2020年辽宁省本溪中考数学试题及答案(word版)
辽宁省本溪市2020年中考数学试题及答案解析
……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前辽宁省本溪市2020年中考数学试题试题副标题题号 一 二 三 总分 得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人 得分一、单选题1.下列各数是正数的是( ) A.0 B.5C.12-D.2-【答案】B 【解析】 【分析】根据正数的定义:正数都是大于0的数求解即可. 【详解】解:0既不是正数,也不是负数;5是正数; 12-和2-都是负数. 故选:B . 【点睛】本题考查的是正数,熟练掌握正数的定义是解题的关键.2.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.试题第2页,总25页【答案】B 【解析】 【分析】根据轴对称图形沿对称轴折叠后可重合,分析选项中哪些图形是轴对称图形; 根据中心对称图形沿对称中心,旋转180度后与原图重合,找出各选项中的中心对称图形,联系上步结论即可得到答案. 【详解】解:A 、不是中心对称图形,是轴对称图形,故本选项不符合题意; B 、既是轴对称图形又是中心对称图形,故本选项符合题意; C 、是中心对称图形,不是轴对称图形,故本选项不符合题意; D 、不是中心对称图形,是轴对称图形,故本选项不符合题意. 故选:B . 【点睛】本题考查的是轴对称图形和中心对称图形,熟练掌握两者的定义是解题的关键. 3.下列计算正确的是( ) A.77x x x ÷= B.()22439x x -=-C.336•2x x x =D.326x x ()=【答案】D 【解析】 【分析】根据同底数幂的除法,底数不变指数相减;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,积的乘方,把每个因式都分别乘方,再把所得的幂相乘,对各选项计算后利用排除法求解. 【详解】解:A 、76x x x ÷=,故此选项错误;B 、22439x x (﹣)=,故此选项错误;C 、336•x x x =,故此选项错误;D 、326x x ()=,故此选项正确;故选:D . 【点睛】……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………本题考查的是的同底数幂的计算,熟练掌握同底数幂的除法,乘法和幂的乘方是解题的关键.4.2020年6月8日,全国铁路发送旅客约9560000次,将数据9560000科学记数法表示为( ) A.69.5610⨯ B.595.610⨯C.70.95610⨯D.495610⨯【答案】A 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:将数据9560000科学记数法表示为69.5610⨯. 故选:A . 【点睛】本题考查的是科学记数法,熟练掌握科学记数法的定义是解题的关键. 5.下表是我市七个县(区)今年某日最高气温(℃)的统计结果:则该日最高气温(℃)的众数和中位数分别是( ) A.25,25 B.25,26C.25,23D.24,25【答案】A 【解析】 【分析】中位数是将一组数据按大小顺序排列,处于最中间位置的一个数据,或是最中间两个数据的平均数;众数是在一组数据中出现次数最多的数. 【详解】 解:在这7个数中,25(℃)出现了3次,出现的次数最多, ∴该日最高气温(℃)的众数是25; 把这组数据按照从小到大的顺序排列位于中间位置的数是25,试题第4页,总25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………则中位数为:25; 故选:A . 【点睛】本题考查的是中位数和众数,熟练掌握两者的定义是解题的关键.6.不等式组30280x x ->⎧⎨-≤⎩的解集是( )A.3x >B.4x ≤C.3x <D.34x <≤【答案】D 【解析】 【分析】先分别求出两个不等式的解,再求出其公共解即可. 【详解】解: 30280x x ->⎧⎨-≤⎩①②,由①得:3x >, 由②得:4x ≤,则不等式组的解集为34x ≤<, 故选:D . 【点睛】本题考查的是不等式组,熟练掌握不等式组是解题的关键. 7.如图所示,该几何体的左视图是( )A. B.C. D.【答案】B【解析】【分析】根据几何体的三视图求解即可.【详解】解:从左边看是一个矩形,中间有两条水平的虚线,故选:B.【点睛】本题考查的是几何体的三视图,熟练掌握几何体的三视图是解题的关键.8.下列事件属于必然事件的是()A.打开电视,正在播出系列专题片“航拍中国”B.若原命题成立,则它的逆命题一定成立C.一组数据的方差越小,则这组数据的波动越小D.在数轴上任取一点,则该点表示的数一定是有理数【答案】C【解析】【分析】必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【详解】解:A、打开电视,正在播出系列专题片“航拍中国”,是随机事件,不合题意;B、若原命题成立,则它的逆命题一定成立,是随机事件,不合题意;C、一组数据的方差越小,则这组数据的波动越小,是必然事件,符合题意;D、在数轴上任取一点,则该点表示的数一定是有理数,是随机事件,不合题意;故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件,熟练掌握他们的定义是解题的关键. 9.为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两型号机器人的单价和为140万元.若设甲型机器人每台x万元,根据题意,所列方程正确的是()试题第6页,总25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A.360480140x x =- B.360480140x x =- C.360480140x x+= D.360480140x x-= 【答案】A 【解析】 【分析】甲型机器人每台x 万元,根据360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,列出方程即可. 【详解】解:设甲型机器人每台x 万元,根据题意,可得 360480140x x=- 故选:A . 【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.10.如图,点P 是以AB 为直径的半圆上的动点,CA AB PD AC ⊥⊥,于点D ,连接AP ,设AP x PA PD y =,﹣=,则下列函数图象能反映y 与x 之间关系的是( )A.B.C.……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………D.【答案】C 【解析】 【分析】设圆的半径为R ,连接PB ,求出1sin 22AP ABP x R R∠==,根据CA ⊥AB,求出21122PD APsin x x R Rα⨯===,即可求出函数的解析式为212y PA PD x x R-+==-. 【详解】设:圆的半径为R ,连接PB ,则1sin 22AP ABP x R R∠==, CA AB ⊥,即AC 是圆的切线,则PDA PBA α∠∠==,则2122x PD APsin x x R Rα⨯=== 则212y PA PD x x R-+==-图象为开口向下的抛物线, 故选:C . 【点睛】本题考查了圆、三角函数的应用,熟练掌握函数图像是解题的关键.试题第8页,总25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人 得分二、填空题11.若式子在实数范围内有意义,则x 的取值范围是 . 【答案】。
2020年辽宁省本溪中考数学试题及答案(word版)
2020年辽宁省本溪市中考数学试卷一、选择题(每题3分,共24分)1、2-的相反数是( )A 、12-B 、12C 、2D 、±22、如图是某几何体得三视图,则这个几何体是( )A 、球B 、圆锥C 、圆柱D 、三棱体3 )A 、2B 、4C 、15D 、164、一元二次方程2104x x -+=的根( ) A 、121122x x ==-, , B 、1222x x ==-, C 、1212x x ==- D 、1212x x == 5、在一次数学竞赛中,某小组6名同学的成绩(单位:分)分别是69、75、86、92、95、88.这组数据的中位数是( )A 、79B 、86C 、92D 、876、如图,在Rt △ABC 中,∠C=90°,AB=10,BC=8,DE 是△ABC 的中位线,则DE 的长度是( )A 、3B 、4C 、4.8D 、57、反比例函数(0)k y k x=≠的图象如图所示,若点A (11x y ,)、B (22x y ,)、C (33x y ,)是这个函数图象上的三点,且1230x x x >>>,则123y y y 、、的大小关系( )A 、312y y y <<B 、213y y y <<C 、321y y y <<D 、123y y y <<8、如图,正方形ABCD 的边长是4,∠DAC 的平分线交DC 于点E ,若点P 、Q 分别是AD 和AE 上的动点,则DQ+PQ 的最小值( )A 、2B 、4C 、D 、二、填空题(每题3分,共24分)9、函数14y x =-中的自变量x 的取值范围__________。
10、掷一枚质地均匀的正方体骰子,骰子的六个面上分别有1至6的点数,则向上一面的点数是偶数的概率__________。
11、如图:AB ∥CD ,直线MN 分别交AB 、CD 于点E 、F ,EG 平分∠AEF .EG ⊥FG 于点G ,若∠BEM=50°,则∠CFG= __________。
2020年辽宁省本溪市中考数学试卷
2020年辽宁省本溪市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2020•本溪)下列各数是正数的是( )A .0B .5C .12-D .2.(3分)(2020•本溪)下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.(3分)(2020•本溪)下列计算正确的是( ) A .77x x x ÷=B .224(3)9x x -=-C .3362x x x =D .326()x x =4.(3分)(2020•本溪)2020年6月8日,全国铁路发送旅客约9560000次,将数据9560000科学记数法表示为( ) A .69.5610⨯B .595.610⨯C .70.95610⨯D .495610⨯5.(3分)(2020•本溪)下表是我市七个县(区)今年某日最高气温(C)︒的统计结果:则该日最高气温(C)︒的众数和中位数分别是( ) A .25,25B .25,26C .25,23D .24,256.(3分)(2020•本溪)不等式组30280x x ->⎧⎨-⎩的解集是( )A .3x >B .4xC .3x <D .34x <7.(3分)(2020•本溪)如图所示,该几何体的左视图是( )A.B.C.D.8.(3分)(2020•本溪)下列事件属于必然事件的是()A.打开电视,正在播出系列专题片“航拍中国”C.一组数据的方差越小,则这组数据的波动越小D.在数轴上任取一点,则该点表示的数一定是有理数9.(3分)(2020•本溪)为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元.若设甲型机器人每台x万元,根据题意,所列方程正确的是()A.360480140x x=-B.360480140x x=-C.360480140x x+=D.360480140x x-=10.(3分)(2020•本溪)如图,点P是以AB为直径的半圆上的动点,CA AB⊥,PD AC⊥于点D,连接AP,设AP x=,PA PD y-=,则下列函数图象能反映y与x之间关系的是()A.B.C.D.二、填空题(本題共8小题,每小题3分,共24分)11.(3分)(2020x的取值范围为.12.(3分)(2020•本溪)函数5y x=的图象经过的象限是.13.(3分)(2020•本溪)如果关于x的一元二次方程240x x k-+=有实数根,那么k的取值范围是.14.(3分)(2020•本溪)在平面直角坐标系中,点A,B的坐标分别是(4,2)A,(5,0)B,以点O为位似中心,相们比为12,把ABO∆缩小,得到△11A B O,则点A的对应点1A的坐标为.15.(3分)(2020•本溪)如图,BD是矩形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE BF=;分别以E,F为圆心,以大于12EF的长为半径作弧,两弧在ABD∠内交于点G,作射线BG交AD于点P,若3AP=,则点P到BD的距离为.16.(3分)(2020•本溪)如图所示的点阵中,相邻的四个点构成正方形,小球只在点阵中的小正方形ABCD 内自由滚动时,则小球停留在阴影区域的概率为 .17.(3分)(2020•本溪)如图,在平面直角坐标系中,等边OAB ∆和菱形OCDE 的边OA ,OE 都在x 轴上,点C 在OB 边上,ABD S ∆,反比例函数(0)ky x x=>的图象经过点B ,则k 的值为 .18.(3分)(2020•本溪)如图,点1B 在直线1:2l y x =上,点1B 的横坐标为2,过1B 作111B A ⊥,交x 轴于点1A ,以11A B 为边,向右作正方形1121A B B C ,延长21B C 交x 轴于点2A ;以22A B 为边,向右作正方形2232A B B C ,延长32B C 交x 轴于点3A ;以33A B 为边,向右作正方形3343A B B C 延长43B C 交x 轴于点4A ;⋯;按照这个规律进行下去,点n C 的横坐标为 (结果用含正整数n 的代数式表示)三、解答题(第19题10分,第20题12分,共22分)19.(10分)(2020•本溪)先化简,再求值222412()4422aa a a a a--÷-+--,其中a满足2320a a+-=.20.(12分)(2020•本溪)某中学为了提高学生的综合素质,成立了以下社团:A.机器人,B.围棋,C.羽毛球,D.电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如下两幅不完整的统计图,其中图(1)中A所占扇形的圆心角为36︒.根据以上信息,解答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完整;(3)若该校共有1000学生加入了社团,请你估计这1000名学生中有多少人参加了羽毛球社团;(4)在机器人社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加机器人大赛.用树状图或列表法求恰好选中甲、乙两位同学的概率.四、解答题(第21题12分,第22题12分,共24分)21.(12分)(2020•本溪)如图,在四边形ABCD中,//AB CD,AD CD⊥,45B∠=︒,延长CD到点E,使DE DA=,连接AE.(1)求证:AE BC=;(2)若3CD=,求四边形ABCE的面积.AB=,122.(12分)(2020•本溪)小李要外出参加“建国70周年”庆祝活动,需网购一个拉杆箱,图①,②分别是她上网时看到的某种型号拉杆箱的实物图与示意图,并获得了如下信息:滑杆DE,箱长BC,拉杆AB的长度都相等,B,F在AC上,C在DE上,支杆30=,DF cmCDF∠=︒,30∠=︒,请根据以上信息,解决下列向题.CE CD=,45:1:3DCF(1)求AC的长度(结果保留根号);(2)求拉杆端点A到水平滑杆ED的距离(结果保留根号).五、解答题(满分12分)23.(12分)(2020•本溪)某工厂生产一种火爆的网红电子产品,每件产品成本16元、工厂将该产品进行网络批发,批发单价y(元)与一次性批发量x(件)(x为正整数)之间满足如图所示的函数关系.(1)直接写出y与x之间所满足的函数关系式,并写出自变量x的取值范围;(2)若一次性批发量不超过60件,当批发量为多少件时,工厂获利最大?最大利润是多少?六、解答题(满分12分)24.(12分)(2020•本溪)如图,点P为正方形ABCD的对角线AC上的一点,连接BP并延长交CD于点E,交AD的延长线于点F,O是DEF∆的外接圆,连接DP.(1)求证:DP是O的切线;(2)若1tan2PDC∠=,正方形ABCD的边长为4,求O的半径和线段OP的长.七、解答题(满分12分)25.(12分)(2020•本溪)在Rt ABC∆中,90BCA∠=︒,A ABC∠<∠,D是AC边上一点,且DA DB=,O是AB的中点,CE是BCD∆的中线.(1)如图a,连接OC,请直接写出OCE∠和OAC∠的数量关系:;(2)点M是射线EC上的一个动点,将射线OM绕点O逆时针旋转得射线ON,使MON ADB∠=∠,ON与射线CA交于点N.①如图b,猜想并证明线段OM和线段ON之间的数量关系;②若30BAC∠=︒,BC m=,当15AON∠=︒时,请直接写出线段ME的长度(用含m的代数式表示).八、解答题(满分14分)26.(14分)(2020•本溪)抛物线229y x bx c =-++与x 轴交于(1,0)A -,(5,0)B 两点,顶点为C ,对称轴交x 轴于点D ,点P 为抛物线对称轴CD 上的一动点(点P 不与C ,D 重合).过点C 作直线PB 的垂线交PB 于点E ,交x 轴于点F . (1)求抛物线的解析式;(2)当PCF ∆的面积为5时,求点P 的坐标;(3)当PCF ∆为等腰三角形时,请直接写出点P 的坐标.2020年辽宁省本溪市中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数是正数的是( )A .0B .5C .12-D .【分析】此题利用正数和负数的概念即可解答.【解答】解:0既不是正数,也不是负数;5是正数;12-和故选:B .2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【分析】根据轴对称图形、中心对称图形的定义即可判断.【解答】解:A 、不是中心对称图形,是轴对称图形,故本选项不符合题意;B 、既是轴对称图形又是中心对称图形,故本选项符合题意;C 、是中心对称图形,不是轴对称图形,故本选项不符合题意;D 、不是中心对称图形,是轴对称图形,故本选项不符合题意.故选:B .3.(3分)下列计算正确的是( ) A .77x x x ÷=B .224(3)9x x -=-C .3362x x x =D .326()x x =【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则分别化简得出答案. 【解答】解:A 、76x x x ÷=,故此选项错误;B 、224(3)9x x -=,故此选项错误;C 、336x x x =,故此选项错误;D 、326()x x =,故此选项正确;故选:D .4.(3分)2020年6月8日,全国铁路发送旅客约9560000次,将数据9560000科学记数法表示为( ) A .69.5610⨯B .595.610⨯C .70.95610⨯D .495610⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【解答】解:将数据9560000科学记数法表示为69.5610⨯. 故选:A .5.(3分)下表是我市七个县(区)今年某日最高气温(C)︒的统计结果:则该日最高气温(C)︒的众数和中位数分别是( ) A .25,25B .25,26C .25,23D .24,25【分析】根据众数和中位数的概念求解即可.【解答】解:在这7个数中,25(C)︒出现了3次,出现的次数最多,∴该日最高气温(C)︒的众数是25;把这组数据按照从小到大的顺序排列位于中间位置的数是25, 则中位数为:25; 故选:A .6.(3分)不等式组30280x x ->⎧⎨-⎩的解集是( )A .3x >B .4xC .3x <D .34x <【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:30280x x ->⎧⎨-⎩①②,由①得:3x >, 由②得:4x ,则不等式组的解集为34x <, 故选:D .7.(3分)如图所示,该几何体的左视图是( )A .B .C .D .【分析】根据从左边看得到的图形是左视图,可得答案. 【解答】解:从左边看是一个矩形,中间有两条水平的虚线, 故选:B .8.(3分)下列事件属于必然事件的是( ) A .打开电视,正在播出系列专题片“航拍中国” C .一组数据的方差越小,则这组数据的波动越小 D .在数轴上任取一点,则该点表示的数一定是有理数 【分析】直接利用随机事件以及必然事件的定义分析得出答案.【解答】解:A 、打开电视,正在播出系列专题片“航拍中国”,是随机事件,不合题意; C 、一组数据的方差越小,则这组数据的波动越小,是必然事件,符合题意;D 、在数轴上任取一点,则该点表示的数一定是有理数,是随机事件,不合题意;故选:C.9.(3分)为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元.若设甲型机器人每台x万元,根据题意,所列方程正确的是()A.360480140x x=-B.360480140x x=-C.360480140x x+=D.360480140x x-=【分析】设甲种型号机器人每台的价格是x万元,根据“用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同”,列出关于x的分式方程.【解答】解:设甲型机器人每台x万元,根据题意,可得:360480140x x=-,故选:A.10.(3分)如图,点P是以AB为直径的半圆上的动点,CA AB⊥,PD AC⊥于点D,连接AP,设AP x=,PA PD y-=,则下列函数图象能反映y与x之间关系的是()A.B.C.D .【分析】设圆的半径为R ,连接PB ,则1sin 22AP ABP x R R∠==,则211sin 22PD AP x x x R Rα==⨯=,即可求解. 【解答】设:圆的半径为R ,连接PB ,则1sin 22AP ABP x R R∠==, CA AB ⊥,即AC 是圆的切线,则PDA PBA α∠=∠=,则211sin 22PD AP x x x R Rα==⨯=, 则212y PA PD x x R=-=-+, 图象为开口向下的抛物线, 故选:C .二、填空题(本題共8小题,每小题3分,共24分)11.(3x 的取值范围为 2x . 【分析】根据二次根式有意义的条件可得20x -,再解即可. 【解答】解:由题意得:20x -, 解得:2x , 故答案为:2x .12.(3分)函数5y x =的图象经过的象限是 一、三 .【分析】利用这个比例函数的性质结合比例系数的符号直接回答即可. 【解答】解:函数5y x =的图象经过一三象限, 故答案为:一、三13.(3分)如果关于x 的一元二次方程240x x k -+=有实数根,那么k 的取值范围是4k .【分析】根据方程有实数根,得到根的判别式的值大于等于0,列出关于k 的不等式,求出不等式的解集即可得到k 的范围. 【解答】解:根据题意得:△1640k =-, 解得:4k . 故答案为:4k .14.(3分)在平面直角坐标系中,点A ,B 的坐标分别是(4,2)A ,(5,0)B ,以点O 为位似中心,相们比为12,把ABO ∆缩小,得到△11A B O ,则点A 的对应点1A 的坐标为 (2,1)或(2,1)-- .【分析】根据位似变换的性质计算即可. 【解答】解:以点O 为位似中心,相们比为12,把ABO ∆缩小,点A 的坐标是(4,2)A , 则点A 的对应点1A 的坐标为1(42⨯,12)2⨯或1(42-⨯,12)2-⨯,即(2,1)或(2,1)--,故答案为:(2,1)或(2,1)--.15.(3分)如图,BD 是矩形ABCD 的对角线,在BA 和BD 上分别截取BE ,BF ,使BE BF =;分别以E ,F 为圆心,以大于12EF 的长为半径作弧,两弧在ABD ∠内交于点G ,作射线BG交AD 于点P ,若3AP =,则点P 到BD 的距离为 3 .【分析】首先结合作图的过程确定BP 是ABD ∠的平分线,然后根据角平分线的性质求得点P 到BD 的距离即可.【解答】解:结合作图的过程知:BP 平分ABD ∠, 90A ∠=︒,3AP =,∴点P 到BD 的距离等于AP 的长,为3,故答案为:3.16.(3分)如图所示的点阵中,相邻的四个点构成正方形,小球只在点阵中的小正方形ABCD内自由滚动时,则小球停留在阴影区域的概率为1516.【分析】如图所示,AD 与直线的交点为E ,AB 与直线的交点为F ,分别求出AE 、AF 所占边长的比例即可解答.【解答】解:如图所示,AD 与直线的交点为E ,AB 与直线的交点为F ,根据题意可知12AE AB =,14AF AB =, ∴211111222416AEF S AE AF AB AB AB ∆==⨯⨯=, ∴小球停留在阴影区域的概率为:11511616-=. 故答案为:151617.(3分)如图,在平面直角坐标系中,等边OAB ∆和菱形OCDE 的边OA ,OE 都在x 轴上,点C 在OB 边上,ABD S ∆=,反比例函数(0)ky x x =>的图象经过点B ,则k 的值为【分析】连接OD ,由OAB ∆是等边三角形,得到60AOB ∠=︒,根据平行线的性质得到60DEO AOB ∠=∠=︒,推出DEO ∆是等边三角形,得到60DOE BAO ∠=∠=︒,得到//OD AB ,求得BDO AOD S S ∆∆=,推出AOB ABD S S ∆∆==B 作BH OA ⊥于H ,由等边三角形的性质得到OH AH =,求得OBH S ∆= 【解答】解:连接OD , OAB ∆是等边三角形, 60AOB ∴∠=︒,四边形OCDE 是菱形, //DE OB ∴,60DEO AOB ∴∠=∠=︒, DEO ∴∆是等边三角形, 60DOE BAO ∴∠=∠=︒, //OD AB ∴, BDO AOD S S ∆∆∴=,ADO ABD BDO AOB ABDO S S S S S ∆∆∆∆=+=+四边形,AOB ABD S S ∆∆∴==过B 作BH OA ⊥于H , OH AH ∴=,OBH S ∆∴=, 反比例函数(0)ky x x =>的图象经过点B ,k ∴18.(3分)如图,点1B 在直线1:2l y x =上,点1B 的横坐标为2,过1B 作111B A ⊥,交x 轴于点1A ,以11A B 为边,向右作正方形1121A B B C ,延长21B C 交x 轴于点2A ;以22A B 为边,向右作正方形2232A B B C ,延长32B C 交x 轴于点3A ;以33A B 为边,向右作正方形3343A B B C 延长43B C 交x 轴于点4A ;⋯;按照这个规律进行下去,点n C 的横坐标为 173()22n -+ (结果用含正整数n 的代数式表示)【分析】根据点1B 的横坐标为2,在直线1:2l y x =上,可求出点1B 的坐标,由作图可知图中所有的直角三角形都相似,两条直角边的比都是1:2,然后依次利用相似三角形的性质计算出1C 、2C 、3C 、4C ⋯⋯的横坐标,根据规律得出答案.【解答】解:过点1B 、1C 、2C 、3C 、4C 分别作1B D x ⊥轴,11C D x ⊥轴,22C D x ⊥轴,33C D x ⊥轴,44C D x ⊥轴,⋯⋯垂足分别为D 、1D 、2D 、3D 、4D ⋯⋯ 点1B 在直线1:2l y x =上,点1B 的横坐标为2,∴点1B 的纵坐标为1,即:2OD =,11B D =,图中所有的直角三角形都相似,两条直角边的比都是1:2, 1111121111112B D DA C D D A OD B D A D C D =====⋯ ∴点1C 的横坐标为:0132()22++, 点2C 的横坐标为:001011331353532()()()()()222422242+++⨯+=+⨯+ 点3C 的横坐标为:00112012133133135353532()()()()()()()()22242242224242+++⨯++⨯+=+⨯+⨯++ 点4C 的横坐标为:012353535353()()()()22424242=+⨯+⨯+⨯+⋯⋯点n C 的横坐标为:012341535353535353()()()()()()224242424242n -=+⨯+⨯+⨯+⨯+⨯⋯⋯+ 01234155333333[()()()()()]()24222222n -=++⨯+++⋯⋯+ 173()22n -=+ 故答案为:173()22n -+三、解答题(第19题10分,第20题12分,共22分)19.(10分)先化简,再求值222412()4422a a a a a a--÷-+--,其中a 满足2320a a +-=. 【分析】根据分式的减法和除法可以化简题目中的式子,然后根据2320a a +-=,可以求得所求式子的值.【解答】解:222412()4422a a a a a a--÷-+-- 2(2)(2)1(2)[](2)22a a a a a a +--=+-- 21(2)()222a a a a a +-=+-- 3(2)22a a a a +-=-(3)2a a +=232a a+=, 2320a a +-=, 232a a ∴+=,∴原式212==. 20.(12分)某中学为了提高学生的综合素质,成立了以下社团:A .机器人,B .围棋,C.羽毛球,D.电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如下两幅不完整的统计图,其中图(1)中A所占扇形的圆心角为36︒.根据以上信息,解答下列问题:(1)这次被调查的学生共有200人;(2)请你将条形统计图补充完整;(3)若该校共有1000学生加入了社团,请你估计这1000名学生中有多少人参加了羽毛球社团;(4)在机器人社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加机器人大赛.用树状图或列表法求恰好选中甲、乙两位同学的概率.【分析】(1)由A类有20人,所占扇形的圆心角为36︒,即可求得这次被调查的学生数;(2)首先求得C项目对应人数,即可补全统计图;(3)该校1000学生数⨯参加了羽毛球社团的人数所占的百分比即可得到结论;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式即可求得答案.【解答】解:(1)A类有20人,所占扇形的圆心角为36︒,∴这次被调查的学生共有:3620200360÷=(人);故答案为:200;(2)C项目对应人数为:20020804060---=(人);补充如图.(3)601000300200⨯=(人)答:这1000名学生中有300人参加了羽毛球社团;(4)画树状图得:共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,P∴(选中甲、乙)21 126==.四、解答题(第21题12分,第22题12分,共24分)21.(12分)如图,在四边形ABCD中,//AB CD,AD CD⊥,45B∠=︒,延长CD到点E,使DE DA=,连接AE.(1)求证:AE BC=;(2)若3AB=,1CD=,求四边形ABCE的面积.【分析】(1)通过证明四边形ABCE是平行四边形,可得结论;(2)由平行四边形的性质可求2DE AD==,即可求四边形ABCE的面积.【解答】证明:(1)//AB CD,45B∠=︒180C B∴∠+∠=︒135C ∴∠=︒DE DA =,AD CD ⊥45E ∴∠=︒180E C ∠+∠=︒//AE BC ∴,且//AB CD∴四边形ABCE 是平行四边形AE BC ∴=(2)四边形ABCE 是平行四边形3AB CE ∴==2AD DE AB CD ∴==-=∴四边形ABCE 的面积326=⨯=22.(12分)小李要外出参加“建国70周年”庆祝活动,需网购一个拉杆箱,图①,②分别是她上网时看到的某种型号拉杆箱的实物图与示意图,并获得了如下信息:滑杆DE ,箱长BC ,拉杆AB 的长度都相等,B ,F 在AC 上,C 在DE 上,支杆30DF cm =,:1:3CE CD =,45DCF ∠=︒,30CDF ∠=︒,请根据以上信息,解决下列向题.(1)求AC 的长度(结果保留根号);(2)求拉杆端点A 到水平滑杆ED 的距离(结果保留根号).【分析】(1)过F 作FH DE ⊥于H ,解直角三角形即可得到结论;(2)过A 作AG ED ⊥交ED 的延长线于G ,根据等腰直角三角形的性质即可得到结论.【解答】解:(1)过F 作FH DE ⊥于H ,90FHC FHD ∴∠=∠=︒,30FDC ∠=︒,30DF =,1152FH DF ∴==,DH ==45FCH ∠=︒,15CH FH ∴==,∴15CD CH DH =+=+:1:3CE CD =,4203DE CD ∴==+, AB BC DE ==,(40AC cm ∴=+;(2)过A 作AG ED ⊥交ED 的延长线于G ,45ACG ∠=︒,AG AC ∴==答:拉杆端点A 到水平滑杆ED 的距离为cm .五、解答题(满分12分)23.(12分)某工厂生产一种火爆的网红电子产品,每件产品成本16元、工厂将该产品进行网络批发,批发单价y (元)与一次性批发量x (件)(x 为正整数)之间满足如图所示的函数关系.(1)直接写出y 与x 之间所满足的函数关系式,并写出自变量x 的取值范围;(2)若一次性批发量不超过60件,当批发量为多少件时,工厂获利最大?最大利润是多少?【分析】(1)认真观察图象,分别写出该定义域下的函数关系式,定义域取值全部是整数;(2)根据利润=(售价-成本)⨯件数,列出利润的表达式,求出最值.【解答】解:(1)当020x <且x 为整数时,40y =;当2060x <且x 为整数时,1502y x =-+; 当60x >且x 为整数时,20y =;(2)设所获利润w (元),当020x <且x 为整数时,40y =,(4016)20480w ∴=-⨯=元,当020x <且x 为整数时,40y =,∴当2060x <且x 为整数时,1502y x =-+, 1(16)(5016)2w y x x x ∴=-=-+-, 21342w x x ∴=-+, 21(34)5782w x ∴=--+, 102-<, ∴当34x =时,w 最大,最大值为578元.答:一次批发34件时所获利润最大,最大利润是578元.六、解答题(满分12分)24.(12分)如图,点P 为正方形ABCD 的对角线AC 上的一点,连接BP 并延长交CD 于点E ,交AD 的延长线于点F ,O 是DEF ∆的外接圆,连接DP .(1)求证:DP 是O 的切线;(2)若1tan 2PDC ∠=,正方形ABCD 的边长为4,求O 的半径和线段OP 的长.【分析】(1)连接OD ,可证CDP CBP ∆≅∆,可得CDP CBP ∠=∠,由90CBP BEC ∠+∠=︒,BEC OED ODE ∠=∠=∠,可证出90ODP ∠=︒,则DP 是O 的切线;(2)先求出CE 长,在Rt DEF ∆中可求出EF 长,证明DPE FPD ∆∆∽,由比例线段可求出EP 长,则OP 可求出.【解答】(1)连接OD ,正方形ABCD 中,CD BC =,CP CP =,45DCP BCP ∠=∠=︒, ()CDP CBP SAS ∴∆≅∆,CDP CBP ∴∠=∠,90BCD ∠=︒,90CBP BEC ∴∠+∠=︒,OD OE =,ODE OED ∴∠=∠,OED BEC ∠=∠,BEC OED ODE ∴∠=∠=∠,90CDP ODE ∴∠+∠=︒,90ODP ∴∠=︒,DP ∴是O 的切线;(2)CDP CBE ∠=∠,1tan tan 2CE CBE CDP BC ∴∠=∠==, 1422CE ∴=⨯=, 2DE ∴=,90EDF ∠=︒,EF ∴是O 的直径,90F DEF ∴∠+∠=︒,F CDP ∴∠=∠,在Rt DEF ∆中,12DE DF =, 4DF ∴=,∴EF∴OE =F PDE ∠=∠,DPE FPD ∠=∠,DPE FPD ∴∆∆∽, ∴PE PD DE PD PF DF==, 设PE x =,则2PD x =,∴2((2)x x x +=,解得x ,OP OE EP ∴=+=. 七、解答题(满分12分)25.(12分)在Rt ABC ∆中,90BCA ∠=︒,A ABC ∠<∠,D 是AC 边上一点,且DA DB =,O 是AB 的中点,CE 是BCD ∆的中线.(1)如图a ,连接OC ,请直接写出OCE ∠和OAC ∠的数量关系: OCE OAC ∠=∠ ;(2)点M 是射线EC 上的一个动点,将射线OM 绕点O 逆时针旋转得射线ON ,使MON ADB ∠=∠,ON 与射线CA 交于点N .①如图b ,猜想并证明线段OM 和线段ON 之间的数量关系; ②若30BAC ∠=︒,BC m =,当15AON ∠=︒时,请直接写出线段ME 的长度(用含m 的代数式表示).【分析】(1)结论:ECO OAC ∠=∠.理由直角三角形斜边中线定理,三角形的中位线定理解决问题即可.(2)①只要证明()COM AON ASA ∆≅∆,即可解决问题.②分两种情形:如图31-中,当点N 在CA 的延长线上时,如图32-中,当点N 在线段AC 上时,作OH AC ⊥于H .分别求解即可解决问题.【解答】解:(1)结论:ECO OAC ∠=∠.理由:如图1中,连接OE .90BCD ∠=︒,BE ED =,BO OA =,12CE ED EB BD ===,CO OA OB ==, OCA A ∴∠=∠,BE ED =,BO OA =,//OE AD ∴,12OE AD =, CE EO ∴=.∴∠=∠=∠,EOC OCA ECO∴∠=∠.ECO OAC故答案为:OCE OAC∠=∠.(2)如图2中,=,OC OA=,DA DB∴∠=∠=∠,A OCA ABD∴∠=∠,COA ADB∠=∠,MON ADBAOC MON∴∠=∠,∴∠=∠,COM AON∠=∠,ECO OACMCO NAO∴∠=∠,=,OC OA∴∆≅∆,()COM AON ASA∴=.OM ON②如图31-中,当点N在CA的延长线上时,AON∠=︒,∠=︒=∠+∠,15CAB OAN ANO30∴∠=∠=︒,15AON ANOOA AN m ∴==,OCM OAN ∆≅∆,CM AN m ∴==,在Rt BCD ∆中,BC m =,60CDB ∠=︒,BD ∴=, BE ED =,12CE BD ∴==,EM CM CE m ∴=+=. 如图32-中,当点N 在线段AC 上时,作OH AC ⊥于H .15AON ∠=︒,30CAB ∠=︒,153045ONH ∴∠=︒+︒=︒,12OH HN m ∴==, 3AH =,12CM AN m ∴==-, 3EC =,11)22EM EC CM m m ∴=-=--=-,综上所述,满足条件的EM 的值为m +或12m . 八、解答题(满分14分) 26.(14分)抛物线229y x bx c =-++与x 轴交于(1,0)A -,(5,0)B 两点,顶点为C ,对称轴交x 轴于点D ,点P 为抛物线对称轴CD 上的一动点(点P 不与C ,D 重合).过点C 作直线PB 的垂线交PB 于点E ,交x 轴于点F .(1)求抛物线的解析式;(2)当PCF ∆的面积为5时,求点P 的坐标;(3)当PCF ∆为等腰三角形时,请直接写出点P 的坐标.【分析】(1)函数的表达式为:2(1)(5)9y x x =+-,即可求解;(2)确定PB 、CE 的表达式,联立求得点2(23mF -,0),112(2)(22)5223PCF m S PC DF m ∆=⨯⨯=---=,即可求解;(3)分当CP CF =、CP PF =、CP PF =三种情况,分别求解即可.【解答】解:(1)函数的表达式为:222810(1)(5)9999y x x x x =+-=-++;(2)抛物线的对称轴为1x =,则点(2,2)C , 设点(2,)P m ,将点P 、B 的坐标代入一次函数表达式:y sx t =+并解得: 函数PB 的表达式为:1533my mx =-+⋯①,CE PE ⊥,故直线CE 表达式中的k 值为3m ,将点C 的坐标代入一次函数表达式, 同理可得直线CE 的表达式为:36(2)y x m m =+-⋯②,联立①②并解得:223mx =-, 故点2(23mF -,0),112(2)(22)5223PCF mS PC DF m ∆=⨯⨯=---=,解得:5m =或3-(舍去5), 故点(2,3)P -;(3)由(2)确定的点F 的坐标得: 22(2)CP m =-,222()43m CF =+,2222()3m PF m =+, ①当CP CF =时,即:22(2)()43m m -=+,解得:0m =或365(均舍去), ②当CP PF =时,2222(2)()3m m m -=+,解得:32m =或3(舍去3), ③当CF PF =时,同理可得:2m =±(舍去2), 故点3(2,)2P 或(2,2)-.。
2020年辽宁省本溪市中考数学试卷及答案
2020年辽宁省本溪市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣2的倒数是()A.−12B.﹣2C.12D.22.(3分)如图是由一个长方体和一个圆锥组成的几何体,它的主视图是()A.B.C.D.3.(3分)下列运算正确的是()A.m2+2m=3m3B.m4÷m2=m2C.m2•m3=m6D.(m2)3=m5 4.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(3分)某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是s 甲2=3.6,s 乙2=4.6,s 丙2=6.3,s 丁2=7.3,则这4名同学3次数学成绩最稳定的是( ) A .甲B .乙C .丙D .丁6.(3分)一个等腰直角三角尺和一把直尺按如图所示的位置摆放,若∠1=20°,则∠2的度数是( )A .15°B .20°C .25°D .40°7.(3分)一组数据1,8,8,4,6,4的中位数是( ) A .4B .5C .6D .88.(3分)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x 件,根据题意可列方程为( ) A .3000x =4200x−80B .3000x +80=4200xC .4200x=3000x−80D .3000x=4200x+809.(3分)如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,AC =8.BD =6,点E 是CD 上一点,连接OE ,若OE =CE ,则OE 的长是( )A .2B .52C .3D .410.(3分)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =2√2,CD ⊥AB 于点D .点P 从点A 出发,沿A →D →C 的路径运动,运动到点C 停止,过点P 作PE ⊥AC 于点E ,作PF ⊥BC 于点F .设点P 运动的路程为x ,四边形CEPF 的面积为y ,则能反映y 与x 之间函数关系的图象是()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分)11.(3分)截至2020年3月底,我国已建成5G基站198000个,将数据198000用科学记数法表示为.12.(3分)若一次函数y=2x+2的图象经过点(3,m),则m=.13.(3分)若关于x的一元二次方程x2+2x﹣k=0无实数根,则k的取值范围是.14.(3分)如图是由全等的小正方形组成的图案,假设可以随意在图中取点,那么这个点取在阴影部分的概率是.15.(3分)如图,在△ABC中,M,N分别是AB和AC的中点,连接MN,点E是CN的中点,连接ME并延长,交BC的延长线于点D.若BC=4,则CD的长为.16.(3分)如图,在Rt △ABC 中,∠ACB =90°,AC =2BC ,分别以点A 和B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点M 和N ,作直线MN ,交AC 于点E ,连接BE ,若CE =3,则BE 的长为 .17.(3分)如图,在△ABC 中,AB =AC ,点A 在反比例函数y =kx (k >0,x >0)的图象上,点B ,C 在x 轴上,OC =15OB ,延长AC 交y 轴于点D ,连接BD ,若△BCD 的面积等于1,则k 的值为 .18.(3分)如图,四边形ABCD 是矩形,延长DA 到点E ,使AE =DA ,连接EB ,点F 1是CD 的中点,连接EF 1,BF 1,得到△EF 1B ;点F 2是CF 1的中点,连接EF 2,BF 2,得到△EF 2B ;点F 3是CF 2的中点,连接EF 3,BF 3,得到△EF 3B ;…;按照此规律继续进行下去,若矩形ABCD 的面积等于2,则△EF n B 的面积为 .(用含正整数n 的式子表示)三、解答题(第19题10分,第20题12分,共22分)19.(10分)先化简,再求值:(xx−3−13−x)÷x+1x2−9,其中x=√2−3.20.(12分)为培养学生的阅读习惯,某中学利用学生课外时间开展了以“走近名著”为主题的读书活动.为了有效了解学生课外阅读情况,现随机调查了部分学生每周课外阅读的时间,设被调查的每名学生每周课外阅读的总时间为x小时,将它分为4个等级:A(0≤x<2),B(2≤x<4),C(4≤x<6),D(x≥6),并根据调查结果绘制了如图两幅不完整的统计图:请你根据统计图的信息,解决下列问题:(1)本次共调查了名学生;(2)在扇形统计图中,等级D所对应的扇形的圆心角为°;(3)请补全条形统计图;(4)在等级D中有甲、乙、丙、丁4人表现最为优秀,现从4人中任选2人作为学校本次读书活动的宣传员,用列表或画树状图的方法求恰好选中甲和乙的概率.四、解答题(第21题12分,第22题12分,共24分)21.(12分)某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元.(1)求每本甲种词典和每本乙种词典的价格分别为多少元?(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?22.(12分)如图,我国某海域有A,B两个港口,相距80海里,港口B在港口A的东北方向,点C处有一艘货船,该货船在港口A的北偏西30°方向,在港口B的北偏西75°方向,求货船与港口A之间的距离.(结果保留根号)五、解答题(满分12分)23.(12分)超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y (瓶)与每瓶售价x(元)之间满足一次函数关系(其中10≤x≤15,且x为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶.(1)求y与x之间的函数关系式;(2)设超市销售该品牌洗手液每天销售利润为w元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元?六、解答题(满分12分)24.(12分)如图,在平行四边形ABCD中,AC是对角线,∠CAB=90°,以点A为圆心,以AB的长为半径作⊙A,交BC边于点E,交AC于点F,连接DE.(1)求证:DE与⊙A相切;(2)若∠ABC=60°,AB=4,求阴影部分的面积.七、解答题(满分12分)25.(12分)如图,射线AB和射线CB相交于点B,∠ABC=α(0°<α<180°),且AB =CB.点D是射线CB上的动点(点D不与点C和点B重合),作射线AD,并在射线AD上取一点E,使∠AEC=α,连接CE,BE.(1)如图①,当点D在线段CB上,α=90°时,请直接写出∠AEB的度数;(2)如图②,当点D在线段CB上,α=120°时,请写出线段AE,BE,CE之间的数量关系,并说明理由;(3)当α=120°,tan∠DAB=13时,请直接写出CEBE的值.八、解答题(满分14分)26.(14分)如图,抛物线y=ax2﹣2√3x+c(a≠0)过点O(0,0)和A(6,0).点B是抛物线的顶点,点D是x轴下方抛物线上的一点,连接OB,OD.(1)求抛物线的解析式;(2)如图①,当∠BOD=30°时,求点D的坐标;(3)如图②,在(2)的条件下,抛物线的对称轴交x轴于点C,交线段OD于点E,点F是线段OB上的动点(点F不与点O和点B重合),连接EF,将△BEF沿EF折叠,点B的对应点为点B',△EFB'与△OBE的重叠部分为△EFG,在坐标平面内是否存在一点H,使以点E,F,G,H为顶点的四边形是矩形?若存在,请直接写出点H的坐标,中考数学试题若不存在,请说明理由.中考数学试题2020年辽宁省本溪市中考数学试卷参考答案一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.A ; 2.C ; 3.B ; 4.D ; 5.A ; 6.C ; 7.B ; 8.D ; 9.B ; 10.A ; 二、填空题(本题共8小题,每小题3分,共24分)11.1.98×105; 12.8; 13.k <﹣1; 14.59; 15.2; 16.5; 17.3; 18.2n +12n;三、解答题(第19题10分,第20题12分,共22分) 19. ; 20.50;108;四、解答题(第21题12分,第22题12分,共24分) 21. ; 22. ; 五、解答题(满分12分) 23. ;六、解答题(满分12分) 24. ;七、解答题(满分12分) 25. ;八、解答题(满分14分) 26. ;。
辽宁省抚顺市、本溪市、辽阳市2020年中考数学试题
辽宁省抚顺市、本溪市、辽阳市2020年中考数学试题一、选择题(本题共10小题,每小题3分,共30分.)(共10题;共30分)1. ( 3分) -2的倒数是( )A. B. -2 C. D. 22. ( 3分) 下图是由一个长方体和一个圆锥组成的几何体,它的主视图是()A. B. C. D.3. ( 3分) 下列运算正确的是()A. B. C. D.4. ( 3分) 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.5. ( 3分) 某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是,,,,则这4名同学3次数学成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁6. ( 3分) 一个等腰直角三角尺和一把直尺按如图所示的位置摆放,若,则∠2的度数是()A. 15°B. 20°C. 25°D. 40°7. ( 3分) 一组数据1,8,8,4,6,4的中位数是()A. 4B. 5C. 6D. 88. ( 3分) 随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件件,根据题意可列方程为()A. B.C. D.9. ( 3分) 如图,四边形是菱形,对角线,相交于点O,,,点E是上一点,连接,若,则的长是()A. 2B.C. 3D. 410. ( 3分) 如图,在中,,,于点D.点从点A 出发,沿的路径运动,运动到点C停止,过点作于点E,作于点F.设点P运动的路程为x,四边形的面积为y,则能反映y与x之间函数关系的图象是()A. B.C. D.二、填空题(本题共8小题,每小题3分,共24分)(共8题;共24分)11. ( 3分) 截至2020年3月底,我国已建成基站198000个,将数据198000用科学记数法表示为________.12. ( 3分) 若一次函数的图象经过点,则________.13. ( 3分) 若关于x的一元二次方程无实数根,则k的取值范围是________.14. ( 3分) 下图是由全等的小正方形组成的图案,假设可以随意在图中取点,那么这个点取在阴影部分的概率是________.15. ( 3分) 如图,在中,M,N分别是和的中点,连接,点E是的中点,连接并延长,交的延长线于点D,若,则的长为________.16. ( 3分) 如图,在中,,,分别以点A和B为圆心,以大于的长为半径作弧,两弧相交于点M和N,作直线,交于点E,连接,若,则的长为________.17. ( 3分) 如图,在中,,点A在反比例函数(,)的图象上,点B,C在x轴上,,延长交y轴于点D,连接,若的面积等于1,则k的值为________.18. ( 3分) 如图,四边形是矩形,延长到点,使,连接,点是的中点,连接,,得到;点是的中点,连接,,得到;点是的中点,连接,,得到;…;按照此规律继续进行下去,若矩形的面积等于2,则的面积为________.(用含正整数的式子表示)三、解答题(第19题10分,第20题12分,共22分)(共2题;共22分)19. ( 10分) 先化简,再求值:,其中.20. ( 12分) 为培养学生的阅读习惯,某中学利用学生课外时间开展了以“走近名著”为主题的读书活动.为了有效了解学生课外阅读情况,现随机调查了部分学生每周课外阅读的时间,设被调查的每名学生每周课外阅读的总时间为小时,将它分为4个等级:A(),B(),C(),D(),并根据调查结果绘制了如两幅不完整的统计图:请你根据统计图的信息,解决下列问题:(1)本次共调查了________名学生;(2)在扇形统计图中,等级所对应的扇形的圆心角为________°;(3)请补全条形统计图;(4)在等级D中有甲、乙、丙、丁4人表现最为优秀,现从4人中任选2人作为学校本次读书活动的宣传员,用列表或画树状图的方法求恰好选中甲和乙的概率.四、解答题(第21题12分,第22题12分,共24分)(共2题;共24分)21. ( 12分) 某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元.(1)求每本甲种词典和每本乙种词典的价格分别为多少元?(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?22. ( 12分) 如图,我国某海域有A,B两个港口,相距80海里,港口B在港口A的东北方向,点处有一艘货船,该货船在港口A的北偏西30°方向,在港口B的北偏西75°方向,求货船与港口A之间的距离.(结果保留根号)五、解答题(满分12分)(共1题;共12分)23. ( 12分) 超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y(瓶)与每瓶售价x(元)之间满足一次函数关系(其中,且为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶.(1)求y与x之间的函数关系式;(2)设超市销售该品牌洗手液每天销售利润为w元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元?六、解答题(满分12分)(共1题;共12分)24. ( 12分) 如图,在平行四边形中,是对角线,,以点A为圆心,以的长为半径作,交边于点E,交于点F,连接.(1)求证:与相切;(2)若,,求阴影部分的面积.七、解答题(满分12分)(共1题;共12分)25. ( 12分) 如图,射线和射线相交于点,(),且.点D是射线上的动点(点D不与点和点重合).作射线,并在射线上取一点E,使,连接,.(1)如图①,当点D在线段上,时,请直接写出的度数;(2)如图②,当点在线段上,时,请写出线段,,之间的数量关系,并说明理由;(3)当,时,请直接写出的值.八、解答题(共1题;共14分)26. ( 14.0分) 如图,抛物线()过点和,点B是抛物线的顶点,点D是x轴下方抛物线上的一点,连接,.(1)求抛物线的解析式;(2)如图①,当时,求点D的坐标;(3)如图②,在(2)的条件下,抛物线的对称轴交x轴于点C,交线段于点E,点F是线段上的动点(点F不与点O和点B重合,连接,将沿折叠,点B的对应点为点B,与的重叠部分为,在坐标平面内是否存在一点,使以点E,F,G,H为顶点的四边形是矩形?若存在,请直接写出点H的坐标,若不存在,请说明理由.答案解析部分一、选择题(本题共10小题,每小题3分,共30分.)1.【答案】A【考点】有理数的倒数【解析】【解答】解:1(-2)=-;故答案为:A .【分析】根据用1除以一个数得出这个数的倒数的方法即可求解。
2020年辽宁本溪中考数学试卷及答案(word解析版)
(2)点M是抛物线对称轴上的一点,点M、B、D为顶点的三角形的面积是6,求点M的坐标;
(3)点P从点D出发,以每秒1个单位长度的速度沿 匀速运动,当点P到达点B时,P,Q同时停止运动.设运动的时间为 秒,当 为何值时,以D、P、Q为顶点的三角形是等腰三角形?请直接写出所有符合条件的 的值.
A、
B、
C、
D、
答案:B
9、如图, 的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,
∠APO=30°,则弦AB的长是()
A、 B、 C、 D、
答案:A
10、如图,在矩形OABC中,AB=2BC,点A在y轴的正半轴上,点C在x轴的正半轴上,连接OB,反比例函数 的图像经过OB的中点D,与BC边交于点E,点E的横坐标是4,则k的值是()
A、1 B、2 C、3 D、4
答案:B
第二部分非选择题(共120分)
2、填空题(本大题共8小题,每小题3分,共24分)
11、函数 中,自变量x的取值范围是
答案:
12、一种花粉颗粒的直径约为0.0000065米,将0.0000065用科学记数法表示为
答案:
13、在平面直角坐标系中,点P(5,-3)关于原点对称的点的坐标是
当 时,w有最大值400元
当 时,
抛物线开口向下
当 =150时,w有最大值450
综上可知一次性采购量是150千克时,蔬菜种植基地获最大利润450元
(3)
根据(2)可得:
解得
答:采购商一次性采购的蔬菜是110千克或190千克时,蔬菜种植基地能获得418元的利润
7、解答题(满分12分)
25、在 中,∠ACB=90°,∠A<45°,点O为AB中点,一个足够大的三角板的直角顶点与点O重合,一边OE经过点C,另一边OD与AC交于点M.
2020年辽宁省本溪市中考数学试卷-含详细解析
2020年辽宁省本溪市中考数学试卷副标题题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.−2的倒数是()A. −12B. −2 C. 12D. 22.如图是由一个长方体和一个圆锥组成的几何体,它的主视图是()A.B.C.D.3.下列运算正确的是()A. m2+2m=3m3B. m4÷m2=m2C. m2⋅m3=m6D. (m2)3=m54.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.5.某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是s甲2=3.6,s乙2=4.6,s丙2=6.3,s丁2=7.3,则这4名同学3次数学成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁6.一个等腰直角三角尺和一把直尺按如图所示的位置摆放,若∠1=20°,则∠2的度数是()A. 15°B. 20°C. 25°D. 40°7.一组数据1,8,8,4,6,4的中位数是()A. 4B. 5C. 6D. 88.随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A. 3000x =4200x−80B. 3000x+80=4200xC. 4200x =3000x−80 D. 3000x=4200x+809.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,AC=8.BD=6,点E是CD上一点,连接OE,若OE=CE,则OE的长是()A. 2B. 52C. 3D. 410.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2√2,CD⊥AB于点D.点P从点A出发,沿A→D→C的路径运动,运动到点C停止,过点P作PE⊥AC于点E,作PF⊥BC于点F.设点P运动的路程为x,四边形CEPF的面积为y,则能反映y与x之间函数关系的图象是()A. B.C. D.二、填空题(本大题共8小题,共24.0分)11.截至2020年3月底,我国已建成5G基站198000个,将数据198000用科学记数法表示为______.12.若一次函数y=2x+2的图象经过点(3,m),则m=______.13.若关于x的一元二次方程x2+2x−k=0无实数根,则k的取值范围是______.14.如图是由全等的小正方形组成的图案,假设可以随意在图中取点,那么这个点取在阴影部分的概率是______.15.如图,在△ABC中,M,N分别是AB和AC的中点,连接MN,点E是CN的中点,连接ME并延长,交BC的延长线于点D.若BC=4,则CD的长为______.16.如图,在Rt△ABC中,∠ACB=90°,AC=2BC,分别以点A和B为圆心,以大于1AB的长为半径作弧,两弧相交于点M和N,作直线MN,交AC于点E,连接BE,2若CE=3,则BE的长为______.17.如图,在△ABC中,AB=AC,点A在反比例函数y=k(k>0,x>0)的图象上,点B,C在x轴上,OC=x1OB,延长AC交y轴于点D,连接BD,若△BCD的5面积等于1,则k的值为______.18.如图,四边形ABCD是矩形,延长DA到点E,使AE=DA,连接EB,点F1是CD的中点,连接EF1,BF1,得到△EF1B;点F2是CF1的中点,连接EF2,BF2,得到△EF2B;点F3是CF2的中点,连接EF3,BF3,得到△EF3B;…;按照此规律继续进行下去,若矩形ABCD的面积等于2,则△EF n B的面积为______.(用含正整数n的式子表示)三、解答题(本大题共8小题,共96.0分)19.先化简,再求值:(xx−3−13−x)÷x+1x2−9,其中x=√2−3.20.为培养学生的阅读习惯,某中学利用学生课外时间开展了以“走近名著”为主题的读书活动.为了有效了解学生课外阅读情况,现随机调查了部分学生每周课外阅读的时间,设被调查的每名学生每周课外阅读的总时间为x小时,将它分为4个等级:A(0≤x<2),B(2≤x<4),C(4≤x<6),D(x≥6),并根据调查结果绘制了如图两幅不完整的统计图:请你根据统计图的信息,解决下列问题:(1)本次共调查了______名学生;(2)在扇形统计图中,等级D所对应的扇形的圆心角为______°;(3)请补全条形统计图;(4)在等级D中有甲、乙、丙、丁4人表现最为优秀,现从4人中任选2人作为学校本次读书活动的宣传员,用列表或画树状图的方法求恰好选中甲和乙的概率.21.某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元.(1)求每本甲种词典和每本乙种词典的价格分别为多少元?(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?22.如图,我国某海域有A,B两个港口,相距80海里,港口B在港口A的东北方向,点C处有一艘货船,该货船在港口A的北偏西30°方向,在港口B的北偏西75°方向,求货船与港口A之间的距离.(结果保留根号)23.超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y(瓶)与每瓶售价x(元)之间满足一次函数关系(其中10≤x≤15,且x为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶.(1)求y与x之间的函数关系式;(2)设超市销售该品牌洗手液每天销售利润为w元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元?24. 如图,在平行四边形ABCD 中,AC 是对角线,∠CAB =90°,以点A 为圆心,以AB 的长为半径作⊙A ,交BC 边于点E ,交AC 于点F ,连接DE . (1)求证:DE 与⊙A 相切;(2)若∠ABC =60°,AB =4,求阴影部分的面积.25. 如图,射线AB 和射线CB 相交于点B ,∠ABC =α(0°<α<180°),且AB =CB.点D 是射线CB 上的动点(点D 不与点C 和点B 重合),作射线AD ,并在射线AD 上取一点E ,使∠AEC =α,连接CE ,BE .(1)如图①,当点D 在线段CB 上,α=90°时,请直接写出∠AEB 的度数;(2)如图②,当点D 在线段CB 上,α=120°时,请写出线段AE ,BE ,CE 之间的数量关系,并说明理由;(3)当α=120°,tan∠DAB =13时,请直接写出CEBE 的值.26.如图,抛物线y=ax2−2√3x+c(a≠0)过点O(0,0)和A(6,0).点B是抛物线的顶点,点D是x轴下方抛物线上的一点,连接OB,OD.(1)求抛物线的解析式;(2)如图①,当∠BOD=30°时,求点D的坐标;(3)如图②,在(2)的条件下,抛物线的对称轴交x轴于点C,交线段OD于点E,点F是线段OB上的动点(点F不与点O和点B重合),连接EF,将△BEF沿EF折叠,点B的对应点为点B′,△EFB′与△OBE的重叠部分为△EFG,在坐标平面内是否存在一点H,使以点E,F,G,H为顶点的四边形是矩形?若存在,请直接写出点H的坐标,若不存在,请说明理由.答案和解析1.【答案】A【解析】解:有理数−2的倒数是−12.故选:A .根据乘积是1的两个数互为倒数,可得一个数的倒数.本题考查了倒数,分子分母交换位置是求一个数的倒数的关键. 2.【答案】C【解析】解:从正面看,“底座长方体”看到的图形是矩形,“上部圆锥体”看到的图形是等腰三角形,因此选项C 的图形符合题意, 故选:C .根据简单几何体的主视图的画法,利用“长对正”,从正面看到的图形. 本题考查简单几何体的三视图的画法,画三视图时要注意“长对正、宽相等、高平齐”. 3.【答案】B【解析】解:A.m 2与2m 不是同类项,不能合并,所以A 错误; B .m 4÷m 2=m 4−2=m 2,所以B 正确; C .m 2⋅m 3=m 2+3=m 5,所以C 错误; D .( m 2)3=m 6,所以D 错误; 故选:B .运用合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方等运算法则运算即可. 本题主要考查了合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方等运算,熟练掌握运算法则是解答此题的关键. 4.【答案】D【解析】解:A 、是轴对称图形,不是中心对称图形,故本选项不合题意; B 、既不是轴对称图形,也不是中心对称图形,故本选项不合题意; C 、是轴对称图形,不是中心对称图形,故本选项不合题意; D 、既是轴对称图形又是中心对称图形,故本选项符合题意. 故选:D .根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 5.【答案】A【解析】解:∵s 甲2=3.6,s 乙2=4.6,s 丙2=6.3,s 丁2=7.3,且平均数相等, ∴s 甲2<s 乙2<s 丙2<s 丁2,∴这4名同学3次数学成绩最稳定的是甲, 故选:A .根据方差的意义求解可得.本题主要考查方差,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.6.【答案】C【解析】解:∵AB//CD,∴∠3=∠1=20°,∵三角形是等腰直角三角形,∴∠2=45°−∠3=25°,故选:C.根据平行线的性质和等腰三角形的性质即可得到结论.本题考查了等腰直角三角形的性质,平行线的性质,熟练掌握平行线的性质是解题的关键.7.【答案】B【解析】解:一组数据1,4,4,6,8,8的中位数是4+62=5,故选:B.先将数据重新排列,再根据中位数的概念求解可得.本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8.【答案】D【解析】解:设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,依题意,得:3000x =4200x+80.故选:D.设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,根据人数=投递快递总数量÷人均投递数量结合快递公司的快递员人数不变,即可得出关于x 的分式方程,此题得解.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.9.【答案】B【解析】解:∵菱形ABCD的对角线AC、BD相交于点O,∴OB=12BD=12×6=3,OA=OC=12AC=12×8=4,AC⊥BD,由勾股定理得,BC=√OB2+OC2=√32+42=5,∴AD=5,∵OE=CE,∴∠DCA=∠EOC,∵四边形ABCD是菱形,∴∠DCA=∠DAC,∴∠DAC=∠EOC,∴OE//AD,∵AO=OC,∴OE是△ADC的中位线,∴OE=12AD=2.5,故选:B.根据菱形的对角线互相垂直平分求出OB,OC,AC⊥BD,再利用勾股定理列式求出BC,然后根据三角形的中位线平行于第三边并且等于第三边的一半求解即可.本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半,勾股定理,熟记性质与定理是解题的关键.10.【答案】A【解析】解:∵在Rt△ABC中,∠ACB=90°,AC=BC=2√2,∴AB=4,∠A=45°,∵CD⊥AB于点D,∴AD=BD=2,∵PE⊥AC,PF⊥BC,∴四边形CEPF是矩形,∴CE=PF,PE=CF,∵点P运动的路程为x,∴AP=x,则AE=PE=x⋅sin45°=√22x,∴CE=AC−AE=2√2−√22x,∵四边形CEPF的面积为y,∴当点P从点A出发,沿A→D路径运动时,即0<x<2时,y=PE⋅CE=√22x(2√2−√22x)=−12x2+2x=−12(x−2)2+2,∴当0<x<2时,抛物线开口向下;当点P沿D→C路径运动时,即2≤x<4时,∵CD是∠ACB的平分线,∴PE=PF,∴四边形CEPF是正方形,∵AD=2,PD=x−2,∴CP=4−x,y=12(4−x)2=12(x−4)2.∴当2≤x<4时,抛物线开口向上,综上所述:能反映y与x之间函数关系的图象是:A.故选:A.根据Rt△ABC中,∠ACB=90°,AC=BC=2√2,可得AB=4,根据CD⊥AB于点D.可得AD=BD=2,CD平分角ACB,点P从点A出发,沿A→D→C的路径运动,运动到点C停止,分两种情况讨论:根据PE⊥AC,PF⊥BC,可得四边形CEPF是矩形和正方形,设点P运动的路程为x,四边形CEPF的面积为y,进而可得能反映y与x之间函数关系式,从而可以得函数的图象.本题考查了动点问题的函数图象,解决本题的关键是掌握二次函数的性质.11.【答案】1.98×105【解析】解:198000=1.98×105,故答案为:1.98×105.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.12.【答案】8【解析】解:∵一次函数y=2x+2的图象经过点(3,m),∴m=2×3+2=8.故答案为:8.利用一次函数图象上点的坐标特征可求出m的值,此题得解.本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.13.【答案】k<−1【解析】解:由题意可知:△=4+4k<0,∴k<−1,故答案为:k<−1根据根的判别式即可求出答案.本题考查了一元二次方程根的判别式,需要掌握一元二次方程没有实数根相当于判别式小于零.14.【答案】59【解析】解:设阴影部分的面积是5x,则整个图形的面积是9x,则这个点取在阴影部分的概率是5x9x =59.故答案为:59.先设阴影部分的面积是5x,得出整个图形的面积是9x,再根据几何概率的求法即可得出答案.本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.15.【答案】2【解析】解:∵M,N分别是AB和AC的中点,∴MN是△ABC的中位线,∴MN=12BC=2,MN//BC,∴∠NME=∠D,∠MNE=∠DCE,∵点E是CN的中点,∴NE=CE,∴△MNE≌△DCE(AAS),∴CD=MN=2.故答案为:2.依据三角形中位线定理,即可得到MN=12BC=2,MN//BC,依据△MNE≌△DCE(AAS),即可得到CD=MN=2.本题主要考查了三角形中位线定理以及全等三角形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.16.【答案】5【解析】解:由作图可知,MN垂直平分线段AB,∴AE=EB,设AE=EB=x,∵EC=3,AC=2BC,∴BC=12(x+3),在Rt△BCE中,∵BE2=BC2+EC2,∴x2=32+[12(x+3)]2,解得,x=5或−3(舍弃),∴BE=5,故答案为5.设BE=AE=x,在Rt△BEC中,利用勾股定理构建方程即可解决问题.本题考查作图−基本作图,线段的垂直平分线的性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.17.【答案】3【解析】解:作AE⊥BC于E,连接OA,∵AB=AC,∴CE=BE,∵OC=15OB,∴OC=12CE,∵AE//OD,∴△COD∽△CEA,∴S△CEAS△COD =(CEOC)2=4,∵△BCD的面积等于1,OC=15OB,∴S△COD=14S△BCD=14,∴S△CEA=4×14=1,∵OC=12CE,∴S△AOC=12S△CEA=12,∴S △AOE =12+1=32, ∵S △AOE =12k(k >0),∴k =3, 故答案为3.作AE ⊥BC 于E ,连接OA ,根据等腰三角形的性质得出OC =12CE ,根据相似三角形的性质求得S △CEA =1,进而根据题意求得S △AOE =32,根据反比例函数系数k 的几何意义即可求得k 的值.本题考查了反比例函数系数k 的几何意义,三角形的面积,等腰三角形的性质,正确的作出辅助线是解题的关键.18.【答案】2n +12n【解析】解:∵AE =DA ,点F 1是CD 的中点,矩形ABCD 的面积等于2, ∴△EF 1D 和△EAB 的面积都等于1, ∵点F 2是CF 1的中点, ∴△EF 1F 2的面积等于12,同理可得△EF n−1F n 的面积为12n−1, ∵△BCF n 的面积为2×12n ÷2=12n ,∴△EF n B 的面积为2+1−1−12−⋯−12n−1−12n =2−(1−12n )=2n +12n.故答案为:2n +12n.先求得△EF 1D 的面积为1,再根据等高的三角形面积比等于底边的比可得EF 1F 2的面积,EF 2F 3的面积,…,EF n−1F n 的面积,以及△BCF n 的面积,再根据面积的和差关系即可求解.考查了矩形的性质,规律型:图形的变化类,三角形的面积,本题难点是得到EF 1F 2的面积,EF 2F 3的面积,…,EF n−1F n 的面积.19.【答案】解:原式=(x x−3+1x−3)⋅(x+3)(x−3)x+1=x +1x −3⋅(x +3)(x −3)x +1=x +3,当x =√2−3时,原式=√2−3+3=√2.【解析】原式括号中第二项变形后利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 20.【答案】50 108【解析】解:(1)本次共调查学生1326%=50(名), 故答案为:50;(2)扇形统计图中,等级D 所对应的扇形的圆心角为360°×1550=108°, 故答案为:108;(3)C 等级人数为50−(4+13+15)=18(名), 补全图形如下:(4)画树状图为:共有12种等可能的结果数,其中恰好同时选中甲、乙两名同学的结果数为2, 所以恰好同时选中甲、乙两名同学的概率212=16.(1)由B 等级人数及其所占百分比可得被调查的总人数; (2)用360°乘以D 等级人数所占比例即可得;(3)根据四个等级人数之和等于总人数求出C 等级人数,从而补全图形;(4)画树状图展示所有12种等可能的结果数,找出恰好同时选中甲、乙两名同学的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图.21.【答案】解:(1)设每本甲种词典的价格为x 元,每本乙种词典的价格为y 元, 依题意,得:{x +2y =1702x +3y =290,解得:{x =70y =50.答:每本甲种词典的价格为70元,每本乙种词典的价格为50元. (2)设学校购买甲种词典m 本,则购买乙种词典(30−m)本, 依题意,得:70m +50(30−m)≤1600, 解得:m ≤5.答:学校最多可购买甲种词典5本.【解析】(1)设每本甲种词典的价格为x 元,每本乙种词典的价格为y 元,根据“购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设学校购买甲种词典m 本,则购买乙种词典(30−m)本,根据总价=单价×数量结合总费用不超过1600元,即可得出关于m 的一元一次不等式,解之取其中的最大值即可得出结论.本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.22.【答案】解:过点A 作AD ⊥BC 于D ,如图所示:由题意得:∠ABC =180°−75°−45°=60°,∵AD ⊥BC ,∴∠ADB =∠ADC =90°,在Rt △ABD 中,∠DAB =90°−60°=30°,AD =AB ⋅sin∠ABD =80×sin60°=80×√32=40√3,∵∠CAB =30°+45°=75°,∴∠DAC =∠CAB −∠DAB =75°−30°=45°,∴△ADC 是等腰直角三角形,∴AC =√2AD =√2×40√3=40√6(海里). 答:货船与港口A 之间的距离是40√6海里.【解析】过点A 作AD ⊥BC 于D ,求出∠ABC =60°,在Rt △ABD 中,∠DAB =30°,由三角函数定义求出AD =AB ⋅sin∠ABD =40√3,求出∠DAC =∠CAB −∠DAB =45°,则△ADC 是等腰直角三角形,得出AC =√2AD =40√6海里即可.本题考查了解直角三角形的应用−方向角问题、等腰直角三角形的判定与性质等知识;通过作辅助线得出直角三角形是解题的关键.23.【答案】解:(1)设y 与x 之间的函数关系式为y =kx +b(k ≠0),根据题意得: {12k +b =9014k +b =80, 解得:{k =−5b =150,∴y 与x 之间的函数关系为y =−5x +150;(2)根据题意得:w =(x −10)(−5x +150)=−5(x −20)2+500, ∵a =−5<0,∴抛物线开口向下,w 有最大值,∴当x <20时,w 随着x 的增大而增大, ∵10≤x ≤15且x 为整数, ∴当x =15时,w 有最大值,即:w =−5×(15−20)+500=375,答:当每瓶洗手液的售价定为15元时,超市销售该品牌洗手液每天销售利润最大,最大利润为375元.【解析】(1)利用待定系数法确定一次函数的关系式即可;(2)根据总利润=单件利润×销量列出有关w关于x的函数关系后求得最值即可.本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据总利润的相等关系列出函数解析式、利用二次函数的性质求最值问题.24.【答案】(1)证明:连接AE,∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,∴∠DAE=∠AEB,∵AE=AB,∴∠AEB=∠ABC,∴∠DAE=∠ABC,∴△AED≌△BAC(AAS),∴∠DEA=∠CAB,∵∠CAB=90°,∴∠DEA=90°,∴DE⊥AE,∵AE是⊙A的半径,∴DE与⊙A相切;(2)解:∵∠ABC=60°,AB=AE=4,∴△ABE是等边三角形,∴AE=BE,∠EAB=60°,∵∠CAB=90°,∴∠CAE=90°−∠EAB=90°−60°=30°,∠ACB=90°−∠B=90°−60°=30°,∴∠CAE=∠ACB,∴AE=CE,∴CE=BE,∴S△ABC=12AB⋅AC=12×4×4√3=8√3,∴S△ACE=12S△ABC=12×8√3=4√3,∵∠CAE=30°,AE=4,∴S扇形AEF =30π×AE2360=30π×42360=4π3,∴S阴影=S△ACE−S扇形AEF=4√3−4π3.【解析】(1)证明:连接AE,根据平行四边形的性质得到AD=BC,AD//BC,求得∠DAE=∠AEB,根据全等三角形的性质得到∠DEA=∠CAB,得到DE⊥AE,于是得到结论;(2)根据已知条件得到△ABE是等边三角形,求得AE=BE,∠EAB=60°,得到∠CAE=∠ACB,得到CE=BE,根据三角形和扇形的面积公式即可得到结论.本题考查了切线的判定和性质,平行四边形的性质,全等三角形的判定和性质,等边三角形的判定和性质,扇形的面积的计算,熟练掌握切线的判定定理是解题的关键.25.【答案】解:(1)连接AC,如图①所示:∵α=90°,∠ABC=α,∠AEC=α,∴∠ABC=∠AEC=90°,∴A、B、E、C四点共圆,∴∠BCE=∠BAE,∠CBE=∠CAE,∵∠CAB=∠CAE+∠BAE,∴∠BCE+∠CBE=∠CAB,∵∠ABC=90°,AB=CB,∴△ABC是等腰直角三角形,∴∠CAB=45°,∴∠BCE+∠CBE=45°,∴∠BEC=180°−(∠BCE+∠CBE)=180°−45°= 135°,∴∠AEB=∠BEC−∠AEC=135°−90°=45°;(2)AE=√3BE+CE,理由如下:在AD上截取AF=CE,连接BF,过点B作BH⊥EF于H,如图②所示:∵∠ABC=∠AEC,∠ADB=∠CDE,∴180°−∠ABC−∠ADB=180°−∠AEC−∠CDE,∴∠A=∠C,在△ABF和△CBE中,{AF=CE ∠A=∠C AB=CB,∴△ABF≌△CBE(SAS),∴∠ABF=∠CBE,BF=BE,∴∠ABF+∠FBD=∠CBE+∠FBD,∴∠ABD=∠FBE,∵∠ABC=120°,∴∠FBE=120°,∵BF=BE,∴∠BFE=∠BEF=12×(180°−∠FBE)=12×(180°−120°)=30°,∵BH⊥EF,∴∠BHE=90°,FH=EH,在Rt△BHE中,BH=12BE,FH=EH=√3BH=√32BE,∴EF=2EH=2×√32BE=√3BE,∵AE=EF+AF,AF=CE,∴AE=√3BE+CE;(3)分两种情况:①当点D在线段CB上时,在AD上截取AF=CE,连接BF,过点B作BH⊥EF于H,如图②所示:由(2)得:FH=EH=√32BE,∵tan∠DAB=BHAH =13,∴AH=3BH=32BE,∴CE =AF =AH −FH =32BE −√32BE =3−√32BE ,∴CE BE=3−√32;②当点D 在线段CB 的延长线上时,在射线AD 上截取AF =CE ,连接BF ,过点B 作BH ⊥EF 于H ,如图③所示: 同①得:FH =EH =√32BE ,AH =3BH =32BE ,∴CE =AF =AH +FH =32BE +√32BE =3+√32BE ,∴CE BE=3+√32;综上所述,当α=120°,tan∠DAB =13时,CEBE 的值为3−√32或3+√32.【解析】(1)连接AC ,证A 、B 、E 、C 四点共圆,由圆周角定理得出∠BCE =∠BAE ,∠CBE =∠CAE ,证出△ABC 是等腰直角三角形,则∠CAB =45°,进而得出结论; (2)在AD 上截取AF =CE ,连接BF ,过点B 作BH ⊥EF 于H ,证△ABF≌△CBE(SAS),得出∠ABF =∠CBE ,BF =BE ,由等腰三角形的性质得出FH =EH ,由三角函数定义得出FH =EH =√32BE ,进而得出结论;(3)由(2)得FH =EH =√32BE ,由三角函数定义得出AH =3BH =32BE ,分别表示出CE ,进而得出答案.本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理、三角函数定义等知识;本题综合性强,构造全等三角形是解题的关键.26.【答案】解:(1)把点O(0,0)和A(6,0)代入y =ax 2−2√3x +c 中, 得到{c =036a −12√3+c =0,解得{a =√33c =0,∴抛物线的解析式为y =√33x 2−2√3x.(2)如图①中,设抛物线的对称轴交x 轴于M ,与OD 交于点N .∵y =√33x 2−2√3x =√33(x −3)2−3√3,∴顶点B(3,−3√3),M(3,0),∴OM =3.BM =3√3, ∴tan∠MOB =BMOM =√3,∴∠MOB =60°, ∵∠BOD =30°,∴∠MON =∠MOB −∠BOD =30°, ∴MN =OM ⋅tam30°=√3, ∴N(3,−√3),∴直线ON 的解析式为y =−√33x ,由{y =−√33x y =√33x 2−2√3x,解得{x =0y =0或{x =5y =−5√33, ∴D(5,−5√33).(3)如图②−1中,当∠EFG =90°时,点H 在第一象限,此时G ,B′,O 重合,F(−32,−3√32),E(3,−√3),可得H(32,√32).如图②−2中,当∠EGF =90°时,点H 在对称轴右侧,可得H(72,−3√32).如图②−3中当∠FGE=90°时,点H在对称轴左侧,点B′在对称轴上,可得H(52,−3√32).综上所述,满足条件的点H的坐标为(32,√32)或(52,−3√33)或(72,−3√32).【解析】(1)利用待定系数法解决问题即可.(2)如图①中,设抛物线的对称轴交x轴于M,与OD交于点N.解直角三角形求出等N 的坐标,求出直线ON的解析式,构建方程组确定等D坐标即可.(3)分三种情形:如图②−1中,当∠EFG=90°时,点H在第一象限,此时G,B′,O 重合.如图②−2中,当∠EGF=90°时,点H在对称轴右侧.如图②−3中当∠FGE=90°时,点H在对称轴左侧,点B′在对称轴上,分别求解即可.本题属于二次函数综合题,考查了待定系数法,解直角三角形,矩形的判定和性质等知识,解题的关键是学会构建一次函数,利用方程组确定交点坐标,学会用分类讨论的思想思考问题,属于中考压轴题.。
辽宁省本溪市2020年中考数学试卷C卷
辽宁省本溪市2020年中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)某四面体的三视图如图所示,该四面体四个面的面积中最大的是()A . 8B . 6C . 10D . 82. (2分)计算:2﹣3的结果为()A . -1B . -2C . 1D . 23. (2分)(2017·磴口模拟) 在四个实数2,0,﹣,﹣中,最小实数的倒数是()A . 0B . ﹣2C .D . ﹣4. (2分)把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A . 对应点连线与对称轴垂直B . 对应点连线被对称轴平分C . 对应点连线被对称轴垂直平分D . 对应点连线互相平行5. (2分)下列运算正确的是()A . 5x4﹣x2=4x2B . 3a2•a3=3a6C . (2a2)3(﹣ab)=﹣8a7bD . 2x2÷2x2=06. (2分)在平面直角坐标系中,点P(2,3)关于y轴的对称点在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限7. (2分)(2019·禅城模拟) 如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A . 8,9B . 8,8.5C . 16,8.5D . 16,10.58. (2分) (2020九上·莘县期末) 如图,A、D是⊙O上的两个点,若∠ADC=33°,则∠ACO的大小为A . 57°B . 66°C . 67°D . 44°9. (2分) (2017七下·邵东期中) 下列各式由左边到右边的变形中,属于分解因式的是()A . a(x+y)=ax+ayB . x2﹣4x+4=x(x﹣4)+4C . 10x2﹣5x=5x(2x﹣1)D . x2﹣16+6x=(x+4)(x﹣4)+6x10. (2分)如图,A、B两点分别位于一个池塘的两端,为了测量A、B之间的距离,小天想了一个办法:在地上取一点C,使它可以直接到达A﹑B两点,连接AC、BC,在AC上取一点M,使AM=3MC,作MN∥AB交BC于点N,测得MN=38m,则A、B两点间的距离为()A . 76mB . 95mC . 114mD . 152m11. (2分)(2017·中原模拟) 如图,已知,点A(0,0)、B(4 ,0)、C(0,4),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1 ,第2个△B1A2B2 ,第3个△B2A3B3 ,…则第2017个等边三角形的边长等于()A .B .C .D .12. (2分)如图,在长方形ABCD中,CD与BC的长度比为5:12,若该长方形的周长为34,则BD的长为()A . 13B . 12C . 8D . 10二、填空题 (共6题;共6分)13. (1分)(2011·泰州) 不等式2x+1>﹣5的解集是________14. (1分)当x________时,分式有意义.15. (1分) (2017八下·盐城开学考) 在一个不透明的摇奖箱内装有25个现状、大小、质地等完全相同的小球,其中只有5个球标有中奖标志,那么随机抽取一个小球中奖的概率是________.16. (1分)(2017·齐齐哈尔) 在某次七年级期末测试中,甲、乙两个班的数学平均成绩都是89.5分,且方差分别为S甲2=0.15,S乙2=0.2,则成绩比较稳定的是________班.17. (1分)(2011·资阳) 如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=________度.18. (1分) (2017八下·萧山开学考) 证明命题“两个锐角的和是锐角”是假命题,举的反例是________.三、解答题 (共8题;共101分)19. (5分)计算:(﹣2016)0﹣2﹣2﹣(﹣)﹣3﹣(﹣3)2 .20. (25分)解下列方程:(1) 4x+3=2(x﹣1)+1;(2);(3) 5y+2=7y﹣8;(4);(5).21. (10分)(2017·荔湾模拟) 李老师为了了解所教班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)若D类男生有1名,请计算出C类女生的人数,并将条形统计图补充完整.(2)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是两位男同学的概率.22. (15分)(2018·射阳模拟) 如图,在平面直角坐标系中,直线l:y=﹣x﹣与坐标轴分别交于A,B 两点,过A,O,B三点作⊙O1 ,点C是劣弧OB上任意一点,连接BC,AC,OC.(1)求∠ACO的度数;(2)求图中阴影部分的面积;(3)试探究线段AC,BC,OC之间的数量关系,并说明你的理由.23. (15分) (2019八上·凤翔期中) 张师傅驾车从甲地去乙地,途中在加油站加了一次油,加油时,车载电脑显示还有4升油.假设加油前、后汽车都以100千米小时的速度匀速行驶,已知油箱中剩余油量(升)与行驶时间(小时)之间的关系如图所示.(1)求张师傅加油前油箱剩余油量(升)与行驶时间(小时)之间的关系式;(2)求出的值;(3)求张师傅途中加油多少升?24. (6分) (2015七下·农安期中) 如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC=________度;(2)求∠EDF的度数.25. (10分) (2016九上·昌江期中) 如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.(1)求证:△DCE∽△BCA;(2)若AB=3,AC=4.求DE的长.26. (15分) (2019八下·台州期中) 如图,直线与x轴交于点A,与y轴交于B,点P是x轴上的一个动点.(1)求A、B两点的坐标;(2)当点P在x轴正半轴上,且△APB的面积为8时,求直线PB的解析式;(3)点Q在第二象限,是否存在以A、B、P、Q为顶点的四边形是菱形?若存在,请求出点Q的坐标,若不存在,请说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14、答案:略15-1、16-1、17-1、18-1、三、解答题 (共8题;共101分)19-1、20-1、20-2、20-3、20-4、20-5、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。
辽宁省本溪市2020版中考数学试卷C卷
辽宁省本溪市2020版中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列说法错误的是()A . 一个正数的绝对值一定是正数B . 一个负数的绝对值一定是正数C . 任何数的绝对值都不是负数D . 任何数的绝对值一定是正数2. (2分)如图所示,已知OC平分∠AOB,CD∥OB,若OD=4cm,则CD等于()A . 1.5cmB . 2cmC . 3cmD . 4cm3. (2分)下列算式中,正确的是()A . (a3b)2=a6b2B . a2﹣a3=﹣aC .D . ﹣(﹣a3)2=a64. (2分)(2019·南通) 如图是一个几何体的三视图,该几何体是()A . 球B . 圆锥C . 圆柱D . 棱柱5. (2分)如图,直线y=kx+b经过A(2,1),B(-1,-2)两点,则不等式x>kx+b>-2的解集为()A . x<2B . x>-1C . x<1或x>2D . -1<x<26. (2分) (2016七上·岑溪期末) 在解方程时,去分母后正确的是()A . 5x=1﹣3(x﹣1)B . x=1﹣(3x﹣1)C . 5x=15﹣3(x﹣1)D . 5x=3﹣3(x﹣1)7. (2分)下列说法正确的是()A . “购买1张彩票就中奖”是不可能事件B . “掷一次骰子,向上一面的点数是6”是随机事件C . 了解我国青年人喜欢的电视节目应作全面调查D . 甲、乙两组数据,若S甲2>S乙2 ,则乙组数据波动大8. (2分)如图,已知▱ABCD的对角线BD=4cm,将▱ABCD绕其对称中心O旋转180°,则点D所转过的路径长为()A . 4π cmB . 3π cmC . 2π cmD . π cm9. (2分) (2018七上·定安期末) 如图,把长方形沿按图那样折叠后,A,B分别落在点G,H处,若∠1=50°,则∠AEF=()A . 110°B . 115°C . 120°D . 125°10. (2分) (2016九上·朝阳期末) 下列交通标志中,既是轴对称图形又是中心对称图形的是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分) (2015七上·大石桥竞赛) 钓鱼岛是位于我国东海钓鱼岛列岛的主岛,被誉为“深海中的翡翠”,面积约4400000平方米,数据4400000用科学记数法表示为________.12. (1分) (2017七下·大石桥期末) 如图所示,把三张边长均为 cm的正方形卡片A,B,C叠放在一个底面为正方形的盒底上,若底面未被卡片覆盖(阴影部分)的面积为5cm²,则盒底的边长是________.13. (1分)如图,设半径为3的半圆⊙O,直径为AB,C、D为半圆上的两点,P点是AB上一动点,若的度数为,的度数为,则 PC+PD的最小值是________ 。
2020年辽宁省本溪市中考数学试卷(WORD版无答案)
2020年辽宁省本溪市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣2的倒数是()A.−12B.﹣2C.12D.22.(3分)如图是由一个长方体和一个圆锥组成的几何体,它的主视图是()A.B.C.D.3.(3分)下列运算正确的是()A.m2+2m=3m3B.m4÷m2=m2C.m2•m3=m6D.(m2)3=m5 4.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(3分)某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是s 甲2=3.6,s 乙2=4.6,s 丙2=6.3,s 丁2=7.3,则这4名同学3次数学成绩最稳定的是( )A .甲B .乙C .丙D .丁6.(3分)一个等腰直角三角尺和一把直尺按如图所示的位置摆放,若∠1=20°,则∠2的度数是( )A .15°B .20°C .25°D .40°7.(3分)一组数据1,8,8,4,6,4的中位数是( )A .4B .5C .6D .88.(3分)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x 件,根据题意可列方程为( )A .3000x =4200x−80 B .3000x +80=4200x C .4200x =3000x −80 D .3000x =4200x+809.(3分)如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,AC =8.BD =6,点E 是CD 上一点,连接OE ,若OE =CE ,则OE 的长是( )A .2B .52C .3D .410.(3分)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =2√2,CD ⊥AB 于点D .点P从点A 出发,沿A →D →C 的路径运动,运动到点C 停止,过点P 作PE ⊥AC 于点E ,作PF ⊥BC 于点F .设点P 运动的路程为x ,四边形CEPF 的面积为y ,则能反映y 与x 之间函数关系的图象是()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分)11.(3分)截至2020年3月底,我国已建成5G基站198000个,将数据198000用科学记数法表示为.12.(3分)若一次函数y=2x+2的图象经过点(3,m),则m=.13.(3分)若关于x的一元二次方程x2+2x﹣k=0无实数根,则k的取值范围是.14.(3分)如图是由全等的小正方形组成的图案,假设可以随意在图中取点,那么这个点取在阴影部分的概率是.15.(3分)如图,在△ABC中,M,N分别是AB和AC的中点,连接MN,点E是CN的中点,连接ME并延长,交BC的延长线于点D.若BC=4,则CD的长为.16.(3分)如图,在Rt △ABC 中,∠ACB =90°,AC =2BC ,分别以点A 和B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点M 和N ,作直线MN ,交AC 于点E ,连接BE ,若CE =3,则BE 的长为 .17.(3分)如图,在△ABC 中,AB =AC ,点A 在反比例函数y =k x (k >0,x >0)的图象上,点B ,C 在x 轴上,OC =15OB ,延长AC 交y 轴于点D ,连接BD ,若△BCD 的面积等于1,则k 的值为 .18.(3分)如图,四边形ABCD 是矩形,延长DA 到点E ,使AE =DA ,连接EB ,点F 1是CD 的中点,连接EF 1,BF 1,得到△EF 1B ;点F 2是CF 1的中点,连接EF 2,BF 2,得到△EF 2B ;点F 3是CF 2的中点,连接EF 3,BF 3,得到△EF 3B ;…;按照此规律继续进行下去,若矩形ABCD 的面积等于2,则△EF n B 的面积为 .(用含正整数n 的式子表示)三、解答题(第19题10分,第20题12分,共22分)19.(10分)先化简,再求值:(xx−3−13−x)÷x+1x2−9,其中x=√2−3.20.(12分)为培养学生的阅读习惯,某中学利用学生课外时间开展了以“走近名著”为主题的读书活动.为了有效了解学生课外阅读情况,现随机调查了部分学生每周课外阅读的时间,设被调查的每名学生每周课外阅读的总时间为x小时,将它分为4个等级:A(0≤x<2),B(2≤x<4),C(4≤x<6),D(x≥6),并根据调查结果绘制了如图两幅不完整的统计图:请你根据统计图的信息,解决下列问题:(1)本次共调查了名学生;(2)在扇形统计图中,等级D所对应的扇形的圆心角为°;(3)请补全条形统计图;(4)在等级D中有甲、乙、丙、丁4人表现最为优秀,现从4人中任选2人作为学校本次读书活动的宣传员,用列表或画树状图的方法求恰好选中甲和乙的概率.四、解答题(第21题12分,第22题12分,共24分)21.(12分)某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元.(1)求每本甲种词典和每本乙种词典的价格分别为多少元?(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?22.(12分)如图,我国某海域有A,B两个港口,相距80海里,港口B在港口A的东北方向,点C处有一艘货船,该货船在港口A的北偏西30°方向,在港口B的北偏西75°方向,求货船与港口A之间的距离.(结果保留根号)五、解答题(满分12分)23.(12分)超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y (瓶)与每瓶售价x(元)之间满足一次函数关系(其中10≤x≤15,且x为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶.(1)求y与x之间的函数关系式;(2)设超市销售该品牌洗手液每天销售利润为w元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元?六、解答题(满分12分)24.(12分)如图,在平行四边形ABCD中,AC是对角线,∠CAB=90°,以点A为圆心,以AB的长为半径作⊙A,交BC边于点E,交AC于点F,连接DE.(1)求证:DE与⊙A相切;(2)若∠ABC=60°,AB=4,求阴影部分的面积.七、解答题(满分12分)25.(12分)如图,射线AB和射线CB相交于点B,∠ABC=α(0°<α<180°),且AB =CB.点D是射线CB上的动点(点D不与点C和点B重合),作射线AD,并在射线AD上取一点E,使∠AEC=α,连接CE,BE.(1)如图①,当点D在线段CB上,α=90°时,请直接写出∠AEB的度数;(2)如图②,当点D在线段CB上,α=120°时,请写出线段AE,BE,CE之间的数量关系,并说明理由;(3)当α=120°,tan∠DAB=13时,请直接写出CEBE的值.八、解答题(满分14分)26.(14分)如图,抛物线y=ax2﹣2√3x+c(a≠0)过点O(0,0)和A(6,0).点B是抛物线的顶点,点D是x轴下方抛物线上的一点,连接OB,OD.(1)求抛物线的解析式;(2)如图①,当∠BOD=30°时,求点D的坐标;(3)如图②,在(2)的条件下,抛物线的对称轴交x轴于点C,交线段OD于点E,点F是线段OB上的动点(点F不与点O和点B重合),连接EF,将△BEF沿EF折叠,点B的对应点为点B',△EFB'与△OBE的重叠部分为△EFG,在坐标平面内是否存在一点H,使以点E,F,G,H为顶点的四边形是矩形?若存在,请直接写出点H的坐标,若不存在,请说明理由.2020年辽宁省本溪市中考数学试卷参考答案一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.A ; 2.C ; 3.B ; 4.D ; 5.A ; 6.C ; 7.B ; 8.D ; 9.B ; 10.A ;二、填空题(本题共8小题,每小题3分,共24分)11.1.98×105; 12.8; 13.k <﹣1; 14.59; 15.2;16.5; 17.3; 18.2n +12n ; 三、解答题(第19题10分,第20题12分,共22分)19. ; 20.50;108;四、解答题(第21题12分,第22题12分,共24分)21. ; 22. ;五、解答题(满分12分)23. ;六、解答题(满分12分)24. ;七、解答题(满分12分)25. ;八、解答题(满分14分)26. ;。
2020届辽宁省本溪市数学中考模拟试卷有答案(Word版)
辽宁省本溪市数学中考真题试卷一、选择题(共10小题,每题3分,共30分)1.下列各数中,比﹣2小的数是()A.﹣1B.0C.﹣3D.12.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列运算正确的是()A.2m2+m2=3m4B.(mn2)2=mn4C.2m•4m2=8m2D.m5÷m3=m24.如图是由6个大小相同的小立方体搭成的几何体,这个几何体的左视图是()A.B.C.D.5.小明同学5次数学小测验成绩分别是90分、95分、85分、95分、100分,则小明这5次成绩的众数和中位数分别是()A.95分、95分B.85分、95分C.95分、85分D.95分、90分6.下列事件属于必然事件的是()A.经过有交通信号的路口,遇到红灯B.任意买一张电影票,座位号是双号C.向空中抛一枚硬币,不向地面掉落D.三角形中,任意两边之和大于第三边7.若一次函数y=kx+b(k≠0)的图象经过第一、三、四象限,则k,b满足()A.k>0,b<0B.k>0,b>0C.k<0,b>0D.k<0,b<08.为了美化校园,学校计划购买甲、乙两种花木共200棵进行绿化,其中甲种花木每棵80元,乙种花木每棵100元,若购买甲、乙两种花木共花费17600元,求学校购买甲、乙两种花木各多少棵?设购买甲种花木x棵、乙种花木y棵,根据题意列出的方程组正确的是()A.B.C.D.9.如图,△ABC的顶点A在反比例函数y=(x>0)的图象上,顶点C在x轴上,AB∥x 轴,若点B的坐标为(1,3),S=2,则k的值为()△ABCA.4B.﹣4C.7D.﹣710.如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E→B 的路径匀速运动到点B停止,作PQ⊥CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是()A.2B.C.D.1二、填空题(共8小题,每题3分,共24分)11.五年以来,我国城镇新增就业人数为66000000人,数据66000000用科学记数法表示为.12.分解因式:2a2﹣8ab+8b2=.13.如图,AB∥CD,若∠E=34°,∠D=20°,则∠B的度数为.14.五张看上去无差别的卡片,正面分别写着数字1,2,2,3,5,现把它们的正面向下,随机地摆放在桌面上,从中任意抽出一张,则抽到数字“2”的卡片的概率是.15.关于x的一元二次方程2x2﹣x﹣k=0的一个根为1,则k的值是.16.不等式组的解集是.17.如图,矩形OABC的顶点A,C分别在坐标轴上,B(8,7),D(5,0),点P是边AB或边BC上的一点,连接OP,DP,当△ODP为等腰三角形时,点P的坐标为.18.如图,A1,A2,A3…,A n,A n+1是直线上的点,且OA1=A1A2=A2A3=…A n A n+1=2,分别过点A1,A2,A3…,A n,A n+1作l1的垂线与直线相交于点B1,B2,B3…,B n,B n+1,连接A1B2,B1A2,A2B3,B2A3…,A n B n+1,B n A n+1,交点依次为P1,P2,P3…,P n,设△P1A1A2,△P2A2A3,△P3A3A4,…,△P n A n A n+1的面积分别为S1,S2,S3…,S n,则S n=.(用含有正整数n的式子表示)三、解答题(19题10分,20题12分,共22分)19.(10分)先化简,再求值:(1﹣)÷,其中a=2﹣1+(π﹣2018)020.(12分)某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次调查的学生共有人;(2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.四、解答题(21题12分,22题12分,共24分)21.(12分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.22.(12分)如图为某景区五个景点A,B,C,D,E的平面示意图,B,A在C的正东方向,D在C的正北方向,D,E在B的北偏西30°方向上,E在A的西北方向上,C,D相距1000m,E在BD的中点处.(1)求景点B,E之间的距离;(2)求景点B,A之间的距离.(结果保留根号)五、解答题(12分)23.(12分)服装厂批发某种服装,每件成本为65元,规定不低于10件可以批发,其批发价y(元/件)与批发数量x(件)(x为正整数)之间所满足的函数关系如图所示.(1)求y与x之间所满足的函数关系式,并写出x的取值范围;(2)设服装厂所获利润为w(元),若10≤x≤50(x为正整数),求批发该种服装多少件时,服装厂获得利润最大?最大利润是多少元?六、解答题(12分)24.(12分)如图,在Rt△ABC中,∠C=90°,点O,D分别为AB,BC的中点,连接OD,作⊙O与AC相切于点E,在AC边上取一点F,使DF=DO,连接DF.(1)判断直线DF与⊙O的位置关系,并说明理由;(2)当∠A=30°,CF=时,求⊙O的半径.七、解答题(12分)25.(12分)菱形ABCD中、∠BAD=120°,点O为射线CA上的动点,作射线OM与直线BC相交于点E,将射线OM绕点O逆时针旋转60°,得到射线ON,射线ON与直线CD 相交于点F.(1)如图①,点O与点A重合时,点E,F分别在线段BC,CD上,请直接写出CE,CF,CA三条段段之间的数量关系;(2)如图②,点O在CA的延长线上,且OA=AC,E,F分别在线段BC的延长线和线段CD的延长线上,请写出CE,CF,CA三条线段之间的数量关系,并说明理由;(3)点O在线段AC上,若AB=6,BO=2,当CF=1时,请直接写出BE的长.八、解答题(14分)26.(14分)如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=3.(1)求该抛物线的函数解析式.(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD.OD交BC于点F,当S△COF :S△CDF=3:2时,求点D的坐标.(3)如图2,点E的坐标为(0,),点P是抛物线上的点,连接EB,PB,PE形成的△PBE中,是否存在点P,使∠PBE或∠PEB等于2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.参考答案一、选择题1.解:根据两个负数,绝对值大的反而小可知﹣3<﹣2.故选:C.2.解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.3.解:A、2m2+m2=3m2,故此选项错误;B、(mn2)2=m2n4,故此选项错误;C、2m•4m2=8m3,故此选项错误;D、m5÷m3=m2,正确.故选:D.4.解:从左面看易得第一层有2个正方形,第二层有2个正方形.故选:B.5.解:将这5位同学的成绩从小到大排列为85、90、95、95、100,由于95分出现的次数最多,有2次,即众数为95分,第3个数为95,即中位数为95分,故选:A.6.解:A、经过有交通信号的路口,遇到红灯是随机事件,故选项错误;B、任意买一张电影票,座位号是双号,是随机事件,故选项错误;C、向空中抛一枚硬币,不向地面掉落,是不可能事件,故此选项错误;D、三角形中,任意两边之和大于第三边是必然事件,正确;故选:D.7.解:因为k>0时,直线必经过一、三象限,b<0时,直线与y轴负半轴相交,可得:图象经过第一、三、四象限时,k>0,b<0;故选:A.8.解:设购买甲种花木x棵、乙种花木y棵,根据题意得:.故选:A.9.解:∵AB∥x轴,若点B的坐标为(1,3),∴设点A(a,3)=(a﹣1)×3=2∵S△ABC∴a=∴点A(,3)∵点A在反比例函数y=(x>0)的图象上,∴k=7故选:C.10.解:由图象可知:AE=3,BE=4,∠DAE=∠CEB=α,设:AD=BC=a,在Rt△ADE中,conα==,在Rt△BCE中,sinα==,由(sinα)2+(conα)2=1,解得:a=,当x=6时,即:EN=3,则y=MN=EN sinα=.故选:B.二、填空题(共8小题,每题3分,共24分)11.解:将66000000用科学记数法表示为:6.6×107.故答案为:6.6×107.12.解:原式=2(a2﹣4ab+4b2)=2(a﹣2b)2,故答案为:2(a﹣2b)213.解:如图,∵∠E=34°,∠D=20°,∴∠BCD=∠D+∠E=20°+34°=54°,∵AB∥CD,∴∠B=∠BCD=54°.故答案为:54°.14.解:∵共有5个数字,数字2有2个,∴抽到数字“2”的卡片的概率是.故答案为:.15.解:把x=1代入2x2﹣x﹣k=0得2﹣1﹣k=0,解得k=1.故答案为1.16.解:解不等式2x﹣4≤0,得:x≤2,解不等式x+3>0,得:x>﹣3,所以不等式组的解集为﹣3<x≤2,故答案为:﹣3<x≤2.17.解:∵四边形OABC是矩形,B(8,7),∴OA=BC=8,OC=AB=7,∵D(5,0),∴OD=5,∵点P是边AB或边BC上的一点,∴当点P在AB边时,OD=DP=5,∵AD=3,∴P A==4,∴P(8,4).当点P在边BC上时,只有PO=PD,此时P(,7).综上所述,满足条件的点P坐标为(8,4)或(,7).故答案为(8,4)或(,7).18.解:设△OA1B1的面积为S.由题意可知OA1=A1A2=A2A3=…A n A n+1,A1B1∥A2B2∥A3B3∥…∥A n B n,∴A1B1:A2B2:A3B3:…:A n B n=1:2:3:…:n,∴=S,=2S,…,=nS,∴S1=S,S2=•2S,S3=•3S,…,S n=•nS,∵直线上的点,直线,∴两条直线与x轴的夹角分别为60°和30°,∴∠A1OB1=30°,∵OA1=2,∴A1B1=,∴S=×2×=,∴S n=•,故答案为•.三、解答题(19题10分,20题12分,共22分)19.解:原式=(﹣)÷=•=,当a=2﹣1+(π﹣2018)0=+1=时,原式===.20.解:(1)本次调查的学生共有:30÷30%=100(人);故答案为:100;(2)喜欢B类项目的人数有:100﹣30﹣10﹣40=20(人),补图如下:(3)选择“唱歌”的学生有:1200×=480(人);(4)根据题意画树形图:共有12种情况,被选取的两人恰好是甲和乙有2种情况,则被选取的两人恰好是甲和乙的概率是=.四、解答题(21题12分,22题12分,共24分)21.(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE==6,∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=26.22.解:(1)由题意得,∠C=90°,∠CBD=60°,∠CAE=45°,∵CD=1000,∴BC==1000,∴BD=2BC=2000,∵E在BD的中点处,∴BE=BD=1000(米);(2)过E作EF⊥AB与F,在Rt△AEF中,EF=AF=BE•sin60°=1000×=500,在Rt△BEF中,BF=BE•cos60°=500,∴AB=AF﹣BF=500(﹣1)(米).五、解答题(12分)23.解:(1)当10≤x≤50时,设y与x的函数关系式为y=kx+b,,得,∴当10≤x≤50时,y与x的函数关系式为y=﹣0.5x+105,当x>50时,y=80,即y与x的函数关系式为:y=;(2)由题意可得,w=(﹣0.5x+105﹣65)x=﹣0.5x2+40x=﹣0.5(x﹣40)2+800,∴当x=40时,w取得最大值,此时w=800,y=﹣0.5×40+105=85,答:批发该种服装40件时,服装厂获得利润最大,最大利润是800元.六、解答题(12分)24.解:(1)结论:DF是⊙O的切线.理由:作OG⊥DF于G.连接OE.∵BD=DC,BO=OA,∴OD∥AC,∴∠ODG=∠DFC,∵∠OGD=∠DCF=90°,OD=DF,∴△OGD≌△DCF(AAS),∴OG=CD,∵AC是⊙O的切线,∴OE⊥AC,∴∠AEO=∠C=90°,∴OE∥BC,∵OD∥CD,∴四边形CDOE是平行四边形,∴CD=OE,∴OG=OE,∴DF是⊙O的切线.(2)∵F A,FD是⊙O的切线,∴FG=FE,设FG=FE=x,∵△OGD≌△DCF(AAS),∴DG=CF=,∴OD=DF=+x,∵AC=2OD,CE=OD,∴AE=EC=OD=+x,∵∠A=30°,∴CD=OE=,在Rt△DCF中,∵DF2=CD2+CF2,∴(+x)2=()2+()2,解得x=﹣或﹣﹣(舍弃),∴OE==1.七、解答题(12分)25.解:(1)如图①中,结论:CA=CE+CF.理由:∵四边形ABCD是菱形,∠BAD=120°∴AB=AD=DC=BC,∠BAC=∠DAC=60°∴△ABC,△ACD都是等边三角形,∵∠DAC=∠EAF=60°,∴∠DAF=∠CAE,∵CA=AD,∠D=∠ACE=60°,∴△ADF≌△ACE(SAS),∴DF=CE,∴CE+CF=CF+DF=CD=AC,∴CA=CE+CF.(2)结论:CF﹣CE=AC.理由:如图②中,如图作OG∥AD交CF于G,则△OGC是等边三角形.∵∠GOC=∠FOE=60°,∴∠FOG=∠EOC,∵OG=OC,∠OGF=∠ACE=120°,∴△FOG≌△E OC(ASA),∴CE=FG,∵OC=OG,CA=CD,∴OA=DG,∴CF﹣EC=CF﹣FG=CG=CD+DG=AC+AC=AC,(3)作BH⊥AC于H.∵AB=6,AH=CH=3,∴BH=3,如图③﹣1中,当点O在线段AH上,点F在线段CD上,点E在线段BC上时.∵OB=2,∴OH==1,∴OC=3+1=4,由(1)可知:CO=CE+CF,∵OC=4,CF=1,∴CE=3,∴BE=6﹣3=3.如图③﹣2中,当点O在线段AH上,点F在线段DC的延长线上,点E在线段BC上时.由(2)可知:CE﹣CF=OC,∴CE=4+1=5,∴BE=1.如图③﹣3中,当点O在线段CH上,点F在线段CD上,点E在线段BC上时.同法可证:OC=CE+CF,∵OC=CH﹣OH=3﹣1=2,CF=1,∴CE=1,∴BE=6﹣1=5.如图③﹣4中,当点O在线段CH上,点F在线段DC的延长线上,点E在线段BC上时.同法可知:CE﹣CF=OC,∴CE=2+1=3,∴BE=3,综上所述,满足条件的BE的值为3或5或1.八、解答题(14分)26.解:(1)OB=OC=3,则:B(3,0),C(0,﹣3),把B、C坐标代入抛物线方程,解得抛物线方程为:y=﹣x2+2x+3…①;(2)∵S△COF :S△CDF=3:2,∴S△COF =S△COD,即:x D=x F,设:F点横坐标为3t,则D点横坐标为5t,点F在直线BC上,而BC所在的直线方程为:y=﹣x+3,则F(3t,3﹣3t),则:直线OF所在的直线方程为:y=x=x,则点D(5t,5﹣5t),把D点坐标代入①,解得:t=或,则点D的坐标为(1,4)或(2,3);(3)①如图所示,当∠PEB=2∠OBE=2α时,过点E作∠PEB的平分线交x轴于G点,PE交x轴于H点,则:∠PEQ=∠QEB=∠ABE=α,则∠HGE=2α,设:GB=m,则:OG=3﹣m,GE=m,在Rt△OGE中,由勾股定理得:EG2=OG2+OE2,即:m2=(3﹣m)2+()2,解得:m=,则:GE=,OG=,BE=,∵∠PEQ=∠ABE=α,∠EHG=∠EHG,∴△HGE∽△HEB,∴==,设:GH=x,HE=4x,在Rt△OHE中,OH=OG﹣HG=﹣x,OE=,EH=4x,由勾股定理解得:x=,则:OH=,H(,0),把E、H两点坐标代入一次函数表达式,解得EH所在直线的表达式为:y=x﹣,将上式与①联立并解得:x=,则点P(,);②当∠PBE=2∠OBE时,则∠PBO=∠EBO,BE所在直线的k值为,则BE所在直线的k值为﹣,则:PB所在的直线方程为:y=﹣x+3,将上式与①联立,解得:x=,(x=0已舍去),则点P(,),故:点P坐标为:(,或(,).。
2020年辽宁省本溪市中考数学试卷(WORD版无答案)
2020年辽宁省本溪市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣2的倒数是()A.−12B.﹣2C.12D.22.(3分)如图是由一个长方体和一个圆锥组成的几何体,它的主视图是()A.B.C.D.3.(3分)下列运算正确的是()A.m2+2m=3m3B.m4÷m2=m2C.m2•m3=m6D.(m2)3=m5 4.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C .D .5.(3分)某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是s 甲2=3.6,s 乙2=4.6,s 丙2=6.3,s 丁2=7.3,则这4名同学3次数学成绩最稳定的是( )A .甲B .乙C .丙D .丁6.(3分)一个等腰直角三角尺和一把直尺按如图所示的位置摆放,若∠1=20°,则∠2的度数是( )A .15°B .20°C .25°D .40°7.(3分)一组数据1,8,8,4,6,4的中位数是( )A .4B .5C .6D .88.(3分)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x 件,根据题意可列方程为( )A .3000x =4200x−80 B .3000x +80=4200x C .4200x =3000x −80 D .3000x =4200x+809.(3分)如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,AC =8.BD =6,点E 是CD 上一点,连接OE ,若OE =CE ,则OE 的长是( )A .2B .52C .3D .410.(3分)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =2√2,CD ⊥AB 于点D .点P 从点A 出发,沿A →D →C 的路径运动,运动到点C 停止,过点P 作PE ⊥AC 于点E ,作PF ⊥BC 于点F .设点P 运动的路程为x ,四边形CEPF 的面积为y ,则能反映y 与x 之间函数关系的图象是( )A .B .C .D .二、填空题(本题共8小题,每小题3分,共24分)11.(3分)截至2020年3月底,我国已建成5G 基站198000个,将数据198000用科学记数法表示为 .12.(3分)若一次函数y =2x +2的图象经过点(3,m ),则m = .13.(3分)若关于x 的一元二次方程x 2+2x ﹣k =0无实数根,则k 的取值范围是 .14.(3分)如图是由全等的小正方形组成的图案,假设可以随意在图中取点,那么这个点取在阴影部分的概率是 .15.(3分)如图,在△ABC 中,M ,N 分别是AB 和AC 的中点,连接MN ,点E 是CN 的中点,连接ME 并延长,交BC 的延长线于点D .若BC =4,则CD 的长为 .16.(3分)如图,在Rt △ABC 中,∠ACB =90°,AC =2BC ,分别以点A 和B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点M 和N ,作直线MN ,交AC 于点E ,连接BE ,若CE =3,则BE 的长为 .17.(3分)如图,在△ABC 中,AB =AC ,点A 在反比例函数y =k x (k >0,x >0)的图象上,点B ,C 在x 轴上,OC =15OB ,延长AC 交y 轴于点D ,连接BD ,若△BCD 的面积等于1,则k 的值为 .18.(3分)如图,四边形ABCD 是矩形,延长DA 到点E ,使AE =DA ,连接EB ,点F 1是CD 的中点,连接EF 1,BF 1,得到△EF 1B ;点F 2是CF 1的中点,连接EF 2,BF 2,得到△EF 2B ;点F 3是CF 2的中点,连接EF 3,BF 3,得到△EF 3B ;…;按照此规律继续进行下去,若矩形ABCD 的面积等于2,则△EF n B 的面积为 .(用含正整数n 的式子表示)三、解答题(第19题10分,第20题12分,共22分)19.(10分)先化简,再求值:(xx−3−13−x)÷x+1x2−9,其中x=√2−3.20.(12分)为培养学生的阅读习惯,某中学利用学生课外时间开展了以“走近名著”为主题的读书活动.为了有效了解学生课外阅读情况,现随机调查了部分学生每周课外阅读的时间,设被调查的每名学生每周课外阅读的总时间为x小时,将它分为4个等级:A(0≤x<2),B(2≤x<4),C(4≤x<6),D(x≥6),并根据调查结果绘制了如图两幅不完整的统计图:请你根据统计图的信息,解决下列问题:(1)本次共调查了名学生;(2)在扇形统计图中,等级D所对应的扇形的圆心角为°;(3)请补全条形统计图;(4)在等级D中有甲、乙、丙、丁4人表现最为优秀,现从4人中任选2人作为学校本次读书活动的宣传员,用列表或画树状图的方法求恰好选中甲和乙的概率.四、解答题(第21题12分,第22题12分,共24分)21.(12分)某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元.(1)求每本甲种词典和每本乙种词典的价格分别为多少元?(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?22.(12分)如图,我国某海域有A,B两个港口,相距80海里,港口B在港口A的东北方向,点C处有一艘货船,该货船在港口A的北偏西30°方向,在港口B的北偏西75°方向,求货船与港口A之间的距离.(结果保留根号)五、解答题(满分12分)23.(12分)超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y (瓶)与每瓶售价x(元)之间满足一次函数关系(其中10≤x≤15,且x为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶.(1)求y与x之间的函数关系式;(2)设超市销售该品牌洗手液每天销售利润为w元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元?六、解答题(满分12分)24.(12分)如图,在平行四边形ABCD中,AC是对角线,∠CAB=90°,以点A为圆心,以AB的长为半径作⊙A,交BC边于点E,交AC于点F,连接DE.(1)求证:DE与⊙A相切;(2)若∠ABC=60°,AB=4,求阴影部分的面积.七、解答题(满分12分)25.(12分)如图,射线AB和射线CB相交于点B,∠ABC=α(0°<α<180°),且AB =CB.点D是射线CB上的动点(点D不与点C和点B重合),作射线AD,并在射线AD上取一点E,使∠AEC=α,连接CE,BE.(1)如图①,当点D在线段CB上,α=90°时,请直接写出∠AEB的度数;(2)如图②,当点D在线段CB上,α=120°时,请写出线段AE,BE,CE之间的数量关系,并说明理由;(3)当α=120°,tan∠DAB=13时,请直接写出CEBE的值.八、解答题(满分14分)26.(14分)如图,抛物线y=ax2﹣2√3x+c(a≠0)过点O(0,0)和A(6,0).点B是抛物线的顶点,点D是x轴下方抛物线上的一点,连接OB,OD.(1)求抛物线的解析式;(2)如图①,当∠BOD=30°时,求点D的坐标;(3)如图②,在(2)的条件下,抛物线的对称轴交x轴于点C,交线段OD于点E,点F是线段OB上的动点(点F不与点O和点B重合),连接EF,将△BEF沿EF折叠,点B的对应点为点B',△EFB'与△OBE的重叠部分为△EFG,在坐标平面内是否存在一点H,使以点E,F,G,H为顶点的四边形是矩形?若存在,请直接写出点H的坐标,若不存在,请说明理由.2020年辽宁省本溪市中考数学试卷参考答案一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.A ; 2.C ; 3.B ; 4.D ; 5.A ; 6.C ; 7.B ; 8.D ; 9.B ; 10.A ;二、填空题(本题共8小题,每小题3分,共24分)11.1.98×105; 12.8; 13.k <﹣1; 14.59; 15.2;16.5; 17.3; 18.2n +12n ; 三、解答题(第19题10分,第20题12分,共22分)19. ; 20.50;108;四、解答题(第21题12分,第22题12分,共24分)21. ; 22. ;五、解答题(满分12分)23. ;六、解答题(满分12分)24. ;七、解答题(满分12分)25. ;八、解答题(满分14分)26. ;。
2020年辽宁省抚顺市、本溪市、辽阳市中考数学试题(学生版)
五、解答题(满分12分)
23.超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量 (瓶)与每瓶售价 (元)之间满足一次函数关系(其中 ,且 为整数),当每瓶洗手液 售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶.
(1)求 与 之间的函数关系式;
(2)设超市销售该品牌洗手液每天销售利润为 元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元?
六、解答题(满分12分)
24.如图,在平行四边形 中, 是对角线, ,以点 为圆心,以 的长为半径作 ,交 边于点 ,交 于点 ,连接 .
6.一个等腰直角三角尺和一把直尺按如图所示 位置摆放,若 ,则∠2的度数是()
A.15°B.20°C.25°D.40°
7.一组数据1,8,8,4,6,4的中位数是()
A. 4B. 5C. 6D. 8
8.随着快递业务 增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件 件,根据题意可列方程为()
2020年抚顺本溪辽阳初中毕业生学业考试
数学试卷
第一部分选择题(共30分)
一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.-2的倒数是()
2020年辽宁省本溪市中考数学试卷
"2 c c3 r 4A . m 2m 3mB . m2020年辽宁省本溪市中考数学试卷、选择题(本题共 10小题,每小题3分,共30分•在每小题给出的四个选项中,只有 一项是符合题目要求的) 1. ( 3分)2的倒数是()C .2. ( 3分)如图是由一个长方体和一个圆锥组成的几何体,它的主视图是3.D •( m m m)2 3m )2C . 2 m3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是 S 3.6, s 乙4.6 , s 丙6.3 , s 丁 7.3,则这4名同学3次数学成绩最稳定的是 ()C .& (3分)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快 件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x 件,根据题意可列方程为()A •甲B .乙C .丙6. (3分)一个等腰直角三角尺和一把直尺按如图所示的位置摆放,若D •丁1 20,贝U 2的C . 25D . 408, 8, 4, 6, 4的中位数是A . 30004200 x 80B . 300080 4200 x4200 xD 30004200 x 805. B . 207. ( 3分)一组数据1,9. (3分)如图,四边形ABCD是菱形,对角线AC , BD相交于点O , AC 8 . BD 6 , 点E是CD上一点,连接OE,若OE CE,贝U OE的长是(A . 25B .C . 3D . 4210 . (3分)如图,在Rt ABC 中,ACB 90 , AC BC 2 2 , CD AB 于点D .点P 从点A出发,沿A D C的路径运动,运动到点C停止,过点P作PE AC于点E,作PF BC于点F .设点P运动的路程为x ,四边形CEPF的面积为y ,则能反映y与x之间函数关系的图象是()二、填空题(本题共8小题,每小题3分,共24分)11. (3分)截至2020年3月底,我国已建成5G基站198000个,将数据198000用科学记数法表示为 ____ .12. (3分)若一次函数y 2x 2的图象经过点(3,m),贝U m _______ .213. (3分)若关于x的一元二次方程x 2x k 0无实数根,则k的取值范围是 _ .14. (3分)如图是由全等的小正方形组成的图案,假设可以随意在图中取点,那么这个点取在阴影部分的概率是15. (3分)如图,在ABC中,M , N分别是AB和AC的中点,连接MN,点E是CN的中点,连接ME并延长,交BC的延长线于点D .若BC 4,则CD的长为 ___________ .A16. (3分)如图,在Rt ABC中,ACB 90 , AC 2BC,分别以点A和B为圆心,以1大于§ AB的长为半径作弧,两弧相交于点M和N ,作直线MN,交AC于点E,连接BE ,k17. (3分)如图,在ABC中,AB AC,点A在反比例函数y —(k 0,x 0)的图象上,x1点B , C在x轴上,OC -OB,延长AC交y轴于点D,连接BD,若BCD的面积等于518. (3分)如图,四边形ABCD是矩形,延长DA到点E,使AE DA,连接EB,点R是CD的中点,连接EF , BR ,得到△ EFB ;点F2是CR的中点,连接EF? , BF?,得到△ EF?B ; 点F3是CF2的中点,连接EF3 , BF3,得到△ EF3B ;;按照此规律继续进行下去,若矩形ABCD的面积等于2,则△ EF n B的面积为 _______________________________ (用含正整数n的式子表示)三、解答题(第19题10分,第20题12分,共22分)19. (10分)先化简,再求值:(丄—),其中x 2 3 •x 3 3 x x 920. (12分)为培养学生的阅读习惯,某中学利用学生课外时间开展了以“走近名著”为主题的读书活动.为了有效了解学生课外阅读情况,现随机调查了部分学生每周课外阅读的时间,设被调查的每名学生每周课外阅读的总时间为x小时,将它分为4个等级:A(O(x 2),B(2〈x 4),C (4(x 6),D(x》6),并根据调查结果绘制了如图两幅不完整的统计图:学生课外阅读总时间条形统计图学生课外阅读总时间扇形统计團请你根据统计图的信息,解决下列问题:(1)本次共调查了___ 名学生;(2 )在扇形统计图中,等级D所对应的扇形的圆心角为______ ;(3)请补全条形统计图;(4)在等级D中有甲、乙、丙、丁4人表现最为优秀,现从4人中任选2人作为学校本次读书活动的宣传员,用列表或画树状图的方法求恰好选中甲和乙的概率.四、解答题(第21题12分,第22题12分,共24分)21. (12分)某校计划为教师购买甲、乙两种词典•已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元.(1)求每本甲种词典和每本乙种词典的价格分别为多少元?(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?22. (12分)如图,我国某海域有A,B两个港口,相距80海里,港口B在港口A的东北方向,点C处有一艘货船,该货船在港口A的北偏西30方向,在港口B的北偏西75方向,求货船与港口A之间的距离.(结果保留根号)T北五、解答题(满分12分)23. (12分)超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y (瓶)与每瓶售价x (元)之间满足一次函数关系(其中1«冬15,且x为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶.(1 )求y与x之间的函数关系式;(2)设超市销售该品牌洗手液每天销售利润为w元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元?六、解答题(满分12分)24. (12分)如图,在平行四边形ABCD中,AC是对角线,CAB 90,以点A为圆心,以AB的长为半径作Q'A,交BC边于点E,交AC于点F,连接DE .(1)求证:DE与0A相切;(2)若ABC 60 , AB 4,求阴影部分的面积.25. (12分)如图,射线AB 和射线CB 相交于点B , ABC (0 180 ),且AB CB .点 D 是射线CB 上的动点(点D 不与点C 和点B 重合),作射线AD ,并在射线AD 上取一点E ,使 AEC ,连接 CE , BE .(2)如图②,当点D 在线段CB 上, 120时,请写出线段 AE , BE , CE 之间的数量关系,并说明理由;八、解答题(满分14分)y ax 22. 3x c(a 0)过点0(0,0)和A(6,0).点B 是抛物线的 顶点,点D 是x 轴下方抛物线上的一点,连接 OB , OD .(1)求抛物线的解析式; (2) 如图①,当 BOD 30时,求点D 的坐标;(3) 如图②,在(2)的条件下,抛物线的对称轴交 x 轴于点C ,交线段OD 于点E ,点F 是线段OB 上的动点(点F 不与点O 和点B 重合),连接EF ,将 BEF 沿EF 折叠,点B 的 对应点为点 B ,(1)如图①,当点D 在线段CB 上,90时,请直接写出 AEB 的度数;备用厠26. (14分)如图,抛物线 (3)当 120 , tan DABEFB与OBE的重叠部分为EFG,在坐标平面内是否存在一点H,使以点E , F , G , H为顶点的四边形是矩形?若存在,请直接写出点H的坐标,若不存在,第13页(共29页)请说明理由.32020年辽宁省本溪市中考数学试卷参考答案与试题解析一、选择题(本题共 10小题,每小题3分,共30分•在每小题给出的四个选项中,只有 一项是符合题目要求的) 1. ( 3 分) 2的倒数是( )1 A .2 B . 2 1C.-2 D . 2 【解答】解: 有理数 2的倒数是 -.2故选:A •2. ( 3分)如图是由一个长方体和一个圆锥组成的几何体,它的主视图是腰三角形,因此选项 C 的图形符合题意,故选:C .3. ( 3分)下列运算正确的是 (八 2 小 c 3 f 4A . m 2m 3mB . mC . mjm2、3 5 D. ( m ) m第15页(共29页)【解答】解:A . m2与2m不是同类项,不能合并,所以A错误;3B . m 4 m 2 m 4 2 m 2,所以 B 正确; C . m 2|m 3 m 2 3 m 5,所以 C 错误; D . ( ^) m ,所以D 错误; B 、 既不是轴对称图形,也不是中心对称图形,故本选项不合题意;C 、 是轴对称图形,不是中心对称图形,故本选项不合题意;D 、 既是轴对称图形又是中心对称图形,故本选项符合题意.故选:D .5. ( 3分)某校九年级进行了 3次数学模拟考试,甲、乙、丙、丁 次数学成绩最稳定的是 ( )A .甲B .乙C . 丙D .丁【解答】解::s 甲 c C 2 2 3.6, s 乙 4.6 , ^丙 6.3 , s 丁 7.3 ,且平均数相等, 这4名同学3次数学成绩最稳定的是甲, 故选:A .6. (3分)一个等腰直角三角尺和一把直尺按如图所示的位置摆放,若1 20,则 2的 度数是( )4名同学3次数学成绩的 平均分都是129分,方差分别是s 甲3.6, s 乙4.6 , s 丙6.3 , s 丁 7.3,则这4名同学3故选:B . 【解答】 解:A 、是轴对称图形,不是中心对称图形,故本选项不合题意;2sT ,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年辽宁省本溪市中考数学试卷一、选择题(每题3分,共24分)1、2-的相反数是( )A 、12-B 、12C 、2D 、±22、如图是某几何体得三视图,则这个几何体是( )A 、球B 、圆锥C 、圆柱D 、三棱体3 )A 、2B 、4C 、15D 、164、一元二次方程2104x x -+=的根( ) A 、121122x x ==-, , B 、1222x x ==-, C 、1212x x ==- D 、1212x x == 5、在一次数学竞赛中,某小组6名同学的成绩(单位:分)分别是69、75、86、92、95、88.这组数据的中位数是( )A 、79B 、86C 、92D 、876、如图,在Rt △ABC 中,∠C=90°,AB=10,BC=8,DE 是△ABC 的中位线,则DE 的长度是( )A 、3B 、4C 、4.8D 、57、反比例函数(0)k y k x=≠的图象如图所示,若点A (11x y ,)、B (22x y ,)、C (33x y ,)是这个函数图象上的三点,且1230x x x >>>,则123y y y 、、的大小关系( )A 、312y y y <<B 、213y y y <<C 、321y y y <<D 、123y y y <<8、如图,正方形ABCD 的边长是4,∠DAC 的平分线交DC 于点E ,若点P 、Q 分别是AD 和AE 上的动点,则DQ+PQ 的最小值( )A 、2B 、4C 、D 、二、填空题(每题3分,共24分)9、函数14y x =-中的自变量x 的取值范围__________。
10、掷一枚质地均匀的正方体骰子,骰子的六个面上分别有1至6的点数,则向上一面的点数是偶数的概率__________。
11、如图:AB ∥CD ,直线MN 分别交AB 、CD 于点E 、F ,EG 平分∠AEF .EG ⊥FG 于点G ,若∠BEM=50°,则∠CFG= __________。
12、我国以2020年11月1日零时为标准时点进行了第六次全国人口普查,结果公布全国总人口为1370536875人,请将这个数据用科学记数法(保留三个有效数字)表示约为__________。
13、若用半径为12,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥底面圆的半径的长__________。
14、如图,在梯形ABCD 中,AD ∥BC ,AB=DC ,AC ⊥BD 于点O ,过点A 作AE ⊥BC 于点E ,若BC=2AD=8,则tan ∠ABE=__________。
15、菱形OCAB 在平面直角坐标系中的位置如图所示,点O 的坐标是(0,0),点A 在y 轴的正半轴上,点P 是菱形对角线的交点,点C 坐标是(3,3)若把菱形OCAB 绕点A 逆时针旋转90°,则点P 的对应点P ′的坐标是__________。
16、根据图中数字的规律,在最后一个空格中填上适当的数字__________。
三、解答题17、计算:2012 1.25()4x -+---+ 18、先化简,再求值:232()224x x x x x x -÷-+-,其中34x =.四、解答题19、为庆祝建党90周年,,某校开展学党史活动,学校决定围绕“你最喜欢的了解党史的途径是什么”的问题,在全校范围内随机抽取部分学生进行问卷调查.问卷要求学生从“自己阅读、听讲座、网上查找资料、其他形式”四种途径任选一种,学校将收集的调查问卷适当整理后,绘制成如图所示的两幅不完整的统计图,请根据统计图所给的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请补全下面的条形统计图和扇形统计图;(3)如果全校有1500名学生,请你估计全校最喜欢“网上查找资料”这种途径的学生约有多少名?20、如图,现有三张质地和大小完全相同的不透明的纸牌,A、B、C,其正面画有菱形、等边三角形、正六边形,纸牌的背面完全相同,现将这三张纸牌背面朝上洗匀后随机抽出一张,再从剩下的纸牌中随机抽出一张,用画树状图或列表法,求两次抽到纸牌上的图形都为既是中心对称图形又是轴对称图形的概率(纸牌用A、B、C表示)五、解答题21、某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?22、如图,⊙O的直径AB与弦CD(不是直径)相交于点E,且CE=DE,过点B作CD得平行线AD延长线于点F.(1)求证:BF是⊙O的切线;(2)连接BC,若⊙O的半径为4,sin∠BCD=34,求CD的长?六、解答题(共2小题,满分22分)23、如图,港口B在港口A的西北方向,上午8时,一艘轮船从港口A出发,以15海里∕时的速度向正北方向航行,同时一艘快艇从港口B出发也向正北方向航行,上午10时轮船到达D处,同时快艇到达C处,测得C处在D处得北偏西30°的方向上,且C、D两地相距100海里,求快艇每小时航行多少海里?(结果精确到0.12≈1.413≈1.73)24、我省某工艺厂为全运会设计了一款成本为每件20元得工艺品,投放市场进行试销后发现每天的销售量y(件)是售价x(元∕件)的一次函数,当售价为22元∕件时,每天销售量为780件;当售价为25元∕件时,每天的销售量为750件.(1)求y与x的函数关系式;(2)如果该工艺品售价最高不能超过每件30元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?(利润=售价-成本)七、解答题(共1小题,满分12分)25、在四边形ABCD中,对角线AC、BD相交于点O,设锐角∠DOC=α,将△DOC按逆时针方向旋转得到△D′OC′(0°<旋转角<90°)连接AC′、BD′,AC′与BD′相交于点M.(1)当四边形ABCD是矩形时,如图1,请猜想AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;(2)当四边形ABCD是平行四边形时,如图2,已知AC=BD,请猜想此时AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;(3)当四边形ABCD是等腰梯形时,如图3,AD∥BC,此时(1)AC′与BD′的数量关系是否成立?∠AMB与α的大小关系是否成立?不必证明,直接写出结论.八、解答题26、如图1,在平面直角坐标系中,抛物线过原点O,点A(10,0)和点B(2,2),在线段OA上,点P 从点O向点A运动,同时点Q从点A向点O运动,运动过程中保持AQ=2OP,当P、Q重合时同时停止运动,过点Q作x轴的垂线,交直线AB于点M,延长QM到点D,使MD=MQ,以QD为对角线作正方形QCDE(正方形QCDE岁点Q运动).(1)求这条抛物线的函数表达式;(2)设正方形QCDE的面积为S,P点坐标(m,0)求S与m之间的函数关系式;(3)过点P作x轴的垂线,交抛物线于点N,延长PN到点G,使NG=PN,以PG为对角线作正方形PFGH (正方形PFGH随点P运动),当点P运动到点(2,0)时,如图2,正方形PFGH的边GP和正方形QCDE 的边EQ落在同一条直线上.①则此时两个正方形中在直线AB下方的阴影部分面积的和是多少?②若点P继续向点A运动,还存在两个正方形分别有边落在同一条直线上的情况,请直接写出每种情况下点P的坐标,不必说明理由.2020年辽宁省本溪市中考数学答案一、选择题二、填空题9. 4x ≠ 10. 12 11. 65° 12. 91.3710⨯ 13. 4 14.3 15. (3,6)16. 738三、解答题17. 解:原式=111.251142+-+=.18. 解:原式化简=4x +当4x =时,原式=44=+=.19. 解:(1)解:(1)16÷32%=50(名).∴在这次调查中,一共抽取了50名学生;(2)50-16-9-7=18(名),9÷50=18%,18÷50=36%.如图;(3)1500×1850=540(名).所以全校最喜欢“网上查找资料”这种途径的学生约有540名.20. 解:如图总共有6种结果,即使中心对称又是轴对称图形的结果有2种, ∴所求概率为:13. 21. 解:设甲种玩具进价x 元/件,则乙种玩具进价为(40-x )元/件,9015040x x=- 15x =,经检验x=15是原方程的解.∴4025x -=5.甲,乙两种玩具分别是15元/件,25元/件;(2)设购进甲种玩具y 件,则购进乙种玩具(48-y )件,481525(48)1000y y y <⎧⎨+-≤⎩解得2024y ≤<.因为y 是整数,所以y 取20,21,22,23.共有四种方案.22. 解:(1)证明:∵AB 是⊙O 的直径,CE=DE ,∴AB ⊥CD ,∴∠AED=90°,∵CD ∥BF ,∴∠ABF=∠AED=90°,∴BF 是⊙O 的切线;(2)连接BD ,∵AB 是⊙O 的切线,∴∠ADB=90°,∴BD=AB•sin ∠BAD=AB•sin ∠BCD=3864⨯=, ∴2227AD AB BD -= ∵S=12AB•DE=12AD•BD , ∴DE=37AD BD AB ⋅=, ∴CD=2DE=3723. 解:过点C 作AD 的垂线,交AD 的延长线于点F ,过点A 作CB 的垂线,交CB 的延长线于点E ,在直角三角形CDF 中,∠CDF=30°,∴CF=12CD=50,DF=CD•cos30°=∵CF ⊥AF ,EA ⊥AF ,BE ⊥AE ,∴∠CEA=∠EAF=∠AFC=90°,∴四边形AECF 是矩形,∴AE=CF=50,CE=AF ,在直角三角形AEB 中,∠EAB=90°-45°=45°,∴BE=AE=50,∴CB=AD+DF-BE=15(108)5020⨯-+=,20)21033.3-÷=≈(海里/时),答:快艇每小时航行33.3海里∕时.24. 解:(1)设y 与x 的函数关系式为 (0)y kx b k =+≠,把x=22,y=780,x=25,y=750代入 y kx b =+得2278025750k b k b +=⎧⎨+=⎩,解得101000k b =-⎧⎨=⎩∴函数的关系式为101000y x =-+;(2)设该工艺品每天获得的利润为w 元,则2(20)(101000)(20)10(60)16000W y x x x x =-=-+-=--+;∵100-<,∴当2030x <≤时,w 随x 的增大而增大,所以当售价定为30元/时,该工艺品每天获得的利润最大.即210(3060)160007000W =--+=最大元;答:当售价定为30元/时,该工艺品每天获得的利润最大,最大利润为7000元.25. 解:(1)AC′=BD′,∠AMB=α,证明:在矩形ABCD 中,AC=BD ,OA=OC=12AC ,OB=OD=12BD , ∴OA=OC=OB=OD ,又∵OD=OD′,OC=OC′,∴OB=OD′=OA=OC′,∵∠D′OD=∠C′OC ,∴180°-∠D′OD=180°-∠C ′OC ,∴∠BOD′=∠AOC′,∴△BOD′≌△AOC′,∴BD′=AC′,∴∠OBD′=∠OAC′,设BD ′与OA 相交于点N ,∴∠BNO=∠ANM ,∴180°-∠OAC′-∠ANM=180°-∠OBD′-∠BNO ,即∠AMB=∠AOB=∠COD=α,综上所述,BD′=AC′,∠AMB=α,(2)AC′=kBD′,∠AMB=α,证明:在平行四边形ABCD 中,OB=OD ,OA=OC ,又∵OD=OD′,OC=OC′,∴OB :OA=OD′:C′,∵∠D′OD=∠C′OC ,∴180°-∠D′OD=180°-∠C′OC ,∴∠BOD′=∠AOC′,∴△BOD′∽△AOC′,∴BD′:AC′=OB :OA=BD :AC ,∵AC=kBD ,∴AC′=kBD′,∵△BOD′∽△AOC′,设BD′与OA 相交于点N ,∴∠BNO=∠ANM ,∴180°-∠OAC′-∠ANM=180°-∠OBD′-∠BNO ,即∠AMB=∠AOB=α, 综上所述,AC′=kBD′,∠AMB=α,(3)AC′=BD′成立,∠AMB=α不成立.26. 解:(1)∵抛物线过O (0,0),A (10,0),∴设抛物线解析式为(0)(10)y a x x =--,将B (2,2)代入,得2(210)2a ⨯⨯-=,解得18a =-, ∴抛物线解析式为2115(10)884y x x x x =--=-+; (2)设AB 解析式为y kx n =+,将A (10,0),B (2,2)代入,得10022k n k n +=⎧⎨+=⎩,解得1452k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴1542y x =-+,∵P (m ,0),∴OP=m ,AQ=2m ,OQ=10-2m , ∴当x=10-2m 时,QM=151(102)422m m --+=,∴QD=m , ∵四边形QCDE 是正方形,∴221122S QD m ==; (3)①由P (2,0),根据抛物线解析式可知N (2,2),由正方形的性质得G (2,4),即PG=4,又当GF 和EQ 落在同一条直线上时,△FGQ 为等腰直角三角形,∴PQ=PG=4,OQ=OP+PQ=6,代入直线AB 解析式得M (6,1),即QM=1,QD=2,∴阴影部分面积和=22111()5222PG QB ⨯+=,②1(2.5 0)P ,,2(9P ,310( 0)3P ,。