第五章+假设检验

合集下载

教育与心理统计学 第五章 假设检验考研笔记-精品

教育与心理统计学  第五章 假设检验考研笔记-精品
把出现小概率的随机事件称为小概率事件。
假设检验中的小概率原理[一级][16J]
假设检验的基本思想是概率性质的反证法,即其基本思想是基于〃小概率事件在一次实验中不可能发生”这一原理。首先假定虚无假设为
真,在虚无假设为真的前提下,如果小概率事件在一次试验中出现,则表明〃虚无假设为真"的假定是不止确的,因为假定小概率事件在
一次试验中是不可能出现的,所以也就不能接受虚无假设,应当拒绝零假设。若没有导致小概率事件出现,那就认为"虚无假设为真”的
假定是正确的,也就是说要接受虚无假设。假设推断的依据:小概率事件是否出现,这是对假设作出决断的依据。
检验的假设
Ho为真
真实情况
检验的事件发生的概率在99%或95%的范围内
检验的事件发生的概率在5%或1%以内
错误的概率,其前提是“Ho为假
②它们都是在做假设检验的统计决策时可能犯的错误,决策者同时面临犯两种错误的风险,因此都极力想避免或者减少它们,但由于在忠
体间真实差异不变情况下,它们之间是一种此消彼长的关系,即a大时,0小;c(和B不能同时减少。
③在其他条件不变的情况下,不可能同时减小或增大两种错误的发生可能,常用的办法是固定a的情况下尽可能减小B,比如通过增大样本
若进行假设检验时总体的分布形态已知,需要对总体的未知参数进行假设检验,称其为参数假设检验。
(三)非参数检验[一级]
若对总体分布形式所知甚少,需要对未知分布函数的形式及其他特征进行假设检验,通常称为非参数假设检验。
(四)小概率事件和显著性水平
(1)假设推断的依据就是小概率原理
小概率事件:通常情况下,将概率不超过0.05(即5%)的事件当作“小概率事件",有时也定为概率不超过0.01(即1%)或0.001(0.1%\

第5章 假设检验

第5章  假设检验
著,这里表现为长白后备种猪的背膘厚度极显著地低于蓝塘后备种猪 的背膘厚度。
9
假设检验的基本步骤
(1) 对样本所属总体提出统计假设,包括无效假 设和备择假设. (2) 测验计算,即在无效假设正确的假定下,依 据统计数的抽样分布,计算因随机抽样而获得实 际差数的概率. (3) 统计推断,即将确定的值与算得的概率相比 较,依据“小概率事件实际不可能性”原理作出 接受或否定无效假设的推断
1.2021.817 13.226** 0.0465
df (n1 1) (n2 1)
=(12-1)+(11-1)=21
3、查临界t值,作出统计推断 当df=21时,查临界值得:t0.01(21)=2.831, |t|>2.831,P<0.01,否定 H 0:1 , 接 2 受 H A:1 ,表明长白后备种猪与蓝塘后备种猪 2 90kg背膘厚度差异极显著,这里表现为长白后备 种猪的背膘厚度极显著地低于蓝塘后备种猪的背 膘厚度。
3、查临界t值,作出统计推断 因为单侧
t 0.10(= 双侧 11)
t 0.05 = 1.796 ,t=2.281 (11 )
> 单侧t0.05(11), P < 0.05 , 否定H0 : =246,
>246,可以认为该批饲料维生素C含量 接受HA :
符合规定要求。
第三节 两个样本平均数的差异 显著性检验
克服假设检验中可能犯的两类错误的方法: ① 适当增加样本容量 ② 精细做好试验以控制试验误差
17
两类错误
影响 II 型错误概率大小的因素 - 显著性水平 - 样本含量 n - 假设分布与真实分布总体平均数之差 - 两个分布的总体方差
检验功效 一个错误的原假设能够被否定的概率 检验功效 = 1 - II 型错误概率 =1-β

第五章-假设检验与回归分析

第五章-假设检验与回归分析
2
件,得到拒绝域;
步骤 4:明确或计算样本均值 x ,得到U 变量的观测值 u x 0 n 0
若观测值 u 落入拒绝域,则拒绝零假设 H 0 ,即接受备择假设 H1 ,
否则不能拒绝零假设 H 0 。
第五章 假设检验与回归分析 例1、 已知某面粉自动装袋机包装面粉,每袋面粉重量 Xkg
服从正态分布 N(25,0.02) ,长期实践表明方差 2 比较稳定,从
第五章 假设检验与回归分析
U 检验的步骤:
步骤 1:提出零假设 H 0 : 0 与备择假设 H1 ;
步骤 2:明确所给正态总体标准差 0 值、样本容量 n 的
值,当零假设 H 0 成立时,构造变量
U X 0 n ~ N(0,1) 0
第五章 假设检验与回归分析
步骤 3:由所给检验水平 的值查标准正态分布表求出对应 的双侧分位数 u 的值或上侧分位数 u 的值,构造小概率事
u
2
0.05, u 1.96 ,
2
第五章 假设检验与回归分析
x 0 n
12.5 12 1 100
5 u
2
1.96
故拒绝 H0 ,即认为产品平均质量有显著变化。
小结与提问:
理解假设检验的基本原理、概念;掌握假设检验的步骤。
课外作业:
P249 习题五 5.01, 5.02,5.03。
0.10,再在表中第一列找到自由度 m n 1 7 1 6 ,
其纵横交叉处的数值即为对应的 t 分布双侧分位数 t 1.943
2
,使得概率等式
PT 1.943 0.10
成立。这说明事件 T 1.943是一个小概率事件,于是得到
拒绝域
t 1.943
第五章 假设检验与回归分析

第五章假设检验

第五章假设检验

★适用于近似地采用u 检验所需的二项分布百分数资料 的样本含量n见表5-8。
上一张 下一张 主 页 退 出
一、样本百分数与总体百分数差异显著性检验
★检验一个服从二项分布的样本百分数与已知的二项总 体百分数差异是否显著。
★目的是检验一个样本百分数 pˆ 所在 二项总体百分数
p是否与已知二项总体百分数 p0相同,换句话说,检
95%置信上限为 x t0.05(df )Sx 1.2 0.18 1.38
★所以该品种仔猪初生重总体平均数μ的95%置信区 间为:
1.02(kg) 1.38(kg)
上一张 下一张 主 页 退 出
★又因为
99%置信半径为 99%置信下限为 99%置信上限为
t0.01(df ) Sx 3.25 0.08 0.26 x t0.01(df )Sx 1.2 0.26 0.94
上一张 下一张 主 页 退 出
(一)提出无效假设与备择假设
H 0 : P1 P2 , H A : P1 P2
(二)计算u值或uc值 u pˆ1 pˆ 2 S pˆ1 pˆ2
Hale Waihona Puke (5-11)uc
pˆ1 pˆ 2
0.5 n1 0.5 n2 S pˆ1 pˆ2
(5-12)
其中 pˆ1 x1 n1 ,pˆ 2 x2 n2 为两个样本百分
根据 df n 1 10 1 9 查t值表(P337-338) t0.05(9) 2.262
t0.01(9) 3.250
上一张 下一张 主 页 退 出
★因此
95%置信半径为 t0.05(df )Sx 2.262 0.08 0.18
95%置信下限为 x t0.05(df ) Sx 1.2 0.18 1.02

第五章 假设检验

第五章  假设检验

Di
4.1 3.8
1.0
4.2
5 15.3 12.0
3.3
6 13.9 14.7 -0.8
7 20.0 18.1 1.9
8 16.2 13.8 2.4
9 15.3 10.9 4.4
作业(以下任选一道)
1、查阅近两年的心理学和教育学权威杂志各一套(例 如,可查阅这几个年度的《心理学报》和《教育研究》 各一套),对其论文中使用的统计方法进行一项描述
(两个样本的“t”检验) 五、相关系数的显著性检验 六、方差差异的显著性检验
假设检验的一般步骤
(1)建立虚无假设和备择假设
双侧检验为:H0:µ=µ0
H1:µ‡µ0
单侧检验为:H0:µ<=µ0 或 H0:µ>=µ0
H1:µ>µ0 或 H1:µ<µ0
(2)寻找合适的统计量及其抽样分布,并计算统计量
T’=-1.929;SE2=3.468;t’ a/2=2.049
练习题5
对9个被试进行两种夹角(15o,30o)的缪 勒—莱依尔错觉实验结果如下,问两种夹角的 情况下错觉量是否有 显著差异?
被试 1
2
3
4
15o 14.7 18.9
17.2 15.4
30o 10.6 15.1
16.2 11.2
Z1.84;SE1.793
两类错误
H0为真
接受H0 拒绝H0
正确 α错误
前提 H0为假 β错误 正确
总体平均数的假设检验例题1
全区统一考试物理平均分μo=50,标准差σo=10.某 校的一个班(n=41)平均成绩 X =52.5.问该班成 绩与全区平均成绩差异是否显著.
(总体正态,总体方差已知)

第五章假设检验

第五章假设检验
31
Hypothesis test
(二)P值假设检验的步骤 值假设检验的步骤
14
Hypothesis test
(一)假设检验中的两类错误 实际情况
决策结果 不拒绝H0 拒绝H0
H0为真 √ type I error
H0为伪 type II error √
•第Ⅰ类错误:指原假设为真,却拒绝原假设而犯的 类错误:指原假设为真,
错误, 错误,即弃真错误 发生概率为α 发生概率为α •第Ⅱ类错误:原假设为假时,未拒绝原假设而犯 第 类错误:原假设为假时, 的错误, 的错误,即取伪错误 发生概率为β 发生概率为β 15
27
Hypothesis test
3、利用P值决策的优点: 利用P 决策的优点: 直接给出了拒绝原假设犯第一类错误的真实概率; 直接给出了拒绝原假设犯第一类错误的真实概率; 避免了不同检验问题用同一个显著性水平; 避免了不同检验问题用同一个显著性水平; 当前计算机软件通常可以直接输出检验统计量的P值, 当前计算机软件通常可以直接输出检验统计量的P 免于查表, 免于查表,可直接判定
例如,针对特效药治愈率假定 例如,针对特效药治愈率假定H0 :θ≥97% 医疗周期假定H0 :t≤2个月 个月 服药后病情稳定情况H0 :d=2人 人
7
Hypothesis test
(2)备择假设(alternative hypothesis) 备择假设(alternative
★研究者收集证据想予以支持的假设 研究者收集证据想予以支持 予以支持的假设 ★表示为H1 ★表示形式:≠, >或<某一假定数值 表示形式:
Hypothesis test
4、决策规则 给定显著性水平α 给定显著性水平α,查统计量的对应分布表得出相 应的临界值。 应的临界值。 临界值通常取正值, 临界值通常取正值,应结合假设形式准确确定分布 中的临界值和拒绝域。 中的临界值和拒绝域。 将检验统计量的值与临界值进行比较 给出决策结果。 给出决策结果。 双侧检验: 统计量的值| 临界值, 双侧检验:|统计量的值|>临界值,则拒绝H0 左侧检验:统计量的值<临界值, 左侧检验:统计量的值<临界值,则拒绝H0 右侧检验:统计量的值>临界值, 右侧检验:统计量的值>临界值,则拒绝H0

医学统计学假设检验

医学统计学假设检验

❖ 例如,根据大量调查,已知正常成年男性 平均脉搏数为72次/分,现随机抽查了20名 肝阳上亢成年男性病人,其平均脉搏为84 次/分,标准差为6.4次/分。问肝阳上亢男 病人的平均脉搏数是否较正常人快?
❖ 以上两个均数不等有两种可能:
第一,由于抽样误差所致;
第二,由于肝阳上亢的影响。
例如
已知正常成年男子脉搏平均为72 次/分,现随机检查20名慢性胃炎所致 脾虚男病人,其脉搏均数为75次/分, 标准差为6.4次/分,问此类脾虚男病人 的脉搏快于健康成年男子的脉搏?
2、假设检验的目的
判断是由于何种原因造成的不同,以做出决策。
3、假设检验的原理
反证法:当一件事情的发生只有两种可能A和B,为了肯
定其中的一种情况A,但又不能直接证实A,这时否定另一 种可能B,则间接的肯定了A。
概率论(小概率) :如果一件事情发生的概率很小,那
么在进行一次试验时,我们说这个事件是“不会发生的”。 从一般的常识可知,这句话在大多数情况下是正确的,但是 它一定有犯错误的时候,因为概率再小也是有可能发生的。
α是在统计推断时,预先设定的一个小概率值,是当H0 为真时,允许错误地拒绝H0的概率。
双侧与单侧检验界值比较
(2) 选定适当的检验方法,计算检验
统计量值 t 检验 Z 检验
❖ 设计类型 ❖ 资料的类型和分布 ❖ 统计推断的目的 ❖ n的大小 ❖ 如完全随机设计实验中,已知样本均数
与总体均数比较,n又不大,可用t检验, 计算统计量t值。
(1)建立假设,选定检验水准:
假设两种:一种是检验假设,假设差异完全由抽样误差造 成,常称无效假设,用H0表示。另一种是和H0相对立的备 择假设,用H1表示。假设检验是针对H0进行的。

《统计学》第5章 假设检验

《统计学》第5章 假设检验
假设。原假设通常用H0 表示,也称为“零假设”;备择假设指的是当原
假设不成立时,即拒绝原假设时备以选择的假设,通常用H1 表示。备择
假设和原假设互斥,如在例5.1中,原假设是“2022 年全国城市平均
PM2.5 浓度与2018 年相比没有显著差异”,那么备择假设就是“2022
年全国城市平均PM2.5 浓度与2018 年相比存在显著差异”。相应的统计
小越好。但是,在一定的样本容量下,减少犯第I类错误的概率,就会
使犯第II类错误的概率增大;减少犯第II类错误的概率,会使犯第I类
错误的概率增大。增加样本容量可以使犯第I类错误的概率和犯第II类
错误的概率同时减小,然而现实中资源总是有限的,样本量不可能没有
限制。因此,在给定的样本容量下,必须考虑两类可能的错误之间的权
易被否定,若检验结果否定了原假设,则说明否定的理由是充分的。
第四章 参数估计
《统计学》
16
5.1 假设检验的基本原理
(四) P值法
假设检验的另一种常用方法是利用P值(P-value) 来确定检验决策。P值
指在原假设0 为真时,得到等于样本观测结果或更极端结果的检验统计
量的概率,也被称为实测显著性水平。P值法的决策规则为:如果P值大
1.96) 中。这里−1.96和1.96 称为临界值,区间(−1.96, 1.96) 两侧的
区域则被称为拒绝域。基于样本信息,可以计算得到相应的z检验统计量
值,已知ҧ = 46,0 = 53, = 14 , n = 100 = −5
14/10
第四章 参数估计
《统计学》
14
5.1 假设检验的基本原理
犯第I 类(弃真) 错误的概率 也称为显著性水平(Significance level),

第五章假设检验与回归分析

第五章假设检验与回归分析

第五章假设检验与回归分析本章主要介绍了假设检验和回归分析两种统计方法。

一、假设检验假设检验是通过收集样本数据来对总体参数的假设进行推断的一种统计方法。

假设检验的步骤如下:1.建立原假设和备择假设:原假设是需要进行检验的参数的假设值,备择假设是对原假设的一种否定或补充。

通常将备择假设设置为我们要验证的假设。

2.收集样本数据:根据样本数据进行统计分析,并计算出检验统计量。

3.确定显著性水平:显著性水平是拒绝原假设的最大错误概率,通常取0.05或0.014.计算拒绝域的临界值:根据显著性水平和自由度,在统计表中查找检验统计量的临界值。

5.比较检验统计量和临界值:如果检验统计量落在拒绝域内,则拒绝原假设,否则接受原假设。

二、回归分析回归分析是一种用于研究两个或多个变量之间关系的统计方法。

它可以用来建立一个变量对另一个变量的预测模型。

回归分析的步骤如下:1.收集数据:根据需要收集自变量和因变量的数据。

2.建立模型:选择适当的回归模型,将自变量和因变量进行数学表达。

3.估计参数:使用最小二乘法等方法,对模型参数进行估计。

4.检验模型:通过检验模型的显著性水平,确定模型是否合理。

5.利用模型:使用估计的模型来进行预测和分析。

回归分析可以分为简单线性回归和多元线性回归两种。

简单线性回归是指只有一个自变量和一个因变量之间的关系,多元线性回归是指有多个自变量和一个因变量之间的关系。

回归分析的应用非常广泛,可以用于市场营销、财务管理、经济预测等领域。

通过回归分析,可以找到影响因变量的主要因素,并对未来的变化进行预测。

总之,假设检验和回归分析是统计学中两种重要的方法。

假设检验用于对总体参数的假设进行验证,回归分析用于研究变量之间的关系。

这两种方法在实际应用中具有广泛的价值。

第五章 假设检验

第五章 假设检验
6观察到的样本统计量 - 31
样本统计量
统计学
STATISTICS
显著性水平和拒绝域
(右侧检验 )
置信水平 拒绝H 拒绝H0
抽样分布
α
1-α
0
6 - 32
样本统计量 临界值
统计学
STATISTICS
决策规则
1. 给定显著性水平α,查表得出相应的临界 值zα或zα/2, tα或tα/2 2. 将检验统计量的值与α 水平的临界值进行 比较 3. 作出决策 双侧检验: 统计量I 临界值,拒绝H 双侧检验:I统计量I > 临界值,拒绝H0 左侧检验: 临界值,拒绝H 左侧检验:统计量 < -临界值,拒绝H0 右侧检验: 临界值,拒绝H 右侧检验:统计量 > 临界值,拒绝H0
6 - 23
统计学
STATISTICS
显著性水平和拒绝域 (双侧检验 )
置信水平 拒绝H 拒绝H0 1-α
抽样分布
拒绝H 拒绝H0
α/2
α/2
临界值
6 - 24
0
临界值
样本统计量
统计学
STATISTICS
显著性水平和拒绝域 (双侧检验 )
置信水平 拒绝H 拒绝H0 1-α
抽样分布
拒绝H 拒绝H0
H0:µ = 某一数值 指定为 = 号,即 ≤ 或 ≥ 例如, 3190( 例如, H0:µ = 3190(克)
6-9
统计学
STATISTICS
什么是备择假设 什么是备择假设
(alternative hypothesis)
1. 研究者想收集证据予以支持的假设 研究者想收集证据予以支持的假设 2. 也称“研究假设” 也称“研究假设” 3. 总是有符号 ≠, < 或 > 4. 表示为 H1 H1 : µ <某一数值,或µ >某一数值 某一数值, 例如, 例如, H1 : µ < 10cm,或µ >10cm 10cm, 10cm

第5章_假设检验

第5章_假设检验

面向21世纪 课程教材
第五章
假设检验
第二节
某研究者估计本市居民家庭电脑拥有率为30%。现随机调查了200个家庭,其 中68家拥有电脑。试问研究估计是否可信?( =10%) 提出假设:原假设:Ho:P=0.3; 备择假设:Ha:p≠0.3
样本比例 P=m/n=68/200=0.34 由于样本容量相当大,因此可近似采用Z检验法 p p0 0.34 0.3 z 1.194 p (1 p ) 0.34 0.66 n 200
面向21世纪 课程教材
第五章
假设检验
第二节
2.方差检验过程 (1)提出原假设Ho和备择假设Ha。
2 H0 : 2 0
2 Ha : 2 0
(2)构造检验统计量:
(n 1) s 2

2
~

2
(n-1)
2 2分布。 在Ho成立的条件下,统计量 服从自由度为n-1的
(3)确定显著性水平。 (4)规定决策规则。 在双侧检验的情况下,拒绝区域在两侧,如果检验统计量大于右侧临界 值,或小于左侧临界值,则拒绝原假设。若是单侧检验,拒绝区域分布 在一侧,具体左侧还是右侧,可根据备择假设Ha的情况而定。 (5)进行判断决策。
面向21世纪 课程教材
第五章
假设检验
第二节
某厂采用自动包装机分装产品,假定每包重量报从正态分 布,每包标准重量为1000克,某日随机抽查9包,测得样本 平均重量为986克,标准差为24克,试问在0.05的检验水平 上,能否认为这天自动包装机工作正常?
;H 根据题意,提出假设: H0 : 1000 1: 1000

面向21世纪 课程教材
第二节 总体均值、比例和 方差的假设检验

假设检验

假设检验

第五章假设检验本章介绍假设检验的基本概念以及参数检验与非参数检验的主要方法。

通过学习,要求:1.掌握统计检验的基本概念,理解该检验犯两类错误的可能;2.熟练掌握总体均值与总体成数指标的各种检验方法;包括:z 检验、t 检验和p-值检验;4.掌握基本的非参数检验方法,包括:符号检验、秩和检验与游程检验;5.能利用Excel 进行假设检验。

第一节假设检验概述一、假设检验的基本概念假设检验是统计推断的另一种方式,它与区间估计的差别主要在于:区间估计是用给定的大概率推断出总体参数的范围,而假设检验是以小概率为标准,对总体的状况所做出的假设进行判断。

假设检验与区间估计结合起来,构成完整的统计推断内容。

假设检验分为两类:一类是参数假设检验,另一类是非参数假设检验。

本章分别讨论这两类检验方法。

进行假设检验,首先要对总体的分布函数形式或分布的某些参数做出假设,然后再根据样本数据和“小概率原理”,对假设的正确性做出判断。

这种思维方法与数学里的“反证法”很相似,“反证法”先将要证明的结论假设为不正确的,作为进一步推论的条件之一使用,最后推出矛盾的结果,以此否定事先所作的假设。

反证法所认为矛盾的结论,也就是不可能发生的事件,这种事件发生的概率为零,该事件是不能接受的现实。

其实,我们在日常生活中,不仅不肯接受概率为0的事件,而且对小概率事件,也持否定态度。

比如,虽然偶尔也有媒体报导陨石降落的消息,但人们不必担心天空降落的陨石会砸伤自己。

所谓小概率原理,即指概率很小的事件在一次试验中实际上不可能出现。

这种事件称为“实际不可能事件”。

小概率的标准是多大?这并没有绝对的标准,一般我们以一个所谓显著性水平α(0<α<1)作为小概率的界限,α的取值与实际问题的性质有关。

所以,统计检验又称显著性检验。

下面通过一个具体例子说明假设检验是怎样进行的。

【例5-1】消费者协会接到消费者投诉,指控品牌纸包装饮料存在容量不足,有欺骗消费者之嫌。

第五章 假设检验

第五章  假设检验

• 设“| X -μ0 |≥K”为小概率事件,若给定α (α为很小的正数),K可由下式确定,令 • P{| X -μ0 | ≥ K }=α α为显著性水平 X 0 • T ~ t (n 1) t为检验统计量
s/ n
K X 0 于是, P{ X 0 K } P s/ n s/ n
K P{ X 0 K } P{ } s/ n s/ n P{T t (n 1)}

X 0

1- α
α
t α(n-1) 接受域 拒绝域
即t ≥t (n-1)时,拒绝H0,认为μ>μ0
类似地,检验-H0:μ≥μ0, H1:μ<μ0
P{T t (n 1)}
检验 小概率事件 发 生
提出原假设和备择假设
什么是原假设?(null hypothesis) 1. 待检验的假设,又称“0假设” 2. 研究者想收集证据予以反对的假设,或稳定、保守、 受到保护的经验看法 3. 总是有等号 , 或 4. 表示为 H0
– – –
H0: 某一数值 指定为 = 号,即 或 例如, H0: 250(克)
1、利用P 值进行决策
(1)单侧检验:若p值> ,不拒绝H0;若p值< , 拒绝H0。 (2)双侧检验:若p值> /2, 不拒绝H0;若p值< /2, 拒绝H0。 (在计算机软件中,通常只比较P同 的关系)
2、P 值检验法的优点
(1)结论对任何统计量均适用,不需要改变。 (2)在改变显著性水平时,无须重新计算p值。( 临界值法需要重新 计算临界值。)
抽样分布
拒绝域
置信水平

1- 接受域

第五章 对单个和两个总体平均数的假设检验

第五章  对单个和两个总体平均数的假设检验

2
df1
2
df 2
1
df1 df2
2
df1 df2
(n1 1)S12 (n2 1)S2 2 n1 n2 2 n1 n2 2
(x1 x1 )2 (x1 x1 )2
(n1 1) (n2 1)
SS1 SS2 df1 df2
魏泽辉讲义
3
一、方差已知时μ 的假设检验
例 :某猪场称该场的猪在体重为100kg时的平均背膘厚度 为9±0.32 mm2。问如何检验该场的说法是否真确?(已
知该场猪的背膘厚服从正态分布)
• 由该场随机抽取了10头猪,测得它们在体重为100kg时的 平均背膘厚为8.7mm。
• 1)提出假设
H0 : 0,
魏泽辉讲义
5
3)确定否定域并作统计推断
若取 =5%,则 1 P(u0.05 z u0.05 ) 0.0
否定域 接受域 否定域
2.5% 95%
2.5%
-1.96
1.96
z = -3.1623 < -1.96 (落入)
接受备择假设
结论:该场猪的平均背膘厚与9mm差异显著6
5.1.2 t检验:总体方差未知
H 0:1 2 即犊牛和成年母牛之间血液中血糖含量无差异; H A:1 2 即犊牛和成年母牛之间血液中血糖含量有差异。
(2)计算检验统计量


12


2 2

15.642 12.072=3.3054
( X1X2 )
n1 n2
31
48
Z X1 X 2 =81.23-70.43=3.27
x1 x2 (1 1) (2 2 ) (1 2 ) (1 2 )

统计学第5章 假设检验

统计学第5章 假设检验
第5章
假设检验
第 5 章
假设检验
• 5.1 假设检验的基本问题 • 5.2 一个总体参数的检验 • 5.3 两个总体参数的检验(自学)
5.1
假设检验的基本原理
一、假设的陈述 二、两类错误与显著性水平 三、统计量与拒绝域 四、利用P值进行决策
假设检验的基本概念
在实际工作中常会遇到这样的问题: (1)某药物在改进工艺后的疗效是否有提高? (2)假定总体服从某种分布是否成立? 如何通过抽检的样本对上述问题做出判断? 此时常常作出适当的假设,然后进行试验或 观测,得到统计样本,构造统计方法进行判断,以 决定是否接受这个假设。
1. 基本原理
小概率推断原理: 0 α 0.05 小概率事件 (概率接近0的事件),在一次试验中,实际上可认为 不会发生(这是人们长期积累起的普遍经验!).
2. 基本思想方法
采用概率性质的反证法: 先提出假设H0 , 再根 据一次抽样所得到的样本值进行计算. 若导致小 概率事件发生,则否认假设H0 ;否则,接受假设H0 . 下面结合实例来说明假设检验的基本思想.
H0 :π ≤30%
H1 :π >30%
提出假设 (练习)
• 某厂生产的化纤的纤度服从正态分布,纤 维纤度的标准均值为1.04。某天测得25根 纤维的纤度均值为x=1.39,检验与原来设 计的标准均值相比是否有所变化,要求的 显著性水平为α =0.05,则假设形式为: •
H0 :μ =1.04
H1 :μ ≠1.04
假设检验的基本思想
抽样分布 这个值不像 我们应该得 到的样本均 值 ... ... 如果这是 总体的假设 均值 = 50 H0
... 因此我们 拒绝假设 = 50
20

第五章假设检验

第五章假设检验

第五章假设检验5.1 现实中的统计案例一:时下不少大学生在一边学习的同时也不断寻找一些机会打些零工以赚点钱弥补学习和生活之需,这已经是学生们之间人所共知的事情。

这没有丝毫的让人好奇之处,让人好奇的是这些打工的学生究竟一个月平均能赚多少钱?假设有人说:这个数据是500元,你觉得信不信它呢?当然,你首先需要收集证据,没有证据是肯定说明不了任何问题的。

又假设有人通过组织调查取得过如下数据(调查到一共30人,单位:元):350 500 900 100 100 200 240 300 100 320450 260 650 380 290 400 800 400 250 400290 870 540 320 140 160 300 400 500 340 这时你该做何结论?就算是你得到以上数据的平均数等于423元,你是否就可以作出“是”或“不是”的回答?因为你要作出的回答是针对整个总体的,根据却又只是来自部分总体——即样本,所以事实上不论你最终作出的是“是”还是“不是”的回答,其实都存在犯错误的可能。

那么,如何以样本的数据去对总体参数下结论才最科学?才最不容易犯错误呢?这就是一个属于单个总体参数假设检验的问题了,是本章需要解决的问题。

案例二:你可能认为每一个美国人都知道像这样一些简单历史问题的答案“在美国国旗上有多少颗星?有多少条条纹?星代表什么?条纹又代表什么?”。

非常有意思的是,并非每一个人都知道问题的答案,而且当你知道问题的答案时,你也许会大吃一惊的。

1998年美国杂志《Today’s America》就确实做过这么一个调查,所得到的数据肯定多多少少会出乎很多人的意料之外。

下面就是按性别和美国地区列出的知道星的数目的成年人的百分比:男士女士大城市小城镇农村n(知道)72 72 57 56 31n(不知道)22 34 25 16 15在纽约的伊利县里200个成人被问及在美国国旗上有多少颗星。

上面的表现是属于每一类的成人的数目。

医学统计5第五章 假设检验

医学统计5第五章 假设检验

二、双侧检验和单侧检验
在进行t 检验时,如果其目的在于检验两个总体均数 是否相等,即为双侧检验。例如检验某种新降压药与常 用降压药效力是否相同?就是说,新药效力可能比旧药 好,也可能比旧药差,或者力相同,都有可能。
如果我们已知新药效力不可能低于旧药效力,例如 磺胺药+磺胺增效剂从理论上推知其效果不可能低于单用 磺胺药,这时,无效假设为H0, 备择假设为H1: 1>2 , 统计上称为单侧检验。
第五章 假设检验
一、假设检验的基本思想
例:已知一般中学男生的心率平均数为74次/分钟, 标准差为6次/分钟,为研究经常参加体育锻炼的中学 生心脏功能是否增强,在某地区随机抽取常年参加体 育锻炼的男生100名,求得心率平均数为65次/分钟。
如果一个事件发生的概率很小,那么在只进行一次试 验时这个事件是“不会发生的”,一旦发生了,称其 为小概率事件。统计类错误
设H0:=0,H1:>0, =0.05, 将拒绝了正确的无效假设 H0 称为I 类错误(type I error):也称为假阳性错误,当实际上真的为0,即H0: =0原本是正确的,但由于偶然因素的影响,随机抽样时, 得 到 一个较 大 的检验 统 计量 t 值 ,故 t t, 时 , 则 P0.05 时,按所取检验水准 只能拒绝H0,接受H1,结 论为>0, 由于拒绝了实际上是正确的H0,此推断结论当 然是错误的,即犯了I 型错误。I 型错误的概率是=0.05。
本例是均数的比较,是将常年参加体育锻炼心率平均 数为65次/分钟(它代表的总体有一总体均数)与一般中学 男生的心率平均数为74次/分钟。
研究者可能有两种目的: – ① 推断两个总体均数有无差别。不管是常年参加体育锻
炼心率高于一般,还是常年参加体育锻炼心率低于一般, 两种可能性都存在,研究者同等关心,应当用双侧检验。 – ② 根据专业知识,已知常年参加体育锻炼心率不会低于 一般,或是研究者只关心常年参加体育锻炼心率是否高 于一般,不关心常年参加体育锻炼心率是否低于一般, 应当用单侧检验。

第五章-假设检验

第五章-假设检验
建立的原假设与备择假设应为
H0: 1500 H1: 1500
1-29
第二十九页,编辑于星期五:十八点 三十四分。
单侧检验
(原假设与备择假设的确定)
一项研究表明,改进生产工艺后,会使 产品的废品率降低到2%以下。检验这 一结论是否成立
研究者总是想证明自己的研究结论(废品率 降低)是正确的
H0: 355 H1: 355
1-28
第二十八页,编辑于星期五:十八点 三十四分。
单侧检验
(原假设与备择假设的确定)
一项研究表明,采用新技术生产后,将 会使产品的使用寿命明显延长到1500小 时以上。检验这一结论是否成立
研究者总是想证明自己的研究结论(寿命延 长)是正确的
备择假设的方向为“>”(寿命延长)
假设其中真有99个白球,摸 出红球的概率只有 1/100 ,
这是小概率事件。
➢小概率事件在一次试验中竟然发生了,不能不 使人怀疑所作假设的正确性,因此可以认为这 个盒子应该不是装有99个白球的那个盒子。
这个例子中所使用的推理方法,称为“带概率性
质的反证法”,或“概率反证法”。
2022/8/9
1-11
抽样分布
拒绝域 /2
1 -
置信水平 拒绝域 /2
临界值
H0值 临界值
样本统计量
1-26
第二十六页,编辑于星期五:十八点 三十四分。
双侧检验 (显著性水平与拒绝域)
抽样分布
拒绝域 /2
1 -
置信水平 拒绝域 /2
临界值
H0值 临界值
样本统计量
1-27
第二十七页,编辑于星期五:十八点 三十四分。
单侧检验
第五章 假设检验
第一节 假设检验概述 第二节 总体参数检验 第三节 非参数检验
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

研究在无效假设 一个区间。
:1 = 2 成立的前提下,划出
u=( y - μ )/ x
P
(μ-1.96


x
y<μ+1.96
)x =0.95
P (μ-2.58 x≤
y<μ+2.58
)=0.99
x
图5-1
(三)根据“小概率事件实际不可能性原 理”否定或接受无效假设
在统计学上 ,把小概率事件在一次试验 中看成是实际上不可能发生的事件,称为小概 率事件实际不可能原理。根据这一原理,当试 验的表面效应是试验误差的概率小于0.05时 , 可以认为在一次试验中试验表面效应是试验误 差实际上是不可能的,
在上述显著性检验中,无效假设 H0:1 2
与备择假设 H A:1 2 。此时 ,备择假设中包
括了 1 2 或 1 2 两种可能。 这个
假设的目的在于判断有无差异, 而不考虑谁大谁 小。 如新品种和老品处两品种的产量,新品种可 能高于老品种, 也可能低于老品种。
此时,在α 水平上 否 定 域 为 ,U1 和U2 ,,对称地分配在 正态曲线的两侧尾
常用的有t 检验、F 检验和 2 检验等。尽管
这些检验方法的用途及使用条件不同,但其 检验的基本原理是相同的。其实质是在抽样 分布为已知的情况下,根据样本的信息来判 断总体是否具有某种指定的特征参数。
一、统计假设
某地区当地水稻良种的常年平均产量为 550kg/mu(总体),若一个新品种的多 点试验结果为600kg/mu,试问这一新品 种是否有应用价值?该品种的平均产量比当 地良种产量高600-550=50kg/mu。能否 仅凭这两个平均数的差值,立即得出结论呢? 统计学认为,这样得出的结论是不可靠的。 造成这种差异可能有两种原因,一是品种造 成的差异,另一可能是试验误差(或抽样误 差)。
对于一些试验条件不易控制, 试验误 差较大的试验,可将α值放宽到 0.1,甚至 放宽到0.25。
上一张 下一张 主 页 退 出
在提高显著水平,即减小α值时,为了减小犯 Ⅱ型错误的概率,可 适 当 增 大 样 本 含 量 。因
为 增 大 样 本 含 量 可 使 ( x1 x)2 分 布 的
论,其根本原因在于 试 验 误差(或抽
样误差)的不可避免性。
通过试验测定得到的每个观测值 yi ,既由 被测个体所属总体的特征决定,又受个体差 异和诸多无法控制的随机因素的影响。所以
观测值 xi由两部分组成,即
yi = + i
总体平均数 反映了总体特征,i 表示误
差。
若 样本含量 为n ,则 可 得 到 n 个 观 测
若无效假设H0为1 2 , 备择假设 HA 为1 2,此时H0的否定域在正态曲线的左
尾。在α水平上,H0的否定域为,左侧的概率 为α。如图4-15B所示。
这种利用一尾概率进行的检验叫单侧检 验也叫单尾检验。此时α为单侧检验的临界值。 显然,单侧检验的α =双侧检验的2α 。
由上可以看出,若对同一资料进行双侧 检验也进行单侧检验 ,那么在 α水平上单侧 检验显著, 只相当于双侧检验在 2α水平上 显著。 所以,同一资料双侧检验与单侧检验 所得的结论不一定相同。
因而否定原先所作的无效假设 H0 :
1 = 2,接受备择假设 H A :1



2

认为:试验的处理效应是存在的。当试验的
表面效应是试验误差的概率大于0.05时,
则说明 无效假设H0 :1 = 2 成立的可能性 大 ,不能被否定,因而也就不能接受备择
假设H A:1≠ 2。
三、双侧检验与单侧检验
这说明两个样本平均数之差( y1 - y2 )也包括了两部分:
一部分是两个总体平均数的差( - ),叫 做 试
验 的 处 理 效 应 (treatment effe1 ct)2 ;另一部分 是试验误差( - )。
1 2
也就是说样本平均数的差( y1 -y2 )包含 有试验误差,它只是试验的表面效应。因此,
例:设某地区的当地小麦品种一般产量为 300kg/mu,标准差为75kg(标准误为 15)。而现有某新品种通过25个小区的试 验,计得其样本平均数为330kg/mu,那 么新产品和老产品是否有差异? 1、计算概率: 假设 H0 :1 = 2 为正确的条件下。随机误 差小于30的概率为u=2,查表3得出P界于 0.04和0.05之间,即抽样误差的概率小于 5%。 2、计算接受区和否定区
效假设应为H 0:1


,即假设新技术与
2
常规技术药效是相同的 ,备 择 假设应
为 H A:1 2 ,即新配套技术的实施使
药效有所提高。
检验的目的在于推断实施新技术是否提高了
药效,这时H0的否定域在正态曲线的右尾。
在α水平上否定域为 U2 ,, 右侧的概率为α,
如图4-15A所示。
试验的表面效应:y1 - y2 =50mg/mu是试验 误差,处理无效,这种假设称为无效假设,
记作 H0 :1= 2或 1 2 0 。
无效假设是被检验的假设,通过检验可
能被接受,也可能被否定。提出H0 :1= 2或
1 - 2 =0的同时,相应地提出一对应假设,称
为备择假设,记作
仅凭( - y)1 就y2 对总体平均数 、1 是否2 相同下结论是不可靠的。只有通过显著性检
验才能从( - y)1 中y2 提取结论。
对( y1- y2 )进行显著性检验就是要分析: 试验的表面效应( - )主要由处理效 应( - )引起的 ,还y1是y主2 要由试验误差 所造成1 。2
虽然处理效应(1 -
H
。备择假设是在无效假
A
设被否定时准备接受的假设。
本例的备择假设是H
A
:1≠


2
1-
2≠0,
即假设老品种和新品种的总体平均数 与
1 不相2等或 与 1之差2 不等于零,亦即存在处 理效应,其意义是指试验的表面效应,除包
含试验误差外,还含有处理效应在内。
(二)在无效假设成立的前提下,构造合 适的统计量,并研究试验所得统计量的抽样 分布,计算无效假设正确的概率
部,每侧的概率为α/2,如图4-14所示。这 种利用两尾概率进行的检验叫 双侧检验 , 也叫双尾检验, U1、U2为双侧检验的临界 值。
但在有些情况下, 双侧检验不一定符
合实际情况。如采用某种新的配套技术措
施以期提高杀虫剂的杀虫效果,已知此种
配套技术的实施不会降低药效。此时,若
进行新技术与常规技术的比较试验,则无
因为显著性检验是根据 “小概率事件实 际不可能性原理”来否定或接受无效假设的, 所以不论是接受还是否定无效假设,都没有 100%的把握。也就是说,在检验无效假设 时可能犯两类错误。
第一类错误是真实情况为H0成立,却否定 了它,犯了“弃真”错误,也叫Ⅰ型错误。
Ⅰ型错误,就是把非真实差异错判为真实差
异,即 H0:1 2 为真 ,却接受 H A:1 2
自与H0 对应的抽样总体,但计算所得的统计量却落 入了否定域中,因而否定了H0,于是犯了Ⅰ型错误。
但犯这类错误的概率不会超过α 。
Ⅱ型错误发生的原因可以用图 4-16来说
明。图中左边曲线是 H0:1 2为真时,
( y1- y2)的分布密度曲线;
右边曲线是 H A:1 2为真时,(x1 - x2 )
样本,通过样本平均数研究其所代表的总体。
因此要以样本平均数 x 做为检验对象。
为什么以样本平均数作为检验对象呢? 这 是因为样本平均数具有下述特征:
1、离均差的平方和∑( yi - y)2最小。
说明样本平均数与样本各个观测值最接近,平 均数是资料的代表数。
2、样本平均数是总体平均数的无偏估计
值 ,即E( y )=μ。
3、根据统计学中心极限定理,样本平均 数服从或逼近正态分布。
所以,以样本平均数作为检验对象, 由两个样本平均数差异的大小去推断样 本所属总体平均数是否相同是有其依据 的。Βιβλιοθήκη 由上所述,一方面我们有依据由样
本平均数y1
和y 的差异来推断总体平均 2
数 1 、2 相同与否,另一方面又不能仅
据样本平均数表面上的差异直接作出结

)未知,但试验
2
的表面效应是可以计算的,借助数理统计
方法可以对试验误差作出估计。所以,可
从试验的表面效应与试验误差的权衡比较
中间接地推断处理效应是否存在,这就是
显著性检验的基本思想。
二、显著性检验的基本步骤
(一)首先对试验样本所在的总体作假设
这里假设 1 = 2 或 1 - 2=0,即假设老 品种和新品种的总体平均数相等,其意义是
双侧检验显著,单侧检验一定显著;但 单侧检验显著,双侧检验未必显著。
四、显著水平与两种类型的错误 在显著性检验中,否定或接受无效假设 的依据是“小概率事件实际不可能性原理”。 用来确定否定或接受无效假设的概率标准称 为 叫显著水平,记作α。在生物学研究中常 取α=0.05或α=0.01。
假设检验时选用的显著水平, 除α=0.05和 0.01 为常用外 ,也可选 α= 0.10 或 α=0.001 等等。到底选哪种显著水平, 应根据试验的要 求或试验结论的重要性而定。如果试验中难以控 制的因素较多 , 试验误差可能较大 ,则显著水 平可选低些 ,即α值取大些。反之 ,如试验耗 费较大 , 对精确度的要求较高, 不容许反复 , 或者试验结论的应用事关重大,则所选显著水平 应高些,即α值应该小些。显著水平α对假设检 验的结论是有直接影响的,所以它应在试验开始 前即确定下来。
1 2

由于 值的大小与α值的大小有关,所
以在选用检验的显著水平时应考虑到犯Ⅰ、 Ⅱ型错误所产生后果严重性的大小,还应 考虑到试验的难易及试验结果的重要程度。
相关文档
最新文档