纳米复合材料发展与现状
纳米材料现状特点及趋势
纳米材料研究的现状、特点和发展趋势文/中国科学院固体物理研究所张立德一、纳米材料研究的现状自70年代纳米颗粒材料问世以来,80年代中期在实验室合成了纳米块体材料,至今已有20多年的历史,但真正成为材料科学和凝聚态物理研究的前沿热点是在80年代中期以后。
从研究的内涵和特点大致可划分为三个阶段。
第一阶段(1990年以前)主要是在实验室探索用各种手段制备各种材料的纳米颗粒粉体,合成块体(包括薄膜),研究评估表征的方法,探索纳米材料不同于常规材料的特殊性能。
对纳米颗粒和纳米块体材料结构的研究在80年代末期一度形成热潮。
研究的对象一般局限在单一材料和单相材料,国际上通常把这类纳米材料称纳米晶或纳米相材料。
第二阶段(1994年前)人们关注的热点是如何利用纳米材料已挖掘出来的奇特物理、化学和力学性能,设计纳米复合材料,通常采用纳米微粒与纳米微粒复合,纳米微粒与常规块体复合及发展复合材料的合成及物性的探索一度成为纳米材料研究的主导方向。
第三阶段(从1994年到现在)纳米组装体系、人工组装合成的纳米结构的材料体系越来越受到人们的关注,正在成为纳米材料研究的新的热点。
国际上,把这类材料称为纳米组装材料体系或者称为纳米尺度的图案材料。
它的基本内涵是以纳米颗粒以及它们组成的纳米丝和管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系,基保包括纳米阵列体系、介孔组装体系、薄膜嵌镶体系。
纳米颗粒、丝、管可以是有序或无序地排列。
如果说第一阶段和第二阶段的研究在某种程度上带有一定的随机性,那么这一阶段研究的特点更强调人们的意愿设计、组装、创造新的体系,更有目的地使该体系具有人们所希望的特性。
著名诺贝尔奖金获得者,美国物理学家费曼曾预言“如果有一天人们能按照自己的意愿排列原子和分子…,那将创造什么样的奇迹”。
就像目前用STM操纵原子一样,人工地把纳米微粒整齐排列就是实现费曼预言,创造新奇迹的起点。
美国加利福尼亚大学洛伦兹伯克力国家实验室的科学家在《自然》杂志上发表论文,指出纳米尺度的图案材料是现代材料化学和物理学的重要前沿课题。
纳米材料的应用现状及发展趋势最终版
纳米材料的应用现状及发展趋势罗新中2007440375摘要作为一种新型的材料,纳米材料曾经引起了一场巨大的科技的革命,它的特殊性能、规模化制备和生产引起了人们对其不懈的探索。
纳米材料的研发制备是其应用的基础,而规模化产业化的应用才是研究的最终目的。
因此,如何使纳米材料由科学研究转化为大规模的产业化生产才是重中之重。
文章分别从纳米材料的制备、纳米材料的应用以及纳米材料未来的发展方向三个方面对其进行总结。
介绍了其研究现状及应用前景,分析了目前在纳米材料研究方面所存在的问题,并对以后的研究提出了自己的看法。
关键词纳米材料制备应用前景纳米材料是指物质的粒径至少有一维在1~100 nm 之间,具有特殊物理化学性质的材料。
如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。
纳米材料独特的纳米晶粒及高浓度特征以及由此产生的小尺寸量子效应和晶界效应,使其表现出一系列与普通多晶体和非晶态固体有本质差别的力学、光、电、声、磁等性能,在电子信息、生物工程、航空航天、国防科技及日常生活中有着广阔的应用前景。
因此,近年来关于纳米材料的研究及其制备技术引起了世界各国的普遍重视,对纳米材料的制备、结构、性能及其应用的研究也成为2O 世纪90年代材料科学研究的热点,继而在整个社会中形成了“纳米热”。
1 纳米材料的制备技术1.1 现阶段纳米材料的制备技术纳米材料的制备从制备手段来分一般可归纳为物理方法和化学方法。
1.1.1 物力制备方法物理制备纳米材料的方法有:粉碎法、高能球磨法、惰性气体发、溅射法等。
粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。
高能球磨法是利用球磨机的转动或震动对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。
高能球磨法可以将相图上几乎不相互融的几种元素制成纳米固溶体,为发展新材料开辟了新途径。
惰性气体凝聚蒸发法是在以充满惰性气体的超高真空室中将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体碰撞失去能量,骤冷后形成纳米颗粒。
聚乳酸基纳米复合材料的研究现状及其发展前景
聚乳酸基纳米复合材料的研究现状及其发展前景聚乳酸基纳米复合材料是一种由聚乳酸 (PLA) 和其他纳米材料组成的复合材料。
目前,聚乳酸基纳米复合材料的研究现状及其发展前景非常广阔,具体如下:
一、研究现状
1. 材料制备技术:目前,聚乳酸基纳米复合材料的制备技术主要包括溶剂热反应、溶胶 - 凝胶法、电化学沉积法等。
这些方法不仅可以控制复合材料的组成和结构,还可以提高复合材料的性能。
2. 材料性能:聚乳酸基纳米复合材料具有优异的力学性能、光学性能、生物相容性和降解性等。
其中,PLA 纳米复合材料的力学性能比纯 PLA 提高了近10 倍,光学性能也得到了显著提高。
3. 应用领域:聚乳酸基纳米复合材料的应用领域非常广泛,包括生物医学、光学、电子学、环保等领域。
例如,PLA 纳米复合材料可以用于生物传感器、生物医学材料、光学器件等方面。
二、发展前景
1. 生物医学应用:聚乳酸基纳米复合材料在生物医学领域具有广泛的应用前景。
例如,PLA 纳米复合材料可以用于生物传感器、生物医学材料、药物释放系统等。
2. 光学应用:聚乳酸基纳米复合材料在光学领域具有广泛的应用前景。
例如,PLA 纳米复合材料可以用于光学器件、太阳能电池等。
3. 电子学应用:聚乳酸基纳米复合材料在电子学领域具有广泛的应用前景。
例如,PLA 纳米复合材料可以用于电子器件、半导体器件等。
4. 环保应用:聚乳酸基纳米复合材料在环保领域具有广泛的应用前景。
例如,PLA 纳米复合材料可以用于水处理、大气污染治理等方面。
总的来说,聚乳酸基纳米复合材料具有优异的性能和良好的发展前景,将成为未来材料领域的研究热点之一。
2024年纳米材料市场分析现状
纳米材料市场分析现状概述纳米材料是在尺寸范围为1到100纳米之间的材料,具有独特的物理、化学和生物学性质。
随着科技的不断发展和应用领域的不断拓展,纳米材料的市场需求也逐渐增长。
本文将对纳米材料市场的现状进行分析。
市场规模根据市场研究机构的数据显示,全球纳米材料市场规模近年来呈现稳定增长的趋势。
2018年全球纳米材料市场规模达到1000亿美元,预计到2025年将达到2000亿美元。
纳米材料市场的高速增长主要受益于电子、医疗、能源和材料领域的需求增加。
应用领域纳米材料的应用领域非常广泛,包括电子、医疗、能源、材料等多个行业。
电子领域在电子领域,纳米材料被广泛应用于半导体芯片、显示屏和太阳能电池等。
纳米材料的独特性能可以提高电子设备的性能和效率。
医疗领域在医疗领域,纳米材料可以用于制造生物传感器、药物传递系统和生物成像。
纳米材料具有较大比表面积和更好的生物相容性,可以提高医疗设备的效果和治疗效果。
能源领域在能源领域,纳米材料可以应用于太阳能电池、燃料电池和储能设备等。
纳米材料的光吸收和电导特性使其成为能源转换和存储领域的理想材料。
材料领域在材料领域,纳米材料可以用于制造高性能复合材料、涂层和陶瓷等。
纳米材料的高强度和耐磨性能可以提升材料的性能和耐久性。
竞争态势纳米材料市场存在着激烈的竞争,主要厂商涉及到国内外诸多企业。
包括美国的Nanosys、韩国的Nanoco、日本的NanoInk等。
这些企业在纳米材料的研究、生产和销售方面具有一定的优势。
同时,新兴的创业公司也进入到纳米材料市场。
这些创业公司通常专注于特定领域的纳米材料研发,希望通过创新的产品和技术来取得竞争优势。
发展趋势纳米材料市场的发展趋势主要包括以下几个方面:1.多功能化:纳米材料将发展为具有多种功能的产品,例如具有抗菌、防火、自修复等功能。
2.环保可持续性:纳米材料的研发将注重环境友好和可持续性,减少对环境的不良影响。
3.创新应用:随着科研水平的提高,纳米材料将推动更多领域的创新应用,例如纳米机器人和纳米传感器等。
纳米材料技术的发展现状与未来趋势分析
纳米材料技术的发展现状与未来趋势分析近年来,纳米材料技术以其独特的性质和广泛的应用前景,成为了科技领域中备受瞩目的研究方向。
纳米材料,指的是颗粒尺寸在1-100纳米的物质,具有相对传统材料不可比拟的优势。
通过调控纳米材料的尺寸和结构,可以实现对其光、电、热、力等物理和化学性质的精确控制,从而为新一代高科技产品的开发提供了基础材料。
本文将就纳米材料技术的当前发展现状和未来趋势进行分析和探讨。
一、纳米材料技术的发展现状纳米材料技术的快速发展离不开先进的科学研究手段和先进的合成制备工艺。
当前,纳米材料技术在多个领域都取得了显著的进展。
例如,在电子领域,纳米材料被广泛应用于高性能电子器件,如纳米晶体管、纳米电容器等,其小尺寸和高表面积与体积比使得电子器件在体积、功耗和性能方面有了质的突破;在能源领域,纳米材料技术被用于开发高效的太阳能电池、储能材料和催化剂等,提高了能源转换效率和利用效率;在医学领域,纳米材料被广泛应用于生物分子探测、靶向药物输送和生物成像等,为疾病的诊断和治疗提供了新的手段。
除了应用领域的拓展,纳米材料技术的研究也在不断深入和细化。
目前,研究者们已经能够制备各种纳米材料,如纳米颗粒、纳米线、纳米管等,并通过结构设计和控制,实现了对纳米材料性能的精确调控。
此外,通过与其他材料的复合,纳米材料的性能和功能进一步得到了拓展和提升。
例如,石墨烯与纳米颗粒复合形成的纳米复合材料,具有优异的导电性、导热性和力学性能,被广泛应用于柔性电子和传感器领域。
二、纳米材料技术的未来趋势分析纳米材料技术的发展仍然充满潜力,可以预见,未来纳米材料技术将在以下几个方面取得更大突破。
首先,纳米材料的合成和制备技术将更加成熟和可控。
目前纳米材料的制备过程中存在一些困难和挑战,如纳米材料的分散性、稳定性和尺寸均一性问题,制备过程中的高能耗和高成本等。
未来,研究者将进一步改进合成方法,提高纳米材料的制备效率和产品质量,并开发出更加环保和低成本的制备工艺。
先进复合材料的发展及展望
先进复合材料的发展及展望复合材料是由两种或更多不同的材料组成的,它们的结合能够充分发挥各个组成材料的优势,并达到超过单一材料的性能特点。
复合材料在材料科学和工程领域有广泛的应用,包括航空航天、汽车工程、建筑和医疗等。
复合材料的发展可以追溯到古代,例如古埃及人使用竹子和泥制成砖块,这种复合材料比单纯的泥砖更加坚固和耐用。
然而,现代复合材料的发展始于20世纪,随着材料科学的进步和新材料的不断涌现,复合材料的性能和应用领域得到了巨大的提升。
目前,先进复合材料的发展主要集中在以下方面:1.纳米复合材料:纳米技术的快速发展为复合材料带来了新的发展机遇。
通过在复合材料中添加纳米颗粒,可以改善材料的强度、硬度和耐磨性。
此外,纳米颗粒还可以用于材料的增强和接触表面的改性,提高复合材料的性能。
2.高性能纤维增强复合材料:纤维增强复合材料是指通过将纤维材料(如碳纤维、玻璃纤维和芳纶纤维)嵌入到基体中来增强材料的力学性能。
高性能纤维增强复合材料具有高强度、高模量和低密度的特点,在航空航天和汽车工程等领域有广泛应用。
3.生物基复合材料:生物基复合材料是由生物基聚合物和其他材料组成的复合材料。
相比传统的石油基复合材料,生物基复合材料具有可再生、生物降解和环境友好的特点。
它们在可持续发展和环境保护方面具有重要意义,在食品包装和医疗领域有广泛应用前景。
展望未来,先进复合材料有许多发展方向和挑战。
首先,随着纳米技术的不断进步,纳米复合材料将会成为重要的研究领域。
通过控制和设计纳米颗粒的形状、尺寸和分布,可以进一步改善复合材料的性能,实现更多的应用。
其次,为了提高复合材料的可靠性和安全性,材料科学家们需要更好地理解复合材料在不同条件下的行为。
通过建立更准确的模型和进行精确的实验测试,可以增加对复合材料的了解,优化设计和制造过程。
此外,生物基复合材料在可持续发展和环境保护方面具有巨大潜力。
未来,预计将出现更多的生物基复合材料,以减少对有限资源的依赖,并降低对环境的影响。
纳米材料行业发展现状及前景趋势分1
纳米材料行业发展现状及前景趋势分析纳米材料行业发展现状及前景趋势分析纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100 nm)或由它们作为基本单元构成的材料,大约相当于10-100个原子紧密排列在一起的尺度。
纳米材料行业发展现状:在充满生机的21世纪,信息、生物技术、能源、环境、先进制造技术和国防的高速发展必然对材料提出新的需求,元件的小型化、智能化、高集成、高密度存储和超快传输等对材料的尺寸要求越来越小;航空航天、新型军事装备及先进制造技术等对材料性能要求越来越高。
新材料的创新,以及在此基础上诱发的新技术、新产品的创新是未来10年对社会发展、经济振兴、国力增强最有影响力的战略研究领域,纳米材料将是起重要作用的关键材料之一。
纳米材料自问世以来,受到科学界追捧,成为材料科学现今最为活跃的研究领域。
纳米材料根据不同尺寸和性质,在电子行业、生物医药、环保、光学等领域都有着开发的巨大潜能。
在将纳米材料应用到各行各业的同时,对纳米材料本身的制备方法和性质的研究也是目前国际上非常重视和争相探索的方向。
中国在纳米科技领域的研究起步较早,基本上与国际发展同步。
中国已经初步具备开展纳米科技的研究条件,国家重点研究机构及相关高科技技术企业对纳米材料的研究步伐不断加快;在纳米科技领域,我国“十五”、“十一五”期间取得了一批重要的研究成果,在部分领域已达到国际先进水平。
这些都为实现跨越式发展提供了可能。
中国在经济高速发展、在节省能源和资源方面,纳米材料和纳米技术将发挥重要作用。
结合国家战略需求,纳米材料和纳米技术在能源、环境、资源和水处理产业应用近年来出现了良好的开端。
纳米净化剂、纳米助燃剂、纳米固硫剂、用于水处理的纳米絮凝剂等新型产品相继开发成功,在这些产品基础上,发展了一些新型纳米产业,前景看好。
纳米材料行业前景趋势分析:市场成长迅速、国家对高科技新材料产业的重视、中国的纳米材料技术水平的进一步突破、纳米材料与日常起居结合紧密、纳米材料应用领域不断开拓等等这些因素必将使中国的纳米产业未来更加光明。
高分子纳米复合材料的发展前景
高分子纳米复合材料的发展前景
高分子纳米复合材料是近年来材料科学领域的研究热点之一,其结合了高分子
材料和纳米材料的优点,在性能、应用领域等方面展现出了巨大的潜力。
随着科技水平的不断提升,高分子纳米复合材料的发展前景备受关注。
首先,高分子纳米复合材料具有优异的力学性能。
通过将纳米材料引入高分子
基体中,可以显著改善材料的强度、刚度和韧性,实现性能的全面提升。
这种复合材料在汽车、航空航天、电子等领域有着广泛的应用前景,可以替代传统材料,实现轻量化、高强度的要求。
其次,高分子纳米复合材料具有优异的导热性能和阻燃性能。
引入纳米填料后,使得材料的导热性大幅提高,有利于材料在高温条件下的稳定性和散热性能。
同时,加入特定的纳米填料还可以提高复合材料的阻燃性能,增强材料的耐火性,从而扩大其在建筑材料、航空材料等领域的应用范围。
此外,高分子纳米复合材料还具有优异的光学和电学性能。
纳米级填料的加入
可以调控复合材料的透明度、抗紫外性能和光学波长等参数,使得材料在光电子器件、光学镜片等领域有广泛应用。
同时,高分子纳米复合材料在电学性能方面也有很大优势,能够应用于柔性电子、传感器等领域,具有广阔的市场前景。
综上所述,高分子纳米复合材料作为一种新型材料,在力学性能、导热性能、
阻燃性能、光学电学性能等方面都具有显著优势,具有广阔的应用前景。
随着材料科学的不断发展和技术的不断进步,相信高分子纳米复合材料将在未来发展中展现出更多的潜力,为各个领域的应用带来创新和突破。
我国纳米材料技术发展现状、挑战与对策
我国纳米材料技术发展现状、挑战与对策大家好,今天我们来聊聊我国纳米材料技术的发展的现状、挑战以及对策。
让我们来了解一下什么是纳米材料技术。
纳米材料技术是一种研究和开发尺寸在1-100纳米之间的材料的技术。
这种材料具有很多特殊的性质,比如说它们的物理、化学和生物学性质都会发生很大的变化。
这些性质使得纳米材料在很多领域都有很大的应用前景,比如说能源、环保、医疗等。
我国在纳米材料技术方面的发展现状是怎样的呢?总体来说,我国在纳米材料技术方面已经取得了很大的进展。
在过去的几年里,我国政府和企业都在大力支持纳米材料技术的研究和发展。
据我了解,我国已经成为了世界上纳米材料技术研究和产业化最活跃的国家之一。
在很多领域,我国都已经取得了世界领先的成果。
比如说在纳米电池、纳米传感器、纳米复合材料等方面,我国都已经取得了很大的突破。
尽管我国在纳米材料技术方面取得了很大的进展,但是我们还面临着很多挑战。
我们的科研投入还不够充足。
虽然政府和企业都在大力支持纳米材料技术的研究和发展,但是相对于其他发达国家来说,我们的投入还是不够多的。
我们的人才储备还比较薄弱。
纳米材料技术是一项高度专业化的技术,需要大量的专业人才来进行研究和开发。
目前我国在这方面的人才储备还比较不足。
我们的国际合作还不够紧密。
虽然我们在很多领域都取得了世界领先的成果,但是我们还需要加强与其他国家和地区的合作,共同推动纳米材料技术的发展。
面对这些挑战,我们应该采取什么样的对策呢?我们应该加大科研投入。
政府和企业应该加大对纳米材料技术研究和发展的资金支持,吸引更多的人才投身于这个领域。
我们应该加强人才培养。
学校和科研机构应该加强对纳米材料技术专业人才的培养,提高我国在这一领域的人才储备。
我们应该加强国际合作。
我们应该积极参与国际交流和合作,与其他国家和地区共同推动纳米材料技术的发展。
我国在纳米材料技术方面已经取得了很大的进展,但是我们还面临着很多挑战。
面对这些挑战,我们应该采取相应的对策,加大科研投入、加强人才培养和加强国际合作,共同推动纳米材料技术的发展。
纳米复合材料的研究与应用
纳米复合材料的研究与应用一、引言纳米复合材料作为新兴材料的代表,具有优异的性能和广泛的应用前景。
它是由具有不同物理和化学性质的两种或以上的材料按照一定比例的混合、复合而成。
其中,其中一种或几种材料具有纳米级粒径,其尺寸范围一般为1-100纳米。
纳米复合材料的制备方法和性能研究是当前材料科学研究的一个热门领域。
本文主要介绍纳米复合材料的研究与应用。
二、研究现状纳米复合材料是复合材料中出现的一种新型材料,其制备技术、性能和应用研究都处于快速发展阶段。
已经有很多研究人员对其进行了深入研究。
纳米复合材料的制备方法一般采用溶胶-凝胶法、高能球磨、电沉积、真空喷射、化学气相沉积等方法。
由于纳米复合材料具有优异的性能,如高强度、高硬度、高韧性、高导电性、高热稳定性和高耐腐蚀性等,已经在多个领域得到了广泛的应用。
三、应用领域纳米复合材料的应用领域十分广泛,它已经应用于生物医药、环保、电子信息、能源和航空航天等众多领域。
1.生物医药纳米复合材料已经成为生物医药领域中不可或缺的材料之一。
由于其物理化学性质稳定,可以作为一种药物载体,广泛应用于疾病治疗、诊断和生物分子传感等方面。
例如,通过将纳米材料和药物复合,可以提高药物的生物利用度和降低给药的毒副作用。
同时,在生物分子传感方面,纳米复合材料也可以用于疾病诊断,如乳腺癌、肿瘤标记物、疟疾等。
2.环保在环保领域,纳米复合材料的应用也十分广泛。
例如,可将纳米复合材料应用于水处理领域,通过纳米复合材料对水中的污染物进行去除。
同时,纳米复合材料也可以作为车辆排放物、工业废气的过滤材料,对空气中的有害物质进行净化。
3.电子信息纳米复合材料的电学性质十分良好,可以作为电子元器件中的重要材料。
例如,纳米复合材料可以用于微型电机、半导体器件、纳米电路和微电子器件等领域。
同时,在传感器、显示器和太阳能电池等方面也有着广泛的应用。
4.能源纳米复合材料在能源领域的应用颇为广泛。
例如,可以将纳米复合材料用于燃料电池、太阳能电池、储能材料等领域。
纳米复合材料
纳米复合材料
纳米复合材料是指将纳米级的材料与宏观材料进行组合,形成新型的复合材料。
纳米复合材料具有独特的性能和应用前景,已经成为材料科学领域的研究热点之一。
本文将从纳米复合材料的定义、制备方法、性能特点以及应用领域等方面进行介绍。
首先,纳米复合材料的定义。
纳米复合材料是指在纳米尺度上,将纳米颗粒或
纳米结构的材料与宏观材料进行混合,形成新型的材料体系。
纳米复合材料通常具有高强度、高韧性、高导热性和光学特性等特点,具有广泛的应用前景。
其次,纳米复合材料的制备方法。
目前,制备纳米复合材料的方法主要包括机
械合金法、溶液法、原位合成法和化学气相沉积法等。
这些方法可以有效地将纳米材料与宏观材料进行混合,实现纳米复合材料的制备。
纳米复合材料的性能特点是本文的重点之一。
纳米复合材料通常具有优异的力
学性能,如高强度、高韧性和高硬度。
同时,由于纳米材料的特殊结构,纳米复合材料还具有优良的导热性能和光学特性,可以应用于导热材料和光学材料领域。
最后,纳米复合材料的应用领域。
纳米复合材料在材料科学、化工、电子、医
药和环境等领域具有广泛的应用前景。
例如,在材料科学领域,纳米复合材料可以用于制备高性能的结构材料和功能材料;在医药领域,纳米复合材料可以用于制备药物载体和医用材料;在环境领域,纳米复合材料可以用于污染物的吸附和催化降解等方面。
综上所述,纳米复合材料具有独特的性能和应用前景,是材料科学领域的研究
热点之一。
随着纳米技术的不断发展,纳米复合材料将在更多领域得到广泛的应用,推动材料科学的发展。
功能性纳米材料的研究与应用
功能性纳米材料的研究与应用近年来,随着科技的不断发展,纳米技术成为了研究的热点领域之一。
功能性纳米材料,作为纳米技术中的一大分支,具有广泛的应用前景。
本文将结合相关文献,探讨功能性纳米材料的研究现状和应用前景。
一、功能性纳米材料的研究现状1. 纳米复合材料纳米复合材料是指将纳米颗粒与传统材料进行复合,从而赋予其新的性能。
目前,纳米复合材料的研究主要集中在以下几个方面:(1)增强材料:在材料中加入纳米颗粒,可以增强其机械强度、硬度和耐磨性,提高材料的性能。
(2)导电材料:将纳米颗粒复合到导电材料中,可提高材料的导电性能。
(3)光学材料:将纳米颗粒复合到光学材料中,可以改变其折射率、光学吸收和发射性能,使其具有更广泛的应用前景。
2. 纳米催化剂纳米催化剂是指纳米颗粒作为催化剂的载体,通过表面修饰等手段增强其催化性能。
与传统催化剂相比,纳米催化剂具有以下特点:(1)催化活性高:纳米颗粒具有高比表面积和更多的晶界,可以提高其催化活性。
(2)选择性好:纳米颗粒的尺寸可以调控其选择性,在有机催化反应中具有更高的选择性。
(3)反应速率快:纳米颗粒可以提高催化反应的反应速率。
3. 纳米传感器纳米传感器是指利用纳米材料改变其电学、光学、磁学等性质,从而实现对环境变化的高灵敏度检测。
当前,纳米传感器的研究主要集中在以下几个方面:(1)生物传感器:利用纳米颗粒与生物分子的高亲和性,实现对生物分子的检测。
(2)环境传感器:利用纳米材料对环境中的气体、重金属等进行检测。
(3)食品传感器:利用纳米颗粒对食品中的成分进行检测,保障食品安全。
二、功能性纳米材料的应用前景1. 生物医学领域在生物医学领域,纳米材料可以作为药物载体,通过改变药物的释放速率和靶向性,提高其疗效并减少副作用。
此外,纳米材料还可以作为生物成像剂,通过改变其光学或磁学性质,实现对生物组织的高分辨率成像。
2. 新能源领域在新能源领域,纳米材料可以用于太阳能电池、储能装置和催化剂等方面。
纳米科技在新材料研发中的发展现状与未来趋势
纳米科技在新材料研发中的发展现状与未来趋势纳米科技是当今科学界备受关注的新领域,其在新材料研发中的应用前景令人激动。
近年来,纳米科技在新材料领域取得了许多重要突破,为各行各业的发展提供了更多可能性。
本文将探讨纳米科技在新材料研发中的发展现状与未来趋势。
首先,纳米科技的出现为新材料研发提供了新的途径。
通过控制物质的微观结构和性质,纳米科技可以改善材料的机械、热学和电学性能。
例如,纳米材料的力学强度和硬度可以显著提高,同时仍保持较高的塑性和韧性。
这使得新材料在抗拉、抗压、抗腐蚀等方面具备更多的优势。
此外,由于纳米材料具有与光、磁、电等能量相互作用的特性,其在光电子器件、传感器和能量存储等方面具有广阔的应用前景。
其次,纳米科技在新材料研发中的应用已取得了一系列重要成果。
作为纳米科技的典型应用之一,纳米涂层技术已成为许多新材料领域的研究热点。
纳米涂层可以提高材料的硬度、耐磨性、抗氧化性等性能,并具有较高的表面精度和良好的润滑性能,广泛应用于汽车、航空航天、电子等领域。
同时,纳米复合材料的研究也取得了重要进展。
纳米复合材料通过将纳米颗粒加入到基础材料中,可以显著改善材料的力学性能、导热性能、阻尼性能等,为新材料的研发提供了新的思路和方法。
纳米生物技术是纳米科技在新材料研发中的另一重要领域。
通过将纳米材料应用于医学领域,可以改善材料在生物体内的相容性和生物活性,并实现更精确的药物输送和治疗手段。
例如,纳米颗粒可以用于靶向肿瘤治疗,通过控制颗粒的大小和表面性质,实现溶瘤药物的高效输送和肿瘤靶向杀灭。
此外,纳米材料在细胞成像、基因治疗、组织修复等方面也有广阔的应用前景。
未来,纳米科技在新材料研发中将继续发挥重要作用。
首先,纳米科技将推动新材料的创新设计。
通过纳米材料的组合、结构调控和功能调控,可以实现材料性能的全新定义。
例如,通过调控纳米结构的排列方式、尺寸和形态等,可以实现光学、电学、磁学等性能的精确调控,从而开发出更具吸引力和应用价值的新材料。
国外碳纳米管复合材料研究现状
国外碳纳米管复合材料研究现状碳纳米管自被发现以来,因其独特的结构和优异的性能,成为了材料科学领域的研究热点。
特别是在复合材料领域,碳纳米管的加入为材料性能的提升带来了新的契机。
国外在碳纳米管复合材料的研究方面取得了众多显著的成果,本文将对其进行详细阐述。
一、碳纳米管的特性碳纳米管具有极高的强度和韧性。
其强度可达到钢铁的数十倍,同时具有出色的柔韧性,能够承受较大的变形而不断裂。
此外,碳纳米管还具有优异的电学性能,电导率极高,可与金属相媲美。
良好的热学性能也是其特点之一,热导率高,散热效果好。
这些特性使得碳纳米管在复合材料中具有极大的应用潜力。
二、国外碳纳米管复合材料在不同领域的研究现状1、航空航天领域在航空航天领域,对材料的性能要求极为苛刻。
国外研究人员致力于将碳纳米管复合材料应用于飞机结构件中,以减轻重量并提高强度。
例如,美国的研究团队成功开发出了碳纳米管增强的碳纤维复合材料,用于飞机机翼的制造,不仅减轻了结构重量,还提高了抗疲劳性能和耐腐蚀性。
2、电子领域在电子领域,碳纳米管复合材料可用于制造高性能的电子器件。
日本的科研人员成功制备出了碳纳米管与半导体材料复合的薄膜,用于制造柔性显示屏,具有更高的分辨率和更低的能耗。
此外,碳纳米管复合材料还可用于制造高效的电池电极,提高电池的充放电性能和循环寿命。
3、能源领域能源领域也是碳纳米管复合材料的重要应用方向。
德国的研究小组开发出了碳纳米管与聚合物复合的质子交换膜,用于燃料电池中,提高了燃料电池的功率密度和稳定性。
在太阳能电池方面,国外研究人员将碳纳米管与光伏材料复合,提高了太阳能电池的光电转换效率。
4、生物医学领域在生物医学领域,碳纳米管复合材料具有广阔的应用前景。
美国的科研团队研发出了碳纳米管与生物活性分子复合的材料,用于药物输送和组织工程。
碳纳米管的高比表面积和良好的生物相容性,使得药物能够更有效地负载和释放,促进组织的修复和再生。
三、制备方法1、溶液共混法这是一种较为常见的方法,将碳纳米管和基体材料分散在溶剂中,通过搅拌、超声等手段使其均匀混合,然后去除溶剂得到复合材料。
聚合物纳米复合材料的制备技术及应用前景
聚合物纳米复合材料的制备技术及应用前景聚合物纳米复合材料是一种新型高性能材料,由聚合物基质和纳米尺度的添加剂复合而成,具有优异的物理和化学性能,如机械强度、耐热性、导电性、导热性等。
本文将介绍聚合物纳米复合材料的制备技术及应用前景。
制备技术聚合物纳米复合材料的制备技术主要有两种:一种是通过化学方法,在聚合物基体中添加纳米填料,可以是纳米粉末、纳米管、纳米球等,通过自组装等方法将纳米颗粒掺入聚合物中,形成纳米复合材料。
另一种方法是利用纳米技术,通过自组装、共混、电子束辐照等方法,将不同材料的聚合物基体和纳米尺度物质复合在一起,生成新型高性能复合材料。
应用前景聚合物纳米复合材料的应用前景十分广泛。
首先,在材料科学领域,聚合物纳米复合材料可以应用于航空航天、汽车、建筑等高端领域的结构材料,这些领域要求材料具有高强度、轻质化、耐热性、抗腐蚀性等优异性能。
同时,聚合物纳米复合材料还可以应用于电子、光电、光催化等领域的新型功能材料,如有机太阳能电池、柔性电子、传感器等,这些领域要求材料具有导电性、光电响应性、催化活性等性能。
此外,聚合物纳米复合材料还可以应用于药物传输、环境治理、食品包装等领域。
在药物传输方面,聚合物纳米复合材料可以作为药物的载体,控制药物的释放速度和方向,提高药物的生物利用度和治疗效果。
在环境治理方面,聚合物纳米复合材料可以应用于水、空气等领域的污染治理,如吸附、分解、过滤等,减少环境污染和提高环境保护质量。
在食品包装方面,聚合物纳米复合材料可以应用于保鲜防腐等方面,延长食品的保质期和食品的品质。
总结聚合物纳米复合材料作为一种新型高性能材料,具有广泛的应用前景和市场需求。
其制备技术和应用领域也在不断发展和创新。
未来,聚合物纳米复合材料将成为新材料领域的主流材料之一,为人类的生产和生活带来更多的创新和发展。
碳纳米管纳米复合材料现状与发展
关键词 :碳纳米管 ;制备应 用;特性 ; 微 波吸收 中图分类号 :T B 3 9 3 文献标识码 :A
发现与初步特性研究 碳纳米管是在 1 9 9 1 年 由日 本科学家发现并做出了报道 。 是在实验 中用高倍的隧道显微 镜意 外观察到 的, 由于全部由碳 原子形成 , 而且是石墨按一定形式叠合组成 , 所 以称它为碳纳 米 管。 经过进一步 的细致研究, 发现碳纳米管表面扩张的强度 好, 可耐 2 0 0 0 多度 以上 的高温 , 并且导热性能快, 导热率高 , 电负载 能力远远超过铁铜等普通金属。 所有这些特性,让碳纳 米管具备了进行 加工 ,变成适合实际应 用的复合材料 的条件 。 按目前的划分, 主要把碳纳米管制备成结构和功能量大复合材 料类型。 碳纳米管的初步特性: 它具备了优越的导电性能 这 些性能与碳纳米 管 自身的特殊形成结构有着 密切 的关系 。 从碳 纳米管的 自身形成结构来讲 , 碳纳米 管和 石墨 的片层结构可 以 说是基本相同的, 众所周之 , 石 墨具备优越的 电学性能, 因此 它也具备 了优越的电学性 能。 经过研 究初 步认 为它 的导 电性能 与 自身的管径和他的管壁 形成 螺旋角度有关 。 如果管径大于 6 毫米 的情况下 , 导电性 能会大幅度的下降; 相反的 , 如果小于 这一 临界数值 , 就可 以具备一维量子导线的优越导电性 。 碳纳 米管在力学方面也有 自身的特 点,尤其表现在抗扩展性方面 ,
一
文章鳊号 :1 6 7 4 - 7 7 1 2( 2 0 1 3 )1 0 - 0 0 3 1 - 0 1
、
三、目前碳纳米管的应用范围
首先碳纳米管可以作为催化剂来应用, 可以提高催化剂的活 性,这跟碳纳米管 自身特点有关,它的表面原子 比率较氢的催化剂作用更加明显。
2023年纳米材料行业市场环境分析
2023年纳米材料行业市场环境分析纳米材料,是指至少有一维尺寸小于100纳米的材料,具有独特的性质和应用。
随着科技的飞速发展,纳米材料行业迅速崛起,成为当今世界科技竞争的热点之一。
本文将对纳米材料行业的市场环境进行分析。
一、政策环境政策环境是影响纳米材料行业发展的重要因素。
对纳米技术的政策支持程度直接影响行业的创新和发展。
我国政府始终高度重视纳米材料产业的发展,出台了一系列支持政策。
例如《关于促进纳米科技产业健康发展的若干意见》、《关于推进新材料产业发展的若干政策》和《纳米科技发展规划》等文件。
这些文件中,政府针对纳米材料行业提出了明确的政策支持,鼓励企业加强技术创新和产品开发,促进纳米材料的应用和推广。
二、市场环境随着科技的不断发展和市场需求的增加,纳米材料行业市场环境也在不断发生变化。
市场竞争激烈,高品质和创新成为竞争的主要手段。
1.市场需求随着电子信息技术、生物科技和新能源技术的发展,纳米材料在各种应用领域中发挥着越来越重要的作用。
纳米材料广泛应用于电子、材料、医疗、化工、生物技术和能源等领域,市场需求不断增加。
例如,在电子领域中,纳米材料在平板显示器、LED、太阳能电池等方面应用较广;在材料领域中,纳米材料能够改善材料的性能和品质,广泛应用于新材料、高强度合金和陶瓷材料等领域;在医疗保健领域中,纳米材料被广泛应用于药品、生物传感器和生物成像等方面。
因此,纳米材料的应用市场前景广阔,未来市场需求还将持续增加。
2.市场竞争市场竞争是市场环境中不可避免的因素。
随着市场的不断壮大和纳米材料技术的不断成熟,不同企业之间的竞争日趋激烈。
在这样的市场环境下,只有具备足够的技术创新和市场占有率,才能在竞争中立于不败之地。
三、技术瓶颈纳米材料行业的技术瓶颈主要表现在以下几个方面:1.纳米材料制备技术纳米材料的制备技术是纳米材料行业的核心技术之一。
纳米材料的制备方法有多种,每种方法都有其自身的优点和局限性。
2024年石墨烯纳米复合材料市场前景分析
2024年石墨烯纳米复合材料市场前景分析引言石墨烯是一种由碳原子组成的二维材料,具有出色的力学强度和导电性能。
石墨烯纳米复合材料是通过将石墨烯与其他材料(如聚合物或金属)相结合制成的复合材料。
石墨烯纳米复合材料在多个行业中有广泛的应用潜力,包括电子、能源、医疗和汽车等。
本文将对石墨烯纳米复合材料市场前景进行分析,探讨其发展趋势和商业机会。
石墨烯纳米复合材料市场概述市场规模石墨烯纳米复合材料市场在过去几年呈现出快速增长的趋势。
根据市场研究公司的数据,2019年全球石墨烯纳米复合材料市场规模约为XX亿美元,预计到2025年将增长至XX亿美元。
应用领域石墨烯纳米复合材料在多个领域中有广泛的应用。
其中,电子领域是石墨烯纳米复合材料的主要应用领域之一。
石墨烯纳米复合材料可以用于制造高性能的电子元件,如智能手机和平板电脑的显示屏、电池和传感器等。
此外,石墨烯纳米复合材料在能源领域也有巨大的潜力。
由于其优异的导电性能和化学稳定性,石墨烯纳米复合材料可以用于制造高效的太阳能电池、储能设备和超级电容器等。
医疗和汽车领域也是石墨烯纳米复合材料的重要应用领域。
在医疗领域,石墨烯纳米复合材料可以用于制造药物传输系统、组织工程和医疗传感器等。
在汽车领域,石墨烯纳米复合材料能够提高汽车零部件的强度和导热性能,提升汽车性能和安全性。
技术发展为了推动石墨烯纳米复合材料市场的发展,许多公司和研究机构致力于石墨烯的制造和应用技术的研发。
传统的石墨烯制造方法包括机械剥离和化学气相沉积等,这些方法生产的石墨烯纳米复合材料成本较高且难以大规模生产。
然而,随着技术的进步和创新,新的石墨烯制造方法正在不断涌现。
例如,化学溶剂剥离法和电化学法等方法能够降低石墨烯的制造成本,并实现大规模生产。
市场前景分析市场驱动因素石墨烯纳米复合材料市场的快速增长离不开多个市场驱动因素的推动。
首先,石墨烯纳米复合材料具有出色的力学强度和导电性能,可以为传统材料带来多种改良。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米复合材料发展与现状
201041505118 李少军10材料一班
1 纳米复合材料
超细粒子(或纳米粒子)是指尺度介于原子、分子、离子与块状材料之间,粒径在1~100nm范围以内的微小固体颗粒。
随着物质的超细化,产生了块状材料不具有的表面效应、小尺寸效应、量子效应,从而使超细粒子与常规颗粒材料相比具有一系列优异的物理、化学性质。
纳米粒子经压制、烧结或溅射组合而成的具有某些特定功能的结构即纳米材料。
它断裂强度高、韧性好、耐高温,纳米复合同时也提高材料的硬度、弹性模量、Weibull模数,并对热膨胀系数、热导率、抗热震性产生影响。
[1]
纳米复合主要指在微米级结构的基体中引入纳米级分散相。
纳米复合材料(复合超微细颗粒)表现出许多与模板核本质不同的性质,如不同的表面组成、磁性、光学性能、稳定性及表面积等。
纳米复合材料涉及的范围广泛,它包括纳米陶瓷材料、纳米金属材料、纳米磁性材料、纳米催化材料、纳米半导体材料、纳米聚合材料等。
纳米粒子具有很高的活性,例如木屑、面粉、纤维等粒子若小到纳米级的范围时,一遇火种极易引起爆炸。
纳米粒子是热力学不稳定系统,易于自发地凝聚以降低其表面能,因此对已制备好的纳米粒子,如果久置则需设法保护,例如保存在惰性空气中或其他稳定的介质中以防止凝聚。
纳米材料是物质以纳米结构按一定方式组装成的体系。
它是纳米科技发展的重要基础,也是纳米科技最为重要的研究对象。
纳米材料也被人们誉为21 世纪最有前途的材料。
由于纳米材料本身所具有的特殊性能。
作为一种全新性能的先进复合材料,在微电子、信息、汽车、宇航、国防、冶金、机械、生物、医药、光学等诸多领域有极广泛的应用前景。
2 纳米复合材料的分类
研究纳米复合材料的一个重要目的是改进并提高块体材料的性能,或通过结构复合来发现块材料中并不存在的性能或效应。
和块体材料相比,纳米复合材料的物理和化学性质将更多地依赖于材料的表面缺陷和量子尺寸效应。
目前.纳米复合材料的种类繁多,可分为:固态纳米复合材料和液态纳米复合材料。
基质材料对于纳米粒子的结构具有稳定作用;而基质材料的不同,又可将纳米复合材料区分为:无机基纳米复合材料和聚合物基纳米复合材料。
聚合物基包括单聚合物、共聚合物和聚合物的混合;无机基则包括玻璃,如多孔玻璃、分子筛、溶胶一凝胶玻璃和陶瓷等。
[2]还可根据纳米粒子的物理性质可将纳米复合材料区分为:半导体纳米复合材料、铁电体微晶复合材料、染料分子纳米复合材料、稀土纳米复合材料、金属(合金)纳米复合材料、光学纳米复合材料(非线性、发光、光折变等)、磁性纳米复合材料等。
3 纳米复合材料的制备
3.1 溶胶- 悬浮液混合法
通过添加分散剂、调整pH 值, 先分别制备各组元充分分散的单相稳定悬浮液, 然后找出各相颗粒均能良好分散的混合悬浮液条件, 将各单相悬浮液混合, 再找出共同絮凝的条件, 去除水分, 干燥、煅烧制得纳米复合材料,此法适用于制备纳米相分散与分布较理想的纳米复合陶瓷.王昕等采用加热水解氧化锆及醇水混合液体, 制得单分散的纳米水合氧化锆溶胶和较高浓度的Al2O3 水悬浮液混合在一起, 经搅拌和超声分散, 最后在电动搅拌下加热蒸发, 至糊状时移至微波炉中烘干, 混合粉体经热压烧结制得两相混合均匀的ZrO2( n)-Al2O3 复合陶瓷.
3.2 包裹沉淀法
在分散的纳米颗粒外层包裹一层基质组元( 或其前驱物) 或其他组元, 可保证纳米相在混合以及其后的烧结过程中不再团聚,采用此法可以制备纳米包团结构.例如, 在SiO2 的外层包裹一层Al2O3, 可大大改善其分散效果.
3.3 辐射合成法
该方法是先将聚合物单体与金属盐在分子水平上混合均匀,形成含金属盐的单体溶液后,再进行辐照。
电离辐射产生的初级产物同时引发单体聚合以及金属离子的还原,由于聚合物单体的聚合速度大大快于金属颗粒的团聚速度,生成的聚合物长链使体系的粘度迅速增加,从而大大限制了纳米颗粒的团聚,因而可得到分散相尺寸小,分布均匀的复合材料。
辐射合成方法制备纳米材料所用,辐射源主要是印c 源。
[3]
3.4 溶胶凝胶法
溶胶凝胶法是将硅氧烷或金属盐等前驱体(水溶性或油溶性醇盐) 溶于水或有机溶剂中形成均质溶液,在酸、碱或盐的催化作用下促使溶质水解,生成纳米级粒子并形成溶胶,溶胶经溶剂挥发或加热等处理转变为凝胶,从而得到纳米复合材料。
这种方法的关键就是选择具有良好溶解性能的共溶剂,来保证二者具有很好的相容性,在凝胶后不发生相分离。
王玉玲等[4]利用DSD A一D DBT 高聚物作前驱体,在N一甲基毗咯烷酮( NMP ) 中和正硅酸乙醋(T E Os )进行溶胶一凝胶反应制备出新型聚酞亚胺/ 二氧化硅纳米复合材料膜。
并用I R、T G A 及SEM 等手段对材料膜进行研究。
实验结果表明,与聚酞亚胺相比,聚酞亚胺/ 二氧化硅纳米复合膜表现出更好的热力学稳定性。
4 纳米产业发展趋势
(1)信息产业中的纳米技术:信息产业不仅在国外,在我国也占有举足轻重的地位。
2000年,中国的信息产业创造了gdp5800亿人民币。
纳米技术在信息产业中应用主要表现在3个方面:①网络通讯、宽频带的网络通讯、纳米结构器件、芯片技术以及高清晰度数字显示技术。
因为不管通讯、集成还是显示器件,都要原器件,美国已经着手研制,现在有了单电子器件、隧穿电子器件、自旋电子器件,这种器件已经在实验室研制成功,而且可能在2001年进入市场。
②光电子器件、分子电子器件、巨磁电子器件,这方面我国还很落后,但是这些原器件转为商品进入市场也还要10年时间,所以,中国要超前15年到20年对这些方面进行研究。
③网络通讯的关键纳米器件,如网络通讯中激光、过滤器、谐振
器、微电容、微电极等方面,我国的研究水平不落后,在安徽省就有。
④压敏电阻、非线性电阻等,可添加氧化锌纳米材料改性。
(2)环境产业中的纳米技术:纳米技术对空气中20纳米以及水中的200纳米污染物的降解是不可替代的技术。
要净化环境,必须用纳米技术。
我们现在已经制备成功了一种对甲醛、氮氧化物、一氧化碳能够降解的设备,可使空气中的大于10ppm的有害气体降低到0.1ppm,该设备已进入实用化生产阶段;利用多孔小球组合光催化纳米材料,已成功用于污水中有机物的降解,对苯酚等其它传统技术难以降解的有机污染物,有很好的降解效果。
近年来,不少公司致力于把光催化等纳米技术移植到水处理产业,用于提高水的质量,已初见成效;采用稀土氧化铈和贵金属纳米组合技术对汽车尾气处理器件的改造效果也很明显;治理淡水湖内藻类引起的污染,最近已在实验室初步研究成功。
5 纳米复合材料前景展望
纳米合成为发展新型材料提供了新的途径和新的思路。
非平衡动态的材料工艺学在21世纪将会有新的突破。
目前,世界上有近百万种材料,而自然的材料仅占1/20,这就说明人工材料在材料科学发展中占有重要的地位。
纳米尺度的合成为人们设计新型材料,特别是为人类按照自己的意愿设计和探索所需要的新型材料打开了新的大门。
例如,在传统相图中根本不共溶的两种元素或化合物,在纳米态下可形成固溶体,制造出新型的材料。
铁铝合金、银铁和铜铁合金等纳米材料已在实验室获得成功。
利用纳米微粒的特性,人们可以合成原子排列状态完全不同的两种或多种物质的复合材料。
人们还可以把过去难以实现的有序相或无序相、晶态相和金属玻璃、铁磁相和反铁磁相、铁电相和顺电相复合在一起,制备出有特殊性能的新材料。
纳米材料的诞生也为常规的复合材料的研究增添了新的内容。
把金属的纳米颗粒放入常规陶瓷中可大大改善材料的力学性质。
如纳米氧化铝粒子放入橡胶中可提高橡胶的介电性和耐磨性,放入金属或合金中可以使晶粒细化,大大改善力学性质;纳米氧化铝弥散到透明的玻璃中既不影响透明度又提高了高温冲击韧性;半导体纳米微粒(砷化镓、锗、硅)放入玻璃中或有机高聚物中,提高了三阶非线性系数;极性的钛酸铅粒子放在环氧树脂中出现了双折射效应;纳米磁性氧化物粒子与高聚物或其它材料复合具有良好的微波吸收特性。
最近,美国成功的把纳米粒子用于磁制冷上,8nm钇铝铁石榴石新型制冷材料,使制冷温度达到20K。
纳米粒子与纳米粒子复合,受到世界各国极大的重视
[1] 陈少杰, 张教强郭银明纳米复合材料制备方法的研究进展西北工业大学2008 05
[2]欧阳星罗远芳贾德民混炼插层法制备天然橡胶/蒙脱土纳米复合材料{J〕.华南理工大学学报(自然科学版),
[3 ]张曼维辐射化学人门{M〕合肥:中国科技大学出版社199 3
[4] 王玉玲,张传卫,凌文凯等菜既亚胺/二氧化硅纳米复合材料的制备及渗透汽化性能【J 】离分子材料科学与工程.2 0 0 31 9。