相似三角形法分析动态平衡问题
相似三角形法分析动态平衡问题
![相似三角形法分析动态平衡问题](https://img.taocdn.com/s3/m/3a901a16cfc789eb172dc8c8.png)
静力学解题方法2——相似三角形法(非常好的方法,仔细分析例题,静力学受力分析三大方法之一)(1)相似三角形:正确作出力的三角形后,如能判定力的三角形与图形中已知长度的三角形(几何三角形)相似,则可用相似三角形对应边成比例求出三角形中力的比例关系,从而达到求未知量的目的。
(2)往往涉及三个力,其中一个力为恒力,另两个力的大小和方向均发生变化,则此时用相似三角形分析。
相似三角形法是解平衡问题时常遇到的一种方法,解题的关键是正确的受力分析,寻找力三角形和结构三角形相似。
例1、半径为R 的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B 的距离为h ,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮后用力拉住,使小球静止,如图1-1所示,现缓慢地拉绳,在使小球由A 到B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化的情况是( )A 、N 变大,T 变小B 、N 变小,T 变大C 、N 变小,T 先变小后变大D 、N 不变,T 变小解析:如图1-2所示,对小球:受力平衡,由于缓慢地拉绳,所以小球运动缓慢视为始终处于平衡状态,其中重力mg 不变,支持力N ,绳子的拉力T 一直在改变,但是总形成封闭的动态三角形(图1-2中小阴影三角形)。
由于在这个三角形中有四个变量:支持力N 的大小和方向、绳子的拉力T 的大小和方向,所以还要利用其它条件。
实物(小球、绳、球面的球心)形成的三角形也是一个动态的封闭三角形(图1-2中大阴影三角形),并且始终与三力形成的封闭三角形相似,则有如下比例式:RNR h mg L T =+= 可得:mg Rh LT +=运动过程中L 变小,T 变小。
mg Rh RN +=运动中各量均为定值,支持力N 不变。
正确答案D 。
例2、如图2-1所示,竖直绝缘墙壁上的Q 处由一固定的质点A ,在Q 的正上方的P 点用细线悬挂一质点B ,A 、B 两点因为带电而相互排斥,致使悬线与竖直方向成θ角,由于漏电使A 、B 两质点的电量逐渐减小,在电荷漏空之前悬线对悬点P 的拉力T 大小( )A 、T 变小B 、T 变大C 、T 不变D 、T 无法确定解析:有漏电现象,AB F 减小,则漏电瞬间质点B 的静止状态被打破,必定向下运动。
动态平衡问题(含解析)
![动态平衡问题(含解析)](https://img.taocdn.com/s3/m/e2e21d568f9951e79b89680203d8ce2f006665e0.png)
动态平衡问题 类型一 动态平衡问题1.动态平衡是指物体的受力状态缓慢发生变化,但在变化过程中,每一个状态均可视为平衡状态.2.常用方法 (1)解析法对研究对象进行受力分析,画出受力示意图,根据物体的平衡条件列方程,得到因变量与自变量的函数表达式(通常为三角函数关系),最后根据自变量的变化确定因变量的变化. (2)图解法此法常用于求解三力平衡问题中,已知一个力是恒力、另一个力方向不变的情况.一般按照以下流程分析: 受力分析―――――――→化“动”为“静”画不同状态下的平衡图――――――→“静”中求“动”确定力的变化 (3)相似三角形法在三力平衡问题中,如果有一个力是恒力,另外两个力方向都变化,且题目给出了空间几何关系,多数情况下力的矢量三角形与空间几何三角形相似,可利用相似三角形对应边成比例求解(构建三角形时可能需要画辅助线).题型例析1 图解法例1 (多选)如图所示,在倾角为α的斜面上,放一质量为m 的小球,小球和斜面及挡板间均无摩擦,当挡板绕O 点逆时针缓慢地转向水平位置的过程中( )A.斜面对球的支持力逐渐增大B.斜面对球的支持力逐渐减小C.挡板对小球的弹力先减小后增大D.挡板对小球的弹力先增大后减小 题型例析2 解析法例2 (2020·广东中山市月考)如图,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为F N1,木板对球的压力大小为F N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置.不计一切摩擦,在此过程中( )A.F N1先增大后减小,F N2始终减小B.F N1先增大后减小,F N2先减小后增大C.F N1始终减小,F N2始终减小D.F N1始终减小,F N2始终增大题型例析3相似三角形法例3(2020·山西大同市开学考试)如图所示,AC是上端带光滑轻质定滑轮的固定竖直杆,质量不计的轻杆BC一端通过铰链固定在C点,另一端B悬挂一重力为G的物体,且B端系有一根轻绳并绕过定滑轮,用力F拉绳,开始时∠BCA>90°,现使∠BCA缓慢变小,直到∠BCA=30°.此过程中,轻杆BC所受的力()A.逐渐减小B.逐渐增大C.大小不变D.先减小后增大变式训练1(单个物体的动态平衡问题)(多选)(2020·广东惠州一中质检)如图所示,在粗糙水平地面上放着一个截面为四分之一圆弧的柱状物体A,A的左端紧靠竖直墙,A与竖直墙之间放一光滑圆球B,已知A的圆半径为球B的半径的3倍,球B所受的重力为G,整个装置处于静止状态.设墙壁对B的支持力为F1,A对B的支持力为F2,若把A向右移动少许后,它们仍处于静止状态,则F1、F2的变化情况分别是()A.F1减小B.F1增大C.F2增大D.F2减小变式训练2(多个物体的动态平衡问题)(多选)(2019·全国卷Ⅰ·19)如图所示,一粗糙斜面固定在地面上,斜面顶端装有一光滑定滑轮.一细绳跨过滑轮,其一端悬挂物块N,另一端与斜面上的物块M相连,系统处于静止状态.现用水平向左的拉力缓慢拉动N,直至悬挂N的细绳与竖直方向成45°.已知M始终保持静止,则在此过程中()A.水平拉力的大小可能保持不变B.M所受细绳的拉力大小一定一直增加C.M所受斜面的摩擦力大小一定一直增加D.M所受斜面的摩擦力大小可能先减小后增加类型二平衡中的临界、极值问题1.临界问题当某物理量变化时,会引起其他几个物理量的变化,从而使物体所处的平衡状态“恰好出现”或“恰好不出现”,在问题的描述中常用“刚好”“恰能”“恰好”等.临界问题常见的种类:(1)由静止到运动,摩擦力达到最大静摩擦力.(2)绳子恰好绷紧,拉力F=0.(3)刚好离开接触面,支持力F N=0.2.极值问题平衡中的极值问题,一般指在力的变化过程中的最大值和最小值问题.3.解题方法(1)极限法:首先要正确地进行受力分析和变化过程分析,找出平衡的临界点和极值点;临界条件必须在变化中去寻找,不能停留在一个状态来研究临界问题,而要把某个物理量推向极端,即极大和极小.(2)数学分析法:通过对问题的分析,根据物体的平衡条件写出物理量之间的函数关系(或画出函数图象),用数学方法求极值(如求二次函数极值、公式极值、三角函数极值).(3)物理分析方法:根据物体的平衡条件,作出力的矢量图,通过对物理过程的分析,利用平行四边形定则进行动态分析,确定最大值与最小值.例4(2020·广东茂名市测试)如图所示,质量分别为3m和m的两个可视为质点的小球a、b,中间用一细线连接,并通过另一细线将小球a与天花板上的O点相连,为使小球a和小球b均处于静止状态,且Oa 细线向右偏离竖直方向的夹角恒为37°,需要对小球b朝某一方向施加一拉力F.若已知sin 37°=0.6,cos 37°=0.8.重力加速度为g,则当F的大小达到最小时,Oa细线对小球a的拉力大小为()A.2.4mgB.3mgC.3.2mgD.4mg例5如图所示,质量为m的物体放在一固定斜面上,当斜面倾角为30°时恰能沿斜面匀速下滑.对物体施加一大小为F、方向水平向右的恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力F多大,都不能使物体沿斜面向上滑行,求:(1)物体与斜面间的动摩擦因数;(2)这一临界角θ0的大小.跟踪训练1.(2020·河南驻马店市第一学期期终)质量为m的物体用轻绳AB悬挂于天花板上,用水平力F拉着绳的中点O,使OA段绳偏离竖直方向一定角度,如图所示.设绳OA段拉力的大小为F T,若保持O点位置不变,则当力F的方向顺时针缓慢旋转至竖直方向的过程中()A.F先变大后变小,F T逐渐变小B.F先变大后变小,F T逐渐变大C.F先变小后变大,F T逐渐变小D.F先变小后变大,F T逐渐变大2.(多选)如图所示,质量均为m的小球A、B用劲度系数为k1的轻弹簧相连,B球用长为L的细绳悬挂于O 点,A球固定在O点正下方,当小球B平衡时,细绳所受的拉力为F T1,弹簧的弹力为F1;现把A、B间的弹簧换成原长相同但劲度系数为k2(k2>k1)的另一轻弹簧,在其他条件不变的情况下仍使系统平衡,此时细绳所受的拉力为F T2,弹簧的弹力为F2.则下列关于F T1与F T2、F1与F2大小的比较,正确的是()A.F T1>F T2B.F T1=F T2C.F1<F2D.F1=F23.(多选)(2016·全国卷Ⅰ·19)如图,一光滑的轻滑轮用细绳OO′悬挂于O点;另一细绳跨过滑轮,其一端悬挂物块a,另一端系一位于水平粗糙桌面上的物块b.外力F向右上方拉b,整个系统处于静止状态.若F方向不变,大小在一定范围内变化,物块b仍始终保持静止,则()A.绳OO′的张力也在一定范围内变化B.物块b所受到的支持力也在一定范围内变化C.连接a和b的绳的张力也在一定范围内变化D.物块b与桌面间的摩擦力也在一定范围内变化4.(2020·安徽黄山市高三期末)如图所示,在水平放置的木棒上的M、N两点,系着一根不可伸长的柔软轻绳,绳上套有一光滑小金属环.现将木棒绕其左端逆时针缓慢转动一个小角度,则关于轻绳对M、N两点的拉力F1、F2的变化情况,下列判断正确的是()A.F1和F2都变大B.F1变大,F2变小C.F1和F2都变小D.F1变小,F2变大5.(2020·广东高三模拟)如图所示,竖直墙上连有细绳AB,轻弹簧的一端与B相连,另一端固定在墙上的C 点.细绳BD与弹簧拴接在B点,现给BD一水平向左的拉力F,使弹簧处于伸长状态,且AB、CB与墙的夹角均为45°.若保持B点不动,将BD绳绕B点沿顺时针方向缓慢转动,则在转动过程中BD绳的拉力F的变化情况是()A.变小B.变大C.先变小后变大D.先变大后变小6.(2020·河南信阳市高三上学期期末)如图所示,足够长的光滑平板AP与BP用铰链连接,平板AP与水平面成53°角固定不动,平板BP可绕水平轴在竖直面内自由转动,质量为m的均匀圆柱体O放在两板间,sin 53°=0.8,cos 53°=0.6,重力加速度为g.在使BP板由水平位置缓慢转动到竖直位置的过程中,下列说法正确的是()A.平板AP受到的压力先减小后增大B.平板AP受到的压力先增大后减小C.平板BP受到的最小压力为0.6mg7.(2020·黑龙江哈尔滨市三中高三模拟)如图所示,斜面固定,平行于斜面处于压缩状态的轻弹簧一端连接物块A,另一端固定,最初A静止.在A上施加与斜面成30°角的恒力F,A仍静止,下列说法正确的是()A.A对斜面的压力一定变小B.A对斜面的压力可能不变C.A对斜面的摩擦力一定变大D.A对斜面的摩擦力可能变为零8.(多选)如图所示,倾角为α的粗糙斜劈放在粗糙水平面上,物体a放在斜劈的斜面上,轻质细线一端固定在物体a上,另一端绕过光滑的定滑轮1固定在c点,滑轮2下悬挂物体b,系统处于静止状态.若将固定点c向右移动少许,而物体a与斜劈始终静止,则()A.细线对物体a的拉力增大B.斜劈对地面的压力减小C.斜劈对物体a的摩擦力减小D.地面对斜劈的摩擦力增大9.(多选)(2019·河北唐山一中综合测试)如图所示,带有光滑竖直杆的三角形斜劈固定在水平地面上,放置于斜劈上的光滑小球与套在竖直杆上的小滑块用轻绳连接,开始时轻绳与斜劈平行.现给小滑块施加一竖直向上的拉力,使小滑块沿杆缓慢上升,整个过程中小球始终未脱离斜劈,则有()A.轻绳对小球的拉力逐渐增大B.小球对斜劈的压力先减小后增大C.竖直杆对小滑块的弹力先增大后减小D.对小滑块施加的竖直向上的拉力逐渐增大10.(多选)如图所示装置,两根细绳拴住一小球,保持两细绳间的夹角θ=120°不变,若把整个装置顺时针缓慢转过90°,则在转动过程中,CA绳的拉力F1、CB绳的拉力F2的大小变化情况是()A.F1先变小后变大B.F1先变大后变小C.F2一直变小D.F2最终变为零11.倾角为θ=37°的斜面与水平面保持静止,斜面上有一重为G的物体A,物体A与斜面间的动摩擦因数μ=0.5.现给A施加一水平力F,如图所示.设最大静摩擦力与滑动摩擦力相等(sin 37°=0.6,cos 37°=0.8),如果物体A能在斜面上静止,水平推力F与G的比值不可能是()A.3B.2C.1D.0.512.(2020·山西“六校”高三联考)跨过定滑轮的轻绳两端分别系着物体A和物体B,物体A放在倾角为θ的斜面上,与A相连的轻绳和斜面平行,如图所示.已知物体A的质量为m,物体A与斜面间的动摩擦因数为μ(μ<tan θ),滑轮的摩擦不计,要使物体A静止在斜面上,求物体B的质量的取值范围(最大静摩擦力等于滑动摩擦力).参考答案类型一动态平衡问题题型例析1图解法例1【答案】BC【解析】对小球受力分析知,小球受到重力mg、斜面的支持力F N1和挡板的弹力F N2,如图,当挡板绕O 点逆时针缓慢地转向水平位置的过程中,小球所受的合力为零,根据平衡条件得知,F N1和F N2的合力与重力mg大小相等、方向相反,作出小球在三个不同位置力的受力分析图,由图看出,斜面对小球的支持力F N1逐渐减小,挡板对小球的弹力F N2先减小后增大,当F N1和F N2垂直时,弹力F N2最小,故选项B、C正确,A、D错误.故选BC。
图解法、相似三角形法解决动态平衡问题
![图解法、相似三角形法解决动态平衡问题](https://img.taocdn.com/s3/m/d31219d2941ea76e59fa0410.png)
.A. T、NC.小球作用于板的压力可能小于球所受的重力D.小球对板的压力不可能小于球所受的重力一个截面是直角三角形的木块放在水平地面上,在斜面上放一个光滑球,所示。
若在光滑球的最高点再施加一个竖直向下的力.保持静止,则在加入砂子的过程中A.球B对墙的压力减小C.地面对物体A的摩擦力减小..21.AB与BC所受的拉力大小;22.若将C点逐渐上移,同时将BC线逐渐放长,而保持AB的方向不变,在此过程中AB与BC中的张力大小如何变化?如图所示,有倾角为30°的光滑斜面上放一质量为2kg的小球,球被竖直挡板挡住,若斜面足够长,g取10m/s2,求:23.球对挡板的压力大小。
24.撤去挡板,2s末小球的速度大小。
25.如图1所示,电灯悬挂于两干墙之间,使连接点A上移,但保持O点位置不变,则在A点向上移动的过程中,绳OA、OB的拉力如何变化?图1.参考答案1. B【解析】以结点O为研究对象进行受力分析如图(a)。
由题可知,O点处于动态平衡,则可作出三力的平衡关系图如图(a)。
由图可知水平拉力增大。
以环、绳和小球构成的整体作为研究对象,作受力分析图如图(b)。
由整个系统平衡可知:F N=(mA+mB)g;Ff=F。
即F f增大,F N不变,故B正确。
2.A【解析】3. BC【解析】本题考查受力分析及整体法和隔离体法.以两环和小球整体为研究对象,在竖直方向始终有FN=Mg+2mg,选项C对A错;设绳子与水平横杆间的夹角为θ,设绳子拉力为T,以小球为研究对象,竖直方向有,2Tsinθ=Mg,以小环为研究对象,水平方向有,Ff=Tcosθ,由以上两式联立解得Ff=(Mgcotθ)/2,当两环间距离增大时,θ角变小,则Ff增大,选项B对D错.4.D【解析】球形物体处于静止状态,故其合外力为零,以球形物体为研究对象,受力如图所示,本题中由于球形物体的重力是不变的,而斜面对球形物体的支持力的方向是不变的,由共点力的平衡条件可知:支持力与绳的拉力的合力与重力等大反向,则绳的拉力的变化如右图所示,故绳的拉力先减小后增大,故D对。
高一力学动态平衡—相似三角形、动态三角形
![高一力学动态平衡—相似三角形、动态三角形](https://img.taocdn.com/s3/m/e30be0de03d276a20029bd64783e0912a2167cc6.png)
高一力学动态平衡—相似三角形、动态三角形在高一力学的学习中,动态平衡问题是一个重要且具有一定难度的知识点。
其中,相似三角形和动态三角形的方法在解决这类问题时常常能发挥关键作用。
我们先来理解一下什么是动态平衡。
简单来说,动态平衡就是指物体在运动过程中,其合力始终为零,保持平衡状态,但某些力的大小、方向在不断变化。
想象一个用绳子悬挂的物体,绳子的长度不变,但悬挂点在移动,这就是一种动态平衡的情况。
相似三角形法在处理动态平衡问题时,基于的原理是在力的矢量三角形与几何三角形相似的情况下,对应边成比例。
这意味着我们可以通过几何关系来确定力的变化情况。
比如说,有一个物体放在斜面上,用一个力 F 沿着斜面向上推,同时受到斜面的支持力 N 和重力 G 的作用。
我们可以分别画出力的矢量三角形和由物体、斜面构成的几何三角形。
如果这两个三角形相似,那么力之间的比例关系就与三角形边的比例关系相同。
举个具体的例子吧。
一个光滑的圆球放在一个斜面上,被一根细绳斜拉着处于静止状态。
我们画出圆球受到的重力 G、绳子的拉力 T 和斜面的支持力 N 所构成的矢量三角形。
同时,观察圆球、绳子与斜面接触点以及斜面顶点构成的几何三角形。
如果这两个三角形相似,那么我们就可以根据边的比例关系来判断力的大小变化。
再来看动态三角形法。
这种方法主要用于一个力的大小和方向不变,另一个力的方向不变,第三个力大小和方向都在变化的情况。
比如,还是一个物体放在斜面上,重力大小和方向不变,斜面的支持力方向不变,而施加在物体上的一个外力的大小和方向都在改变。
我们可以通过平移力的矢量,构建一个动态的三角形来分析力的变化。
具体来讲,我们先画出重力,然后根据支持力的方向画出支持力,再把外力的起始点与重力的末端连接起来,这样就构成了一个三角形。
随着外力的变化,这个三角形的形状也在改变,但我们可以通过其中一些不变的条件来分析力的变化规律。
比如说,当外力与支持力垂直时,外力取得最小值。
(完整版)相似三角形法分析动态平衡问题)
![(完整版)相似三角形法分析动态平衡问题)](https://img.taocdn.com/s3/m/8e55b99af78a6529657d5345.png)
相似三角形法分析动态平衡问题(1)相似三角形:正确作出力的三角形后,如能判定力的三角形与图形中已知长度的三角形(几何三角形)相似,则可用相似三角形对应边成比例求出三角形中力的比例关系,从而达到求未知量的目的。
(2)往往涉及三个力,其中一个力为恒力,另两个力的大小和方向均发生变化,则此时用相似三角形分析。
相似三角形法是解平衡问题时常遇到的一种方法,解题的关键是正确的受力分析,寻找力三角形和结构三角形相似。
例1、半径为R 的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B 的距离为h ,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮后用力拉住,使小球静止,如图1-1所示,现缓慢地拉绳,在使小球由A 到B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化的情况是( )A 、N 变大,T 变小B 、N 变小,T 变大C 、N 变小,T 先变小后变大D 、N 不变,T 变小解析:如图1-2所示,对小球:受力平衡,由于缓慢地拉绳,所以小球运动缓慢视为始终处于平衡状态,其中重力mg 不变,支持力N ,绳子的拉力T 一直在改变,但是总形成封闭的动态三角形(图1-2中小阴影三角形)。
由于在这个三角形中有四个变量:支持力N 的大小和方向、绳子的拉力T 的大小和方向,所以还要利用其它条件。
实物(小球、绳、球面的球心)形成的三角形也是一个动态的封闭三角形(图1-2中大阴影三角形),并且始终与三力形成的封闭三角形相似,则有如下比例式:RNR h mg L T =+= 可得:mg Rh LT +=运动过程中L 变小,T 变小。
mg Rh RN +=运动中各量均为定值,支持力N 不变。
正确答案D 。
例2、如图2-1所示,竖直绝缘墙壁上的Q 处由一固定的质点A ,在Q 的正上方的P 点用细线悬挂一质点B ,A 、B 两点因为带电而相互排斥,致使悬线与竖直方向成θ角,由于漏电使A 、B 两质点的电量逐渐减小,在电荷漏空之前悬线对悬点P 的拉力T 大小( ) A 、T 变小B 、T 变大C 、T 不变D 、T 无法确定解析:有漏电现象,AB F 减小,则漏电瞬间质点B 的静止状态被打破,必定向下运动。
物理相似三角形法原理
![物理相似三角形法原理](https://img.taocdn.com/s3/m/fe83b53d178884868762caaedd3383c4bb4cb48e.png)
物理相似三角形法原理物理相似三角形法是一种在受力分析中常用的方法,尤其在解决动态平衡问题时具有很大的优势。
这种方法利用相似三角形的性质,将复杂的受力问题转化为简单的几何问题,从而更容易地求解力的大小和方向。
下面将对物理相似三角形法的原理进行详细介绍。
一、相似三角形的定义和性质在几何学中,如果两个三角形的对应角相等,那么这两个三角形就是相似的。
相似三角形的边长成比例,即它们的任意两边之比相等。
这个性质是相似三角形法在物理中应用的基础。
二、物理相似三角形法的原理在物理中,尤其在受力分析中,我们常常遇到需要求解多个力的大小和方向的问题。
在某些情况下,这些力构成的矢量三角形与一个几何三角形相似。
此时,我们可以利用相似三角形的性质,将复杂的受力问题转化为简单的几何问题,从而更容易地求解力的大小和方向。
物理相似三角形法的原理主要包括以下几点:1. 矢量三角形与几何三角形相似:在受力分析中,如果存在一个几何三角形,它的边长表示已知力的大小和方向,那么与这个几何三角形相似的矢量三角形就可以用来表示待求解的力的大小和方向。
2. 利用相似三角形的边长比例求解力的大小:由于相似三角形的边长成比例,我们可以通过已知的力的大小和方向,以及相似三角形的边长比例,求解待求解的力的大小。
3. 利用相似三角形的对应角求解力的方向:相似三角形的对应角相等,因此我们可以通过已知的力的方向和相似三角形的对应角,求解待求解的力的方向。
三、物理相似三角形法的应用物理相似三角形法在解决动态平衡问题时具有很大的优势。
例如,在求解悬挂物体的受力问题时,我们可以利用相似三角形法将问题转化为一个简单的几何问题,从而更容易地求解力的大小和方向。
另外,在求解弹性绳的受力问题时,相似三角形法也可以起到化繁为简的作用。
动态平衡—矢量三角形和相似三角形
![动态平衡—矢量三角形和相似三角形](https://img.taocdn.com/s3/m/74985b9e900ef12d2af90242a8956bec0975a52a.png)
动态平衡—矢量三角形和相似三角形在物理学中,动态平衡是一个十分重要的概念。
当一个物体所受的合力为零,但力的大小或方向在不断变化时,我们就说这个物体处于动态平衡状态。
而在解决动态平衡问题时,矢量三角形和相似三角形是两个非常有用的工具。
让我们先来理解一下什么是矢量。
矢量是既有大小又有方向的物理量,比如力、速度、位移等。
而矢量三角形,就是用三角形的三条边来分别表示三个矢量的大小和方向。
想象一个物体在三个力的作用下处于平衡状态。
这三个力可以用矢量来表示,并且首尾相接可以构成一个封闭的三角形。
当其中某个力的大小或方向发生变化时,我们通过调整三角形的形状来反映这种变化,从而找到新的平衡状态。
比如,有一个用绳子悬挂的小球,受到重力、绳子的拉力和水平风力的作用。
当风力逐渐增大时,我们可以通过画出不同时刻的矢量三角形,清晰地看到绳子拉力和风力的变化情况。
那么相似三角形又是怎么在动态平衡中发挥作用的呢?相似三角形指的是对应角相等,对应边成比例的两个三角形。
在处理动态平衡问题时,如果存在一个力三角形与一个几何三角形相似,那么我们就可以利用相似三角形的对应边成比例这一性质来求解。
比如说,有一个轻杆一端固定,另一端连着一个小球,小球在一个倾斜的光滑面上运动。
我们可以发现力的三角形和由轻杆、斜面构成的几何三角形相似。
通过这种相似关系,就能得出力的大小与几何长度之间的比例关系,进而求解力的变化。
为了更深入地理解这两个工具的应用,让我们来看几个具体的例子。
例一:一个重物通过两根细绳悬挂在天花板上,两细绳与天花板的夹角分别为 30°和 60°。
现在保持其中一根细绳的方向不变,逐渐改变另一根细绳的长度,使重物始终处于平衡状态。
在这个过程中,两根细绳拉力的变化情况如何?我们可以先画出初始状态下的矢量三角形,然后根据条件改变其中一个力的大小或方向,观察矢量三角形的变化。
通过这种直观的方式,就能清楚地看到拉力的变化趋势。
相似三角形法分析动态平衡问题含答案
![相似三角形法分析动态平衡问题含答案](https://img.taocdn.com/s3/m/4cf645e8e2bd960590c677da.png)
相似三角形法分析动态平衡问题(1)相似三角形:正确作出力的三角形后,如能判定力的三角形与图形中已知长度的三角形(几何三角形)相似,则可用相似三角形对应边成比例求出三角形中力的比例关系,从而达到求未知量的目的。
(2)往往涉及三个力,其中一个力为恒力,另两个力的大小和方向均发生变化,则此时用相似三角形分析。
相似三角形法是解平衡问题时常遇到的一种方法,解题的关键是正确的受力分析,寻找力三角形和结构三角形相似。
1、半径为R 的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B 的距离为h ,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮后用力拉住,使小球静止,如图1-1所示,现缓慢地拉绳,在使小球由A 到B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化的情况是( )A 、N 变大,T 变小B 、N 变小,T 变大C 、N 变小,T 先变小后变大D 、N 不变,T 变小解析:如图1-2所示,对小球:受力平衡,由于缓慢地拉绳,所以小球运动缓慢视为始终处于平衡状态,其中重力mg 不变,支持力N ,绳子的拉力T 一直在改变,但是总形成封闭的动态三角形(图1-2中小阴影三角形)。
由于在这个三角形中有四个变量:支持力N 的大小和方向、绳子的拉力T 的大小和方向,所以还要利用其它条件。
实物(小球、绳、球面的球心)形成的三角形也是一个动态的封闭三角形(图1-2中大阴影三角形),并且始终与三力形成的封闭三角形相似,则有如下比例式:RN R h mg L T =+= 可得:mg Rh LT +=运动过程中L 变小,T 变小。
mg Rh RN +=运动中各量均为定值,支持力N 不变。
正确答案D 。
2、如图2-1所示,竖直绝缘墙壁上的Q 处由一固定的质点A ,在Q 的正上方的P 点用细线悬挂一质点B ,A 、B 两点因为带电而相互排斥,致使悬线与竖直方向成θ角,由于漏电使A 、B 两质点的电量逐渐减小,在电荷漏空之前悬线对悬点P 的拉力T 大小( )A 、T 变小B 、T 变大C 、T 不变D 、T 无法确定解析:有漏电现象,AB F 减小,则漏电瞬间质点B 的静止状态被打破,必定向下运动。
高一力学动态平衡—相似三角形、动态三角形
![高一力学动态平衡—相似三角形、动态三角形](https://img.taocdn.com/s3/m/8d74199fc9d376eeaeaad1f34693daef5ef713f5.png)
高一力学动态平衡—相似三角形、动态三角形在高一力学的学习中,动态平衡问题是一个重点也是一个难点。
其中,相似三角形和动态三角形的方法在解决这类问题时常常能发挥出奇妙的作用。
接下来,让我们一起深入探讨这两个重要的解题技巧。
首先,我们来了解一下什么是力学中的动态平衡。
简单来说,动态平衡就是指物体在运动过程中,其所受的合力始终为零,处于平衡状态,但某些力的大小、方向或者作用点在不断变化。
相似三角形法,其核心在于构建一个由力的矢量三角形和一个几何三角形相似的模型。
为什么能这样做呢?这是因为在很多情况下,当物体处于动态平衡时,力的矢量三角形与某个几何三角形存在着相似关系。
比如说,有一个用轻绳悬挂的小球,绳子一端固定在天花板上,另一端连着小球。
当小球在一个倾斜的光滑平面上缓慢移动时,我们就可以通过相似三角形来求解力的变化。
我们画出小球所受的重力、绳子的拉力以及平面的支持力,构成一个力的矢量三角形。
然后,再找到一个与之相似的几何三角形。
通过相似三角形对应边成比例的关系,我们就能得出各个力之间的比例关系,从而随着角度或者长度的变化,求出力的大小变化。
再来看动态三角形法。
动态三角形法主要是利用力的矢量三角形中,一个力的大小和方向不变,另一个力的方向不变,通过第三个力的变化来判断物体的平衡状态。
举个例子,一个物体放在粗糙斜面上,受到重力、斜面的支持力和摩擦力。
重力大小和方向不变,支持力方向不变。
当物体向上缓慢移动时,摩擦力逐渐增大。
我们通过画出力的矢量三角形,直观地看到第三个力的变化。
在实际解题过程中,怎么判断该用相似三角形法还是动态三角形法呢?这需要我们对题目中的条件进行仔细分析。
如果题目中给出了一些长度或者角度的关系,并且能够找到与之相似的几何图形,那么相似三角形法可能更合适。
而如果题目中明确有一个力大小方向不变,另一个力方向不变,那么动态三角形法往往能派上用场。
为了更好地掌握这两种方法,我们来做几道例题。
例题一:如图所示,一光滑小球放在固定的斜面上,用一竖直挡板挡住小球使其处于静止状态。
五动态平衡与相似三角形典例分析
![五动态平衡与相似三角形典例分析](https://img.taocdn.com/s3/m/90b8f9352bf90242a8956bec0975f46527d3a79f.png)
五、动态平衡分析(一)共点力的平衡(一)共点力的平衡 1.共点力:物体受到的各力的作用线或作用线的延长线能相交于一点的力. 2.平衡状态:在共点力的作用下,物体处于静止或匀速直线运动的状态. 3.共点力作用下物体的平衡条件:合力为零,即=合F 0. 4.力的平衡:作用在物体上几个力的合力为零,这种情形叫做力的平衡. (1)(1)若处于平衡状态的物体仅受两个力作用,这两个力一定大小相若处于平衡状态的物体仅受两个力作用,这两个力一定大小相等、方向相反、作用在一条直线上,即二力平衡等、方向相反、作用在一条直线上,即二力平衡. .(2)(2)若处于平衡状态的物体受三个力作用,则这三个力中的任意两若处于平衡状态的物体受三个力作用,则这三个力中的任意两个力的合力一定与另一个力大小相等、方向相反、作用在一条直线上线上. .(3)若处于平衡状态的物体受到三个或三个以上的力的作用,则宜用正交分解法处理,此时的平衡方程可写成:îíì=S =S 00y x F F(二)物体的动态平衡问题物体在几个力的共同作用下处于平衡状态,如果其中的某个力(或某几个力)的大小或方向,发生变化时,物体受到的其它力也会随之发生变化,会随之发生变化,如果在变化的过程中物体仍能保持平衡状态,如果在变化的过程中物体仍能保持平衡状态,如果在变化的过程中物体仍能保持平衡状态,我我们就可以依据平衡条件,分析出物体受到的各力的变化情况。
分析方法:(1)矢量三角形法①如果物体在三个力作用下处于平衡状态,其中只有一个力的大小和方向发生变化,而另外两个力中,一个大小、方向均不变化;一个只有大小变化,方向不发生变化的情况。
②如果物体在三个力作用下处于平衡状态,其中一个力的大小和方向发生变化时,物体受到的另外两个力中只有一个大小和方向保持不变,另一个力的大小和方向也会发生变化的情况下,不变,另一个力的大小和方向也会发生变化的情况下,考虑三角形考虑三角形的相似关系。
相似三角形分析动态平衡问题
![相似三角形分析动态平衡问题](https://img.taocdn.com/s3/m/4b6f1ee069dc5022aaea00e0.png)
二、重难点提示相似关系的寻找。
动态平衡问题还有一类处理方法是使用相似三角形法。
选定研究对象后,倘若物体受三个力作用而平衡,先正确分析物体的受力,画出受力分析图,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化转化为三角形边长的大小变化问题进行讨论。
例题1 如图所示,杆BC的B端铰接在竖直墙上,另一端C为一滑轮,重力为G的重物上系一绳经过滑轮固定于墙上A点处,杆恰好平衡,若将绳的A端沿墙向下移,再使之平衡(BC杆、滑轮、绳的质量及摩擦均不计),则()A. 绳的拉力增大,BC杆受压力增大B. 绳的拉力不变,BC杆受压力增大C. 绳的拉力不变,BC杆受压力减小D. 绳的拉力不变,BC杆受压力不变思路分析:(1)本题比较的是轻绳的A端移动前后的两个平衡状态,两个状态下,滑轮上所受三力均平衡;(2)B端是铰链,BC杆可以自由转动,所以BC杆受力必定沿杆;(3)绳绕过滑轮,两段绳力相等,要保证合力沿杆(否则杆必转动),则杆必处于两绳所构成角的平分线上。
方法一:选取滑轮为研究对象,对其受力分析,如图所示。
绳中的弹力大小相等,即T1=T2=G,T1、T2、F三力平衡,将三个力的示意图平移可以组成封闭三角形,如图中虚线所示,设AC段绳子与竖直墙壁间的夹角为θ,则根据几何知识可得,杆对绳子的支持力F =2G sin θ2,当绳的A 端沿墙向下移时,θ增大,F 也增大,根据牛顿第三定律,BC 杆受压力增大。
方法二:图中,矢量三角形与几何三角形ABC 相似,因此Fmg BC AB ,解得F =AB BC ·mg ,当绳的A 端沿墙向下移,再次平衡时,AB 长度变短,而BC 长度不变,F 变大,根据牛顿第三定律,BC 杆受压力增大。
方法三:将绳的A 端沿墙向下移,T 2大小和方向不变,T 1大小不变,但与T 2所夹锐角逐渐增大,再使之平衡时,画出两段绳子拉力与轻杆的弹力所构成的封闭三角形如图所示,显然F ′大于F ,即轻杆的弹力变大,根据牛顿第三定律,BC 杆受压力增大。
相似三角形法分析动态平衡问题(基本上综合了所有常见的题型)
![相似三角形法分析动态平衡问题(基本上综合了所有常见的题型)](https://img.taocdn.com/s3/m/8602c15bad02de80d4d84056.png)
相似三角形法分析动态平衡问题1、半径为R 的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B 的距离为h ,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮后用力拉住,使小球静止,如图1-1所示,现缓慢地拉绳,在使小球由A 到B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化的情况是( )A 、N 变大,T 变小B 、N 变小,T 变大C 、N 变小,T 先变小后变大D 、N 不变,T 变小2、真空中两个相同的小球带有同种电荷,分别用绝缘细线悬挂于天花板上一点,平衡时0B 球偏离竖直方向,A 球竖直悬挂且与绝缘墙壁接触。
现B球缓慢漏电,则(BC )A.细线对B球的拉力将减小 B.细线对B球的拉力不变 C.两球间的库仑力减小 D.两球间的库仑力不变3、如图所示,两球A 、B 用劲度系数为k 1的轻弹簧相连,球B 用长为L 的细绳悬于O 点,球A 固定在O 点正下方,且点O 、A 之间的距离恰为L ,系统平衡时绳子所受的拉力为F 1.现把A 、B 间的弹簧换成劲度系数为k 2的轻弹簧,仍使系统平衡,此时绳子所受的拉力为F 2,则F 1与F 2的大小之间的关系为( B )A .F 1>F 2B .F 1=F 2C .F 1<F 2D .无法确定4、如图甲所示,AC 是上端带定滑轮的固定竖直杆,质量不计的轻杆BC 一端通过铰链固定在C 点,另一端B 悬挂一重为G 的重物,且B 端系有一根轻绳并绕过定滑轮A.现用力F 拉绳,开始时∠BCA >90°,使∠BCA 缓慢减小,直到杆BC 接近竖直杆AC.此过程中,杆BC 所受的力( A )A .大小不变B .逐渐增大C .逐渐减小D .先增大后减小O A B。
相似三角形法分析动态平衡问题)
![相似三角形法分析动态平衡问题)](https://img.taocdn.com/s3/m/98e734005ef7ba0d4b733b61.png)
相似三角形法分解动背仄稳问题之阳早格格创做(1)相似三角形:精确做着力的三角形后,如能判决力的三角形与图形中已知少度的三角形(几许三角形)相似,则可用相似三角形对于应边成比率供出三角形中力的比率关系,进而达到供已知量的手段.(2)往往波及三个力,其中一个力为恒力,另二个力的大小战目标均爆收变更,则此时用相似三角形分解.相似三角形法是解仄稳问题常常逢到的一种要领,解题的关键是精确的受力分解,觅找力三角形战结构三角形相似.例1、用力推住,使小球停止,如图1-1所示,现缓缓天推绳,正)大变小剖析:如图1-2所示,对于小球:受力仄稳,由于缓缓天推绳,所以小球疏通缓缓视为末究处于仄稳状态,其中而是总产死启关的动背三角形(图1-2中小阳影三角形)..真物(小球、绳、球里的球心)产死的三角形也是一个动背的启关三角形(图1-2中大阳影三角形),而且末究与三力产死的启关三角形相似,则犹如下比率式:可得:mg R h L T += 疏通历程中L 变小,T 变小. mg R h R N += 疏通中各量均为定值,收援力N 没有变.精确问案D.例2、如图2-1所示,横直绝缘墙壁上的Q 处由一牢固的量面A ,正在Q 的正上圆的P 面用细线悬挂一量面B ,A 、B 二面果为戴电而相互排斥,以致悬线与横直目标成θ角,由于泄电使A 、B 二量面的电量渐渐减小,正在电荷漏空之前悬线对于悬面P 的推力T 大小( )A 、T 变小B 、T 变大C 、T 没有变D 、T 无法决定剖析:有泄电局里,AB F 减小,则泄电瞬间量面B 的停止状态被挨破,肯定背下疏通.对于小球泄电前战泄电历程中举止受力分解犹如图2-2所示,由于泄电历程缓缓举止,则任性时刻均可视为仄稳状态.三力效率形成动背下的启关三角形,而对于应的真物量面A 、B 及绳墙战P 面形成动背启关三角形,且犹如图2-3分歧位子时阳影三角形的相似情况,则犹如下相似比率:可得:m g PQ PB T ⋅= 变更历程PB 、PQ 、mg 均为定值,所以T 没有变.精确问案C .以上二例题均通过相似关系供解,相对于仄稳关系供解要直瞅、简净得多,有些问题也不妨间接通过图示关系得出论断.坚韧训练:1、如图所示,二球A 、B 用劲度系数为k 1的沉弹簧贯串,球B用少为L的细绳悬于O面,球A牢固正在O面正下圆,且面O、A之间的距离恰为L,系统仄稳时绳子所受的推力为F1.现把A、B间的弹簧换成劲度系数为k2的沉弹簧,仍使系统仄稳,此时绳子所受的推力为F2,则F1与F2的大小之间的关系为(B)A.F1>F2 B.F1=F2 C.F1<F2 D.无法决定2、如图甲所示,AC是上端戴定滑轮的牢固横直杆,品量没有计的沉杆BC一端通过铰链牢固正在C面,另一端B 悬挂一沉为G的沉物,且B端系有一根沉绳并绕过定滑轮A.现用力F推绳,启初时∠BCA>90°,使∠BCA缓缓减小,直到杆BC靠近横直杆AC.此历程中,杆BC所受的力( A )A.大小没有变B.渐渐删大C.渐渐减小 D.先删大后减小3、如图.所示,有二个戴有等量的共种电荷的小球A战B,品量皆是m,分别悬于少为L的悬线的一端.今使B球牢固没有动,并使OB正在横直坐进与,A不妨正在横直仄里内自由晃动,由于静电斥力的效率,A球偏偏离B球的距离为x.如果其余条件没有变,A球的品量要删大到本去的几倍,才会使AB陷阱题--相似对于比题1、如图所示,硬杆BC 一端牢固正在墙上的B 面,另一端拆有滑轮C ,沉物D 用绳拴住通过滑轮牢固于墙上的A 面.若杆、滑轮及绳的品量战摩揩均没有计,将绳的牢固端从A 面稍背下移,则正在移动历程中( C )A.绳的推力、滑轮对于绳的效率力皆删大B.绳的推力减小,滑轮对于绳的效率力删大C.绳的推力没有变,滑轮对于绳的效率力删大D.绳的推力、滑轮对于绳的效率力皆没有变2、如图所示,横直杆CB 顶端有光润沉量滑轮,沉量杆OA 自沉没有计,可绕O 面自由转化OA =OB .当绳缓缓搁下,使∠AOB 由00渐渐删大到1800的历程中(没有包罗00战180°.下列道法精确的是( C D )A .绳上的推力先渐渐删大后渐渐减小B .杆上的压力先渐渐减小后渐渐删大C .绳上的推力越去越大,然而没有超出2GD .杆上的压力大小末究等于G3、如图所示,品量没有计的定滑轮用沉绳悬挂正在B 面,另一条沉绳一端系沉物C ,绕过滑轮后, A C B另一端牢固正在墙上A 面,若改变B 面位子使滑轮位子爆收移动,然而使A 段绳子末究脆持火仄,则不妨推断悬面B 所受推力F T 的大小变更情况是( B )A .若B 背左移,F T 将删大B .若B 背左移,F T 将删大C .无论B 背左、背左移,F T 皆脆持没有变D .无论B 背左、背左移,F T 皆减小例3 如图1所示,一个沉力G 的匀量球搁正在光润斜里板挡住球,使之处于停止状态.么样变更?1-2所示,球受沉力G 1态,故三个力的合力末究为整,将三个力矢量形成启关的三角形.F 1的目标没有变,然而目标没有变,末究与斜里笔直.F 2的大小、目标均改变,随着挡板顺时针转化时,F 2的目标也顺时针转化,动背矢量三角形图1-3中一绘出的一系列真线表示变更的F 2.由此可知,F 2先减小后删大,F 1删大而末究减小.例4所示,小球被沉量细绳系着,斜吊着搁正在光润图1-1 图1-2 G 图1-3斜里上,小球品量为m ,斜里倾角为θ,背左缓缓推动斜里,直到细线与斜里仄止,正在那个历程中,绳上弛力、斜里对于小球的收援力的变更情况?(问案:绳上弛力减小,斜里对于小球的收援力删大)例杆AO A 处往左推,使杆BO 与杆A O 间的夹角θ渐渐缩小,则正在此历程中,推力F 及杆BO 所受压力F N 的大小变更情况是( )A .F N 先减小,后删大B .F N 末究没有变C .F 先减小,后删大 D.F 末究没有变杆的B ((大F N 与G F 等值反背,(如图中绘斜线部分),力的三角形与几许三角形OBA 相似,利用相似三角形对于应边成比率可得:(如图2-2所示,设AO 下为H ,BO 少为L ,绳少l G 、H 、L 均没有变,l 渐渐变小,所以可知F N 没有变,F 渐渐变小.精确问图2-1 图2-2图1-4案为选项B例6:如图2-3所示,光润的半球形物体牢固正在火仄大天上,球心正上圆有一光润的小滑轮,沉绳的一端系一小球,靠搁正在半球上的A 面,另一端绕过定滑轮,后用力推住,使小球停止.现缓缓天推绳,正在使小球沿球里由A 到半球的顶面B 的历程中,半球对于小球的收援力N 战绳对于小球的推力T 的大小变更情况是( D ).(A)N 变大,T 变小,(B)N 变小,T 变大(C)N 变小,T 先变小后变大(D)N 没有变,T 变小 例7、如图3-1所示,物体G 用二根绳子悬挂,启初时绳OA 火仄,现将二绳共时顺时针转过90°,且脆持二绳之历程中,设绳OA 的推力为F 1,绳OB 的推力为F 2,则( ).(A)F 1先减小后删大(B)F 1先删大后减小(C)F 2渐渐减小(D)F 2最后形成整图3-1图3-2图3-3 图2-3力,如图3-2所示分别为F1、F2、F3,将三力形成矢量三角形(如图3-3所示的真线三角形CDE),需谦脚力F3大小、目标没有变,角∠CDE没有变(果为角α没有变),由于角∠DCE为直角,则三力的几许关系不妨从以DE边为直径的圆中找,则动背矢量三角形如图3-3中一绘出的一系列真线表示的三角形.由此可知,F1先删大后减小,F2随末究减小,且转过90°时,当佳为整.精确问案选项为B、C、D例8如图3-4所示,正在搞“考证力的仄止四边形定则”的真验时,用M、N面,使其到达O面,此时αM的读数的办法是(A).图3-4(A)减小N的读数共时减小β角(B)减小N的读数共时删大β角(C)删大N的读数共时删大β角(D)删大N的读数共时减小β角例9.如图4-1所示,正在火仄天花板与横直墙壁间,通过没有计品量的柔硬绳子战光润的沉小滑轮悬挂沉物G=40N,绳少L=2.5m,OA=1.5m,供绳中弛力的大小,并计划:(1)当B面位子牢固,A端缓缓左移时,绳中弛力怎么样变更?(2)当A 面位子牢固,B 端缓缓下移时,绳中弛力又怎么样变更?F D ,AD 少度等于绳少.设角∠OAD 为θ;根据三个力仄稳可;正在三角形AOD 如果A端左移,AD 形成如图4-3中真线A ′D ′所示,可知A ′D ′没有变,OD F 1变大.如果B 端下移,BC 形成如图4-4真线B ′C ′所示,可知AD 、OD 没F 1没有变.共博题 ①图解法与相似三角形法 ②断绝法与完全法③仄稳物体的临界、极值问题一、图解法与相似三角形法图解法:便是通过仄止四边形的邻边战对于角线少短的关系或者变更情况,搞一些较为搀纯的定性分解,从图形上一下便不妨瞅出截止,得出论断.图解法具备直瞅、便于比较的特性,应用时应注意以下几面:①精确哪个力是合力,哪二个力是分力;②哪个力大小目标均没有变,哪个图4-1 图4-2 ′图4-4力目标没有变;③哪个力目标变更,变更的空间范畴何如.例1、半圆形收架BAD上悬着二细绳OA战OB,结于圆心O,下悬沉为G的物体,使OA绳牢固没有动,将OB绳的B端沿半圆收架从火仄位子渐渐移至横直的位子C的历程中,OA绳战OB绳所受的力大小怎么样变更?训练:如图,一倾角为θ的牢固斜里上有一齐可绕其下端转化的挡板P,今正在挡板与斜里间夹一个沉为G的光润球,试分解挡板P由图示位子顺时针转到火仄位子的历程中,球对于挡板的压力怎么样变更?相似三角形法:便是利用力的三角形与边三角形相似,根据相似三角形对于应边成比率供解已知量.例2、光润的半球形物体牢固正在火仄大天上,球心正上圆有一光润的小滑轮,沉绳的一端系一小球,靠搁正在半球上的A面,另一端绕过定滑轮后用力推住,使小球停止,如图.现缓缓天推绳,正在使小球沿球里由A到B的历程中,半球对于小球的收援力N战绳对于小球的推力T的大小怎么样变更?训练:为了用起沉机缓缓吊起一匀称的钢梁,现用一根绳索拴牢此钢梁的二端,使起沉机的吊钩钩正在绳索的中面处,如图.若钢梁的少为L,沉为G,绳索所能启受的最大推力为F m,则绳索起码为多少?(绳索沉没有计)二、断绝法与完全法-----处理连结问题的要领完全法:以几个物体形成的系统为钻研对于象举止供解的要领.断绝法:把系统分成若搞部分并断绝启去,分别以每一部分为钻研对于象,一部分、一部分天举止受力分解,分别列出圆程,再联坐供解的要领.常常正在分解中力对于系统的效率时用完全法,正在分解系统内各物体或者各部分之间的相互效率时用断绝法.偶尔需要二种要领接叉使用.例3、如图,半径为R的光润球,沉为G,光润木块薄为h,沉为G1,用起码多大的火仄力F推木块才搞使球离启大天?训练:如图,人沉600N,火仄木板沉400N,如果人推住木板处于停止状态,则人对于木板的压力为多大?(滑轮沉没有计)训练:二沉叠正在所有的滑块,置于牢固的倾角为θ的斜里上,如图,滑块A、B的品量分别为m1、m2,A与斜里间的动摩揩果数为μ1,B与A的动摩揩果数为μ2.已知二滑块从斜里由停止以相共的加速度滑下,滑块B受到的摩揩力为:A.等于整B.目标沿斜里进与C.大小等于μ1m2gcosθD.大小等于μ2m2gcosθ三、仄稳物体的临界、极值问题仄稳物体的临界问题:某种物理局里变更为另一种物理局里的转合状态喊搞临界状态.临界状态也可明白为“恰佳出现”或者“恰恰没有出现”某种局里的状态.仄稳物体的临界状态是指物体所处的仄稳状态将要被损害而尚已损害的状态.波及临界状态的问题喊搞临界问题,解问临界问题的基础思维要领是假设推理法.例4:跨过定滑轮的沉绳二端,分别系着物体A战B,物体A搁正在倾角为θ的斜里上,如图.已知物体A的品量为m,物体A与斜里间的动摩揩果数为μ(μ<tanθ),滑轮的摩揩没有计,要使物体A停止正在斜里上,供物体B的品量与值范畴.训练:如图,没有计沉力的细绳AB与横直墙夹角为60º,沉杆BC与横直墙夹角为30º,杆可绕C自由转化,若细绳启受的最大推力为200N,沉杆能启受的最大压力为300N,则正在B面最多能挂多沉的物体?仄稳物体的极值问题:受几个力效率而处于仄稳状态的物体,当其中某个力的大小或者目标按某种形式爆收改变时,为了保护物体的仄稳,必引起其余某些力的变更,正在变更历程中大概会出现极大值或者极小值的问题.钻研仄稳物体的极值问题常常使用剖析法战图解法(如例1).例5:推力F效率于沉为G的物体上使物体沿火仄里匀速前进.如图,若物体与大天间的动摩揩果数为μ,当推力最小时,推力F与大天间的夹角θ为多大?训练:如图,将品量为M的木块,分成品量为m1、m2二部分,并用细线对接,m1置于光润火仄桌里上,m2通过定滑轮横直悬挂,m1战m2有何种关系才搞使系统正在加速疏通历程中绳的推力最大?推力的最大值是几?训练:有三个品量相等,半径为r的圆柱体,共置于一齐圆弧直里上,为了使底下圆柱体没有致分启,则圆弧直里的半径R最大是几?(所有摩揩均没有计)。
相互作用:3动态平衡问题1—正交分解法、图示法、相似法
![相互作用:3动态平衡问题1—正交分解法、图示法、相似法](https://img.taocdn.com/s3/m/0cd4e2a0e109581b6bd97f19227916888486b98f.png)
球静止,如图所示,现缓慢地拉绳,在使小球由A到B的过程中,半球对小球的支持力N和绳
对小球的拉力T的大小变化的情况是( D )
D
A.N变大,T变小
B.N变小,T变大
C.N变小,T先变小后变图所示: 将三个力放在一个矢量三角形中, 发现力的矢量三角形和图中几何三角形相似
C Lh
TB N
A
则HG
=
N R
=
T L
则选项D正确。
O G
一、相似三角形法
题型总结
适用对象
在三力平衡问题中,如果有一个力是 恒力,另外两个力方向都变化,且题 目给出了空间几何关系,多数情况下 力的矢量三角形与空间几何三角形相 似,可利用相似三角形对应边成比例 列出比例关系式,进而求解(构建三角 形时可能需要画辅助线)。
题型总结
题型示例: 如图所示,在倾角为α的斜面上,放一质量为m的小球,小球和斜面及挡板间均无摩擦,当挡板绕O点逆 时针缓慢地转向水平位置的过程中,斜面对小球的支持力FN1及挡板对小球的弹力FN2如何变化?
对小球受力分析知,小球受到重力mg、斜面的支持力FN1和挡板的弹力FN2, 如图,当挡板绕O点逆时针缓慢地转向水平位置的过程中,小球所受的合力 为零,根据平衡条件得知,FN1和FN2的合力与重力mg大小相等、方向相反。 作出小球在三个不同位置力的受力分析图,由图看出,斜面对小球的支持力 FN1逐渐减小,挡板对小球的弹力FN2先减小后增大,当FN1和FN2垂直时,弹 力FN2最小。
题型总结
题型示例: 如图所示,一光滑的轻滑轮用细绳OO′悬挂于O点;另一细绳跨过滑轮,其一端悬挂物块a,另一端系一 位于水平粗糙桌面上的物块b。外力F向右上方拉b,整个系统处于静止状态。若F方向不变,大小在一定 范围内变化,物块b仍始终保持静止,要知道b物块受力的变化情况,对b进行受力分析,
动态平衡的相似三角形法应用条件
![动态平衡的相似三角形法应用条件](https://img.taocdn.com/s3/m/e29c79b3c0c708a1284ac850ad02de80d5d8060f.png)
动态平衡的相似三角形法应用条件说到“动态平衡的相似三角形法”,嘿,这听起来是不是有点高深?别急,我来给你捋捋,保证你能听懂。
这可不是啥数学怪物,要知道,它的原理和我们平常生活中那些常见的平衡场景有着千丝万缕的联系。
你知道平衡有多重要吧?走路得平衡,吃饭得平衡,连玩游戏也得平衡。
说白了,平衡就像是我们生活中的“隐形英雄”,它默默支撑着我们的一切运转。
所以,动态平衡嘛,就是在一个系统中,各种力、各种因素之间的一种“合拍”状态,哪一方都不能太强势,也不能太弱势,得保持个“和谐”。
而相似三角形法呢,它就像一把“万能钥匙”,能帮我们更好地理解这些平衡关系。
你能想象一下,生活中那些看似很复杂的力学问题,竟然通过这些简单的三角形就能迎刃而解,真是既神奇又酷炫!好了,不扯这些有的没的了,我们来看看这相似三角形法到底是咋回事。
其实它的核心原理非常简单,就像是画图时我们会通过几何图形来帮助自己更好理解事物一样。
在动态平衡问题中,往往有各种各样的力量在作用。
这些力之间不是随便就能随意组合的,必须满足某些条件,才能做到力与力之间的“天衣无缝”。
这种情况,咱们就可以通过画出相似三角形来搞清楚它们之间的关系。
这三角形有啥魔力呢?它的每个角、每条边都代表着某种力的大小或者方向,而这些相似三角形的特点,就是它们的角相等,边成比例。
你听着,虽然是三角形,但它的作用可是“无敌”的,搞定了力学问题,解决问题的效率也大大提高,简直让人觉得爽快!不过,想要用相似三角形法来分析动态平衡问题,得有个前提条件,那就是力系统必须满足一定的要求。
得保证这个系统是稳定的。
你想啊,如果系统不稳定,那相似三角形根本没法派上用场,完全是浪费时间。
再有,力的作用点得分布合理。
咱们常说“上天入地”,就是指力的作用不能不合时宜。
要是力量方向不对劲,想通过相似三角形来解决问题,基本就像拿着不合适的工具敲钉子,根本就解决不了啥问题。
所有的力要能够通过某些方式达到平衡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静力学解题方法2——相似三角形法
(非常好的方法,仔细分析例题,静力学受力分析三大方法之一)
(1)相似三角形:正确作出力的三角形后,如能判定力的三角形与图形中已知长度的三角形(几何三角形)相似,则可用相似三角形对应边成比例求出三角形中力的比例关系,从而达到求未知量的目的。
(2)往往涉及三个力,其中一个力为恒力,另两个力的大小和方向均发生变化,则此时用相似三角形分析。
相似三角形法是解平衡问题时常遇到的一种方法,解题的关键是正确的受力分析,寻找力三角形和结构三角形相似。
例1、半径为R 的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B 的距离为h ,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮后用力拉住,使小球静止,如图1-1所示,现缓慢地拉绳,在使小球由A 到B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化的情况是( )
A 、N 变大,T 变小
B 、N 变小,T 变大
C 、N 变小,T 先变小后变大
D 、N 不变,T 变小
解析:如图1-2所示,对小球:受力平衡,由于缓慢地拉绳,所以小球运动缓慢视为始终处于平衡状态,其中重力mg 不变,支持力N ,绳子的拉力T 一直在改变,但是总形成封闭的动态三角形(图1-2中小阴影三角形)。
由于在这个三角形中有四个变量:支持力N 的大小和方向、绳子的拉力T 的大小和方向,所以还要利用其它条件。
实物(小球、绳、球面的球心)形成的三角形也是一个动态的封闭三角形(图1-2中大阴影三角形),并且始终与三力形成的封闭三角形相似,则有如下比例式:
R
N
R h mg L T =+= 可得:mg R
h L
T +=
运动过程中L 变小,T 变小。
mg R
h R
N +=
运动中各量均为定值,支持力N 不变。
正确答案D 。
例2、如图2-1所示,竖直绝缘墙壁上的Q 处由一固定的质点A ,在Q 的正上方的P 点用细线悬挂一质点B ,A 、B 两点因为带电而相互排斥,致使悬线与竖直方向成θ角,由于漏电使A 、B 两质点的电量逐渐减小,在电荷漏空之前悬线对悬点P 的拉力T 大小( ) A 、T 变小
B 、T 变大
C 、T 不变
D 、T 无法确定
解析:有漏电现象,AB F 减小,则漏电瞬间质点B 的静止状态被打破,必定向下运动。
对小球漏电前和漏电过程中进行受力分析有如图2-2所示,由于漏电过程缓慢进行,则任意时刻均可视为平衡状态。
三力作用构成动态下的封闭三角形,而对应的实物质点A 、B 及绳墙和P 点构成动态封闭三角形,且有如图2-3不同位置时阴影三角形的相似情况,则有如下相似比例:
AB
F
PB T PQ mg AB == 可得:mg PQ
PB
T ⋅=
变化过程PB 、PQ 、mg 均为定值,所以T 不变。
正确答案C 。
以上两例题均通过相似关系求解,相对平衡关系求解要直观、简洁得多,有些问题也可以直接通过图示关系得出结论。
例3 如图1所示,一个重力G 的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。
今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?
解析:取球为研究对象,如图1-2所示,球受重力G 、斜面支持力F 1、挡板支持力F 2。
因为球始终处于平衡状态,故三个力的合力始终为零,将三个力矢量构成封闭的三角形。
F 1的方向不变,但方向不变,始终与斜面垂直。
F 2的大小、方向均改变,随着挡板逆时针转动时,F 2的方向也逆时针转动,动态矢量三角形图1-3中一画出的一系列虚线表示变化的F 2。
由此可知,F 2先减小后增大,F 1随β增大而始终减小。
例4所示,小球被轻质细绳系着,斜吊着放在光滑斜面上,小球质量为m ,斜面倾角为θ,向右缓慢推动斜面,直到细线与斜面平行,在这个过程中,绳上张力、斜面对小球的支持力的变化情况?(答案:绳上张力减小,斜面对小球的支持力增大)
图1-1
图1-2
F 1
G
F 2
图1-3
图1-4
例5.一轻杆BO ,其O 端用光滑铰链固定在竖直轻杆AO 上,B 端挂一重物,且系一细绳,细绳跨过杆顶A 处的光滑小滑轮,用力F 拉住,如图2-1所示。
现将细绳缓慢往左拉,使杆BO 与杆A O 间的夹角θ逐渐减少,则在此过程中,拉力F 及杆BO 所受压力F N 的大小变化情况是( )
A .F N 先减小,后增大
B .F N 始终不变
C .F 先减小,后增大 D.F 始终不变
解析:取BO 杆的B 端为研究对象,受到绳子拉力(大小为F )、BO 杆的支持力F N 和悬挂重物的绳子的拉力(大小为G )的作用,将F N 与G 合成,其合力与F 等值反向,如图2-2所示,将三个力矢量构成封闭的三角形(如图中画斜线部分),力的三角形与几何三角形OBA 相似,利用相似三角形对应边成比例可得:(如图2-2所示,设AO 高为H ,BO 长为L ,绳
长l ,)l
F L F H
G N ==,式中G 、
H 、L 均不变,l 逐渐变小,所以可知F N 不变,F 逐渐变小。
正确答案为选项B 例6:如图2-3所示,光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,
靠放在半球上的A 点,另一端绕过定滑轮,后用力拉住,使小球静止.现缓慢地拉绳,在使小球沿球面由A 到半球的顶点B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化情况是( D )。
(A)N 变大,T 变小,
(B)N 变小,T 变大
(C)N 变小,T 先变小后变大 (D)N 不变,T 变小
例7、如图3-1所示,物体G 用两根绳子悬挂,开始时绳OA 水平,现将两绳同时顺时针转过90°,且保持两绳之间的夹角α不变)90(0
>α,物体保持静止状态,在旋转过程中,设绳OA 的拉力为F 1,绳OB 的拉力为F 2,则( )。
(A)F 1先减小后增大
(B)F 1先增大后减小 (C)F 2逐渐减小 (D)F 2最终变为零
A 图
2-1 A 图2-2 图3-1
图3-2
图3-3
图2-3
解析:取绳子结点O 为研究对角,受到三根绳的拉力,如图3-2所示分别为F 1、F 2、F 3,将三力构成矢量三角形(如图3-3所示的实线三角形CDE),需满足力F 3大小、方向不变,角∠ CDE 不变(因为角α不变),由于角∠DCE 为直角,则三力的几何关系可以从以DE 边为直径的圆中找,则动态矢量三角形如图3-3中一画出的一系列虚线表示的三角形。
由此可知,F 1先增大后减小,F 2随始终减小,且转过90°时,当好为零。
正确答案选项为B 、C 、D
例8如图3-4所示,在做“验证力的平行四边形定则”的实验时,用M 、N 两个测力计通过细线拉橡皮条的结点,使其到达O 点,此时α+β= 90°.然后保持M 的读数不变,而使α角减小,为保持结点位置不变,可采用的办法是( A )。
(A)减小N 的读数同时减小β角 (B)减小N 的读数同时增大β角 (C)增大N 的读数同时增大β角
(D)增大N 的读数同时减小β角
例9.如图4-1所示,在水平天花板与竖直墙壁间,通过不计质量的柔软绳子和光滑的轻小滑轮悬挂重物G =40N ,绳长L =2.5m ,OA =1.5m ,求绳中张力的大小,并讨论: (1)当B 点位置固定,A 端缓慢左移时,绳中张力如何变化? (2)当A 点位置固定,B 端缓慢下移时,绳中张力又如何变化?
解析:取绳子c 点为研究对角,受到三根绳的拉力,如图4-2所示分别为F 1、F 2、F 3,延长绳AO 交竖直墙于D 点,由于是同一根轻绳,可得:21F F =,BC 长度等于CD ,AD 长度等于绳长。
设角∠OAD 为θ;根据三个力平衡可得:
θsin 21G F =
;在三角形AOD 中可知,AD OD
=θsin 。
如果A 端左移,AD 变为如图4-3中虚线A ′D ′所示,可知A ′
D ′不变,OD ′减小,θsin 减小,F 1变大。
如果B 端下移,BC 变为如图4-4虚线B ′C ′所示,可知AD 、OD 不变,θsin 不变,F 1不变。
同
图4-1 图4-2 图4-3
′ 图4-4 图3-4。