《第十四章 整式的乘除与因式分解》单元测试卷及答案(共六套)
人教版八年级数学上册14章 整式的乘法与因式分解单元测试 答案
14章整式的乘法与因式分解一、选择题(每小题3分,共30分)1.下列各式计算正确的是()A.2a2+a3=3a5B.(−3x2y)2÷(xy)=9x3yC.(2b2)3=8b5D.2x⋅3x5=6x52. 有下列计算:①a2⋅a3=a6;②(−2x)3=−6x3;③(−1)0=1;④2−1=−2;⑤a4÷a−2=a6.其中正确的个数为( )A.1B.2C.3D.43.将多项式4x2+1再加上一项,使它能分解因式成(a+b)2的形式,以下是四位学生所加的项,其中错误的是()A.2xB.−4xC.4x4D.4x4.已知x+y−2=0,则3x⋅3y的值是( )A.6B.9C.16D.195.下列因式分解正确的是( )A.4−x2+3x=(2−x)(2+x)+3xB.x2+6x−9=(x−3)2C.1−4x+4x2=(1−2x)2D.x2y−xy+x3y=x(xy−y+x2y)6.若(x+m)(x2+nx+1)的展开式中常数项为−2,且不含x2项,则展开式中的一次项系数为( )A.−2B.2C.−3D.27.下列各式中:①x2−2xy+y2;②12a2+ab+12b2;③−4ab−a2+4b2;④4x2+9y2−12xy;⑤3x2−6xy+3y2.能用完全平方公式分解的个数有( )A.5B.4个C.3个D.2个8.计算(2+1)(22+1)(24+1)(28+1)⋯(264+1),结果的个位数字是( )A.6B.5C.8D.79.已知a1,a2,…,a2020都是正数,如果M=(a1+a2+...+a2019)(a2+a3+...+a2020),N=(a1+a2+...+a2020)(a2+a3+...+a2019),那么M,N的大小关系是()A.M>NB.M=NC.M<ND.不确定10.下列运算正确的是()A.a−(b+c)=a−b+cB.2a2⋅3a3=6a5C.a2+a2=2a4D.(x−y)2=x2−y2二、填空题(每小题3分,共18分)11.因式分解:3x2−9x=______.12.已知(x+y)2=9,(x−y)2=5,则xy的值等于________.13. 三边都不相等的三角形的三边长分别为整数a,b,c,且满足a2+b2−6a−4b+13=0,则第三边c的值为________.14. 已知xx−x+1=12,则x2+1x的值为________.15. 已知4×2a×2a+1=29,且2a+b=8,求a b=________.16. 若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=22−12,16=52−32).“智慧数”按从小到大的顺序构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,⋯⋯则第2020个“智慧数”是________.三、解答题(本题共计6题,共52分)17. (6分)先化简,再求值:[(xy+2)(xy−2)−2x2y2+4]÷xy,其中x=4,y=0.5.18. (8分)按下列程序计算,把答案填写在表格里,然后看看有什么规律,想想为什么会有这个规律?(1)填写表内空格:输入n32−1213⋯输出答案−1________ ________ ________ ⋯(2)你发现的规律是________;(3)用简要过程说明你发现的规律的正确性.19.(8分)a,b满足(a−2)2+|b+1|=0,求2ab2−2(ab+32a2b)+5ab的值.20. (8分)(1)如图,长方形ABCD的周长为16,四个正方形的面积和为68,求矩形ABCD的面积;(2)若(x2+nx+3)(x2−3x+m)的展开式中不含x2项和x3项,求m,n的值.)(x2−3x+n)的积中不含x和x3项.21.(10分)若(x2+3mx−13(1)求m2−mn+1n2的值;4(2)求代数式(−18m2n)2+(9mn)2+(3m)2017n2019的值.22. (12分)我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还分组分解法、拆项法、十字相乘法等等.将一个多项式适当分组后,可提公因式或运用公式继续分解方法叫作分组分解.例如:x2−2x+y2−16=(x−y)2−16=(x−y+4)(x−y−4).利用这种分组的思想方法解决下列问题:(1)分解因式:x2−9y2−2x+6y;(2)△ABC三边a,b,c满足a2−b2−ac+bc=0,判断△ABC的形状,并说明理由.一、填空题1.【答案】B2.【答案】B3.【答案】A4.【答案】B5.【答案】C6.【答案】C7.【答案】B8.【答案】B9.【答案】A10.【答案】B二、填空题(本题共计 6 小题,每题 3 分,共计18分)11.【答案】3x(x−3)12.【答案】113.【答案】414.【答案】715.【答案】916.【答案】2696三、解答题(本题共计7 小题,每题10 分,共计70分)17.【答案】解:原式=( x2y2−4−2x2y2+4)÷xy=−x2y2÷xy=−xy,当x=4,y=0.5时,原式=−2.18.【答案】−1,−1,−1输入任何数的结果都为−1(3)根据程序计算,输入任意的n,都有2(n2−n)−2n2+2n−1=2n2−2n−2n2+2n−1=−1,故规律是正确的,输出值恒为−1,与n无关.19.【答案】解:∵(a+2)2+|b+1|=0,∴a+2=0,b+1=0,∴a=−2,b=−1,∴当a=−2,b=−1时,2ab2−2(ab+32a2b)+5ab=2ab2+3ab−3a2b =10.20.【答案】解:(1)设AB=x,BC=y,∵长方形ABCD的周长为16,∴2(x+y)=16,即x+y=8①.又∵四个正方形的面积和为68,∴2x2+2y2=68,即x2+y2=34②.①的两边平方得(x+y)2=64,即x2+2xy+y2=64③,③−②得,2xy=30,∴xy=15,即矩形ABCD的面积为15.(2)(x2+nx+3)(x2−3x+m)=x4+(−3+n)x3+(m−3n+3)x2+(mn−9)x+3m,∵(x2+nx+3)(x2−3x+m)的展开式不含x2和x3项,∴−3+n=0,m−3n+3=0,解得m=6,n=3.21.【答案】解:(1)(x2+3mx−13)(x2−3x+n)=x4+nx2+(3m−3)x3−9mx2+(3mn+1)x−13x2−13n,由积中不含x和x^3项,得到3m−3=0,3mn+1=0,解得:m=1,n=−13,原式=(m−12n)2=(76)2=4936.(2)由(1)知:m=1,n=−13,则3mn=−1,9mn=−3,原式=324m4n2+(9mn)2+(3mn)2017⋅n2=36+9−1 9=4049.22.【答案】解:(1)x2−9y2−2x+6y=(x+3y)(x−3y)−2(x−3y) =(x−3y)(x+3y−2).(2)△ABC为等腰三角形.理由:∵a2−b2−ac+bc=0,∴(a+b)(a−b)−c(a−b)=0,∴(a−b)(a+b−c)=0.∵a,b,c为△ABC三边,∴a+b−c>0,∴a−b=0,即a=b,∴△ABC为等腰三角形.。
人教版初中数学八年级上册 第十四章 整式的乘法与因式分解 单元测试题附答案
初中数学人教版八年级上学期第十四章整式的乘法与因式分解一、单选题(共9题;共18分)1.下列运算正确的是:()A. B. C. D.2.下列各式从左到右的变形中,属于因式分解的是()A. m(a+b)=ma+mbB. a2+4a﹣21=a(a+4)﹣21C. x2﹣1=(x+1)(x﹣1)D. x2+16﹣y2=(x+y)(x﹣y)+163.把多项式分解因式,下列结果正确的是( )A. B. C. D.4.若(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A. -3B. 3C. 0D. 15.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:x﹣y,a﹣b,2,x2﹣y2,a,x+y,分别对应下列六个字:华、我、爱、美、游、中,现将2a(x2﹣y2)﹣2b(x2﹣y2)因式分解,结果呈现的密码信息可能是()A. 爱我中华B. 我游中华C. 中华美D. 我爱美6.已知有一个因式为,则另一个因式为()A. B. C. D.7.下列二次三项式在实数范围内不能因式分解的是()A. B. C. D.8.若, ,则ab的值为()A. 1B. -1C. 2D. -2.9.计算(2+1)(22+1)(24+1)(28+1)+1的值是( )A. 1024B. 28+1C. 216+1D. 216二、填空题(共8题;共8分)10.若a3•a m÷a2=a9,则m=________11.若一个正方形的面积是9m2+24mn+16n2,则这个正方形的边长是________.12.因式分解:________.13.已知,则的值________.14.已知,则的值为________.15.如果(2a+2b+1)(2a+2b﹣1)=3,那么a+b 的值为________.16.若是一个完全平方式,则常数k的值为________.17.如果可以因式分解为(其中,均为整数),则的值是________.三、计算题(共3题;共25分)18.因式分解:(1)2a3-12a2+18a(2)a2(x﹣y)+4(y﹣x)19.因式分解(1)(2)20.计算:四、解答题(共5题;共45分)21.已知a= +2012,b= +2013,c= +2014,求a2+b2+c2-ab-bc-ca的值.22.若(x2 +mx-8)(x2-3x+n)的展开式中不含x2和x3项,求m和n的值.23.已知a,b,c是的三边,且满足,试判断的形状,并说明理由.24.(1)计算下列各式,并寻找规律:① =(_+_)(_-_)=② =(_+_)(_-_)=_;(2)运用(1)中所发现的规,计算:;(3)猜想的结果,并写出推理过程.25.请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);(2)由(1),你能得到怎样的等量关系?请用等式表示;(3)如果图中的a,b(a>b)满足a2+b2=53,ab=14,求:①a+b的值;②a4-b4的值.答案解析部分一、单选题1.【答案】D2.【答案】C3.【答案】B4.【答案】A5.【答案】A6.【答案】C7.【答案】D8.【答案】D9.【答案】D二、填空题10.【答案】811.【答案】3m+4n12.【答案】13.【答案】214.【答案】7515.【答案】±116.【答案】±417.【答案】2或4三、计算题18.【答案】(1)解:(2)19.【答案】(1)解:原式=;(2)原式=.20.【答案】解:四、解答题21.【答案】解:∵a= +2012,b= +2013,c= +2014,∴a-b=-1,b-c=-1,c-a=2,∴a2+b2+c2-ab-bc-ca= (2a2+2b2+2c2-2ab-2bc-2ca)= [(a-b)2+(b-c)2+(c-a)2]= ×(1+1+4)=3.22.【答案】解:(x +mx-8)(x -3x+n)==∵展开式中不含x 和x 项∴解得:23.【答案】解:∵,,是的三边,都大于0∴∴△ABC是等腰三角形.24.【答案】(1)解:① ;② ;(2)解:原式;(3)解:原式. 25.【答案】(1)解:两个阴影图形的面积和可表示为:a2+b2或(a+b)2-2ab(2)解:a2+b2=(a+b)2-2ab(3)解:∵a,b(a>b)满足a2+b2=53,ab=14,∴①(a+b)2=a2+b2+2ab=53+2×14=81∴a+b=±9,又∵a>0,b>0,∴a+b=9.②∵a4-b4=(a2+b2)(a+b)(a-b),且∴a-b=±5又∵a>b>0,∴a-b=5,∴a4﹣b4=(a2+b2)(a+b)(a-b)=53×9×5=2385.。
人教版八年级数学上:第14章《整式的乘除与因式分解》单元测试(含答案)
第14章整式的乘法与因式分解一、选择题1.下列何者是22x7﹣83x6+21x5的因式?()A.2x+3 B.x2(11x﹣7)C.x5(11x﹣3)D.x6(2x+7)2.把多项式x3﹣2x2+x分解因式,正确的是()A.(x﹣1)2B.x(x﹣1)2C.x(x2﹣2x+1)D.x(x+1)23.多项式ax2﹣4ax﹣12a因式分解正确的是()A.a(x﹣6)(x+2) B.a(x﹣3)(x+4) C.a(x2﹣4x﹣12)D.a(x+6)(x﹣2)二、填空题4.若x2+x+m=(x﹣3)(x+n)对x恒成立,则n=______.5.因式分解:ax2﹣7ax+6a=______.6.分解因式:(a+2)(a﹣2)+3a=______.7.因式分解:ab2﹣a=______.8.分解因式:2m3﹣8m=______.9.因式分解4x﹣x3=______.10.分解因式x3﹣xy2的结果是______.11.分解因式:2﹣2a2=______.12.分解因式:12m2﹣3n2=______.13.分解因式:5x2﹣20=______.14.分解因式:2x(x﹣3)﹣8=______.15.因式分解:a3﹣ab2=______.16.分解因式:2a2﹣8=______.17.分解因式:m3﹣4m=______.18.分解因式:ax2﹣4a=______.19.分解因式:ab2﹣4ab+4a=______.20.分解因式:2a3﹣8a2+8a=______.21.分解因式:3a2﹣12ab+12b2=______.22.分解因式:4x2﹣8x+4=______.23.把多项式4ax2﹣ay2分解因式的结果是______.24.把多项式分解因式:ax2﹣ay2=______.25.分解因式: =______.26.因式分解:x3﹣5x2+6x=______.27.分解因式:3x2﹣18x+27=______.28.分解因式:a3b﹣9ab=______.29.分解因式:x2+3x(x﹣3)﹣9=______.30.分解因式:x2y﹣4y=______.第14章整式的乘法与因式分解参考答案一、选择题1.C;2.B;3.A;二、填空题4.4;5.a(x-1)(x-6);6.(a-1)(a+4);7.a(b+1)(b-1);8.2m(m+2)(m-2);9.-x (x+2)(x-2);10.x(x+y)(x-y);11.2(1+a)(1-a);12.3(2m+n)(2m-n);13.5(x+2)(x-2);14.2(x-4)(x+1);15.a(a+b)(a-b);16.2(a+2)(a-2);17.m(m-2)(m+2);18.a(x+2)(x-2);19.a(b-2)2;20.2a(a-2)2;21.3(a-2b)2;22.4(x-1)2;23.a(2x+y)(2x-y);24.a(x+y)(x-y);25.-(3x-1)2;26.x(x-3)(x-2);27.3(x-3)2;28.ab(a+3)(a-3);29.(x-3)(4x+3);30.y(x+2)(x-2);。
《第十四章 整式的乘除与因式分解》单元测试卷含答案(共六套)
《第十四章 整式的乘除与因式分解》单元测试卷(一)(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分)1. 计算a 10÷a 2(a≠0)的结果是( )A.a 5B.a -5C.a 8D.a -82. 下列计算中,正确的是( )A .(a 3)4= a 12B .a 3· a 5= a 15C .a 2+a 2= a 4D .a 6÷ a 2= a 33. 运用乘法公式计算(x +3)2的结果是( )A .x 2+9B .x 2-6x +9C .x 2+6x +9D .x 2+3x +94. 将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .2a a +C .22a a +-D .2(2)2(2)1a a +-++5. 下列运算正确的是( )A .(12)﹣1=﹣12 B .6×107=6000000C .(2a )2=2a 2D .a 3•a 2=a 56. 把x n+3+x n+1分解因式得( )A .x n+1(x 2+1)B .n 3x x +x ()C .x (n+2x +n x )D .x n+1(x 2+x ) 7. 若4x 2+axy+25y 2是一个完全平方式,则a=( )A .20B .﹣20C .±20D .±108. 将图(甲)中阴影部分的小长方形变换到图(乙)位置,根据两个图形的面积关系得到的数学公式是( )9. 20042-2003×2005的计算结果是( )A .1B .-1C .0D .2×20042-110. 将代数式2x +4x-1化成()2x+p +q 的形式为( )A .(x-2)2+3B .(x+2)2-4C .(x+2)2 -5D .(x+2)2+4二、填空题(共6小题,每小题3分,共18分)11. 因式分解:a 3-a=12. 计算:(-5a 4)•(-8ab 2)= . 13. 已知a m =3,a n =4,则a 3m-2n =__________14. 若3x =,则代数式269x x -+的值为__________.15. 若x +y =10,xy =1 ,则x 3y +xy 3= .16. 若整式22x ky +(k 为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是 _______________(写出一个即可).三、解答题(共8题,共72分)17. (本题8分)计算:(a+b )2﹣b (2a+b )18. (本题8分)分解因式:2m (m ﹣n )2﹣8m 2(n ﹣m )19. (本题8分)如图(1),是一个长为2a 宽为2b (a >b )的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,求中间空白部分的面积(用含a 、b 的式子表示 )20. (本题8分)计算(2126)3×(1314)4×(43)321. (本题8分)简便计算:1.992+1.99×0.0122. (本题10分)当a=3,b=-1时,求()()a b a b +-的值。
人教版八年级数学上册第十四章 整式的乘法与因式分解-测试卷-带参考答案
人教版八年级数学上册第十四章 整式的乘法与因式分解-测试卷-带参考答案一、选择题1.(−a)3(−a)2(−a 5)=( )A .a 10B .−a 10C .a 30D .−a 30 2.计算(13)2015×(﹣3)2016的结果是( )A .﹣1B .﹣3C .13D .33.把 (x −2)2−25 分解因式,结果正确的是( )A .(x −2)(x +5)B .(x +3)(x −7)C .(x −3)(x +7)D .(x +7)(x +3)4.如图,在边长为(x +a)的正方形中,剪去一个边长为a 的小正方形,将余下部分对称剪开,拼成一个平行四边形,根据两个图形阴影部分面积的关系,可以得到一个关于x ,a 的恒等式是( )A .x 2−a 2=(x −a)(x +a)B .x 2+2ax =x(x +2a)C .(x +a)2−a 2=x(x +2a)D .(x +a)2−x 2=a(a +2x)5.下列各式中,哪项可以使用平方差公式分解因式( )A .−a 2−b 2B .−a 2+9C .p 2−(−q 2)D .a 2−b 3 6.若 的值使得成立,则 的值为( ) A .5 B .4 C .3 D .27.下列因式分解正确的是( )A .m 2−5m +6=m(m −5)+6B .4m 2−1=(2m −1)2C .m 2+4m −4=(m +2)2D .4m 2−1=(2m +1)(2m −1)8.如果x+y =6,x 2-y 2=24,那么y-x 的值为( )A .﹣4B .4C .﹣6D .6二、填空题9.计算 (23)2023×(−32)2022的结果是 .10.多项式 2a 2b −4ab 2 中各项的公因式是 .11.已知3m =4,3n =5,则32m+n = .12.分解因式:3m 3−12m = .13.已知x 2−y 2=8,且x +y =4,则x −y = .三、解答题14.计算:(1)x ·x 3+x 2·x 2(2)a 3·a 4·a +(a 2)4+(−2a 4)215.分解因式:(1)3x 2−9y ;(2)(a −b)2+2b −2a ;(3)−ab +2a 3b −a 5b .16.两位同学将一个二次三项式分解因式,一位同学因看错了一次项的系数而分解成 3(x −1)(x −4) ,另一位同学因看错了常数而分解成 3(x −2)(x +6) .(1)求原多项式;(2)将原多项式进行分解因式.17.已知:(x +y )2=35,(x ﹣y )2=15,分别求x 2+y 2和xy 的值. 18.【阅读理解】对于形如222x ax a ++这样的二次三项式,可以用公式法将它分解成2()x a +的形式.但对于二次三项式2223x ax a +-,就不能直接运用公式了.此时,我们可以在二次三项式2223x ax a +-中先加上一项2a ,使它与22x ax +的和成为一个完全平方式,再减去2a ,整个式子的值不变,于是有:()()()222222222323()(2)3x ax a x ax a a a x a a x a x a +-=++--=+-=+-.像这样,先添一个适当的项,使式子出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.【解决问题】(1)利用“配方法”分解因式:268a a -+.(2)已知5a b +=,6ab =求44a b +的值.(3)已知x 是实数,试比较245x x -+与244x x -+-的大小,请说明理由.1.A2.D3.B4.C5.B6.C7.D8.A9.2310.2ab11.8012.3m(m+2)(m−2)13.214.(1)解:原式=x4+x4=2x4;(2)解:原式=a8+a8+4a8=6a8.15.(1)解:3x2−9y=3(x2−3y);(2)解:(a−b)2+2b−2a=(a−b)2−2(a−b)=(a−b)(a−b−2);(3)解:−ab+2a3b−a5b=−ab(1−2a2+a4)=−ab(1−a2)2=−ab(1+a)2(1−a)2.16.(1)解:∵3(x-1)(x-4)=3(x2-5x+4)=3x2-15x+123(x-2)(x+6)=3(x2+4x-12)∴原多项式为3x 2+12x+12(2)解:3x 2+12x+12=3(x 2+4x+4)=3(x+2)2.故因式分解为:3(x+2)217.解:由题意得:{35=x 2+y 2+2xy ①15=x 2+y 2−2xy ②①+②得:2(x 2+y 2)=50,x 2+y 2=25;①-②得:4xy=20,xy=5;∴{x 2+y 2=25xy =518.(1)解:原式26899a a =-++-2691a a =-+-2(3)1a =-- (31)(31)a a =-+--(2)(4)a a =--(2)∵a + b = 5 ,ab = 62222()252613a b a b ab +=+-=-⨯=,4422222222222()2()2()132697a b a b a b a b ab +=+-=+-=-⨯=(3)2245(44)x x x x -+--+-224544x x x x =-++-+2289x x =-+22(4)9x x =-+22(44)98x x =-++-22(2)1x =-+∵2(2)0x -≥∴22(2)11x -+≥∴2245(44)x x x x -+>-+-()。
人教版八年级上册数学 上册 第十四章 整式的乘法与因式分解 单元测试(含答案)
人教版八年级上册数学第十四章 整式的乘法与因式分解 单元检测题(含答案)一、选择题 1、计算()2323xyy x -⋅⋅的结果是( )A .y x 126⋅B .y x 85⋅ C .y x 105⋅ D .y x 85⋅- 2、如果(9n)2=312,则n 的值是( ) A .2 B .3 C . 4 D .1 3、下列因式分解正确的是( )A. 4-x ²+3x=(2-x)(2+x)+3xB. x ²y-xy+x 3y=x(xy-y+x ²y) C. 1-4x+4x ²=(1-2x) ² D. -x ²-3x+4=(x+4)(x-1) 4、若x 2-kxy+9y 2是一个完全平方式,则k 值为( ) A .6 B .3 C .±6 D .±81 5、下列说法中正确的是( )。
A 、与是同类项;B 、的次数是;C 、不是整式;D 、是单项式6、已知a+b=2,则a 2﹣b 2+4b 的值是( ) A .2B .6C .4D .37、下列多项式,在实数范围内能用公式法分解因式的有( )①x 2+6x +9;②4x 2-4x -1;③9 x 2+6xy +4y 2;④-x 2-y 2;⑤2x 2-y 2;⑥x 2-7.A .3个B .4个C .5个D .6个8、下列各式中能用完全平方公式进行因式分解的是( )A .x 2+2x-1 B .x 2-1 C .x 2+x+1 D .x 2-6x+9 9、下列计算中,正确的个数有( ) ①(a 3)2=a 5;②4a 3b ÷(﹣2a 2b )=﹣2a ;③ 3x 3•(﹣2x 2)=﹣6x 5; ④(﹣a )3÷(﹣a )=﹣a 2. A .1 B .2 C .3 D .410、若x 2﹣y 2=20,且x+y=﹣5,则x ﹣y 的值是( ) A .4B . 5C .﹣4D .以上都不对二、填空题11、已知351515()xa b =-,则x=_______.12、若32×83=2n ,则n=________.13、若|a ﹣2|+b 2﹣2b+1=0,则a= ,b= .14、若正方形的面积为a 2+18ab+81b 2(a,b 均大于0),则这个正方形的边长 。
第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册
第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.下列运算正确的是()A.x6•x2=x12B.(﹣3x)2=6x2C.x3+x3=x6D.(x5)2=x102.计算的结果为()A.B.﹣1C.﹣2D.23.下列由左到右的变形,属于因式分解的是()A.x2﹣4=(x+2)(x﹣2)B.x(x+1)=x2+xC.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2+4x﹣2=x(x+4)﹣24.多项式4x3yz2﹣8x2yz4+12x4y2z3的公因式是()A.4x3yz2B.﹣8x2yz4C.12x4y2z3D.4x2yz25.若2x+y﹣3=0,则52x•5y=()A.15B.75C.125D.1506.如果(2x﹣m)与(x+6)的乘积中不含x的一次项,那么m的值为()A.12B.﹣12C.0D.67.如果4a2﹣kab+b2是一个完全平方式,那么k的值是()A.4B.﹣4C.±2D.±48.从边长为a的大正方形纸板正中央挖去一个边长为b的小正方形后,将其裁成四个大小和形状完全相同的四边形(如图1),然后拼成一个平行四边形(如图2),那么通过计算两个图形阴影部分的面积,可以验证成立的等式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)9.如图所示,两个正方形的边长分别为a和b,如果a+b=12,ab=28,那么阴影部分的面积是()A.40B.44C.32D.5010.已知a,b,c是△ABC的三边长,且a2+2ab=c2+2bc,则△ABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形二、填空题(每小题3分,满分18分)11.已知x2﹣2x﹣1=0,代数式(x﹣1)2+2024=.12.若m﹣n=﹣2,且m+n=5,则m2﹣n2=.13.若ab=3,a+b=2,则ab2+a2b﹣3ab=.14.3m=4,3n=5,则33m﹣2n的值为.14.如果(x﹣1)x+4=1成立,那么满足它的所有整数x的值是.16.如图,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB =9,两正方形的面积和S1+S2=45,则图中阴影部分面积为.第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.分解因式:(1)3a2﹣6ab+3b2;(2)25(m+n)2﹣(m﹣n)2;18.已知:a﹣b=3,ab=1,试求:(1)a2+3ab+b2的值;(2)(a+b)2的值.19.若关于x的代数式(x2+mx+n)(2x﹣1)的化简结果中不含x2的项和x的项,求m+n的值.20.在计算(2x+a)(x+b)时,甲错把a看成了﹣a,得到结果是:2x2﹣10x+12;乙由于漏抄了第一个多项式中x的系数,得到结果:x2+x﹣12.(1)求出a,b的值;(2)在(1)的条件下,计算(2x+a)(x+b)的结果.21.已知5m=4,5n=6,25p=9.(1)求5m+n的值;(2)求5m﹣2p的值;(3)写出m,n,p之间的数量关系.22.将边长为x的小正方形ABCD和边长为y的大正方形CEFG按如图所示放置,其中点D在边CE上.(1)若x+y=10,y2﹣x2=20,求y﹣x的值;(2)连接AG,EG,若x+y=8,xy=14,求阴影部分的面积.23.对于任意实数m,n,我们规定:F(m,n)=m2+n2,H(m,n)=﹣mn,例如:F(1,2)=12+22=5,H(3,4)=﹣3×4=﹣12.(1)填空:①F(﹣1,3)=;②若H(2,x)=﹣6,则x=;③若F(a,b)=H(a,2b),则a+b0.(填“>”,“<”或“=”)(2)若x+2y=5,且F(2x+3y,2x﹣3y)+H(7,x2+2y2)=13,求xy与(x ﹣2y)2的值;(3)若正整数x,y满足F(x,y)=k2+17,H(x,y)=﹣3k+4,求k的值.24.我们定义:如果两个多项式M与N的和为常数,则称M与N互为“对消多项式”,这个常数称为它们的“对消值”.如MF=2x2﹣x+6与N=﹣2x2+x﹣1互为“对消多项式”,它们的“对消值”为5.(1)下列各组多项式互为“对消多项式”的是(填序号):①3x2+2x与3x2+2;②x﹣6与﹣x+2;③﹣5x2y3+2xy与5x2y3﹣2xy﹣1.(2)多项式A=(x﹣a)2与多项式B=﹣bx2﹣2x+b(a,b为常数)互为“对消多项式”,求它们的“对消值”;(3)关于x的多项式C=mx2+6x+4与D=﹣m(x+1)(x+n)互为“对消多项式”,“对消值”为t.若a﹣b=m,b﹣c=mn,求代数式a2+b2+c2﹣ab﹣bc﹣ac+2t的最小值.25.【阅读理解】对一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如,由图1可以得到完全平方公式:(x+y)2=x2+2xy+y2,这样的方法称为“面积法”.【解决问题】(1)如图2,利用上述“面积法”,可以得到数学等式:(a+b+c)2=.(2)利用(1)中所得到的等式,解决下面的问题:①已知a+b+c=8,ab+bc+ac=17.求a2+b2+c2的值.②若m、n满足如下条件:(n﹣2021)2+(2023﹣2n)2+(n+1)2=m2﹣2m﹣20,(n﹣2021)(2023﹣2n)+(n﹣2021)(n+1)+(2023﹣2n)(n+1)=2+m,求m的值.【应用迁移】如图3,△ABC中,AB=AC,点O为底边BC上任意一点,OM ⊥AB,ON⊥AC,CH⊥AB,垂足分别为M,N,H,连接AO.若OM=1.2,ON=2.5,利用上述“面积法”,求CH的长.。
人教版八年级上册数学 第十四章整式的乘法与因式分解试卷(含答案)
人教版八年级上册数学第十四章整式的乘法与因式分解一、单选题1.下列各式,能用平方差公式计算的是()A.(a-2b)(-a+2b)B.(a-2b)(-a-2b)C.(a-1)(a+2)D.(a-2b)(2a+b)2.下列各式中,从左到右的变形是因式分解的是( )A.6x7=3x2⋅2x5B.3x+3y−5=3(x+y)−5C.4x2+4x=4x(x+1)D.(x+1)(x−1)=x2−13.下列运算正确的是()A.a2+a3=a5B.(﹣2a3)2=4a6C.a6÷a3=a2D.(a+2b)2=a2+2ab+b24.在多项式16x2+1添加一个单项式,使得到的多项式能运用完全平方公式分解因式,则下列表述正确的是()嘉琪:添加±8x,16x2+1±8x=(4x±1)2陌陌:添加64x4,64x4+16x2+1=(8x2+1)2嘟嘟:添加−1,16x2+1−1=16x2=(4x)2A.嘉琪和陌陌的做法正确B.嘉琪和嘟嘟的做法正确C.陌陌和嘟嘟的做法正确D.三位同学的做法都不正确5.如图1,将一张长方形纸板的四角各剪去一个边长为a的小正方形(阴影部分),制成如图2的无盖纸盒,若该纸盒的容积为2a2b,则图2中纸盒底部长方形的周长为()A.4a+2b B.2ab C.6a+2b D.4ab6.若x2−kxy+9y2是一个完全平方式,则k的值为()A.3B.6C.±81D.±67.已知a m=2,a n=12,a2m+3n的值为( )A.6B.12C.2D.112b2,则m,n的值分别为()8.已知8a3b m÷28a n+1b2=27A.m=4,n=3B.m=4,n=2C.m=2,n=2D.m=2,n=39.下列有四个结论,其中正确的是()①若(x−1)x+1=1,则x只能是2;②若(x−1)(x2+ax+1)的运算结果中不含x2项,则a=1③若a+b=10,ab=16,则a−b=6④若4x=a,8y=b,则22x−3y可表示为abA.①②③④B.②③④C.①③④D.②④10.已知m=2b+2022,n=b2+2023,则m和n的大小关系中正确的是() A.m>n B.m≥n C.m<n D.m≤n二、填空题11.因式分解:xy−3y=.12.计算:(1)x3⋅x5=;(2)a5÷a2=;(3)[−(−a)2]3=;(4)(−3ab3)3=;(5)(−0.125)2021×82022=;(6)(a−b)2⋅(b−a)3=.13.若x m=4,x n=9,则x2m−n=.14.如果a,b是长方形的长和宽,且(a+b)2=16,(a−b)2=4,则长方形面积是.15.若(2x2+mx−8)(x2−3x+n)的展开式中不含x2和x3项,则m=,n=.16.已知2x-3y-2=0,则(10x)2÷(10y)3=.17.如图,两个正方形的边长分别为a和b,已知a+b=10,ab=22,那么阴影部分的面积是.三、解答题18.计算:(1)a2•(﹣a4)+2(a2)3(2)(2x﹣1)(2x+1)﹣(x﹣6)(4x+3)(3)(2x﹣3y)2+2(y+3x)(3x﹣y)(4)(a﹣2b+3)(a+2b+3)(5)(x−3y−2)2(6)(2m+3n)(2m﹣n)﹣2n(2m﹣n)19.先化简,再求值:[(x−2y)2−(x−y)(x+y)−2y2]÷y,其中x=−1,y=−2.20.如图,在某一禁毒基地的建设中,准备在一个长为6a米,宽为5b米的长方形草坪上修建两条宽分别为a和b米的通道.(1)剩余草坪的面积是多少平方米?(2)若a=1,b=3,则剩余草坪的面积是多少平方米?21.观察以下等式:(x+1)(x2−x+1)=x3+1(x+3)(x2−3x+9)=x3+27(x+6)(x2−6x+36)=x3+216(1)按以上等式的规律,填空:(a+b)()=a3+b3(2)利用多项式的乘法法则,证明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y)(x2−xy+y2)−(x−y)(x2+xy+y2)22.如图,甲长方形的两边长分别为m+1、m+7;乙长方形的两边长分别为m+2、m+4(其中m为正整数).(1)设图中的甲长方形的面积为S1,乙长方形的面积为S2,试比较S1与S2的大小;(2)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积S与图中的甲长方形面积S1的差(即S−S1)是一个常数,请求出这个常数.23.阅读材料:若m2−2mn+2n2−8n+16=0,求m、n的值.解:m2−2mn+2n2−8n+16=0,∴(m2−2mn+n2)+(n2−8n+16)=0,∴(m−n)2+(n−4)2=0.∵(m−n)2≥0,(n−4)2≥0,∴(m−n)2=0,(n−4)2=0,∴m=4,n=4.根据你的观察,探究下面的问题:(1)a2+b2−4a+4=0,则a=______;b=______.(2)已知△ABC的三边长a、b、c都是正整数,且a2+b2−2a−6b+10=0,求c的值.24.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)用两种方法表示图②中的阴影部分的面积;(2)观察图②请你写出三个代数式(m+n)2、(m−n)2、4mn之间的等量关系式.(3)请运用(2)中的关系式计算:若x+y=−6,xy=2.75,求(x−y)2的值.参考答案:1.B2.C3.B4.A5.A6.D7.B8.B9.D10.D11.y(x−3)12.x8a3−a6−27a3b9−8(b−a)513.16914.315. 6 1316.10017.1718.(1)a6(2)21x+17(3)22x2−12xy+7y2(4)a2+6a+9−4b2(5)x2−6xy+9y2−4x+12y+4(6)4m2−n219.−4x+3y,−2.20.(1)剩余草坪的面积是20ab平方米;(2)若a=1,b=3,则剩余草坪的面积是60平方米.21.(1)a2−ab+b2(3)2y322.(1)S1>S2(2)S−S1=923.(1)2,0(2)c=324.(1)S阴影=(m−n)2或S阴影=(m+n)2−4mn(2)(m−n)2=(m+n)2−4mn(3)25。
人教版八年级数学上册 第十四章《整式乘法与因式分解》单元测试卷(含解析)
第十四章《整式乘法与因式分解》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)二、填空题(本大题共8小题,每小题4分,共32分)三、解答题(本大题共6小题,共58分)19.(8分)计算:20.(8分)分解因式:21.(10分)(1)若,求的值;(2)已知,求的值.22.(10分)观察下列等式:…(1)根据以上等式写出______;(2)直接写出的结果(n 为正整数)______;2225,()9m n m n -=+=m n -()()2121y y y m +-+=224424y my m y m -+-+()()2111x x x -÷-=+()()32111xx x x -÷-=++()()432111xx x x x -÷-=+++()()511x x -÷-=()()11nx x -÷-(3)计算:.23.(10分)材料:把多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:.(1)分解因式:(2)若a ,都是正整数且满足,求的值;(3)若a ,b为实数且满足 , ,求S 的最小值.24.(12分)我们学习了完全平方公式,把它适当变形,可解决很多数学问题.2342023122222+++++⋅⋅⋅+()()()()()()am an bm bn am an bm bn a m n b m n a b m n +++=+++=+++=++1ab a b +++()b a b >40ab a b ---=a b +50ab a b ---=22235S a ab b a b =+++-()()22222222a b a ab b a b a ab b +=++-=-+,例如:若,求的值.解∶又根据上面的解题思路与方法,解决下列问题:(1)若,求的值;(2)①若,则___________;②若,则________________;(3)如图点C 是线段上的一点,以为边向线段的两侧作正方形,已知,两正方形的面积和20,求图中阴影部分的面积.42a b ab +==,²²a b +4a b += 2()16a b ∴+=22216a ab b ∴++=2ab = 2216216412a b ab ∴+=-=-=22626x y x y +=+=,xy 231m n mn +==,2m n -=()()456m m --=()()2245m m -+-=AB AC BC 、AB 5AB =12S S +=答案解析:一、单选题1.B【分析】先利用多项式与多项式乘法法则,展开后合并同类项,再令含x 、y 的一次项的系数均为零,列方程组求解即可得到答案.【详解】解:==展开后多项式不含x 、y 的一次项,,,,故选B .2.A【分析】本题考查了整式的运算问题,分别利用同底数幂的乘法法则、幂的乘方、积的乘方法则、多项式的除法、乘法法则计算各式进行判断即可.【详解】(1)若,,则; 小明计算正确;(2);小明计算正确;(3);小明计算错误;(4);小明计算错误;(5).小明计算错误;故正确的有2个故答案为:A .3.D【分析】利用面积公式以及面积的和差将阴影面积表示出来即可.【详解】解:∵由图知阴影部分边长分别为(x -1),(x -2),()()2342x y x ay b +-++22422633844x axy bx xy ay by x ay b +++++---224(26)(28)(34)34x a xy b x b a y ay b+++-+-+- 280340b b a -=⎧∴⎨-=⎩34a b =⎧∴⎨=⎩1a b ∴-=-3m a =7n a =3721m n m n a a a +==⨯= ()()2020202020210.12580.125888-⨯=-⨯⨯=()222221a b ab ab a b ab ab ab a -÷=÷-÷=-()3328a a -=-()()22321263253x x x x x x x -+=+--=--连接,则阴影部分的面积,BD ()()1122a a b b a b =+++()212a b =+10=(2)由题意得,故答案为:;(3)由题意得,23.(1);(2)由得,,,,,,,,,解得,,;(3)由得,,,()121(1)1,n n n x x x x x ---÷-=++++ 121n n x x x --++++ ()2342023202412222221++++++=-÷ 2024(21)2 1.-=-1ab a b +++1()()ab a b =+++(1)(1)a b b =+++11()()a b =++40ab a b ---=15ab a b --+=115()()a b b ---=(1)(1)5a b --=a b > 11a b ∴->-551=⨯ 15a ∴-=11b -=6a =2b =8a b ∴+=50ab a b ---=5ab a b =++22235S a ab b a b∴=+++-()222355a a b b a b=+++++-22233155a a b b a b=+++++-2228215a b a b =++++22288216a ab b =++++++()()222216a b =++++,,,当,时,,∴S 的最小值为6.24.(1)解:;(2)①,,,,;②(3)设,则,所以,()2220a +≥ ()210b +≥6S ∴≥2a =-1b =-6S =6x y += 222()236x y x y xy ∴+=++=2226x y += 210xy ∴=5xy ∴=231m n mn +== ,()2222449m n m mn n ∴+=++=2245m n ∴+=()2222441m n m n mn -=+-= 21m n ∴-=±4,5,m a m b -=-= 4(5)45a b m m m ∴-=---=--1m +=-(4)(5)6,m m --= 6,ab ∴=2222(4)(5)m m a b ∴-+-=+2()2a b ab=-+2(1)26=-+⨯112=+13,=,AC m BC n ==2212,S m S n ==221220S S m n +=+=。
人教版数学8年级上册 第十四章 整式的乘除与因式分解 单元测试(含答案)
人教版数学8年级上册第14单元测试时间:120分钟满分:120分班级__________姓名__________得分__________一、选择题(共12小题,满分36分,每小题3分)1.(3分)(2022秋•任城区校级月考)下列各组多项式中,没有公因式的是( )A.ax﹣bx和by﹣ay B.3﹣9y和6y2﹣2yC.x2+y2和x+y D.a﹣b和a2﹣2ab+b22.(3分)(2022秋•张店区校级月考)下列从左到右的变形,是因式分解的是( )A.(3﹣x)(3+x)=9﹣x2B.m3﹣mn2=m(m+n)(m﹣n)C.(y+1)(y﹣3)=﹣(3﹣y)(y+1)D.﹣x2+(﹣2)2=(x﹣2)(x+2)3.(3分)(2022秋•安岳县校级月考)下列运算正确的是( )A.a2•a3=a6B.(2a)3=6a3C.(a2)3=a6D.a6÷a2=a3 4.(3分)(2022秋•仁寿县校级月考)若a﹣b=1,ab=﹣2,则(a+2)(b﹣2)的值为( )A.8B.﹣8C.4D.﹣45.(3分)(2022秋•西湖区校级月考)计算正确的是( )A.(﹣2022)0=0B.x8÷x2=x4C.(﹣a2b3)4=﹣a8b12D.3a4•4a=12a56.(3分)(2022秋•宛城区校级月考)课堂上老师布置了四个运算题目,小刚做对的题数是( )计算:①(﹣3a2)3=﹣27a6;②(﹣a)2•a3=a5;③(2x﹣y)2=4x2﹣y2;④a2+4a2=5a2A.0个B.1个C.2个D.3个7.(3分)(2022秋•南关区校级月考)已知,a=344,b=433,c=522,则a,b,c的大小关系是( )A.a>b>c B.a>c>b C.a<b<c D.b>c>a8.(3分)(2022秋•临汾月考)计算(−72)2022×(27)2023的结果是( )A .27B .−72C .1D .﹣19.(3分)(2022秋•卧龙区校级月考)下列式子中能用平方差公式的有( )①(x ﹣2y )(x +2y )②(3a ﹣bc )(﹣bc ﹣3a )③(3m ﹣2n )(﹣3m +2n )④(3﹣x ﹣y )(3+x +y )A .1个B .2个C .3个D .4个10.(3分)(2022秋•卧龙区校级月考)若x 2﹣2(m +4)x +25是一个完全平方式,则m 的值为( )A .1或﹣9B .2C .3D .5或111.(3分)(2022春•鹿城区校级期中)如图,在长方形ABCD 中,AB =6,BC =10,其内部有边长为a 的正方形AEFG 与边长为b 的正方形HIJK ,两个正方形的重合部分也为正方形,且面积为5,若S 2=4S 1,则正方形AEFG 与正方形HIJK 的面积之和为( )A .20B .25C .492D .81412.(3分)(2022春•市北区期中)如图将4个长、宽分别均为a 和b 的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数式是( )A .a 2+2ab +b 2=(a +b )2B .a 2+2ab +b 2=(a ﹣b )2C .4ab =(a +b )2﹣(a ﹣b )2D .(a +b )(a ﹣b )=a 2﹣b 2二、填空题(共6小题,满分18分,每小题3分)13.(3分)(2022秋•南召县月考)计算:(﹣0.25)2023×42022= .14.(3分)(2022秋•张店区校级月考)已知正方形的面积是(16﹣8x+x2)cm2(x>4cm),则正方形的边长是 .15.(3分)(2022秋•任城区校级月考)下列各式能在实数范围内因式分解的是:①9x2﹣4y2;②x2+5xy﹣6y2;③x2+2x+3;④a2+2ab﹣b2;⑤m2﹣2;⑥9a2﹣6a(a﹣b)+(a+b)2. (请填序号).16.(3分)(2022秋•任城区校级月考)甲、乙两个同学分解因式2x2+ax+b 时,甲看错了b,分解结果为(2x+3)(x﹣2);乙看错了a分解结果为(x+3)(2x+2),则a+b= .17.(3分)(2022秋•任城区校级月考)计算1236321123456×123456−123455×123457 = .18.(3分)(2022秋•仁寿县校级月考)若x3y n+1•x m+n•y2n+2=x9y9,则4m﹣3n = .三、解答题(共7小题,满分66分)19.(9分)(2022秋•东平县校级月考)因式分解:(1)9(m﹣n)(m+n)﹣3(m﹣n)2;(2)8a(a﹣b)2﹣12(b﹣a)3;(3)(x2﹣6x)2+18(x2﹣6x)+81.20.(9分)(2022秋•海门市校级月考)(1)已知273×94=3x,求x的值.(2)已知10a=2,10b=3,求103a+b的值.21.(9分)(2022秋•卧龙区校级月考)已知a+b=﹣4,ab=3.求:(1)a2+b2;(2)a﹣b的值.22.(9分)(2022春•蜀山区校级期中)如图,边长为a的大正方形有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示).(1)上述操作能验证的等式是: (请选择正确的选项);A.a2﹣ab=a(a﹣b)B.a2﹣2ab+b2=(a﹣b)2C.a2+ab=a(a+b)D.a2﹣b2=(a+b)(a﹣b)(2)请利用你从(1)选出的等式,完成下列各题:①已知9a2﹣b2=36,3a+b=9,则3a﹣b= ;②计算:(1−122)⋅(1−132)⋅(1−142)⋅(1−152)⋯(1−120222).23.(10分)(2022春•金水区校级期中)阅读理解:若x满足(30﹣x)(x﹣10)=160,求(30﹣x)2+(x﹣10)2的值.解:设30﹣x=a,x﹣10=b,则(30﹣x)(x﹣10)=ab=160,且a+b=(30﹣x)+(x﹣10)=20,所以(30﹣x)2+(x﹣10)2=a2+b2=(a+b)2﹣2ab=202﹣2x160=80.解决问题:(1)若x满足(50﹣x)(x﹣40)=2,求(50﹣x)2+(x﹣40)2= ;(2)若x满足(x﹣2022)2+(x﹣2020)2=2000,求(x﹣2022)(x﹣2020)的值.(3)如图,在长方形ABCD中,AB=10,BC=6,点E、F是BC、CD 上的点,且BE=DF=x,分别以FC:CE为边在长方形ABCD外侧作正方形CFGH和CEMN,若长方形CEPF的面积为50平方单位,则图中阴影部分的面积和为 平方单位.24.(10分)(2022春•鹿城区校级期中)已知线段AB=4a,点M是AB中点,点P在线段MB上,MP=b,如图所示构造三个正方形.(1)用含a,b的代数式表示阴影部分的面积并化简.(2)若阴影部分的面积为4,且4a2+b2=7,求小正方形的边长.25.(10分)(2022春•海曙区校级期中)【学习材料】拆项添项法在对某些多项式进行因式分解时,需要把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符号相反的项,这样的分解因式的方法称为拆项添项法.如:例1、分解因式:x4+4y4.解:原式=x4+4y4=x4+4x2y2+4y4﹣4x2y2=(x2+2y2)2﹣4x2y2=(x2+2y2+2xy)(x2+2y2﹣2xy)例2、分解因式:x3+5x﹣6.解:原式=x3﹣x+6x﹣6=x(x2﹣1)+6(x﹣1)=(x﹣1)(x2+x+6).我们还可以通过拆项对多项式进行变形,如例3、把多项式a2+b2+4a﹣6b+13写成A2+B2的形式.解:原式=a2+4a+4+b2﹣6b+9=(a+2)2+(b﹣3)2【知识应用】请根据以上材料中的方法,解决下列问题:(1)分解因式:x2+2x﹣8= ;(2)运用拆项添项法分解因式:x4+4= ;(3)判断关于x的二次三项式x2﹣20x+111在x= 时有最小值;(4)已知M=x2+6x+4y2﹣12y+m(x﹣y均为整数,m是常数),若M恰能表示成A2+B2的形式,求m的值.参考答案一、选择题(共12小题,满分36分,每小题3分)1.C2.B3.C4.B5.D6.D7.A8.A9.C10.A11.B12.C;二、填空题(共6小题,满分18分,每小题3分)13.﹣0.2514.(x﹣4)cm15.①②④⑤⑥16.017.123632118.10;三、解答题(共7小题,满分66分)19.【解答】解:(1)9(m﹣n)(m+n)﹣3(m﹣n)2=3(m﹣n)[3(m+n)﹣(m﹣n)]=3(m﹣n)(3m+3n﹣m+n)=3(m﹣n)(2m+4n)=6(m﹣n)(m+2n);(2)8a(a﹣b)2﹣12(b﹣a)3=8a(a﹣b)2+12(a﹣b)3=4(a﹣b)2[2a+3(a﹣b)]=4(a﹣b)2(2a+3a﹣3b)=4(a﹣b)2(5a﹣3b);(3)(x2﹣6x)2+18(x2﹣6x)+81=(x2﹣6x+9)2=[(x﹣3)2]2=(x﹣3)4.20.【解答】解:(1)∵273×94=3x,∴(33)3×(32)4=3x,∴39×38=3x,∴317=3x,∴x=17;(2)∵10a=2,10b=3,∴103a+b=103a×10b=(10a)3×10b=23×3=8×3=24.21.【解答】解:(1)∵a+b=﹣4,ab=3,∴a2+b2=(a+b)2﹣2ab=16﹣2×3=10.(2)∵a2+b2=10,ab=3,∴(a﹣b)2=a2+b2﹣2ab=10﹣2×3=4,∴a﹣b=±2.22.【解答】解:(1)图1阴影部分的面积可以看作两个正方形的面积差,即a2﹣b2,图2阴影部分是长为a+b,宽为a﹣b的长方形,因此面积为(a+b)(a﹣b),由图1、图2的面积相等得,a2﹣b2=(a+b)(a﹣b),故答案为:D;(2)①∵9a 2﹣b 2=36,∴(3a +b )(3a ﹣b )=36,又∵3a +b =9,∴3a ﹣b =36÷9=4,故答案为:4;②原式=(1−12)(1+12)(1−13)(1+13)(1−14)(1+14)(1−15)(1+15)…(1−12022)(1+12022)=12×32×23×43×34×54×45×65×⋯×20212022×20232022 =12×20232022 =20234044.23.【解答】解:(1)设50﹣x =m ,x ﹣40=n ,则m +n =10,mn =(50﹣x )(x ﹣40)=2,∴(50﹣x )2+(x ﹣40)2=m 2+n 2=(m +n )2﹣2mn =100﹣4=96,故答案为:96;(2)设x ﹣2022=p ,x ﹣2020=q ,则p ﹣q =﹣2,p 2+q 2=(x ﹣2022)2+(x ﹣2020)2=2000,∵(p ﹣q )2=p 2+q 2﹣2pq ,∴pq =p 2+q 2−(p−q )22=2000−42=998,即(x ﹣2022)(x ﹣2020)=998;(3)由题意可得,FC =10﹣x ,EC =6﹣x ,则(10﹣x )(6﹣x )=50,设10﹣x =m ,6﹣x =n ,则m ﹣n =4,mn =(10﹣x )(6﹣x )=50,∵(m ﹣n )2=m 2+n 2﹣2mn ,即16=m 2+n 2﹣100,∴m 2+n 2=116,即阴影部分的面积为116平方单位,故答案为:116.24.【解答】解:(1)∵AB=4a,点M是AB中点,∴AM=BM=2a,∵MP=b,∴AP=2a+b,PB=2a﹣b,∴S阴影=(2a+b)2﹣(2a﹣b)2=4a2+b2+4ab﹣(4a2+b2﹣4ab)=4a2+b2+4ab﹣4a2﹣b2+4ab=8ab;(2)∵阴影部分的面积为4,∴8ab=4,∵4a2+b2=7,∴(2a﹣b)2=4a2+b2﹣4ab=7﹣2=5,∴小正方形的边长为5.25.【解答】解:(1)x2+2x﹣8=x2+2x+1﹣1﹣8=(x+1)2﹣9=(x+1+3)(x+1﹣3)=(x+4)(x﹣2).故答案为:(x+4)(x﹣2).(2)x4+4=x4+4+4x2﹣4x2=(x2+2)2﹣4x2=(x2+2+2x)(x2+2﹣2x).故答案为:(x2+2+2x)(x2+2﹣2x).(3)∵x2﹣20x+111=x2﹣20x+100﹣100+111=(x﹣10)2+11,∴当x=10时,有最小值.故答案为:10.(4)M=(x2+6x+9)+(4y2﹣12y+9)+m﹣18=(x+3)2+(2y﹣3)2+m﹣18,∵若M恰能表示成A2+B2的形式,∴m﹣18=0,∴m=18,答:m的值为18.。
人教版八年级上第十四章《整式的乘法与因式分解》测试题含答案
第十四章《 整式的乘法与因式分解》测试题一、选择题(每小题只有一个正确答案) 1.下列运算正确的是( )A. 954a a a =+B. 33333a a a a =⋅⋅C. 954632a a a =⨯D. ()743a a =-2.20182018532135⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭( )A. 1-B. 1C. 0D. 1997 3.设()()A b a b a +-=+223535,则A=( )A. 30abB. 60abC. 15abD. 12ab 4.已知,3,5=-=+xy y x 则=+22y x ( )A. 25. B 25- C 19 D 、19-5.已知,5,3==ba x x 则=-ba x23( ) A 、2527 B 、109C 、53D 、52 6.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式: ①(2a +b )(m +n ); ②2a (m +n )+b (m +n ); ③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , 你认为其中正确的有 ( ) A 、①② B 、③④ C 、①②③D 、①②③④ (第6题图)7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -112 ,则a²+b 2的值等于( )A 、84B 、78C 、12D 、6 9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 810.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( ) A 、Q P > B 、Q P = C 、Q P < D 、不能确定nm aba二、填空题11.设12142++mx x 是一个完全平方式,则m =_______. 12.已知51=+x x ,那么221xx +=_______. 13.方程()()()()41812523=-+--+x x x x 的解是_______. 14.已知2=+n m ,2-=mn ,则=--)1)(1(n m _______.15.已知2a=5,2b=10,2c=50,那么a 、b 、c 之间满足的等量关系是___________. 16.若622=-n m ,且3=-n m ,则=+n m . 三、解答题 17计算: (1)()()22018011 3.142-⎛⎫-+--- ⎪⎝⎭π (2)(3)()()222223366m m n m n m -÷--18.(1)先化简,再求值:,其中21=a ,2-=b .(2)已知31=-x ,求代数式4)1(4)1(2++-+x x 的值.()()()()221112++++-+--a b a b a b a(3)先化简,再求值: 6)6()3)(3(2+---+a a a a ,其中12-=a .19.如右图所示,长方形ABCD 是“阳光小区”内一块空地,已知AB=2a ,BC=3b ,且E 为AB 边的中点,CF=13 BC ,现打算在阴影部分种植一片草坪,求这片草坪的面积.20.若(x 2+mx-8) (x 2-3x+n)的展开式中不含x 2和x 3项,求m 和n 的值.21.若a =2005,b =2006,c =2007,求ac bc ab c b a ---++222的值.22.说明代数式[]y y y x y x y x +-÷-+--)2())(()(2的值,与y 的值无关.23.如右图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,•规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?•并求出当a=3,b=2时的绿化面积.24.某城市为了鼓励居民节约用水,对自来水用户按如下标准收费:若每月每户用水不超过a吨,每吨m元;若超过a吨,则超过的部分以每吨2m 元计算.•现有一居民本月用水x吨,则应交水费多少元?参考答案一、选择题二、填空题11. 44± 12. 23 13. 1411-=x 14. -3 15. a+b=c 16. 2 三、解答题17计算:(本题9分)4141)1(=-+=解原式3522642)2(4)2(y x x xy y x -=÷-⋅=解原式 122)3(2++-=n n 解原式13841,2,21244)1()1(44)1.(182222222=++=-==+-=++++-+-=原式时当解原式b a b ab a a b a b ab a(2)由31=-x 得13+=x化简原式=444122+--++x x x=122+-x x=1)13(2)13(2++-+ =12321323+--++ =3(3)原式=a a 62+, 当12-=a 时,原式=324-.ab b a ab ab S 2221621619=⨯-⨯-=阴影解⎩⎨⎧==∴⎩⎨⎧=--=-∴-++--+-+=-+-+-++-=17308303,8)24()83()3(8248332032234223234n m m n m x x n x m n x m n x m x n x x m nx m x m x nx x x 项和不含解原式[]()3411212007,2006,2005,)()()(212122=++====-+-+-=原式时当解原式c b a c a c b b a无关代数式的值与解原式y x y y x y y y x y xy x ∴=+-=+-÷+-+-=)2()2(22222263,2,335)()3)(2(.2322===+=+-++=原式时当解绿化b a ab a b a b a b a Smamx ma mx am a x m am a x mx a x -=-+=-+≤222)(2,;,24时如果元应交水费时解如果。
人教版八年级数学上册《第十四章-整式乘法与因式分解》单元测试卷-附带有答案
人教版八年级数学上册《第十四章整式乘法与因式分解》单元测试卷-附带有答案学校:班级:姓名:考号:一、单选题1.下列计算正确的是()A.2a•3a=6a B.(﹣a3)2=a6C.6a÷2a=3a D.(﹣2a)3=﹣6a32.下列因式分解错误的是()A.a2+4a−4=(a+2)2B.2a−2b=2(a−b)C.x2−9=(x+3)(x−3)D.x2−x−2=(x+1)(x−2)3.将-12a2b-ab2提公因式-12ab后,另一个因式是()A.a+2b B.-a+2b C.-a-b D.a-2b4.已知x2+y2=4,xy=2那么(x+y)2的值为()A.6B.8C.10D.125.一个大正方形内放入两个同样大小的小正方形纸片,按如图1放置,两个小正方形纸片的重叠部分面积为4;按如图2放置(其中一小张正方形居大正方形的正中),大正方形中没有被小正方形覆盖的部分(阴影部分)的面积为44,则把两张小正方形按如图3放置时,两个小正方形重叠部分的面积为()A.10B.12C.14D.166.某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4:5:4:2,各基地之间的距离之比a:b:c:d:e=2:3:4:3:3(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为()A.甲B.乙C.丙D.丁二、填空题7.若a=b+2,则代数式a2−2ab+b2的值为.8.若a+b=5,ab=6,则(a+2)(b+2)的值是。
9.若(2x﹣3)x+5=1,则x的值为.10.观察下列各式的规律:1×3=22−1:3×5=42−1:5×7=62−1:7×9=82−1…请将发现的规律用含n的式子表示为.11.若m2=n+2023,n2=m+2023,且m≠n,则代数式m3−2mn+n3的值为.三、计算题12.计算:(1)(−12ab)(23ab2−2ab+43b)(2)(2x+y)(2x-y)+(x+y)2-2(2x2-xy)13.把下列各式分解因式:(1)6ab3-24a3b;(2)x4-8x2+16;(3)a2(x+y)-b2(y+x)(4)4m2n2-(m2+n2)214.先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣12.四、解答题15.木星是太阳系九大行星中最大的一颗,木星可以近似地看作球体,已知木星的半径大约是7×104km,木星的体积大约是多少km3(取3.14)?16.说明代数式[(x﹣y)2﹣(x+y)(x﹣y)]÷(﹣2y)+y的值,与y的值无关.17.甲乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x−10;由于乙漏抄了第二个多项式中的x的系数,得到的结果为2x2−9x+ 10.请你计算出a、b的值各是多少,并写出这道整式乘法的符合题意结果.18.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2-4y2-2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2-4y2-2x+4y=(x+2y)(x-2y)-2(x-2y)=(x-2y)(x+2y-2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2-2xy+y2-16;(2)△ABC三边a,b,c 满足a2-ab-ac+bc=0,判断△ABC的形状.19.阅读材料,解决后面的问题:若m2+2mn+2n2−6n+9=0,求m−n的值.解:∵m2+2mn+2n2−6n+9=0∴(m2+2mn+n2)+(n2−6n+9)=0即:(m+n)2+(n−3)2=0,∴m+n=0,n−3=0解得:m=−3,n=3∴m−n=−3−3=−6.(1)若x2+y2+6x−8y+25=0,求x+2y的值;(2)已知等腰△ABC的两边长a,b,满足a2+b2=10a+12b−61,求该△ABC的周长;(3)已知正整数a,b,c满足不等式a2+b2+c2+36<ab+6b+10c,求a+b−c的值.参考答案和解析1.【答案】B【解析】【解答】解:∵2a•3a=6a2∴选项A不正确;∵(﹣a3)2=a6∴选项B正确;∵6a÷2a=3∴选项C不正确;∵(﹣2a)3=﹣8a3∴选项D不正确.故选:B.【分析】A:根据单项式乘单项式的方法判断即可.B:根据积的乘方的运算方法判断即可.C:根据整式除法的运算方法判断即可.D:根据积的乘方的运算方法判断即可.2.【答案】A【解析】【解答】A、原式不能分解,故答案为:A错误,符合题意;B、2a−2b=2(a−b)故答案为:B正确,不符合题意;C、x2−9=(x+3)(x−3)故答案为:C正确,不符合题意;D、x2−x−2=(x+1)(x−2)故答案为:D正确,不符合题意.故答案为:A.【分析】A、a2+4a-4不是完全平方式,不能用完全平方公式进行因式分解,即可判断A错误;B、利用提公因式法进行因式分解,即可判断B正确;C、利用平方差公式进行因式分解,即可判断C正确;D、利用十字相乘法进行因式分解,即可判断D正确.3.【答案】A【解析】【解答】解:∵−12a2b−ab2=−12ab(a+2b),∴将−12a2b−ab2提公因式−12ab后,另一个因式是a+2b.故答案为:A.【分析】利用提公因式的方法对−12a2b−ab2进行因式分解即可.4.【答案】B【解析】【解答】∵x2+y2=4∴(x+y)2=x2+2xy+y2=4+2×2=8故答案为:B.【分析】将x2+y2=4,xy=2代入(x+y)2=x2+2xy+y2计算即可.5.【答案】B【解析】【解答】图1中重叠部分的为正方形且其面积为4,∴重叠部分的边长为2设大正方形边长为a,小正方形的边长为b,∴a-b+2=b如图2,阴影部分面积=a2-2b2+(b-a−b2)2=44,解得b=6,∴a=10如图3,两个小正方形重叠部分的面积=b[(a-b)]=12.故答案为:B.【分析】根据图1重叠图形及已知条件,可得重叠部分的边长为2,设大正方形边长为a,小正方形的边长为b,可得a-b+2=b,根据图2阴影部分面积为44建立方程,从而求出b值,即得a值,根据图3两个小正方形重叠部分的面积=b[(a-b)]即可求出结论.6.【答案】A【解析】【解答】∵甲、乙、丙、丁各基地的产量之比等于4:5:4:2设甲基地的产量为4x吨,则乙、丙、丁基地的产量分别为5x吨、4x吨、2x吨∵各基地之间的距离之比a:b:c:d:e=2:3:4:3:3设a=2y千米,则b、c、d、e分别为3y千米、4y千米、3y千米、3y千米设运输的运费每吨为z元/千米①设在甲处建总仓库则运费最少为:(5x×2y+4x×3y+2x×3y)z=28xyz;②设在乙处建总仓库∵a+d=5y,b+c=7y∴a+d<b+c则运费最少为:(4x×2y+4x×3y+2x×5y)z=30xyz;③设在丙处建总仓库则运费最少为:(4x×3y+5x×3y+2x×4y)z=35xyz;④设在丁处建总仓库则运费最少为:(4x×3y+5x×5y+4x×4y)z=53xyz;由以上可得建在甲处最合适故答案为:A.【分析】根据比例分别设甲基地的产量为4x吨,可得乙、丙、丁基地的产量分别为5x吨、4x吨、2x 吨;设a=2y千米,可得b、c、d、e分别为3y千米、4y千米、3y千米、3y千米.接着设设运输的运费每吨为z元/千米,然后分别求出设在甲处、乙处、丙处、丁处的总费用,最后比较即可.7.【答案】4【解析】【解答】解:∵a=b+2∴a−b=2∴a2−2ab+b2=(a−b)2=22=4。
八年级数学上册第十四章《整式乘除与因式分解》单元测试题-人教版(含答案)
八年级数学上册第十四章《整式乘除与因式分解》单元测试题-题号 一 二 三总分 19 20 21 22 23 24分数1.若221()4y a y by -=-+,则a 的值可能是( ) A .14B .14-C .12D .182.下列运算中正确的是( ) A .(﹣a )4=a 4 B .a 2•a =a 4 C .a 2+a 3=a 5 D .(a 2)3=a 5 3.计算(2a )3的结果是( )A .2a 3B .4a 3C .6a 3D .8a 34.下列因式分解正确的是( ) A .x 2﹣4=(x +4)(x ﹣4) B .x 2+2x +1=x (x +2)+1 C .3mx ﹣6my =3m (x ﹣6y ) D .x 2y ﹣y 3=y (x +y )(x ﹣y )5.下列计算中,正确的个数有( )①3x 3•(﹣2x 2)=﹣6x 5;②4a 3b÷(﹣2a 2b )=﹣2a ;③(a 3)2=a 5;④(﹣a )3÷(﹣a )=﹣a 2.A .1个B .2个C .3个D .4个 6.下列各式中能用平方差公式是( )A .(x+y)(y+x)B .(x+y)(y-x)C .(x+y)(-y-x)D .(-x+y)(y-x) 7.计算(﹣0.25)2021×(﹣4)2020的结果是( ) A .﹣B .C .﹣4D .48.若x 2+mx +k 是一个完全平方式,则k 等于( ) A .B .C .D .m 29.若2022202020222022202320222021-=⨯⨯n ,则n 的值是( ) A .2023 B .2022C .2021D .202010.如图所示、有三种卡片,其中边长为a 的正方形卡片有1张,长为a ,宽为b 的矩形卡片有4张,边长为b 的正方形卡片有4张,用这9张卡片刚好供成一个大正方形,则这个大正方形的边长为( )A .a +2bB .2a +2bC .2a +bD .a +b二、填空题(每题3分,共24分)11.已知x +y =﹣2,xy =4,则x 2y +xy 2=______ 12.单项式8x 2y 3与4x 3y 4的公因式是_________. 13.分解因式:2m m +=___________.14.若多项式241x mx ++是一个完全平方式,则m 的值为______. 15.已知10m=5,10n=7,则102m+n = .16.若x 2−(m−1)x+36是一个完全平方式,则m 的值为 . 17.已知:x 2-8x-3=0,则的值是_______。
第17周:第14章《整式乘除与因式分解》单元测试题
第14章《整式乘除与因式分解》单元测试题一、选择题(15分)1、下列运算正确的是( )A 、 933842x x x ÷= B 、2323440a b a b ÷= C 、22m m a a a ÷= D 、2212()42ab c ab c ÷-=-2、计算(32)2013×1.52012×(-1)2014的结果是( ) A 、32 B 、23 C 、-32 D 、-233、下列多项式乘法中可以用平方差公式计算的是( ) A 、))((b a b a -+- B 、)2)(2(x x ++ C 、)31)(31(x y y x -+ D 、)1)(2(+-x x 4、 把代数式ax ²-4ax +4a 分解因式,下列结果中正确的是( )A 、a (x -2) 2B 、 a (x +2) 2C 、a (x -4) 2D 、a (x -2) (x +2)5、在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b ),再沿虚线剪开,如图①,然后拼成一个梯形,如图②,根据这两个图形的面积关系,表明下列式子成立的是( )。
A 、a 2-b 2=(a +b )(a -b ) B 、(a +b )2=a 2+2ab +b 2C 、(a -b )2=a 2-2ab +b 2D 、a 2-b 2=(a -b )2二、填空题(15分) 6、运用乘法公式计算:(32a -b )(32a +b )= ; (-2x -5)(2x -5)=7、计算:534515a b c a b -÷=8、若a +b =1,a -b =2006,则a 2-b 2=9、在多项式4x 2+1中添加一个单项式,使其成为完全平方式,则添加的单项式为 (只写出一个即可).10、小亮与小明在做游戏,两人各报一个整式,小明报的被除式是x 2y -2xy 2,商式必须是2xy ,则小亮报一个除式是 。
人教版八年级数学上册第十四章《整式的乘法与因式分解》 测试题(含答案)
人教版八年级数学上册第十四章《整式的乘法与因式分解》测试题(含答案)一、单选题1.如图,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )A .a 2﹣b 2=(a +b )(a ﹣b )B .(a +b )2=a 2+2ab +b 2C .(a ﹣b )2=a 2﹣2ab +b 2D .a 2+ab =a (a +b )2.在下列运算中,正确的是()A .236x x x ⋅=B .23x x x +=C .326()x x =D .933x x x ÷= 3.下列等式中,从左到右的变形是因式分解的是( )A .229(3)x x -=-B .22(1)21x x x +=++C .24(2)(2)x x x -=+-D .221x x x ⎛⎫+=+ ⎪⎝⎭4.已知23m m -的值为5,那么代数式2203026m m -+的值是( )A .2030B .2020C .2010D .20005.下列计算正确的是( )A .224a a a +=B .3252⋅=a a aC .235(2)312⋅=a a aD .21333⎛⎫+= ⎪⎝⎭a a a 6.如果25m m +=,那么代数式()()222m m m -++的值为( )A .-6B .-1C .9D .147.若多项式2(5)2x a x ++-中不含x 的一次项,则a 的值为( )A .0B .5C .5-D .5或5-8.若关于x 的多项式(x 2+2x +4)(x +k )展开后不含有一次项,则实数k 的值为( ) A .﹣1 B .2 C .3 D .﹣29.下列各式中,运算正确的是( )A .325a a a +=B .()()235a a a -⋅-= C .()325a a = D .325a a a ⋅= 10.下列算式中不能利用平方差公式计算的是( )A .()()x y x y +-B .()()x y x y ---C .()()x y x y --+D .()()x y y x +-二、填空题 11.若表示一种新的运算,其运算法则为2a bc d =+-,则的结果为________.12.如果二次三项式x 2+3x +a 是一个完全平方式,那么常数a 的值是 ___.13.已知a 是方程x 2-5x +1=0的一个根,则a 4+a -4的个位数字为_____.14.若多项式2(1)16x m x --+能用完全平方公式进行因式分解,则m =________.15.若2224(3)ax x b mx ++=-,则=a ________.16.因式分解:(1)22x y -+=___________;(2)222x xy y -+=___________;(3)24a a -=___________;(4)265m m -+=___________.17.若2x +3y ﹣2=0,则4x •8y =___.18.在实数范围内分解因式221x x +-=___.三、解答题19.先化简,再求值:x 2(﹣x +2)﹣(﹣x +1)(x 2+x ﹣3),其中x 满足2x 2+3=4x .20.((教材呈现)下图是华师版八年级上册数学教材第49页B 组的第12题和第13题.(例题讲解)老师讲解了第12题的两种方法:(方法运用)请你任选第12题的解法之一,解答教材第49页B 组的第13题.(拓展)如图,在ABC 中,90ACB ∠=︒,分别以AC 、BC 为边向其外部作正方形ACDE 和正方形BCFG .若6AC BC +=,正方形ACDE 和正方形BCFG 的面积和为18,求ABC 的面积.21.计算:(59x 3y )•(﹣3xy 2)3•(12x )2.22.33x y x y .23.先化简,再求值:()2232()()a b ab b b a b b a --÷++-,其中12021a =-,2021b =.24.某校“数学社团”活动中,小亮对多项式进行因式分解,m 2-mn +2m -2n =(m 2-mn )+(2m -2n )=m (m -n )+2(m -n ) =(m -n )(m +2).以上分解因式的方法叫做“分组分解法”,请你在小亮解法的启发下,解决下面问题:(1)因式分解a 3-3a 2-9a +27;(2)因式分解x 2+4y 2-4xy -16;(3)已知a ,b ,c 是ABC 的三边,且满足222a ab c ac bc -+=-,判断ABC 的形状并说明理由.参考答案1.A【详解】解:大正方形的面积﹣小正方形的面积=a 2﹣b 2,矩形的面积=(a +b )(a ﹣b ),故a 2﹣b 2=(a +b )(a ﹣b ),故选:A .2.C【详解】解:A 、235x x x ,故错误,不符合题意;B . 2x x +不是同类项,不能合并,故错误,不符合题意;C . 326()x x =,故正确,符合题意;D . 936x x x ÷=,故错误,不符合题意;3.C【详解】解:A 、29(3)(3)x x x -=+-,则原等式不成立,此项不符题意;B 、22(1)21x x x +=++等式的右边不是乘积的形式,则此项不符题意;C 、24(2)(2)x x x -=+-是因式分解,此项符合题意;D 、221x x x ⎛⎫+=+ ⎪⎝⎭等式右边中的2x 不是整式,则此项不符题意; 4.B【详解】解:∵2220302620302(3)m m m m -+=--,把235m m -=代入,原式=2030252020-⨯=,故选B .5.C【详解】A. ∵2a 和2a 是同类项,∵22242a a a a +=≠,故选项A 错误;B. 532522a a a a ⋅≠=,故选项B 错误;C. 52323(32)3412a a a a a ⋅==,故选项C 正确;D. 2213333a a a a a ⎛⎫+=+⎭≠ ⎪⎝,故选项D 错误. 6.D【详解】解:()()222m m m -++, 22244m m m m =-+++,2224m m =++,由25m m +=得:22210m m +=,则原式10414=+=,故选:D .7.C【详解】解:∵多项式2(5)2x a x ++-中不含x 的一次项,∵5+a =0,解得a =-5,故选:C .8.D【详解】解:(x 2+2x +4)(x +k )=x 3+kx 2+2x 2+2kx +4x +4k=x 3+(k +2)x 2+(2k +4)x +4k ,∵关于x 的多项式乘多项式(x 2+2x +4)(x +k )的结果中不含有x 的一次项, ∵2k +4=0,解得,k =−2,9.D【详解】A .3a 和2a 不是同类项,不能合并,此选项错误;B .2355()()()a a a a -⋅-=-=-,此选项错误;C . ()326a a =,此选项错误; D .235a a a ⋅=,此选项正确,故选:D .10.C【详解】解:A 、()()22x y x y x y +-=-,故A 不符合题意;B 、()()22()x y x y y x ---=--,故B 不符合题意;C 、()()x y x y --+不能利用平方差公式计算,故C 符合题意;D 、()()22x y y x y x +-=-,故D 不符合题意;11.223m m n +【详解】解:由题意得,=2222(2)3m m n n m -+-,=223243m m n m +-=223m m n +,故答案为:223m m n +.12.94【详解】解:∵二次三项式x 2+3x +a 是一个完全平方式,∵x 2+3x +a =x 2+2•x •32+(32)2, ∵a =94, 故答案为:94. 13.7【详解】解:由题意可得:2510a a ,0a ≠, ∵15a a +=, ∵22211223a a a a ⎛⎫+=+-= ⎪⎝⎭, ∵24242112527a a a a ⎛⎫+=+-= ⎪⎝⎭, ∵个位数字是7;故答案是7.14.9或-7或9【详解】解:∵多项式x 2-(m -1)x +16能用完全平方公式进行因式分解, ∵m -1=±8,解得:m =9或m =-7,故答案为:9或-715.16【详解】解:∵222(3)9=6mx x x m m --+,2224(3)ax x b mx ++=- ∵m 2=a ;-6m =24∵m =-4,a =16故答案为:1616.()()y x y x +- 2()x y - (4)a a - (1)(5)m m -- 【详解】解:(1)2222()()y x x y x x y y -++=--=(2)2222()x xy y x y -+=-(3)24(4)a a a a -=-(4)265(1)(5)m m m m -+=--故答案为()()y x y x +-,2()x y -,(4)a a -,(1)(5)m m -- 17.4【详解】解:48x y ⋅=()()2323232=2222x x x yy x +⋅=⋅, ∵x +3y -2=0,∵x +3y =2,∵原式=22=4,故答案为:4.18.(11x x ++【详解】解:原式=2212x x ++-2(1)2x =+-(11x x =+++,故答案为(11x x +++.19.2x 2-4x +3;原式=0.【详解】x 2(﹣x +2)﹣(﹣x +1)(x 2+x ﹣3)=﹣x 3+2x 2﹣(﹣x 3-x 2+3x + x 2+x ﹣3)=﹣x 3+2x 2+x 3+x 2-3x - x 2-x +3=2x 2-4x +3∵2x 2+3=4x∵2x 2-4x +3=0∵原式=0.20.【方法运用】见解析;【拓展】92【详解】【方法运用】∵(a -b )2= a 2+b 2-2ab∵2ab = a 2+b 2-(a -b )2.∵a -b =1,a 2+b 2=25,∵2ab = 25-1=24.∵ab =12.【拓展】由题意,得AC 2+BC 2=18.∵(AC +BC )2=62,AC 2+2AC •BC +BC 2=36. ∵2AC •BC =36﹣(AC 2+BC 2)=36﹣18=18. ∵AC •BC =9.∵S ∵ABC =12AC •BC =92. 21.87154x y - 【详解】 (59x 3y )•(﹣3xy 2)3•(12x )2 ()233332251392x x x y y ⎛⎫=-⨯⨯⋅⋅⋅⋅⋅ ⎪⎝⎭ 87154x y =- 22.2269x y y -+-【详解】解:33x y x y33x y x y 223x y2269x y y =-+-23.2ab -,2【详解】解:原式=223222÷-÷-÷+-a b b ab b b b b a=22222--+-a ab b b a=2ab -, 当12021a =-,2021b =时,原式=1220212021⎛⎫-⨯-⨯ ⎪⎝⎭=2. 24.(1)(a +3)(a -3)2;(2)(x -2y -4)(x -2y +4) ;(3)等腰三角形,见解析 【详解】解:(1)a 3-3a 2-9a +27=a 2(a -3)-9(a -3)=(a 2-9)(a -3) =(a -3)(a +3)(a -3) =(a +3)(a -3)2;(2)x 2+4y 2-4xy -16=(x 2-4xy +4y 2)-16=(x -2y )2-42=(x -2y -4)(x -2y +4);(3)∵ABC 是等腰三角形,理由如下:∵222a ab c ac bc -+=-,∵2220a ac c ab bc -+-+=,∵()()20a c b a c ---=,∵()()0a c a c b ---=,∵a ,b ,c 是∵ABC 的三边,∵a -c -b <0.∵a -c =0,∵a =c ,∵∵ABC 是等腰三角形.。
人教版八年级上册数学第14章整式的乘法与因式分解 单元测试卷(Word版,含答案)
人教版八年级上册数学第14章整式的乘法与因式分解单元测试卷题号一二三四总分得分一、选择题(本大题共10小题,共30分。
在每小题列出的选项中,选出符合题目的一项)1.下列各式由左到右的变形中,属于分解因式的是( )A. a(m+n)=am+anB. a2−b2−c2=(a−b)(a+b)−c2C. 10x2−5x=5x(2x−1)D. x2−16+6x=(x+4)(x−4)+6x2.下列各式计算结果为a5的是( )A. a3+a2B. a3×a2C. (a2)3D. a10÷a23.下列等式中,从左到右的变形是因式分解的是( )A. x(x−2)=x2−2xB. (x+1)2=x2+2x+1) D. x2−4=(x+2)(x−2)C. x+2=x(1+2x4.下列等式中,从左到右的变形属于因式分解的是( )A. a(a+2)=a2+2aB. a2−b2=(a+b)(a−b)C. m2+m+3=m(m+1)+3D. a2+6a+3=(a+3)2−65.一个正整数若能表示为两个正整数的平方差,则称这个正整数为“创新数”,例如27=62−32,63=82−12,故27,63都是“创新数”,下列各数中,不是“创新数”的是( )A. 31B. 41C. 16D. 546.代数式yz(xz+2)−2y(3xz2+z+x)+5xyz2的值( )A. 只与x、y有关B. 只与y、z有关C. 与x、y、z都无关D. 与x、y、z都有关7.如图,将一张边长为x的正方形纸板按图中虚线裁剪成三块长方形,观察图形表示阴影部分的面积,则表示错误的是( )A. (x−1)(x−2)B. x2−3x+2C. x2−(x−2)−2xD. x2−38.下列运算正确的是( )A. a⋅a2=a3B. a6÷a2=a3C. 2a2−a2=2D. (3a2)2=6a49.若4x2−(k+1)x+9能用完全平方公式因式分解,则k的值为( )A. ±6B. ±12C. −13或11D. 13或−1110.若x,y,z满足(x−z)2−4(x−y)(y−z)=0,则下列式子一定成立的是 ( )A. x+y+z=0B. x+y−2z=0C. y+z−2x=0D. z+x−2y=0二、填空题(本大题共8小题,共24分)11.分解因式:x2y−4y=.12.计算:(a−b)3⋅(b−a)⋅(a−b)5=.13.若x2+kx+25=(x±5)2,则k=.14.已知(ka m−n b m+n)2=4a4b8,则k+m+n=.15.若x m=3,x n=2,则x2m+3n=______⋅16.已知a2+b2=13,(a−b)2=1,则(a+b)2=.17.如图1,将边长为x的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示长方形.这两个图能解释一个等式是.18.在计算(x+y)(x−3y)−my(nx−y)(m、n均为常数)的值,在把x、y的值代入计算时,粗心的小明把y的值看错了,其结果等于9,细心的小红把正确的x、y的值代入计算,结果恰好也是9,为了探个究竟,小红又把y的值随机地换成了2018,结果竟然还是9,根据以上情况,探究其中的奥妙,计算mn=______.三、计算题(本大题共2小题,共12分)19.计算:(1)(x−1)(x2+x+1);(2)(3a−2)(a−1)−(a+1)(a+2);(3)(x−2)(x2+2x)+(x+2)(x2−2x).20.把下列各式分解因式:(1)8a 3b 2−12ab 3c +6a 3b 2c; (2)5x(x −y)2+10(y −x)3;(3)(a +b)2−9(a −b)2; (4)−4ax 2+8axy −4ay 2; (5)(x 2+2)2−22(x 2+2)+121.四、解答题(本大题共7小题,共54分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《第十四章 整式的乘除与因式分解》单元测试卷(一)答题时间:100分钟 满分:120分一、选择题 (每题3分,共30分。
每题只有一个正确答案,请将正确答案的代号填在下面的表格中)1.下列判断中正确的是( ).A .与不是同类项B .不是整式C .单项式的系数是D .是二次三项式 2.下列计算正确的是( ).A .B .C .D . 3.已知,则m 的值为( ). A .8 B .16 C .32D .64 4.下列因式分解中,结果正确的是( ).A .B .C .D . 5.计算的结果是( ).A .B .C .0D .6.把多项式提取公因式后,余下的部分是( ). A . B . C . D . 7.两个三次多项式相加,结果一定是( )A 、三次多项式B 、六次多项式C 、零次多项式D 、不超过三次的多项式bc a 232bca -52n m 23y x -1-2253xy y x +-105532a a a =+632a a a =⋅532)(a a =8210a a a =÷()()2222816-=+-x m x x ()23222824m n n n m n -=-()()2422x x x -=+-222111144x x x x x ⎛⎫-+=-+ ⎪⎝⎭2299(33)(33)a b a b a b -=+-11(13)(31)9()()33x x x x +-+-+2182-x 2182x -28x ()()()111---+x x x ()1-x ()1+x ()1+-x x ()2+-x8.若a -b =8,a 2+b 2=82,则3ab 的值为 ( )A 、9B 、-9C 、27D 、-279.对于任何整数..,多项式的值都能( ). A .被整除 B .被整除 C .被20整除 D .被10整除和被整除10.(x 2+px+8)(x 2-3x+q)乘积中不含x 2项和x 3项,则p,q 的值 ( )A.p=0,q=0B.p=3,q=1C.p=–3,–9D.p=–3,q=1二、填空题(每题3分,共30)11.单项式与是同类项,则的值为 .12.在括号中填入适当的数或式子:=. 13.与和为的多项式是___________________.14.(1),(2).15.用完全平方公式填空:=. 16.人们以分贝为单位来表示声音的强弱,通常说话的声音是50分贝,它表示声音的强度是;摩托车发出的声音是110分贝,它表示声音的强度是,那么摩托车的声音强度是说话声音强度的_______倍。
17.用图中所示的正方形和长方形卡片若干张,拼成一个长为,宽为的矩形,需要类卡片______张,类卡片______张,类卡片_______张.18.观察下列等式:(1+2)2-4×1=12+4,(2+2)2-4×2=22+4,(3+2)2-4×3=32+4,(4+2)2-4×4=42+4,…,则第个等式是 .正方形面积为则这个正方形的周长是 。
n 22)3()7(--+n n 24n +2n +24n +213a b a b x y +--43x y 2a b +87()()( )x y y x --=-7()( )x y -21a -2741a a -+19______3n n +÷=20072008120.4_________2⎛⎫-⨯= ⎪⎝⎭2)(9)(124y x y x -+--2____)(_________51011102a b +32a b +A B C n )0,0(2212122>>++b a y xy x19.将4个数排成2行、2列,两边各加一条竖直线记成,定义,上述记号就叫做2阶行列式.若=18,则 .20.观察下列各式:222222151(11)1005252(21)1005353(31)1005=⨯+⨯+=⨯+⨯+=⨯+⨯+⋅⋅⋅⋅⋅⋅依此规律,第n 个等式(n 为正整数)为 .三、解答题(共36分) 21.(12分)计算:(1)2(1)(23)a a a +-+. (2)25(2)(31)2(1)(5)y y y y y --+-+-.22.(8分)因式分解:(1)222510m mn n -+. (2)因式分解:212()4()a b x y ab y x ---.23.(8分)先化简,再求值(32)(23)(2)(2)a b a b a b a b +----,其中11.5,4a b =-=.a b c d ,,,a bc d a bc dad bc =-1111x x x x +--+x =24.(8分)已知:2226100x x y y++-+=,求,x y的值.四、解答题(每题8分,共32分)25.已知x(x-1)-(x2-y)=-2.求222x yxy+-的值.26.已知2410a a--=,求(1)1aa-;(2)21()aa+.27.一个长80cm,宽60cm的铁皮,将四个角各裁去边长为bcm的正方形,•做成一个没有盖的盒子,则这个盒子的底面积是多少?当b=10时,求它的底面积.28.某公园欲建如图13-2-3所示形状的草坪(阴影部分),求需要铺设草坪多少平方米?若每平方米草坪需120元,则为修建该草坪需投资多少元?(单位:米)五、解答题(29题10分,30题12分,共22分)29.某商店积压了100件某种商品,为使这批货物尽快脱手,该商店采取了如下销售方案,将价格提高到原来的2.5倍,再作3次降低处理;第一次降价30%,标出“亏本价”;第二次降价30%,标出“破产价”;第三次降价30%,标出“跳楼价”。
3次降价处理销售结果如下表:(1)跳楼价占原来的百分比是多少?(2)该商品按新销售方案销售,相比原价全部售完,哪种方案更盈利30.多项式的乘法法则知:若2()()x a x b x px q ++=++,则,p a b q a b =+=;反过来2()().x px q x a x b ++=++要将多项式2x px q ++进行分解,关键是找到两个数a 、b ,使,,a b p a b q +==如对多项式232x x -+,有3, 2.1,2,p q a b =-==-=-此时(1)(2)3,(1)(2)2,-+-=---=所以232x x -+可分解为(1)(2),x x --即232(1)(2)x x x x -+=--. (1)根据以上分填写下表:(2)根据填表,还可得出如下结论:当q 是正数时,应分解成两个因数a 、b 号,a 、b 的符号与 相同;当q 是负数时,应分解成的两个因数a 、b 号,a 、b 中绝对值较大的因数的符号与 相同. (3)分解因式.212x x --= ;276x x -+= .参考答案 一、选择题1.C 2.D 3.D 4.B 5.C 6.D 7.A 8.A 9.C 10.B 二、填空题11.5 12.、 13. 14.(1) (2)15. 16.9.6× 17.6、7、2 18. 19.4或-220.2(105)100(1)25n n n +=++ 三、21.(1)323a a a -++ (2)13y+12 22.(1)2(5)m n - (2)4()(31)ab x y a -+ 23.8.5 24.x=-1,y=3 四、25.2 26.(1)4;(2)20 27.2242804800,2400b b S cm -+= 28.221a ,25202a 元 五、29. (1)85.75% (2)设原价为x,则原价销售金额为100x , 新销售方案销售金额为:x y -y x -2762a a -+23n +25-233x y -+141022(2)44n n n +-=+2.5x ×10×0.7+2.5x ×40×0.7×0.7+2.5x ×50×0.7×0.7×0.7=109.375x 30.9、20、4、5、(4)(5)x x ++;-9、20、-4、-5、(4)(5)x x --;1、-20、-4、5、(4)(5)x x -+;-1、-20、4、-5、(4)(5)x x +-;(2)同、p ,异、p ;(3)(3)(4),(1)(6)x x x x +---。
《第十四章 整式的乘除与因式分解》单元测试卷(二)答题时间:120分钟 满分:150分一、选择题 (每题3分,共30分。
每题只有一个正确答案,请将正确答案的代号填在下面的表格中)1.计算(-a )3·(a 2)3·(-a )2的结果正确的是( ) (A )a 11 (B )a 11 (C )-a 10 (D )a 13 2.下列计算正确的是( )(A )x 2(m +1)÷x m +1=x 2 (B )(xy )8÷(xy )4=(xy )2 (C )x 10÷(x 7÷x 2)=x 5 (D )x 4n ÷x 2n ·x 2n =1 3.4m ·4n 的结果是( )(A )22(m +n ) (B )16mn (C )4mn (D )16m +n 4.若a 为正整数,且x 2a =5,则(2x 3a )2÷4x 4a 的值为( ) (A )5 (B )25(C )25 (D )10 5.下列算式中,正确的是( )(A )(a 2b 3)5÷(ab 2)10=ab 5 (B )(31)-2=231=91(C )(0.00001)0=(9999)0 (D )3.24×10-4=0.0000324 6.(-a +1)(a +1)(a 2+1)等于( )(A )a 4-1 (B )a 4+1 (C )a 4+2a 2+1 (D )1-a 4 7.若(x +m )(x -8)中不含x 的一次项,则m 的值为( ) (A )8 (B )-8 (C )0 (D )8或-8 8.已知a +b =10,ab =24,则a 2+b 2的值是( )(A )148 (B )76 (C )58 (D )529.已知多项式ax ²+bx +c 因式分解的结果为(x -1)(x +4),则abc 为…( ) A .12 B .9 C .-9 D .-1210.如图:矩形花园中ABCD ,AB =a ,AD =b ,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK 。
若LM =RS =c ,则花园中可绿化部分的面积为( ) A.bc -ab +ac +b 2 B.a 2+ab +bc -ac C.ab -bc -ac +c 2 D.b 2-bc +a 2-ab二、填空题(每题3分,共30) 11.①a 2-4a +4,②a 2+a +14,③4a 2-a +14, ④4a 2+4a +1,•以上各式中属于完全平方式的有____ __(填序号). 12.(4a 2-b 2)÷(b -2a )=________.13.若x +y =8,x 2y 2=4,则x 2+y 2=_________. 14.计算:832+83×34+172=________.15.=÷-+++++++1214213124)42012(m m m m m m m m b a b a b a b a + . 16.已知==-=-yxy x y x ,则,21222 . 17.代数式4x 2+3mx +9是完全平方式,则m =___________. 18.若22210a b b -+-+=,则a = ,b = .19.已知正方形的面积是2269y xy x ++ (x >0,y >0),利用分解因式,写出表示该正方形的边长的代数式 .20.观察下列算式:32—12=8,52—32=16,72—52=24,92—72=32,…,请将你发现的规律用式子表示出来:____________________________. 三、解答题(共36分)ACDL Q MP21.(1)计算:(8分) ①(-3xy 2)3·(61x 3y )2; ②4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2);(2)因式分解:(8分)①xy y x 2122--+; ②)()3()3)((22a b b a b a b a -+++-.(3)解方程:(4分)41)8)(12()52)(3(=-+--+x x x x .22.(5分)长方形纸片的长是15㎝,长宽上各剪去两个宽为3㎝的长条,剩下的面积是原面积的53.求原面积.23.(5分)已知x 2+x -1=0,求x 3+2x 2+3的值.24.(6分)已知22==+ab b a ,,求32232121ab b a b a ++的值.四、解答题(每题8分,共32分)25.给出三个多项式:2112x x +-,21312x x ++,212x x -,请你选择掿其中两个进行加减运算,并把结果因式分解.26.已知222450a b a b ++-+=,求2243a b +-的值.27.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.28.已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状.五、解答题(29题10分,30题12分, 共22分)29.下面是某同学对多项式(x 2-4x +2)(x 2-4x +6)+4进行因式分解的过程. 解:设x 2-4x =y原式=(y +2)(y +6)+4 (第一步) = y 2+8y +16 (第二步) =(y +4)2 (第三步)=(x 2-4x +4)2 (第四步) 回答下列问题:(1)该同学第二步到第三步运用了因式分解的_______.A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果___ ______.(3)请你模仿以上方法尝试对多项式(x 2-2x )(x 2-2x +2)+1进行因式分解.30.探索:11)(1(2-=+-x x x ) 1)1)(1(32-=++-x x x x1)1)(1(423-=+++-x x x x x 1)1)(1(5234-=++++-x x x x x x......①试求122222223456++++++的值②判断22010+22009+1222222200620072008++++++ 的值的个位数是几?附加题(可计入总分,但总分不超过150分) 31. (10分) 拓广探索:图1是一个长为2 m .宽为2 n 的长方形, 沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)你认为图2中的阴影部分的正方形的边长等于多少?(2).请用两种不同的方法求图2中阴影部分的面积. 方法1:方法2:(3)观察图2你能写出下列三个代数式之间的等量关系吗? 代数式: ()(). , ,22mn n m n m -+(4)根据(3)题中的等量关系,解决如下问题:若5,7==-ab b a ,则2)(b a += . (5)若a-b = .参考答案一、选择:1-5 BCAAC 6-10 DADDC 二、填空11.①②④ 12.2b a - 13.12 14.10000 15.12335m m a b ab ab ++-+ 16.2 17.4± 18.2,1a b == 19.3x y + 20.22(21)(21)8n n n +--= 三、 21.(1)①-43x 9y 8;②516ax 4y ; (2)①(1)(1)x y x y -+--;②28()()a b a b -+ ⑶322.180cm 2 23.4 24.4 四、 25.图2选择1,3相加2112x x +-+212x x -=)1)(1(12-+=-x x x 26.7 27.2,7p q == 28.等边三角形 五、29.(1)C ;(2)分解不彻底;(3)4(1)x -。