1)=40-5n 7,该数列前7项是正数项,第8项是0,从第9项开始是负数项,所以S n 取得最大值时,n =7或8.6.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N *),则a 10=________. 答案 14解析 由已知得1a 10=1a 1+(10-1)×13=1+3=4, 故a 10=14. 7.已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________. 答案 2n -1解析 设等差数列的公差为d ,∵a 3=a 22-4,∴1+2d =(1+d )2-4,解得d 2=4,即d =±2.由于该数列为递增数列,故d =2.∴a n =1+(n -1)×2=2n -1.8.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 答案 130解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130.9.在等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.解 (1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d .由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2.从而a n =1+(n -1)×(-2)=3-2n .(2)由(1)可知a n =3-2n ,所以S n =n [1+(3-2n )]2=2n -n 2.由S k =-35,可得2k -k 2=-35,即k 2-2k -35=0,解得k =7或k =-5.又k ∈N *,故k =7.10.(2015·济南模拟)等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大?解 方法一 由S 3=S 11得3a 1+3×22d =11a 1+11×102d ,则d =-213a 1. 从而S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-a 113(n -7)2+4913a 1, 又a 1>0,所以-a 113<0.故当n =7时,S n 最大. 方法二 由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由方法一可知a =-a 113<0,故当n =7时,S n 最大. 方法三 由方法一可知,d =-213a 1.要使S n 最大, 则有⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0,即⎩⎨⎧ a 1+(n -1)⎝⎛⎭⎫-213a 1≥0,a 1+n ⎝⎛⎭⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大.方法四 由S 3=S 11,可得2a 1+13d =0,即(a 1+6d )+(a 1+7d )=0,故a 7+a 8=0,又由a 1>0,S 3=S 11可知d <0,所以a 7>0,a 8<0,所以当n =7时,S n 最大.B 组 专项能力提升(时间:20分钟)11.已知正项等差数列{a n }的前n 项和为S n ,若S 12=24,则a 6·a 7的最大值为________. 答案 4解析 在等差数列{a n }中,∵S 12=6(a 6+a 7)=24,∴a 6+a 7=4,令x >0,y >0,由基本不等式可得x ·y ≤⎝ ⎛⎭⎪⎫x +y 22,当且仅当x =y 时“=”成立.又a 6>0,a 7>0,∴a 6·a 7≤⎝ ⎛⎭⎪⎫a 6+a 722=4,当且仅当a 6=a 7=2时,“=”成立.即a 6·a 7的最大值为4.12.设等差数列{a n }的前n 项和为S n ,若a 1=-3,a k +1=32,S k=-12,则正整数k =________. 答案 13解析 S k +1=S k +a k +1=-12+32=-212, 又S k +1=(k +1)(a 1+a k +1)2=(k +1)⎝⎛⎭⎫-3+322=-212,解得k =13. 13.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 答案1941 解析 ∵{a n },{b n }为等差数列,∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. ∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, ∴a 6b 6=1941. 14.已知数列{a n }是首项为a ,公差为1的等差数列,b n =1+a n a n,若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围为________.答案 (-8,-7)解析 依题意得b n =1+1a n,对任意的n ∈N *,都有b n ≥b 8,即数列{b n }的最小项是第8项,于是有1a n ≥1a 8.又数列{a n }是公差为1的等差数列,因此有⎩⎪⎨⎪⎧ a 8<0,a 9>0,即⎩⎪⎨⎪⎧a +7<0,a +8>0,由此解得-8<a <-7,即实数a 的取值范围是(-8,-7).15.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求通项a n ;(2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S n n +c,求非零常数c . 解 (1)因为数列{a n }为等差数列,所以a 3+a 4=a 2+a 5=22.又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根, 又公差d >0,所以a 3<a 4,所以a 3=9,a 4=13,所以⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,所以⎩⎪⎨⎪⎧ a 1=1,d =4.所以通项a n =4n -3.(2)由(1)知a 1=1,d =4,所以S n =na 1+n (n -1)2×d =2n 2-n =2⎝⎛⎭⎫n -142-18. 所以当n =1时,S n 最小,最小值为S 1=a 1=1.(3)由(2)知S n =2n 2-n ,所以b n =S n n +c =2n 2-n n +c, 所以b 1=11+c ,b 2=62+c ,b 3=153+c. 因为数列{b n }是等差数列,所以2b 2=b 1+b 3,即62+c ×2=11+c +153+c ,所以2c2+c=0,所以c=-1或c=0(舍去),2时,{b n}是等差数列,经验证c=-12故c=-12.。
等差数列及其前n项和知识点讲解+例题讲解(含解析)
等差数列及其前n 项和一、知识梳理1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b 2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2. 3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)若S n 为等差数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列. 小结:1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( )(2)等差数列{a n }的单调性是由公差d 决定的.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(4)等差数列的前n 项和公式是常数项为0的二次函数.( ) 解析 (3)若公差d =0,则通项公式不是n 的一次函数.(4)若公差d =0,则前n 项和不是二次函数.答案 (1)√ (2)√ (3)× (4)×2.设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( )A.31B.32C.33D.34解析 由已知可得⎩⎨⎧a 1+5d =2,5a 1+10d =30, 解得⎩⎪⎨⎪⎧a 1=263,d =-43,∴S 8=8a 1+8×72d =32. 答案 B3.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________. 解析 由等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180.答案 1804.(2018·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A.-12B.-10C.10D.12解析 设等差数列{a n }的公差为d ,则3(3a 1+3d )=2a 1+d +4a 1+6d ,即d =-32a 1.又a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10. 答案 B5.(2019·上海黄浦区模拟)已知等差数列{a n }中,a 2=1,前5项和S 5=-15,则数列{a n }的公差为( )A.-3B.-52C.-2D.-4 解析 设等差数列{a n }的首项为a 1,公差为d ,因为⎩⎨⎧a 2=1,S 5=-15,所以⎩⎪⎨⎪⎧a 1+d =1,5a 1+5×42d =-15, 解得d =-4.答案 D6.(2019·苏北四市联考)在等差数列{a n }中,已知a 3+a 8>0,且S 9<0,则S 1,S 2,…,S 9中最小的是______.解析 在等差数列{a n }中,∵a 3+a 8>0,S 9<0,∴a 5+a 6=a 3+a 8>0,S 9=9(a 1+a 9)2=9a 5<0, ∴a 5<0,a 6>0,∴S 1,S 2,…,S 9中最小的是S 5.答案 S 5考点一 等差数列基本量的运算【例1】 (1)(2017·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A.1B.2C.4D.8 (2)(2019·潍坊检测)设等差数列{a n }的前n 项和为S n ,S 11=22,a 4=-12,若a m =30,则m =( )A.9B.10C.11D.15 解析 (1)法一 设等差数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧(a 1+3d )+(a 1+4d )=24,6a 1+6×52d =48,所以d =4.法二 等差数列{a n }中,S 6=(a 1+a 6)×62=48,则a 1+a 6=16=a 2+a 5,又a 4+a 5=24,所以a 4-a 2=2d =24-16=8,则d =4.(2)设等差数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧S 11=11a 1+11×(11-1)2d =22,a 4=a 1+3d =-12,解得⎩⎨⎧a1=-33,d =7,∴a m =a 1+(m -1)d =7m -40=30,∴m =10.答案 (1)C (2)B【训练1】 (1)等差数列log 3(2x ),log 3(3x ),log 3(4x +2),…的第四项等于()A.3B.4C.log 318D.log 324(2)设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________. 解析 (1)∵log 3(2x ),log 3(3x ),log 3(4x +2)成等差数列, ∴log 3(2x )+log 3(4x +2)=2log 3(3x ),∴log 3[2x (4x +2)]=log 3(3x )2,则2x (4x +2)=9x 2,解之得x =4,x =0(舍去).∴等差数列的前三项为log 38,log 312,log 318,∴公差d =log 312-log 38=log 332,∴数列的第四项为log 318+log 332=log 327=3.(2)法一 设数列{a n }的首项为a 1,公差为d ,由S 3=6,S 4=12,可得⎩⎨⎧S 3=3a 1+3d =6,S 4=4a 1+6d =12,解得⎩⎨⎧a 1=0,d =2,所以S 6=6a 1+15d =30.法二 由{a n }为等差数列,故可设前n 项和S n =An 2+Bn , 由S 3=6,S 4=12可得⎩⎨⎧S 3=9A +3B =6,S 4=16A +4B =12,解得⎩⎨⎧A =1,B =-1,即S n =n 2-n ,则S 6=36-6=30. 答案 (1)A (2)30考点二 等差数列的判定与证明【例2】 (经典母题)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列; (2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0,得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2, 又1S 1=1a 1=2, 故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n=2n ,∴S n =12n . 当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式.故a n =⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.【训练2】 (2017·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.解 (1)设{a n }的公比为q ,由题设可得⎩⎨⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,解得⎩⎨⎧q =-2,a 1=-2.故{a n }的通项公式为a n =(-2)n .(2)由(1)可得S n =a 1(1-q n )1-q=-23+(-1)n 2n +13. 由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23. =2⎣⎢⎡⎦⎥⎤-23+(-1)n ·2n +13=2S n , 故S n +1,S n ,S n +2成等差数列.考点三 等差数列的性质及应用角度1 等差数列项的性质【例3-1】 (2019·临沂一模)在等差数列{a n }中,a 1+3a 8+a 15=120,则a 2+a 14的值为( )A.6B.12C.24D.48 解析 ∵在等差数列{a n }中,a 1+3a 8+a 15=120,由等差数列的性质,a 1+3a 8+a 15=5a 8=120,∴a 8=24,∴a 2+a 14=2a 8=48.答案 D角度2 等差数列和的性质【例3-2】 设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )A.63B.45C.36D.27 解析 由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列, 即2(S 6-S 3)=S 3+(S 9-S 6),得到S 9-S 6=2S 6-3S 3=45,所以a 7+a 8+a 9=45.答案 B规律方法 1.项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .2.和的性质:在等差数列{a n }中,S n 为其前n 项和,则(1)S 2n =n (a 1+a 2n )=…=n (a n +a n +1);(2)S 2n -1=(2n -1)a n .【训练3】 (1)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 015,S 2 0152 015-S 2 0092 009=6,则S 2 019=________.(2)(2019·荆州一模)在等差数列{a n }中,若a 3+a 4+a 5=3,a 8=8,则a 12的值是( )A.15B.30C.31D.64(3)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( ) A.3727B.1914C.3929D.43 解析 (1)由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列. 设其公差为d ,则S 2 0152 015-S 2 0092 009=6d =6,∴d =1.故S 2 0192 019=S 11+2 018d =-2 015+2 018=3,∴S 2 019=3×2 019=6 057.(2)由a 3+a 4+a 5=3及等差数列的性质,∴3a 4=3,则a 4=1.又a 4+a 12=2a 8,得1+a 12=2×8.∴a 12=16-1=15.(3)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727. 答案 (1)6 057 (2)A (3)A考点四 等差数列的前n 项和及其最值【例4】 (2019·衡水中学质检)已知数列{a n }的前n 项和为S n ,a 1≠0,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立.(1)求数列{a n }的通项公式;(2)设a 1>0,λ=100,当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大? 解 (1)令n =1,得λa 21=2S 1=2a 1,a 1(λa 1-2)=0,因为a 1≠0,所以a 1=2λ,当n ≥2时,2a n =2λ+S n ,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n (n ≥2).所以a n =2a n -1(n ≥2),从而数列{a n }为等比数列,a n =a 1·2n -1=2n λ.(2)当a 1>0,λ=100时,由(1)知,a n =2n 100,则b n =lg 1a n =lg 1002n =lg 100-lg 2n =2-n lg 2, 所以数列{b n }是单调递减的等差数列,公差为-lg 2,所以b 1>b 2>…>b 6=lg 10026=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg 10027<lg 1=0,所以数列⎩⎨⎧⎭⎬⎫lg 1a n 的前6项和最大. 规律方法 求等差数列前n 项和S n 的最值的常用方法:(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn (a ≠0),通过配方或借助图象求二次函数的最值.(2)利用等差数列的单调性,求出其正负转折项,进而求S n 的最值.①当a 1>0,d <0时,满足⎩⎨⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m (当a m +1=0时,S m +1也为最大值);②当a 1<0,d >0时,满足⎩⎨⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m (当a m +1=0时,S m +1也为最小值).【训练4】 (1)等差数列{a n }的公差d ≠0,且a 3,a 5,a 15成等比数列,若a 5=5,S n 为数列{a n }的前n项和,则数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为( ) A.3B.3或4C.4或5D.5(2)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________.解析 (1)由题意知⎩⎨⎧(a 1+2d )(a 1+14d )=25,a 1+4d =5,由d ≠0,解得a 1=-3,d =2,∴S n n =na 1+n (n -1)2d n =-3+n -1=n -4,则n -4≥0,得n ≥4,∴数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为3或4. (2)因为等差数列{a n }的首项a 1=20,公差d =-2,S n =na 1+n (n -1)2d =20n -n (n -1)2×2 =-n 2+21n =-⎝ ⎛⎭⎪⎫n -2122+⎝ ⎛⎭⎪⎫2122, 又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110. 答案 (1)B (2)110三、课后练习1.(2019·济宁模拟)设数列{a n }满足a 1=1,a 2=2,且2na n =(n -1)a n -1+(n +1)a n +1(n ≥2且n ∈N *),则a 18=( )A.259B.269C.3D.289 解析 令b n =na n ,则2b n =b n -1+b n +1(n ≥2),所以{b n }为等差数列,因为b 1=1,b 2=4,所以公差d =3,则b n =3n -2,所以b 18=52,则18a 18=52,所以a 18=269.答案 B2.(2019·青岛诊断)已知等差数列{a n },{b n }的前n 项和分别为S n ,T n (n ∈N *),若S n T n =2n -1n +1,则a 12b 6=( )A.154B.158C.237D.3 解析 由题意不妨设S n =n (2n -1),T n =n (n +1), 所以a 12=S 12-S 11=12×23-11×21=45,b 6=T 6-T 5=6×(6+1)-5×(5+1)=42-30=12,所以a 12b 6=4512=154. 答案 A3.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0, ∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130. 答案 1304.(2019·长沙雅礼中学模拟)设S n 为等差数列{a n }的前n 项和,已知a 1+a 13=26,S 9=81.(1)求{a n }的通项公式;(2)令b n =1a n +1a n +2,T n =b 1+b 2+…+b n ,若30T n -m ≤0对一切n ∈N *成立,求实数m 的最小值.解 (1)∵等差数列{a n }中,a 1+a 13=26,S 9=81, ∴⎩⎨⎧2a 7=26,9a 5=81,解得⎩⎨⎧a 7=13,a 5=9,∴d =a 7-a 57-5=13-92=2, ∴a n =a 5+(n -5)d =9+2(n -5)=2n -1.(2)∵b n =1a n +1a n +2=1(2n +1)(2n +3) =12⎝ ⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∵12⎝ ⎛⎭⎪⎫13-12n +3随着n 的增大而增大,知{T n }单调递增. 又12n +3>0,∴T n <16,∴m ≥5, ∴实数m 的最小值为5.。
(完整版)等差数列知识点总结及练习(精华版)
等差数列的性质总结1.等差数列的定义:(d 为常数)();d a a n n =--12≥n 2.等差数列通项公式:, 首项:,公差:d ,末项:*11(1)()n a a n d dn a d n N =+-=+-∈1a n a 推广: . 从而;d m n a a m n )(-+=mn a a d mn --=3.等差中项(1)如果,,成等差数列,那么叫做与的等差中项.即:或a A b A a b 2ba A +=b a A +=2(2)等差中项:数列是等差数列{}n a )2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a 4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+特别地,当项数为奇数时,是项数为2n+1的等差数列的中间项21n +1n a +5.等差数列的判定方法(1) 定义法:若或(常数) 是等差数列. d a a n n =--1d a a n n =-+1*∈N n ⇔{}n a (2) 等差中项:数列是等差数列. {}n a )2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a (3) 数列是等差数列(其中是常数)。
{}n a ⇔b kn a n +=b k ,(4) 数列是等差数列,(其中A 、B 是常数)。
{}n a ⇔2n S An Bn =+6.等差数列的证明方法定义法:若或(常数) 是等差数列.d a a n n =--1d a a n n =-+1*∈N n ⇔{}n a 7.提醒:等差数列的通项公式及前n 项和公式中,涉及到5个元素:,其中n a n S n n S a n d a 及、、、1称作为基本元素。
只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2.d a 、18. 等差数列的性质:(1)当公差时,0d ≠等差数列的通项公式是关于的一次函数,且斜率为公差;11(1)n a a n d dn a d =+-=+-n d 前和是关于的二次函数且常数项为0.n 211(1)(222n n n d dS na d n a n -=+=+-n (2)若公差,则为递增等差数列,若公差,则为递减等差数列,若公差,则为常数列。
等差数列(总结和例题)
等差数列知识清单1、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,这个常数叫做等差数列的公差,公差通常用字母公差通常用字母d 表示。
用递推公式表示为1(2)n n a a d n --=³或1(1)n n a a d n+-=³。
根据定义,当我们看到形如:d a a n n =--1、da a n n =--212、d aa n n=--1d a a n n =--111、211-++=n n na a a 、d S S n n =--1时,应能从中得到相应的等差数列。
的等差数列。
等差数列的判定方法1. 定义法:若d aa n n=--1或da an n =-+1(常数*ÎN n )Û {}n a 是等差数列.是等差数列.2.2.等差中项:数列等差中项:数列{}n a 是等差数列)2(211-³+=Û+n a a a n n n 212+++=Ûn n n a a a . 3.3.数列数列{}n a 是等差数列Ûbkn a n+=(其中b k ,是常数)。
是常数)。
4.4.数列数列{}n a 是等差数列Û2n S An Bn =+,(其中(其中A A 、B 是常数)。
是常数)。
等差数列的证明方法定义法:若d aa n n=--1或d a ann =-+1(常数*ÎN n )Û {}n a 是等差数列.例1.设S n 是数列{a n }的前n 项和,且S n =n 2,则{a n }是(是( )A.等比数列,但不是等差数列等比数列,但不是等差数列B.等差数列,但不是等比数列等差数列,但不是等比数列C.等差数列,而且也是等比数列等差数列,而且也是等比数列D.既非等比数列又非等差数列既非等比数列又非等差数列 答案:B ;解法一:a n =îíì³-==Þîíì³-=-)2( 12)1( 1)2( )1( 11n n n a n S S n S n n n ∴a n =2n -1(n ∈N ) 又a n +1-a n =2为常数,12121-+=+n n a a n n ≠常数≠常数 ∴{a n }是等差数列,但不是等比数列. 2.等差数列通项公式:*11(1)()n a a n d dn a d n N =+-=+-Î ,, 首项首项首项::1a ,公差,公差:d :d :d,末项,末项,末项::n a=1,=1得=2,=1+×2,项起开始为正数,则公差的取值范围是______ ______ ______ ;;11<11<=19(a 119)==120=ac(C )8 8 ((D )10 【答案】A 【解析】由角标性质得1952a a a +=,所以5a =5.=5.2.在等差数列{a n }中,a 2+a 6=3π2,则sin(2a 4-π3)=( ) A.32 B.12 C .-32 D .-12 答案 D 解析 ∵a 2+a 6=3π2,∴2a 4=3π2,∴sin(2a 4-π3)=sin(3π2-π3)=-cos π3=-12,选D. 1. (2009北京东城高三第一学期期末检测,理9)已知{a n }为等差数列,若a 1+a 5+a 9=π,则cos(a 2+a 8)的值为________________.答案:21-2。
等差数列的前n项和复习(全面知识点+精选例题+习题附答案)精编材料pdf版
三、等差数列的前n 项和1.等差数列前n 项和公式n a 通项公式得到)★ 21()22n d dS n a n =+-(以n 为变量,体现二次函数) 2n S An Bn =+(简化写法,不含常数项的二次函数)2.和的有关性质等差数列{}n a ,公差为d ,前n 项和为n S ,那么: (1){}n S n也成等差数列,其首项与{}n a 首项相同,公差是{}n a 公差的12.(2)等差数列{}n b ,前n 项和为n T (21(21)n n S n a -=-).★ (3)数列232,,,k k k k k S S S S S --是等差数列,公差为2k d .★(4)S 奇表示奇数项的和,S 偶表示偶数项的和,则有:①当项数为偶数2n 时,S S nd -=偶奇,1nn S a S a +=奇偶; ②当项数为奇数21n -时,n S S a -=奇偶,1S nS n =-奇偶.3.和与函数的关系及和的最值 21()22n d dS n a n =+-简写为2()n S An Bn n =+∈*N ,可以把(,)n n S 看作是二次函数图像上孤立的点,因此可以用二次函数的性质来研究和的性质,比如对称和求最值.练习题:D.9答案解析:11 | 1312 | 1313 | 13当12n <时,n S 很明显都是小于0的 故n S 取到最小正数时的n 为12. 答案:1231解析:由1020S S =知对称轴为15n =,故最大值为前15项之和. 答案:A 32解析:41434442S a d ⨯=+=,81878562S a d ⨯=+=两式联立解得114a =,2d =- 故2(1)14(2)152n n n S n n n -=+⨯-=-+ 对称轴为7.5,故当7n =或8n =时取最大值27715756S =-+⨯=.答案:最大值为7856S S ==33解析:根据对称性,由67S S =可知58S S =,49S S = 由中间到两端以此减小,所以985S S S <=,C 选项错误. 答案:C34解析:由条件可知函数零点在18与19之间,又函数过原点则对称轴应介于182与192之间,即大于9小于9.5 数列的下标只能取正整数,离对称轴最近的正整数为9,故9S 最大. 答案:C数学浪子整理制作,侵权必究。
等差数列知识点整理与经典例题解
等差数列复习一、等差数列的有关概念:1、等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。
如设{}n a 是等差数列,求证:以b n =n a a a n +++ 21 *n N ∈为通项公式的数列{}n b 为等差数列。
2、等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。
如(1)等差数列{}n a 中,1030a =,2050a =,则通项n a = (答:210n +);(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______(答:833d <≤) 3、等差数列的前n 和:1()2n n n a a S +=,1(1)2n n n S na d -=+。
如(1)数列 {}n a 中,*11(2,)2n n a a n n N -=+≥∈,32n a =,前n 项和152n S =-,则1a = _,n =_(答:13a =-,10n =);(2)已知数列 {}n a 的前n 项和212n S n n =-,求数列{||}n a 的前n 项和n T (答:2*2*12(6,)1272(6,)n n n n n N T n n n n N ⎧-≤∈⎪=⎨-+>∈⎪⎩). 4、等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2a b A +=。
提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。
只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。
(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d );偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(公差为2d )5、等差数列的性质:(1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0.(2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。
(完整版)等差数列知识点总结和题型分析
等差数列一.等差数列知识点: 知识点1、等差数列的定义:①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示 知识点2、等差数列的判定方法:②定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列 ③等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列知识点3、等差数列的通项公式:④如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为 d n a a n )1(1-+= 该公式整理后是关于n 的一次函数知识点4、等差数列的前n 项和:⑤2)(1n n a a n S +=⑥d n n na S n 2)1(1-+= 对于公式2整理后是关于n 的没有常数项的二次函数 知识点5、等差中项:⑥如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项即:2b a A +=或b a A +=2在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项知识点6、等差数列的性质:⑦等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+=⑧ 对于等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+也就是: =+=+=+--23121n n n a a a a a a⑨若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k kS S 23-成等差数列如下图所示:kkk kk S S S k k S S k k k a a a a a a a a 3232k31221S 321-+-+++++++++++ 10、等差数列的前n 项和的性质:①若项数为()*2n n ∈N ,则()21n n n S n a a +=+,且S S nd -=偶奇,1n n S aS a +=奇偶.②若项数为()*21n n -∈N ,则()2121n n S n a -=-,且n S S a -=奇偶,1S nS n =-奇偶(其中n S na =奇,()1n S n a =-偶).二、题型选析:题型一、计算求值(等差数列基本概念的应用)1、.等差数列{a n }的前三项依次为 a-6,2a -5, -3a +2,则 a 等于( ) A . -1 B . 1 C .-2 D. 22.在数列{a n }中,a 1=2,2a n+1=2a n +1,则a 101的值为 ( )A .49B .50C .51D .52 3.等差数列1,-1,-3,…,-89的项数是( )A .92B .47C .46D .45 4、已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )( ) A 15 B 30 C 31 D 64 5. 首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是( )A.d >38B.d <3C. 38≤d <3D.38<d ≤36、.在数列}{n a 中,31=a ,且对任意大于1的正整数n ,点),(1-n n a a 在直03=--y x 上,则n a =_____________.7、在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= . 8、等差数列{}n a 的前n 项和为n S ,若=则432,3,1S a a ==( )(A )12(B )10 (C )8 (D )69、设数列{}n a 的首项)N n ( 2a a ,7a n 1n 1∈+=-=+且满足,则=+++1721a a a ______.10、已知{a n }为等差数列,a 3 + a 8 = 22,a 6 = 7,则a 5 = __________ 11、已知数列的通项a n = -5n +2,则其前n 项和为S n = .12、设n S 为等差数列{}n a 的前n 项和,4S =14,30S S 710=-,则9S = .题型二、等差数列性质1、已知{a n }为等差数列,a 2+a 8=12,则a 5等于( )(A)4 (B)5 (C)6 (D)72、设n S 是等差数列{}n a 的前n 项和,若735S =,则4a =( )A .8B .7C .6D .53、 若等差数列{}n a 中,37101148,4,a a a a a +-=-=则7__________.a =4、记等差数列{}n a 的前n 项和为n S ,若42=S ,204=S ,则该数列的公差d=( ) A .7 B. 6 C. 3 D. 25、等差数列{}n a 中,已知31a 1=,4a a 52=+,33a n =,则n 为( )(A )48 (B )49 (C )50 (D )516.、等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( )(A)9 (B)10 (C)11 (D)127、设S n 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( ) A .1 B .-1 C .2 D .21 8、已知等差数列{a n }满足α1+α2+α3+…+α101=0则有( )A .α1+α101>0B .α2+α100<0C .α3+α99=0D .α51=51 9、如果1a ,2a ,…,8a 为各项都大于零的等差数列,公差0d ≠,则( ) (A )1a 8a >45a a (B )8a 1a <45a a (C )1a +8a >4a +5a (D )1a 8a =45a a10、若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )(A )13项 (B )12项 (C )11项 (D )10项题型三、等差数列前n 项和 1、等差数列{}n a 中,已知12310a a a a p ++++=,98n n n a a a q --+++=,则其前n项和n S = .2、等差数列 ,4,1,2-的前n 项和为 ( )A. ()4321-n nB. ()7321-n nC. ()4321+n nD. ()7321+n n3、已知等差数列{}n a 满足099321=++++a a a a ,则 ( )A. 0991>+a aB. 0991<+a aC. 0991=+a aD. 5050=a4、在等差数列{}n a 中,78,1521321=++=++--n n n a a a a a a ,155=n S , 则=n 。
等差数列知识点总结
例1:求等差数列首项为2,公差为3的前10项的和。
解析:根据列和公式Sn = (a1 + an) * n / 2,代入已知条件,得到Sn = (2 + (2 + 3*(10-1))) * 10 / 2 = 55。
例2:已知等差数列的首项为4,末项为49,公差为5,求该数列共有多少项。
解析:根据项数公式an = a1 + (n-1)d,代入已知条件,得到49 = 4 + (n-1)*5,解方程可得n = 10。
例3:已知等差数列的首项为-1,公差为2,求该数列的第15项的值。
解析:根据通项公式an = a1 + (n-1)d,代入已知条件,得到a15 = -1 + (15-1)*2 = 27。
通过以上例题解析,我们可以看到等差数列的定义、性质和应用方法。等差数列在数学中有着广泛的应用,例如在几何题、物理问题等方面。掌握等差数列的知识,对于理解数学的思维方式和解决实际问题都具有重要意义。
等差数列知识点总结
等差数列在数学中占据着重要的地位,它不仅是数学学科自身的基础概念,也在实际生活和其他学科中具有广泛应用。本文将总结等差数列的定义、性质和常见问题,并提供相关例题进行解析,帮助读者深入理解和掌握等差数列的知识。
一、等差数列的定义
等差数列是指数列中任意两项之间的差恒定的一种数列。它的一般形式可以表示为:an = a1 + (n-1)d,其中an表示第n项,a1为首项,d为公差,n为项数。
2.求项数:当已知等差数列的首项、末项和公差时,可以通过项数公式an = a1 + (n-1)d来计算项数。
3.求前n项和:对于已知等差数列的首项、末项和项数时,可以利用列和公式Sn = (a1 + an) * n / 2来求解前n项的和。
等差数列知识点及类型题详解(含精细化答案)
数列——等差数列【考纲解读】◆ 理解等差数列的概念。
◆ 掌握等差数列的通项公式n a 及前n 项和公式。
◆ 能根据具体条件识别等差数列,并灵活运用等差数列的性质解决问题。
◆ 了解等差数列通项公式与一次函数、等差数列前n 项和与二次函数的关系。
【知识储备】知识点1、等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
知识点2、等差数列的通项公式如果等差数列{}n a 的首项是1a ,公差是d ,则有d a a n n =-+1(d 是常数)或n n n n a a a a -=-+++112, 叠加得到等差数列的通项为:d n a a n )1(1-+= 该公式整理后是关于n 的一次函数。
例1:已知{}n a 是一个等差数列,请在下表中填入适当的数或式子。
知识点3、等差中项A ,b 成等差 如果a ,数列,那么A 叫做a 与b即:2b a A +=的等差中项b a A +=2或例2:已知{}n a 是等差数列。
(1)有3122a a a +=,那么7352a a a +=是否成立? 9152a a a +=呢?为什么? (2))1(211n >+=+-n a a a n n 是否成立?(3))0(2k k n >>+=+-k n a a a n n 是否成立?据此你能得出什么结论?知识点4、等差数列的前n 项和2)(1n n a a n S +=将d n a a n )1(1-+=带入可得 d n n na S n 2)1(1-+=该公式整理后是关于n 的二次函数。
例3:根据下列各题中的条件,求相应的等差数列{}n a 的前n 项和n S 。
(1);,,8n 18481=-=-=a a (2)7.0185.141=-==d a a n ,,。
知识点5、等差数列的判定方法❖ 定 义 法:若d a a n n =-+1(d 是常数)或n n n n a a a a -=-+++112,则数列{}n a 是等差数列。
高考重点突破:等差数列知识点梳理、例题
高考重点突破:等差数列知识点梳:一、等差数列的有关概念1.定义:从第2项起,每一项与前一项的差是同一个常数,我们称这样的数列为等差数列,称这个常数为等差数列的公差,通常用字母d 表示,符号表示为a n +1-a n =d(n ∈N +,d 为常数). 2.等差中项:如果在a 与b 中间插入一个数A ,使a ,A ,b 成等差数列.那么A 叫作a 与b 的等差中项.若A 是a 与b 的等差中项,则A =a +b 2.二、等差数列的有关公式1.通项公式:a n =a 1+(n -1)d 推广: a n =a m +(n -m)d. 2.前n 项和公式:Sn =na 1+21-n n )(d =2a a n n 1)( . 3.脚码和定理:若m ,n ,p ,q ∈N +,且m +n =p +q ,{a n }为等差数列,则a m +a n =a p +a q[误区一] 已知等差数列{an}的第m 项为am ,公差为d ,则其第n 项an 能否用am 与d 表示?三、等差数列的性质1.在等差数列{a n }中,a k ,a 2k ,a 3k ,a 4k ,…仍为等差数列,公差为kd.2.若{a n }为等差数列,则S n ,S 2n -S n ,S 3n -S 2n ,…仍为等差数列,公差为___n 2d______.3.等差数列的增减性:d>0时为递增数列,且当a 1<0时前n 项和Sn 有最____小____;d<0时为________数列,且当a 1>0时前n 项和Sn 有最___大_值. 4.函数性质:(1)通项公式为一次函数 (2)求和公式为缺少常数项的二次函数四.证明{an}为等差数列的方法:(1)用定义证明:a n -a n -1=d(d 为常数,n ≥2)⇔{a n }为等差数列; (2)用等差中项证明:2a n +1=a n +a n +2⇔{a n }为等差数列; (3)通项法:a n 为n 的一次函数⇔{a n }为等差数列; (4)前n 项和法:Sn =An 2+Bn 或Sn =+2.用定义证明等差数列时,常采用的两个式子a n +1-a n =d 和a n -a n -1=d ,但它们的意义不同,后者必须加上“n ≥2”,否则n =1时,a 0无定义. 例1 (2014·大纲全国)数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2, (1)设b n =a n +1-a n ,证明{b n }是等差数列; (2)求{a n }的通项公式.五.解题思路:1,一般思路:建立方程组求出首项和公差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列复习
一、等差数列的有关概念:
1、等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。
如设{}n a 是等差数列,求证:以b n =
n
a a a n +++ 21 *n N ∈为通项公式的数列{}n
b 为等差数列。
2、等差数列的通项:1(1)n a a n d =+-或()n m a a n m d =+-。
如(1)等差数列{}n a 中,1030a =,2050a =,则通项n a = (答:210n +);
(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______(答:833
d <≤) 3、等差数列的前n 和:1()2n n n a a S +=,1(1)2
n n n S na d -=+。
如(1)数列 {}n a 中,*11(2,)2n n a a n n N -=+≥∈,32n a =,前n 项和152n S =-,则1a = _,n =_(答:13a =-,10n =);
(2)已知数列 {}n a 的前n 项和212n S n n =-,求数列{||}n a 的前n 项和n T (答:
2*2*12(6,)1272(6,)
n n n n n N T n n n n N ⎧-≤∈⎪=⎨-+>∈⎪⎩). 4、等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2a b A +=。
提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。
只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。
(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d );偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(公差为2d )
5、等差数列的性质:
(1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222
n n n d d S na d n a n -=+
=+-是关于n 的二次函数且常数项为0.
(2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。
(3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.
如(1)等差数列{}n a 中,12318,3,1n n n n S a a a S --=++==,则n =____(答:27);
(4) 若{}n a 、{}n b 是等差数列,则{}n ka 、{}n n ka pb + (k 、p 是非零常数)、
*{}(,)p nq a p q N +∈、
232,,n n n n n S S S S S -- ,…也成等差数列,而{}n a a 成等比数列;若{}n a 是等比数列,且0n a >,则{lg }n a 是等差数列.
如等差数列的前n 项和为25,前2n 项和为100,则它的前3n 和为 。
(答:225)
(5)在等差数列{}n a 中,当项数为偶数2n 时,S S nd =偶奇-;项数为奇数21n -时,S S a -=奇偶中,21(21)n S n a -=-⋅中(这里a 中即n a );()1-n :n S =偶奇:S 。
如(1)在等差数列中,S 11=22,则6a =______(答:2);
※(2)项数为奇数的等差数列{}n a 中,奇数项和为80,偶数项和为75,求此数列的中间项与项数(答:5;31).
※(6)若等差数列{}n a 、{}n b 的前n 和分别为n A 、n B ,且()n n
A f n
B =,则2121
(21)(21)(21)n n n n n n a n a A f n b n b B ---===--.如设{n a }与{n b }是两个等差数列,它们的前n 项和分别为n S 和n T ,若3413-+=n n T S n n ,那么=n
n b a ___________(答:6287n n --) (7)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和;“首负”的递增等差数列中,前n 项和的最小值是所有非正项之和。
法一:由不等式组⎪⎪⎭
⎫ ⎝⎛⎩⎨⎧≥≤⎩⎨⎧≤≥++000011n n n n a a a a 或确定出前多少项为非负(或非正);法二:因等差数列前n 项是关于n 的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性*n N ∈。
上述两种方法是运用了哪种数学思想?(函数思想),由此你能求一般数列中的最大或最小项吗?
如(1)等差数列{}n a 中,125a =,917S S =,问此数列前多少项和最大?并求此最大
值。
(答:前13项和最大,最大值为169);
(2)若{}n a 是等差数列,首项10,a >200320040a a +>,200320040a a ⋅<,则使前n 项和0n S >成立的最大正整数n 是 (答:4006)
※(3)在等差数列{}n a 中,10110,0a a <>,且1110||a a >,n S 是其前n 项和,则( )
A 、12
10,S S S 都小于0,1112,S S 都大于0 B 、12
19,S S S 都小于0,2021,S S 都大于0 C 、12
5,S S S 都小于0,67,S S 都大于0 D 、1220,S S S 都小于0,2122,S S 都大于0 (答:B )
※(8)如果两等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数. 注意:公共项仅是公共的项,其项数不一定相同,即研究n m a b =.。