专题四 平面向量 理科数学
2023年高考数学(理科)一轮复习课件—— 平面向量基本定理及坐标表示
索引
诊断自测
1.思考辨析(在括号内打“√”或“×”)
(1)平面内的任何两个向量都可以作为一组基底.( × )
(2)设 a,b 是平面内的一组基底,若实数 λ1,μ1,λ2,μ2 满足 λ1a+μ1b=λ2a
+μ2b,则 λ1=λ2,μ1=μ2.( √ ) (3)若 a=(x1,y1),b=(x2,y2),则 a∥b 的充要条件可以表示成xx12=yy12.( × ) (4)平面向量不论经过怎样的平移变换之后其坐标不变.( √ )
索引
3.平面向量的坐标运算 (1)向量加法、减法、数乘运算及向量的模 设 a=(x1,y1),b=(x2,y2),则 a + b = __(_x_1_+__x_2_,__y1_+__y_2_)____ , a - b = __(_x_1_-__x_2,__y_1_-__y_2)_____ , λa = ___(λ_x_1_,__λ_y_1)_____,|a|=____x_12+__y_21__.
1.(2021·西安调研)在平面直角坐标系中,O 为坐标原点,O→A= 23,12,若O→A绕
点 O 逆时针旋转 60°得到向量O→B,则O→B=( A )
A.(0,1)
B.(1,0)
C. 23,-21
D.12,-
3 2
索引
解析 ∵O→A= 23,12,∴O→A与 x 轴的夹角为 30°, 依题意,向量O→B与 x 轴的夹角为 90°, 则点 B 在 y 轴正半轴上,且|O→B|=|O→A|=1, ∴点 B(0,1),则O→B=(0,1).
知识梳理 1.平面向量基本定理
如果e1,e2是同一平面内的两个__不__共__线__向量,那么对于这一平面内的任意向 量a,___有__且__只__有_一对实数λ1,λ2,使a=_____λ_1e_1_+__λ_2_e2. 其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.
高一数学必修4知识点梳理:平面向量
2、零向量:长度为0第二章平面向量1、向量定义:既有大小又有方向的量叫做向量,向量都可用同一平面内的有向线段表示.的向量叫零向量,记作0;零向量的方向是任意的.3、单位向量:长度等于1个单位长度的向量叫单位向量;与向量a 平行的单位向量:e =±a a ||4、平行向量(共线向量):方向相同或相反的非零向量叫平行向量也叫共线向量,记作//ab ;规定0与任何向量平行.5、相等向量:长度相同且方向相同的向量叫相等向量,零向量与零向量相等.注意:任意两个相等的非零向量,都可以用同一条有向线段来表示,并且与有向线段的起点无关。
6、向量加法运算:⑴三角形法则的特点:首尾相接⑵平行四边形法则的特点:起点相同baCBA -=A -AB =B a bC Cc高一数学必修4知识点梳理:平面向量⑶运算性质:①交换律:+=+a b b a ;②结合律:++=++a b c a b c ()();③+=+=a a a 00.⑷坐标运算:设=a x y ,11(),=b x y ,22(),则+=++a b x x y y ,1212)(. 7、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设=a x y ,11(),=b x y ,22(),则-=--a b x x y y ,1212)(.设A 、B 两点的坐标分别为x y ,11(),x y ,22(),则AB =--x x y y ,2121)(.8、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作λa . ①=λλa a ;②当>λ0时,λa 的方向与a 的方向相同;当<λ0时,λa 的方向与a 的方向相反; 当=λ0时,=λa 0.⑵运算律:①=λμλμa a ()();②+=+λμλμa a a ();③+=+λλλa b a b (). ⑶坐标运算:设=a x y ,(),则==λλλλa x y x y ,,()().9、向量共线定理:向量≠a a 0()与b 共线,当且仅当有唯一一个实数λ,使=λb a . 设=a x y ,11(),=b x y ,22(),其中≠b 0,则当且仅当-=x y x y 01221时,向量a 、≠b b 0()共线.10、平面向量基本定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使=+λλa e e 1122.(不共线的向量e 1、e 2作为这一平面内所有向量的一组基底)11、分点坐标公式:设点P 是线段P P 12上的一点,P 1、P 2的坐标分别是x y ,11(),x y ,22(),当P P =PP λ12时,点P 的坐标是⎝⎭++ ⎪⎛⎫++λλλλx x y y 11,1212. 12、平面向量的数量积:⑴定义:≠≠≤≤⋅=θθa b a b a b cos 0,0,0180)(.零向量与任一向量的数量积为0. ⑵性质:设a 和b 都是非零向量,则①⊥⇔⋅=a b a b 0.②当a 与b 同向时,⋅=a b a b ;当a 与b 反向时,⋅=-a b a b ;⋅==a a a a 22或=⋅a a a .③⋅≤a b a b .⑶运算律:①⋅=⋅a b b a ;②⋅=⋅=⋅λλλa b a b a b ()()();③+⋅=⋅+⋅a b c a c b c ().⑷坐标运算:设两个非零向量=a x y ,11(),=b x y ,22(),则⋅=+a b x x y y 1212. 若=a x y ,(),则=+a x y 222,或=+a x y 22.设=a x y ,11(),=b x y ,22(),则⊥⇔+=a b x x y y 01212.设a 、b 都是非零向量,=a x y ,11(),=b x y ,22(),θ是a 与b 的夹角,则++==⋅+θx yx ya ba b x x y y cos 112222221212.第三章 三角恒等变形1、同角三角函数基本关系式(1)平方关系:αα=+221cos sin (2)商数关系:=tan sin cos ααα(3)倒数关系:αα=1cot tan=+sin tan tan 1222ααα ; =+co s 1t an 122αα注意: tan ,cos ,sin ααα 按照以上公式可以“知一求二”2、两角和与差的正弦、余弦、正切S +βα)(:=++sin cos cos sin )sin(βαβαβα S -βα)(:=--sin cos cos sin )sin(βαβαβα C +βα)(:a =+-sin sin cos cos )cos(βαβαβ C -βα)(:a =-+sin sin cos cos )cos(βαβαβ T +βα)(: =++-)tan(tan tan tan tan 1βαβαβαT -βα)(: =--+)tan(tan tan tan tan 1βαβαβα正切和公式:-⋅+=+βαβαβα)tan tan 1()tan(tan tan3、辅助角公式:222222cos sin sin cos b a x b x a a b a x b b a x +=++++⎛⎝⎫⎭⎪⎪ x b a x x b a +⋅+=⋅+⋅+=ϕϕϕ2222)sin cos cos (sin )sin((其中ϕ称为辅助角,ϕ的终边过点b a ),(,tan ϕ=b a)4、二倍角的正弦、余弦和正切公式: S 2α: =cos sin 22sin αααC 2α: -=sin cos 2cos 22ααααα-=-=221cos 2sin 21 T 2α: =-2tan tan 2tan 12ααα*二倍角公式的常用变形:①、=-αα|sin |22cos 1,=+αα|cos |22cos 1;②、=-αα1212|sin |2cos , =+αα1212|cos |2cos③-=+-=ααααα442221cos sin 21cos sin 2sin 2;=-442cos sin cos ααα;*降次公式:=cos sin 122sin ααα ααα=-+-=2sin 2cos 12122cos 12 ααα=++=2cos 2cos 12122cos 125、*半角的正弦、余弦和正切公式:±=-ααsin2cos 12 ; ±=+ααcos 2cos 12, ±=-+tan2cos 1cos 1ααα=-=+cos 1sin sin cos 1αααα6、同角三角函数的常见变形:(活用“1”)① -=cos 1sin 22αα; -±=cos 1sin 2αα;-=sin 1cos 22αα; -±=sin 1cos 2αα; ②=++=22cot tan sin cos cos sin 22sin θθθθθθθ,αααααααθθ2cot 22sin 2cos 2cos sin sin cos tan cot 22==-=-③ααααα2sin 1cos sin 21)cos (sin 2±=±=±; |cos sin |2sin 1ααα±=± 7、补充公式:*①万能公式2tan12tan2sin 2ααα+=; 2t a n12t a n1c o s 22ααα+-=; 2t a n12t a n2t a n 2ααα-=*②积化和差公式)]sin()[sin(21cos sin βαβαβα-++=)]sin()[sin(21sin cos βαβαβα--+=)]cos()[cos(21cos cos βαβαβα-++=)]cos()[cos(21sin sin βαβαβα--+-=*③和差化积公式2cos 2sin 2sin sin βαβαβα-+=+; 2sin2cos 2sin sin βαβαβα-+=- 2co s 2co s 2co s co s βαβαβα-+=+;2sin2sin 2cos cos βαβαβα-+-=- 注:带*号的公式表示了解,没带*公式为必记公式。
高考数学平面向量考点及知识点总结解析(理科)
平行且|a|=1,则 a=a0.假命题的个数是
()
A.0
B.1
C.2
D.3
[解析] 向量是既有大小又有方向的量,a 与|a|a0 的模相同,
但方向不一定相同,故①是假命题;若 a 与 a0 平行,则 a 与 a0
的方向有两种情况:一是同向,二是反向,反向时 a=-|a|a0,
故②③也是假命题.综上所述,假命题的个数是 3.
3.如图,设O是正六边形ABCDEF的中心,则图中与 OC 相等 的向量有________.
答案: AB, ED,FO
4.如图,△ABC和△A′B′C′是在各边的
1 3
处相交的两个全等
的等边三角形,设△ABC的边长为a,图中列出了长度均为
a 3
的若干个向量,则
(1)与向量GH 相等的向量有________; (2)与向量GH 共线,且模相等的向量有________; (3)与向量 EA共线,且模相等的向量有________. 解析:向量相等⇔向量方向相同且模相等. 向量共线⇔表示有向线段所在的直线平行或重合. 答案:(1) LB, HC (2) EC, LE , LB,GB, HC (3) EF ,FB, HA, HK , KB
HF
=
1 4
AH ,∴ AH =45 AF , AF = AD+ DF =b+12a,∴ AH =45
b+12a=25a+45b,故选B. 答案:B
4. [考点二] 已知a,b是两个不共线的非零向量,且a与b起点
相同.若a,tb,
1 3
(a+b)三向量的终点在同一直线上,则t
=________.
解析:∵a,tb,
与向量 b 相同,且|aa|=|bb|,所以向量 a 与向量 b 方向相同,故
(完整版)高中数学平面向量知识点总结
高中数学必修4之平面向量知识点归纳一.向量的基本概念与基本运算1、向量的概念:①向量:既有大小又有方向的量向量不能比较大小,但向量的模可以比较大小.②零向量:长度为0的向量,记为0,其方向是任意的,0与任意向量平行③单位向量:模为1个单位长度的向量④平行向量(共线向量):方向相同或相反的非零向量⑤相等向量:长度相等且方向相同的向量2、向量加法:设,ABa BCb uu u ru uu r r r ,则a +b r =AB BC u u u r u u u r =ACuu u r (1)a a a 00;(2)向量加法满足交换律与结合律;AB BCCDPQQRAR u u u r u u u r u uu r u u u r u u u r u u u rL,但这时必须“首尾相连”.3、向量的减法:①相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点)4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:(Ⅰ)a a ;(Ⅱ)当0时,λa 的方向与a 的方向相同;当时,λa 的方向与a 的方向相反;当0时,0a,方向是任意的5、两个向量共线定理:向量b 与非零向量a 共线有且只有一个实数,使得b =a6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,使:2211e ea,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底二.平面向量的坐标表示1平面向量的坐标表示:平面内的任一向量a r可表示成axi yj r rr ,记作a r=(x,y)。
2平面向量的坐标运算:(1)若1122,,,ax y bx y rr ,则1212,a bx x y y r r (2)若2211,,,y x B y x A ,则2121,AB x x y y u u u r(3)若a r =(x,y),则a r =(x, y)(4)若1122,,,a x y b x y r r ,则1221//0a b x y x y rr (5)若1122,,,ax y bx y rr ,则1212a bx x y y r r 若ab rr ,则02121y y x x 三.平面向量的数量积1两个向量的数量积:已知两个非零向量a r 与b r,它们的夹角为,则a r ·b r =︱a r︱·︱b r ︱cos 叫做a r与b r 的数量积(或内积)规定00ar r 2向量的投影:︱b r ︱cos =||a b a r r r ∈R ,称为向量b r 在a r方向上的投影投影的绝对值称为射影3数量积的几何意义:a r ·b r 等于a r 的长度与b r 在a r方向上的投影的乘积4向量的模与平方的关系:22||a a a a r r r r 5乘法公式成立:2222a b ab a b a b r r r r r r r r ;2222abaa bb r r r r r r 222aa bbr r r r 6平面向量数量积的运算律:①交换律成立:a bb arr r r ②对实数的结合律成立:a b a b a bRr r r r r r ③分配律成立:abca cb c r r r r r r r ca br r r 特别注意:(1)结合律不成立:ab ca b c r r r r r r ;(2)消去律不成立a ba cr r r r 不能得到bc rr (3)a b r r =0不能得到a r =0r或b r =0r 7两个向量的数量积的坐标运算:已知两个向量1122(,),(,)ax y b x y rr,则a r ·b r=1212x x y y 8向量的夹角:已知两个非零向量a r与b r ,作OA u u u r =a r , OB uuu r =b r ,则∠AOB=(01800)叫做向量a r 与b r 的夹角cos =cos,a b a ba b??r r r r r r =222221212121y x y x y y x x 当且仅当两个非零向量a r 与b r 同方向时,θ=00,当且仅当a r与b r 反方向时θ=1800,同时0r与其它任何非零向量之间不谈夹角这一问题9垂直:如果a r 与b r 的夹角为900则称a r 与b r 垂直,记作a r⊥br 10两个非零向量垂直的充要条件:a ⊥ba ·b =O02121y y x x 平面向量数量积的性质一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则().A .AB 与AC 共线B .DE 与CB 共线C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是().A .向量AB 与BA 是两平行向量B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC =OA +OB ,其中,∈R ,且+=1,则点C 的轨迹方程为().A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=04.已知a 、b 是非零向量且满足(a -2b)⊥a ,(b -2a)⊥b ,则a 与b 的夹角是A .6B .3C .23D .565.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =A .λ(AB +AD ),λ∈(0,1)B .λ(AB +BC ),λ∈(0,22)C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22)6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =().(第1题)A.EF+ED B.EF-DE C.EF+AD D.EF+AF7.若平面向量a与b的夹角为60°,|b|=4,(a+2b)·(a-3b)=-72,则向量a的模为().A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC +BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m 等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?(第10题)18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.一、选择题1.B 解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y),OA =(3,1),OB =(-1,3),OA =(3,),OB =(-,3),又OA +OB =(3-,+3),∴(x ,y)=(3-,+3),∴33+=-=y x ,又+=1,由此得到答案为D .4.B解析:∵(a -2b)⊥a ,(b -2a)⊥b ,∴(a -2b)·a =a 2-2a ·b =0,(b -2a)·b =b 2-2a ·b =0,∴a 2=b 2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cos θ.解得cos θ=21.∴a 与b 的夹角是3π.5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE ,∴DF =DE +EF =EF +AF .7.C解析:由(a +2b)·(a -3b)=-72,得a 2-a ·b -6b 2=-72.而|b|=4,a ·b =|a||b|cos 60°=2|a|,∴|a|2-2|a|-96=-72,解得|a|=6.8.D 解析:由OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA ,即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB ,∴O 是△ABC 的三条高的交点.9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |.∴四边形ABCD 为梯形.10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量.(第1题)二、填空题11.-32.解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又A ,B ,C 三点共线,∴5(4-k)=-7(-k -4),∴k =-32.12.-1.解析:∵M(-1,3),N(1,3),∴MN =(2,0),又a =MN ,∴=4-3-2=3+2x x x 解得4=1=-1=-x x x 或∴x =-1.13.-25.解析:思路1:∵AB =3,BC =4,CA =5,∴△ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0,∴AB ·BC +BC ·CA +CA ·AB=BC ·CA +CA ·AB =CA ·(BC +AB )=-(CA )2=-2CA =-25.思路2:∵AB =3,BC =4,CA =5,∴∠ABC =90°,∴cos ∠CAB =CAAB =53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0,BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16,CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9.∴AB ·BC +BC ·CA +CA ·AB =0―16―9=-25.14.323.解析:a +mb =(3+2m ,4-m),a -b =(1,5).∵(a +mb)⊥(a -b),∴ (a +mb)·(a -b)=(3+2m)×1+(4-m)×5=0m =323.15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF交AC 于点E ,则OF =OA +OC ,又OA +OC =-OB ,(第15题)D(第13题)∴OF =2OE =-OB .O 是△ABC 的重心.16.答案:平行四边形.解析:∵a +c =b +d ,∴a -b =d -c ,∴BA =CD .∴四边形ABCD 为平行四边形.三、解答题17.λ<-1.解析:设点P 的坐标为(x ,y),则AP =(x ,y)-(2,3)=(x -2,y -3).AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7)=(3+5λ,1+7λ).∵AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ).∴713532yx 即7455yx 要使点P 在第三象限内,只需74055解得λ<-1.18.DF =(47,2).解析:∵A(7,8),B(3,5),C (4,3),AB =(-4,-3),AC =(-3,-5).又D 是BC 的中点,∴AD =21(AB +AC )=21(-4-3,-3-5)=21(-7,-8)=(-27,-4).又M ,N 分别是AB ,AC 的中点,∴F 是AD 的中点,∴DF =-FD =-21AD =-21(-27,-4)=(47,2).19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a .∴AF ·ED =(a +21b)·(b -21a)=21b 2-21a 2+43a ·b .又AB ⊥AD ,且AB =AD ,∴a 2=b 2,a ·b =0.∴AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴|2a -b|2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ.又4sin θ-43cos θ=8(sin θcos3π-cos θsin3π)=8sin(θ-3π),最大值为8,∴|2a -b|2的最大值为16,∴|2a -b|的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b|表示2a ,b终点间的距离.|2a|=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ|的最大值为直径的长为4.(第18题)(第19题)。
高考数学复习专题知识梳理总结—平面向量及其应用
高考数学复习专题知识梳理总结—平面向量及其应用1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算|λ a|=|λ||a|,当λ>0时,3.两个向量共线定理向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa . 4.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 5.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标; ①设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →| 6.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,a ①b ①x 1y 2-x 2y 1=0. 7.向量的夹角(1)定义:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则①AOB 就是向量a 与b 的夹角.(2)范围:设θ是向量a 与b 的夹角,则0°≤θ≤180°.(3)共线与垂直:若θ=0°,则a 与b 同向;若θ=180°,则a 与b 反向;若θ=90°,则a与b垂直.8.平面向量的数量积9.向量数量积的运算律(1)a·b=b·a.(2)(λa)·b=λ(a·b)=a·(λb).(3)(a+b)·c=a·c+b·c.10.平面向量数量积的有关结论已知非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.<常用结论>1.五个特殊向量(1)要注意0与0的区别,0是一个实数,0是一个向量,且|0|=0. (2)单位向量有无数个,它们大小相等,但方向不一定相同.(3)任一组平行向量都可以平移到同一直线上,因此平行向量也叫做共线向量.(4)与向量a 平行的单位向量有两个,即向量a |a |和-a|a |. 2.五个常用结论(1)一般地,首尾顺次相接的多个向量的和等于从第一个向量的起点指向最后一个向量的终点的向量,即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n →=A 1A n →.特别地,一个封闭图形首尾连接而成的向量和为零向量.(2)若P 为线段AB 的中点,O 为平面内任意一点,则OP →=12(OA →+OB →). (3)若A ,B ,C 是平面内不共线的三点,则P A →+PB →+PC →=0①P 为①ABC 的重心.(4)在①ABC 中,AD ,BE ,CF 分别为三角形三边上的中线,它们交于点G (如图所示),易知G 为①ABC 的重心,则有如下结论:①GA →+GB →+GC →=0; ①AG→=13(AB →+AC →); ①GD→=12(GB →+GC →),GD →=16(AB →+AC →). (5)若OA→=λOB →+μOC →(λ,μ为常数),则A ,B ,C 三点共线的充要条件是λ+μ=1.3.基底需要的关注三点(1)基底e 1,e 2必须是同一平面内的两个不共线向量,零向量不能作为基底. (2)基底给定,同一向量的分解形式唯一.(3)如果对于一组基底e 1,e 2,有a =λ1e 1+λ2e 2=μ1e 1+μ2e 2,则可以得到⎩⎨⎧λ1=μ1,λ2=μ2.4.共线向量定理应关注的两点(1)若a =(x 1,y 1),b =(x 2,y 2),则a ①b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,应表示为x 1y 2-x 2y 1=0.(2)判断三点是否共线,先求每两点对应的向量,然后按两向量共线进行判定. 5.两个结论(1)已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22. (2)已知①ABC 的顶点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则①ABC 的重心G 的坐标为⎝ ⎛⎭⎪⎫x 1+x 2+x 33,y 1+y 2+y 33. 6.两个向量a ,b 的夹角为锐角⇔a·b >0且a ,b 不共线;两个向量a ,b 的夹角为钝角⇔a ·b <0且a ,b 不共线. 7.平面向量数量积运算的常用公式(1)(a +b )·(a -b )=a 2-b 2.(2)(a+b)2=a2+2a·b+b2.(3)(a-b)2=a2-2a·b+b2.。
高中数学必修4平面向量知识点与典型例题总结(理)
平面向量【基本概念与公式】 【任何时候写向量时都要带箭头】1.向量:既有大小又有方向的量。
记作:AB 或a 。
2.向量的模:向量的大小(或长度),记作:||AB 或||a 。
3.单位向量:长度为1的向量。
若e 是单位向量,则||1e =。
4.零向量:长度为0的向量。
记作:0。
【0方向是任意的,且与任意向量平行】5.平行向量(共线向量):方向相同或相反的向量。
6.相等向量:长度和方向都相同的向量。
7.相反向量:长度相等,方向相反的向量。
AB BA =-。
8.三角形法则:AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数)9.平行四边形法则:以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。
10.共线定理://a b a b λ=⇔。
当0λ>时,a b 与同向;当0λ<时,a b 与反向。
11.基底:任意不共线的两个向量称为一组基底。
12.向量的模:若(,)a x y =,则2||a x y =+22||a a =,2||()a b a b +=+13.数量积与夹角公式:||||cos a b a b θ⋅=⋅; cos ||||a b a b θ⋅=⋅ 14.平行与垂直:1221//a b a b x y x y λ⇔=⇔=;121200a b a b x x y y ⊥⇔⋅=⇔+= 题型1.基本概念判断正误:(1)共线向量就是在同一条直线上的向量。
(2)若两个向量不相等,则它们的终点不可能是同一点。
(3)与已知向量共线的单位向量是唯一的。
(4)四边形ABCD 是平行四边形的条件是AB CD =。
(5)若AB CD =,则A 、B 、C 、D 四点构成平行四边形。
(6)因为向量就是有向线段,所以数轴是向量。
(7)若a 与b 共线, b 与c 共线,则a 与c 共线。
(8)若ma mb =,则a b =。
(9)若ma na =,则m n =。
(完整版)高中数学必修4平面向量知识点总结
高中数学必修 4 知识点总结平面向量知点一 .向量的基本看法与基本运算1向量的看法:①向量:既有大小又有方向的量向量一般用 a, b, c ⋯⋯来表示,或用有向段的起点与uuur uuurxi yj ( x, y)点的大写字母表示,如:AB 几何表示法AB ,a;坐表示法 a向uuur量的大小即向量的模(度),作 | AB | 即向量的大小,作|a|向量不可以比大小,但向量的模能够比大小.②零向量:度 0 的向量,0,其方向是随意的,0与随意愿量平行零向量 a =0|r ra |=0因为0的方向是随意的,且定0 平行于任何向量,故在有关向量平行(共)的中必看清楚能否有“非零向量” 个条件.(注意与 0 的区)③ 位向量:模 1 个位度的向量向量 a0位向量| a0|=1④平行向量(共向量):方向同样或相反的非零向量随意一平行向量都能够移到同一直上方向同样或相反的向量,称平行向量作a∥ b因为向量能够行随意的平移( 即自由向量 ) ,平行向量能够平移到同向来上,故平行向量也称共向量数学中研究的向量是自由向量,只有大小、方向两个因素,起点能够随意取,在必划分清楚共向量中的“共” 与几何中的“共”、的含,要理解好平行向量中的“平行”与几何中的“平行”是不一的.⑤相等向量:度相等且方向同样的向量相等向量平移后能够重合, a b 大x1x2小相等,方向同样(x1, y1 )(x2 , y2 )y1y22向量加法求两个向量和的运算叫做向量的加法uuur r uuur r r uuur uuur uuurAB a, BC b ,a+ b = AB BC =AC(1)0 a a 0 a ;(2)向量加法足交律与合律;向量加法有“三角形法”与“平行四形法”:(1)用平行四形法,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条角,而差向量是另一条角,方向是从减向量指向被减向量(2)三角形法的特色是“首尾相接” ,由第一个向量的起点指向最后一个向量的点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法例;当两向量是首尾连结时,用三角形法例.向量加法的三角形法例可推行至多个向量相加:uuur AB uuurBCuuurCD LuuurPQuuurQRuuurAR ,但这时一定“首尾相连”.3 向量的减法①相反向量:与 a 长度相等、方向相反的向量,叫做记作 a ,零向量的相反向量还是零向量a 的相反向量对于相反向量有:( i)( a)= a;(ii) a +( a )=( a )+ a =0;(iii) 若a、b是互为相反向量,则 a = b , b= a , a +b= 0②向量减法:向量 a 加上b的相反向量叫做 a 与 b的差,记作: a b a ( b) 求两个向量差的运算,叫做向量的减法③作图法: a b 能够表示为从 b 的终点指向 a 的终点的向量( a 、 b 有共同起点)4实数与向量的积:①实数λ与向量 a 的积是一个向量,记作λ a ,它的长度与方向规定以下:(Ⅰ)a a;(Ⅱ)当0 时,λa 的方向与 a 的方向同样;当0 时,λa 的方向与 a 的方向相反;当0 时,a0 ,方向是随意的②数乘向量知足互换律、联合律与分派律5两个向量共线定理:向量 b 与非零向量 a 共线有且只有一个实数,使得b=a6平面向量的基本定理:假如e1 , e2是一个平面内的两个不共线向量,那么对这一平面内的任一直量 a ,有且只有一对实数 1 , 2 使:a1e1 2 e2 ,此中不共线的向量e1 , e2叫做表示这一平面内全部向量的一组基底7特别注意 :(1)向量的加法与减法是互逆运算(2)相等向量与平行向量有差别,向量平行是向量相等的必需条件(3)向量平行与直线平行有差别,直线平行不包含共线(即重合),而向量平行则包含共线(重合)的状况(4)向量的坐标与表示该向量的有向线条的始点、终点的详细地点没关,只与其相对地点有关学习本章主要建立数形转变和联合的看法,以数代形,以形观数,用代数的运算办理几何问题,特别是办理向量的有关地点关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量能否垂直等 因为向量是一新的工具,它常常会与三角函数、数列、不等式、解几等联合起来进行综合考察,是知识的交汇点例 1 给出以下命题:① 若 | r r r ra | = |b | ,则 a = b ;② 若 A ,B ,C ,D 是不共线的四点,则uuur uuur AB DC 是四边形 ABCD 为平行四边形的充要条件;r rr rr r ③ 若 a = b , b = c ,则 a = c ,rrrrr r④ a =b 的充要条件是 | a |=| b | 且 a // b ;r r r r r r⑤ 若 a // b , b // c ,则 a //c,此中正确的序号是解:①不正确.两个向量的长度相等,但它们的方向不必定同样.uuur uuur uuur uuur uuur uuur ② 正确.∵AB DC ,∴ | AB| |DC |且 AB// DC ,又 A ,B ,C ,D 是不共线的四点, ∴ 四边形 ABCD 为平行四边形; 反之,若四边形 ABCDuuuruuur uuur uuur 为平行四边形,则,AB//DC 且|AB| |DC |,uuur uuur所以, AB DC .③ 正确.∵r r r ra =b ,∴ a , b 的长度相等且方向同样;r r r r 又 b = c ,∴ b , c 的长度相等且方向同样,r r r r ∴ a , c 的长度相等且方向同样,故 a = c .r rr r r r r r ④ 不正确.当 a // b 且方向相反时,即便 | a |=| b | ,也不可以获得 a =b ,故 | a |=| b | r r r r 且 a // b 不是 a =b 的充要条件,而是必需不充足条件.r r⑤ 不正确.考虑 b = 0 这类特别状况.综上所述,正确命题的序号是②③.评论:本例主要复习向量的基本看法.向量的基本看法许多,因此简单忘记.为此,复习一方面要建立优秀的知识构造, 另一方面要擅长与物理中、 生活中的模型进行类比和联想.例 2 设 A 、B 、 C 、 D 、 O 是平面上的随意五点,试化简:uuur uuur uuur uuur uuur uuur uuur uuur uuur uuur ① AB BC CD ,② DB AC BD ③OAOCOBCO解:①原式 = uuur uuur uuur uuur uuur uuur( AB BC ) CD AC CD AD ②原式 = uuur uuur uuur r uuur uuur ( DBBD) AC 0 AC AC③原式=uuur (OBuuurOA)uuur ( OC uuurCO)uuurAB uuur(OCuuurCO) uuurAB ruuurAB例 3 设非零向量rrrrrrrrrra 、b 不共线,c =k a + b ,d = a +k b(k R),若 c ∥ d ,试求 kr r解:∵ c ∥ d∴由向量共线的充要条件得:r r (λ R) c =λ d r r r rr r r 即 k a +b =λ( a +k b ) ∴ (k λ ) a + (1 λ k) b = 0r r又∵ a 、 b 不共线∴由平面向量的基本定理k 0 k11 k二 .平面向量的坐标表示1 平面向量的坐标表示: r r在直角坐标系中, 分别取与 x 轴、y 轴方向同样的两个单位向量 i , j作为基底 由平面向量的基本定理知, 该平面内的任一直量 r r r rr a 可表示成 a xi yj ,因为 a 与r rr 数对 (x,y)是一一对应的,所以把 (x,y)叫做向量 a 的坐标,记作 a =(x,y),此中 x 叫作 a 在 x 轴上的坐标, y 叫做在 y 轴上的坐标(1) 相等的向量坐标同样,坐标同样的向量是相等的向量(2) 向量的坐标与表示该向量的有向线段的始点、终点的详细地点没关,只与其相对位置有关 2 平面向量的坐标运算:(1) rx 1, y 1 rr rx 1 x 2 , y 1 y 2若 a ,bx 2 , y 2 ,则 a b uuur(2) 若 A x 1, y 1 , B x 2 , y 2 ,则 ABx 2 x 1 , y 2 y 1 (3) r r x, y)若 a =(x,y),则 a =((4) rx 1, y 1 rx 2 , y 2 r rx 1 y 2 x 2 y 1 0若 a,b,则 a // b(5) rx 1, y 1 r x 2 , y 2 r r x 1 x 2 y 1 y 2若 a,b,则 a br r y 1 y 2 0若 a b ,则 x 1 x 23 向量的运算向量的加减法,数与向量的乘积,向量的数目(内积)及其各运算的坐标表示和性质运几何方法坐标方法运算性质算 类型向 1 平行四边形法例 r rx,y 21 y)2a bb a量 2 三角形法例a b (x 1的 (a b) c a (b c)加法uuur uuur uuurAB BC AC向 三角形法例r ra b a ( b )量a b (x 1 x 2,y 1 y 2)的 uuur uuur减ABBA法uuur uuur uuurOB OA AB 向a 是一个向量 ,a( x, y)(a)() a量 知足 :的>0 时, a 与 a 同向 ;()aaa 乘<0 时, a 与 a 异向 ;法=0 时,a = 0( a b ) a ba ∥ bab向 a ? b 是一个数r rx 1x 2 y 1y 2a ?b b ? a量a?b的a0 或 b 0时 ,( a) ba ( b)(a b)数???量 a?b =0(ab) ?ca ?cb ?c积a 0且b 0 时 ,a 2 | a |2 , |a | x 2 y 2a?b |a||b|cos a,b| a ? b | | a || b | r r r r r r r r r r例 1 已知向量 a (1,2), b (x,1), u a 2b , v 2a b ,且 u // v ,务实数 x 的值r r r r r r r r解:因为 a (1,2), b (x,1),u a 2b , v 2a br 2( x,1) (2 x 1,4) r 2(1,2) ( x,1) (2 x,3)所以 u (1,2) , vr r又因为 u // v所以 3(2 x 1) 4(2 x) 0 ,即 10x 5解得 x12AC 和 OB ( O 为坐标原点)交例 2 已知点 A(4,0), B(4,4),C(2,6) ,试用向量方法求直线点 P 的坐标uuur uuur(x 4, y)解:设 P(x, y) ,则 OP ( x, y), AP因为 P 是 AC 与OB 的交点 所以 P 在直线 AC 上,也在直线 OB 上uuur uuur uuur uuur即得 OP // OB, AP // ACuuur uuur由点 A(4,0),B(4,4),C(2,6) 得, AC ( 2,6), OB (4, 4)6( x 4) 2 y 0得方程组4x 4 y 0x 3解之得y 3故直线 AC 与 OB 的交点 P 的坐标为 (3,3) 三.平面向量的数目积1 两个向量的数目积:r rrrr r 已知两个非零向量 a 与 b ,它们的夹角为 ,则 a ·b =︱ a ︱ ·︱ b ︱ cosr r r r叫做 a 与 b 的数目积(或内积) 规定 0 a 0r r rr r2 = a b向量的投影: ︱ b ︱ cos r ∈R ,称为向量 b 在 a 方向上的投影 投影的绝对值称为射| a |影3 数目积的几何意义:r r r r ra ·b 等于 a 的长度与 b 在 a 方向上的投影的乘积4 向量的模与平方的关系: r r r 2 r 2 a aa | a |5 乘法公式建立:r r r r r 2 r 2 r a b a b a bar r 2 r 2r r r 2 r a ba2a b b a2 r 2b ;2 r rr 22a bb6 平面向量数目积的运算律:①互换律建立: rrr r a b b a②对实数的联合律建立: r r r r r r Ra ba b a b③分派律建立:r r r r r r r rr r a bc a cb cca b特别注意 :( 1)联合律不建立: r r rr r r;a b ca b cr r r rr r(2)消去律不建立 a ba c不可以获得 b crr不可以获得r r r r (3) a b =0a = 0 或b =07 两个向量的数目积的坐标运算:rrrr已知两个向量a ( x 1 , y 1),b ( x 2 , y 2 ) ,则 a ·b = x 1x 2 y 1 y 2rr uuur ruuur r8 向 量 的 夹 角 : 已 知 两 个 非 零 向 量 a 与 b , 作 OA = a ,OB = b , 则 ∠ AOB=( 000)叫做向量r r180 a 与b的夹角r rr rx1 x2y1 y2cos= cosa ?b=a, b r r2222? ba x1y1x2y2当且仅当两个非零向量r r r r r a 与b同方向时,θ=00,当且仅当 a 与b反方向时θ=1800,同时0与其余任何非零向量之间不谈夹角这一问题r r900r r r r9 垂直:假如a与b的夹角为则称 a 与b垂直,记作 a ⊥b10 两个非零向量垂直的充要条件:a ⊥b a ·b=O x1 x2y1 y20平面向量数目积的性质例 1判断以下各命题正确与否:r r r0 ;(1)0 a0 ;(2)0 ar r r r r r r(3)若a0, a b a c ,则 b c ;r r r r r r r r⑷若 a b a c ,则 b c当且仅当 a0 时建立;r r r r r r r r r(5)( a b )c a(b c ) 对随意 a,b , c 向量都建立;(6)对随意愿量r r2r2 a,有 a a解:⑴错;⑵对;⑶错;⑷错;⑸ 错;⑹对例 2 已知两单位向量r r120,若r r r r r r r r a 与b的夹角为c2a b, d3b a ,试求c 与d的夹角解:由题意,r r r r0,a b 1 ,且a与 b 的夹角为 120r r r r01,所以, a b a b cos1202r r r r r r r r2r r r 227 ,Q c c c(2 a b) (2 a b)4a4a b b r7 ,cr13同理可得dr r r r r r r r r 2r217,而 c d(2a b ) (3b a)7a b3b2a2 rr设为 c 与d的夹角,则 cos2 171317 91 arccos17917 182182评论:向量的模的求法和向量间的乘法计算可见一斑例 3r4,3 r1,2 rr r r r r的已知 a, b, mab , n2a b ,按以下条件务实数值r r r r r r( 1) m n ;( 2) m // n ; (3) m nr r r4,32 r r r 7,8解: m a b, n 2a br r 47 3 28 052( 1) m n;r r9483 27 01 ;( 2) m// n2r r 423 227 28 25 2488 0(3) mn2 2 115评论:此例展现了向量在座标形式下的基本运算。
高考数学(理)之平面向量 专题04 平面向量在平面几何、三角函数、解析几何中的应用(解析版)
平面向量04 平面向量在平面几何、三角函数、解析几何中的应用一、具本目标: 一)向量的应用1.会用向量方法解决某些简单的平面几何问题.2.会用向量方法解决简单的力学问题与其他一些实际问题. 二)考点解读与备考:1.近几年常以考查向量的共线、数量积、夹角、模为主,基本稳定为选择题或填空题,难度较低;2.常与平面几何、三角函数、解析几何等相结合,以工具的形式进行考查,常用向量的知识入手.力学方面应用的考查较少.3.备考重点:(1) 理解有关概念是基础,掌握线性运算、坐标运算的方法是关键;(2)解答与平面几何、三角函数、解析几何等交汇问题时,应注意运用数形结合的数学思想,将共线、垂直等问题,通过建立平面直角坐标系,利用坐标运算解题.4.难点:向量与函数、三角函数、解析几何的综合问题.以向量形式为条件,综合考查了函数、三角、数列、曲线等问题.要充分应用向量的公式及相关性质,会用向量的几何意义解决问题,有时运用向量的坐标运算更能方便运算. 二、知识概述:常见的向量法解决简单的平面几何问题: 1.垂直问题:(1)对非零向量a r 与b r ,a b ⊥⇔r r.(2)若非零向量1122(,),(,),a x y b x y a b ==⊥⇔r r r r.2.平行问题:(1)向量a r 与非零向量b r共线,当且仅当存在唯一一个实数λ,使得 .(2)设1122(,),(,)a x y b x y ==r r是平面向量,则向量a r 与非零向量b r 共线⇔ .【考点讲解】3.求角问题:(1)设,a b r r是两个非零向量,夹角记为α,则cos α= .(2)若1122(,),(,)a x y b x y ==r r是平面向量,则cos α= .4.距离(长度)问题:(1)设(,)a x y =r,则22a a ==r r ,即a =r .(2)若1122(,),(,)A x y B x y ,且a AB =r u u u r ,则AB AB ==u u u r.【答案】1.1212(1)0,(2)0.a b x x y y ⋅=+=r r2.(1)a b λ=r r,(2)12210x y x y -=3.(1)a b a b ⋅⋅r r r r.4.(1)22x y +【优秀题型展示】 1. 在平面几何中的应用:已知ABC D 中,(2,1),(3,2),(3,1)A B C ---,BC 边上的高为AD ,求点D 和向量AD u u u r的坐标.【解析】设点D 坐标(x ,y ),由AD 是BC 边上的高可得⊥,且B 、D 、C 共线,∴⎪⎩⎪⎨⎧=⋅//0∴⎩⎨⎧=+---+=--⋅+-0)1)(3()2)(3(0)3,6()1,2(y x y x y x ∴⎩⎨⎧=+---+=+---0)1)(3()2)(3(0)1(3)2(6y x y x y x ∴⎩⎨⎧=+-=-+012032y x y x解得⎩⎨⎧==11y x ∴点D 坐标为(1,1),AD =(-1,2). 【答案】AD =(-1,2)【变式】已知四边形ABCD 的三个顶点(02)A ,,(12)B --,,(31)C ,,且2BC AD =u u u r u u u r,则顶点D 的坐标为 ( ) A .722⎛⎫ ⎪⎝⎭,B .122⎛⎫- ⎪⎝⎭,C .(32),D .(13),【解析】设22(,),(3,1)(1,2)(4,3),(,2),,37222x x D x y BC AD x y y y 祆==镲镲镲=---==-\\眄镲-==镲镲铑u u u r u u u rQ , 【答案】A【变式】已知正方形OABC 的边长为1,点D E 、分别为AB BC 、的中点,求cos DOE ∠的值.【解析】以OA OC 、为坐标轴建立直角坐标系,如图所示.由已知条件,可得114.225⋅==∴∠=⋅u u u r u u u ru u u r u u u r u u u r u u u r (1,),(,1),cos =OD OE OD OE DOE OD OE2.在三角函数中的应用:已知向量3(sin ,)4a x =r ,(cos ,1)b x =-r .设函数()2()f x a b b =+⋅r r r ,已知在ABC ∆中,内角A B C 、、的对边分别为a bc 、、,若a =2b =,sin B =()4cos(2)6f x A π++([0,]3x π∈)的取值范围.【解析】 由正弦定理得或 . 因为,所以4A π=.因为+.所以, ,, 所以. 【答案】()⎥⎦⎤⎢⎣⎡--∈⎪⎭⎫ ⎝⎛++212,12362cos 4πA x f sin ,sin sin 24a b A A A B π===可得所以43π=A a b >()2())4f x a b b x π=+⋅=+r r r 32()⎪⎭⎫⎝⎛++62cos 4πA x f =)4x π+12-0,3x π⎡⎤∈⎢⎥⎣⎦Q 112,4412x πππ⎡⎤∴+∈⎢⎥⎣⎦()21262cos 4123-≤⎪⎭⎫ ⎝⎛++≤-πA x f3.在解析几何中的应用:(1)已知直线x +y =a 与圆x 2+y 2=4交于A 、B 两点,且|OA →+OB →|=|OA →-OB →|,其中O 为坐标原点,则实数a 的值为________.【解析】如图所示,以OA 、OB 为边作平行四边形OACB , 则由|OA →+OB →|=|OA →-OB →|得, 平行四边形OACB 是矩形,OA →⊥OB →.由图象得,直线y =-x +a 在y 轴上的截距为±2.【答案】±2(2)椭圆的焦点为F F ,点P 为其上的动点,当∠F P F 为钝角时,点P 横坐标的取值范围是 .【解析】法一:F 1(-,0)F 2(,0),设P (3cos ,2sin ).为钝角,.∴=9cos 2-5+4sin 2=5 cos 2-1<0.解得: ∴点P 横坐标的取值范围是(). 14922=+y x ,121255θθ21PF F ∠Θ123cos ,2sin )3cos ,2sin )PF PF θθθθ⋅=-⋅-u u u r u u u u r(θθθ55cos 55<<-θ553,553-ODC BA【答案】() 法二:F 1(-,0)F 2(,0),设P (x,y ).为钝角,∴ ()()125,5,PF PF x y x y •=--⋅-u u u r u u u u r225x y =+-=25109x -<. 解得:353555x -<<.∴点P 横坐标的取值范围是(). 【答案】() 2. 在物理学中的应用:如图所示,用两条成120º的等长的绳子悬挂一个灯具,已知灯具的重量为10N ,则每根绳子的拉力是 .]【解析】 ∵绳子的拉力是一样的(对称) ,∴OA =OB ,∴四边形OADB 为菱形 .∵∠AOB =120º ,∴∠AOD =60º .又OA =OB =AD , ∴三角形OAD 为等边三角形 ,∴OD =OA . 又根据力的平衡得OD =OC =10 , ∴OA =10 ,∴OA =OB =10 . ∴每根绳子的拉力大小是10N. 【答案】10N553,553-5521PF F ∠Θ553,553-553,553-【真题分析】1.【2017年高考全国II 卷理数】已知ABC △是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是( )A .2-B .32-C .43- D .1-【解析】如图,以BC 为x 轴,BC 的垂直平分线DA 为y 轴,D 为坐标原点建立平面直角坐标系,则A ,(1,0)B -,(1,0)C ,设(,)P x y ,所以()PA x y =-u u u r ,(1,)PB x y =---u u u r,(1,)PC x y =--u u u r ,所以(2,2)PB PC x y +=--u u u r u u u r ,22()22)22(PA PB PC x y y x y ⋅+=-=+-u u u r u u u r u u u r233)222-≥-,当(0,2P 时,所求的最小值为32-,故选B . 【答案】B2.【2018年高考上海卷】在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且||2EF =u u u r ,则AE BF ⋅u u u r u u u r的最小值为___________.【解析】根据题意,设E (0,a ),F (0,b );∴2EF a b =-=u u u r;∴a =b +2,或b =a +2;且()()1,2,AE a BF b ==-u u u r u u u r ,;∴2AE BF ab ⋅=-+u u u r u u u r; 当a =b +2时,()22222AE BF b b b b ⋅=-++⋅=+-u u u r u u u r;∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅u u u r u u u r 的最小值为﹣3,同理求出b =a +2时,AE BF ⋅u u u r u u u r的最小值为﹣3.故答案为:﹣3.【答案】-33.【2018年高考江苏卷】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u r u u u r,则点A 的横坐标为___________.【解析】设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=e ,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭u u u r u u u r ,由0AB CD ⋅=u u u r u u u r 得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-,因为0a >,所以 3.a = 【答案】34.【2017年高考全国I 卷理数】已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |=___________. 【解析】方法一:222|2|||44||4421cos60412+=+⋅+=+⨯⨯⨯+=oa b a a b b ,所以|2|+==a b .方法二:利用如下图形,可以判断出2+a b 的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为【答案】5.【2017年高考江苏卷】如图,在同一个平面内,向量OA u u u r ,OB uuu r ,OC uuu r 的模分别为1,1,2,OA u u u r 与OCuuu r的夹角为α,且tan α=7,OB uuu r 与OC uuu r 的夹角为45°.若OC mOA nOB =+u u u r u u u r u u u r(,)m n ∈R ,则m n +=___________.【解析】由tan 7α=可得sin 10α=,cos 10α=,根据向量的分解,易得cos 45cos sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩0210n m +=-=⎩,即510570n m n m +=⎧⎨-=⎩,即得57,44m n ==,所以3m n +=. 【答案】36.【2017年高考浙江卷】已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是________,最大值是___________.【解析】设向量,a b 的夹角为θ,则-==a b+==a b ++-=a b a b令y =[]21016,20y =+,据此可得:()()maxmin 4++-==++-==a b a ba b a b ,即++-a b a b 的最小值是4,最大值是【答案】4,7. 【2016·江苏卷】如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA →·CA →=4, BF →·CF →=-1,则BE →·CE →的值是________.【解析】 设AB →=a ,AC →=b ,则BA →·CA →=(-a )·(-b )=a ·b =4.又∵D 为BC 中点,E ,F 为AD 的两个三等分点,则AD →=12(AB →+AC →)=12a +12b ,AF →=23AD →=13a +13b ,AE →=13AD →=16a +16b ,BF →=BA →+AF →=-a +13a +13b =-23a +13b ,CF →=CA →+AF →=-b +13a +13b =13a -23b ,则BF →·CF →=⎝⎛⎭⎫-23a +13b ·⎝⎛⎭⎫13a -23b =-29a 2-29b 2+59a ·b =-29(a 2+b 2)+59×4=-1. 可得a 2+b 2=292.又BE →=BA →+AE →=-a +16a +16b =-56a +16b ,CE →=CA →+AE →=-b +16a +16b =16a -56b ,则BE →·CE →=⎝⎛⎭⎫-56a +16b ·⎝⎛⎭⎫16a -56b =-536(a 2+b 2)+2636a ·b =-536×292+2636×4=78.【答案】 788.【2017年高考江苏卷】已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.【解析】(1)因为co ()s ,sin x x =a,(3,=b ,a ∥b,所以3sin x x =. 若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是tan 3x =-.又[]0πx ∈,,所以5π6x =.(2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅=-=+a b . 因为[]0πx ∈,,所以ππ7π[,]666x +∈,从而π1cos()62x -≤+≤. 于是,当ππ66x +=,即0x =时,()f x 取到最大值3; 当π6x +=π,即5π6x =时,()f x取到最小值-【答案】(1)5π6x =;(2)0x =时,()f x 取到最大值3;5π6x =时,()f x取到最小值-.1.已知数列{}n a 为等差数列,且满足32015BA a OB a OC =+u u u r u u u r u u u r ,若()AB AC R λλ=∈u u u r u u u r,点O 为直线BC 外一点,则12017a a +=( )A. 0B. 1C. 2D. 4【解析】∵32015BA a OB a OC =+u u u r u u u r u u u r , ∴32015OA OB a OB a OC -=+u u u r u u u r u u u r u u u r, 即()320151OA a OB a OC =++u u u r u u u r u u u r , 又∵()AB AC R λλ=∈u u u r u u u r,∴3201511a a ++=, ∴12017320150a a a a +=+=. 【答案】A2.直角ABC V 中, AD 为斜边BC 边的高,若1AC =u u u r , 3AB =u u u r,则CD AB ⋅=u u u r u u u r ( )【模拟考场】A .910 B . 310 C . 310- D . 910-【解析】依题意BC =22,AC AC CD CB CD CB =⋅==103cos ==BC AB B,所以有9cos 310CD AB CD AB B ⋅=⋅⋅==u u u r u u u r u u u r u u u r . 【答案】A3.已知正三角形ABC 的边长为,平面ABC 内的动点P ,M 满足1AP =uu u r ,PM MC =uuu r uuu r ,则2BMuuu r 的最大值是( ) A.B. C. D.【解析】本题考点是向量与平面图形的综合应用.由题意可设D 为三角形的内心,以D 为原点,直线DA 为x 轴建立平面直角坐标系,由已知易得1220,DA ADC ADB D D BDC B C ∠=∠====∠=︒u u u r u u u r u u u r. 则()((2,0,1,,1,.A B C --设(),,P x y 由已知1AP =u u u r ,得()2221x y -+=,又11,,,,,22x x PM MC M BM ⎛⎛-+=∴∴= ⎝⎭⎝⎭u u u u r u u u u r u u u u r()(22214x y BM -++∴=u u u u r ,它表示圆()2221x y -+=上点().x y 与点(1,--距离平方的14,()22max149144BM⎫∴==⎪⎭u u u u r ,故选B.【答案】B4.已知曲线C :x =直线l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=u u u r u u u r r,则m 的取值范围为 .【解析】本题考点是向量线性运算与解析几何中点与直线的位置关系的应用.由0AP AQ +=u u u r u u u r r知A 是PQ的中点,设(,)P x y ,则(2,)Q m x y --,由题意20x -≤≤,26m x -=,解得23m ≤≤.3244344943637+433237+【答案】[2,3]5.在平面直角坐标系中,O 为原点,()),0,3(),3,0(,0,1C B A -动点D 满足CD u u u r=1,则OA OB OD ++u u u r u u u r u u u r 的最大值是_________.【解析】本题的考点是参数方程中的坐标表示, 圆的定义与 三角函数的值域.由题意可知C 坐标为()3,0且1CD =,所以动点D 的轨迹为以C 为圆心的单位圆,则D 满足参数方程3cos sin D D x y θθ=+⎧⎨=⎩(θ为参数且[)0,2θπ∈),所以设D 的坐标为()[)()3cos ,sin 0,2θθθπ+∈, 则OA OB OD ++=u u u r u u u r u uu r=因为2cos θθ+=所以OA OB OD ++的最大值为1==+故填1【答案】1+6.在△ABC 中,∠ABC =120°,BA =2,BC =3,D ,E 是线段AC 的三等分点,则BD →·BE →的值为________. 【解析】 由题意得BD →·BE →=(BA →+AD →)·(BC →+CE →)=⎝⎛⎭⎫BA →+13AC →·⎝⎛⎭⎫BC →+13CA → =⎣⎡⎦⎤BA →+13(BC →-BA →)·⎣⎡⎦⎤BC →+13(BA →-BC →)=⎝⎛⎭⎫13BC →+23BA →·⎝⎛⎭⎫23BC →+13BA → =29BC →2+59BC →·BA →+29BA →2=29×9+59×2×3×cos 120°+29×4=119. 【答案】1197.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF . 若AE →·AF →=1,则λ的值为________. 【解析】法一、 如图,AE →=AB →+BE →=AB →+13BC →,AF →=AD →+DF →=AD →+1λDC →=BC →+1λAB →,所以AE →·AF →=⎝⎛⎭⎫AB →+13BC →·⎝⎛⎭⎫BC →+1λAB →=⎝⎛⎭⎫1+13λAB →·BC →+1λAB →2+13BC →2=⎝⎛⎭⎫1+13λ×2×2×cos 120°+4λ+43=1,解得λ=2.法二、 建立如图所示平面直角坐标系.由题意知:A (0,1),C (0,-1),B (-3,0),D (3,0).由BC =3BE ,DC =λDF .可求点E ,F 的坐标分别为E ⎝⎛⎭⎫-233,-13,F ⎝⎛⎭⎫3⎝⎛⎭⎫1-1λ,-1λ, ∴AE →·AF →=⎝⎛⎭⎫-233,-43·⎝⎛⎭⎫3⎝⎛⎭⎫1-1λ,-1λ-1=-2⎝⎛⎭⎫1-1λ+43⎝⎛⎭⎫1+1λ=1,解得λ=2. 【答案】28.在△ABC 中,∠A =60°,AB =3,AC =2,若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为________.【解析】AB →·AC →=3×2×cos 60°=3,AD →=13AB →+23AC →,则AD →·AE →=⎝⎛⎭⎫13AB →+23AC →·(λAC →-AB →)=λ-23AB →·AC →-13AB →2+2λ3AC →2=λ-23×3-13×32+2λ3×22=113λ-5=-4,解得λ=311.【答案】3119.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =__________;y =__________.【解析】MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →,∴x =12,y =-16.【答案】 12 -1610.在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°,动点E 和F 分别在线段BC 和DC 上,且BE →=λBC →,DF →=19λDC →,则AE →·AF →的最小值为________.【解析】法一 在梯形ABCD 中,AB =2,BC =1,∠ABC =60°,可得DC =1,AE →=AB →+λBC →,AF →=AD →+19λDC →,∴AE →·AF →=(AB →+λBC →)·(AD →+19λDC →)=AB →·AD →+AB →·19λDC →+λBC →·AD →+λBC →·19λDC →=2×1×cos 60°+2×19λ+λ×1×cos 60°+λ·19λ×cos 120°=29λ+λ2+1718≥229λ·λ2+1718=2918,当且仅当29λ=λ2,即λ=23时,取得最小值为2918.法二 以点A 为坐标原点,AB 所在的直线为x 轴建立平面直角坐标系,则B (2,0),C ⎝⎛⎭⎫32,32,D ⎝⎛⎭⎫12,32.又BE →=λBC →,DF →=19λDC →,则E ⎝⎛⎭⎫2-12λ,32λ,F ⎝⎛⎭⎫12+19λ,32,λ>0,所以AE →·AF →=⎝⎛⎭⎫2-12λ⎝⎛⎭⎫12+19λ+34λ=1718+29λ+12λ≥1718+229λ·12λ=2918,λ>0, 当且仅当29λ=12λ,即λ=23时取等号,故AE →·AF →的最小值为2918.【答案】291811.已知矩形ABCD 的边AB =2,AD =1.点P ,Q 分别在边BC ,CD 上,且∠P AQ =π4,则AP →·AQ →的最小值为________.【解析】法一(坐标法) 以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,则A (0,0),B (2,0),D (0,1).设∠P AB =θ,则AP →=(2,2tan θ),AQ →=⎝⎛⎭⎫tan ⎝⎛⎭⎫π4-θ,1,0≤tan θ≤12. 因为AP →·AQ →=(2,2tan θ)·⎝⎛⎭⎫tan ⎝⎛⎭⎫π4-θ,1=2tan ⎝⎛⎭⎫π4-θ+2tan θ=2(1-tan θ)1+tan θ+2tan θ=41+tan θ+2tan θ-2=41+tan θ+2(tan θ+1)-4≥42-4,当且仅当tan θ=2-1时,“=”成立,所以AP →·AQ →的最小值为42-4.法二(基底法) 设BP =x ,DQ =y ,由已知得,tan ∠P AB =x2,tan ∠QAD =y ,由已知得∠P AB +∠QAD =π4,所以tan ∠P AB +tan ∠QAD 1-tan ∠P AB tan ∠QAD =1,所以x +2y 2=1-xy2,x +2y =2-xy ≥2x ·2y ,解得0<xy ≤6-42,当且仅当x =2y 时,“=”成立.AP →·AQ →=22·(4+x 2)(1+y 2)=22·(xy )2+(x +2y )2-4xy +4=22·(xy )2+(2-xy )2-4xy +4=(xy )2-4xy +4=2-xy ≥42-4. 【答案】 42-412.设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则y x =________.【解析】 ∵OM →·CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx , 由|2k |1+k 2=3,得k =±3,即yx =± 3.【答案】 ±313.在△ABC 中,已知AB =1,AC =2,∠A =60°,若点P 满足AP →=AB →+λAC →,且BP →·CP →=1,则实数λ的值为________.【解析】 由AB =1,AC =2,∠A =60°,得BC 2=AB 2+AC 2-2AB ·AC ·cos A =3,即BC = 3.又AC 2=AB 2+BC 2,所以∠B =90°.以点A 为坐标原点,AB →,BC →的方向分别为x 轴,y 轴的正方向建立平面直角坐标系,则B (1,0),C (1,3).由AP →=AB →+λAC →,得P (1+λ,3λ),则BP →·CP →=(λ,3λ)·(λ,3λ-3)=λ2+3λ(λ-1)=1,即4λ2-3λ-1=0,解得λ=-14或λ=1.【答案】 -14或114.证明:同一平面内,互成120°的三个大小相等的共点力的合力为零.【证明】如图,用r a ,r b ,r c 表示这3个共点力,且r a ,r b ,rc 互成120°,模相等,按照向量的加法运算法则,有:r a +r b +r c = r a +(r b +r c )=r a +u u u rOD .又由三角形的知识知:三角形OBD 为等边三角形, 故r a 与u u u r OD 共线且模相等,所以:u u u r OD = -r a ,即有:r a +r b +r c =0r .15.在直角坐标系xOy 中,已知点(1,1),(2,3),(3,2)A B C ,点(,)P x y 在ABC ∆三边围成的区域(含边界)上,且(,)OP mAB nAC m n R =+∈u u u r u u u r u u u r.(1)若23m n ==,求||OP u u u r ;(2)用,x y 表示m n -,并求m n -的最大值.【解析】(1)(1,1),(2,3),(3,2)A B C Q (1,2)AB ∴=u u u r ,(2,1)AC =u u u r.Q OP mAB nAC =+u u u r u u u r u u u r ,又23m n ==.22(2,2)33OP AB AC ∴=+=u u u r u u u r u u u r,|OP ∴u u u r(2)OP mAB nAC =+u u u r u u u r u u u rQ (,)(2,2)x y m n m n ∴=++即22x m ny m n=+⎧⎨=+⎩,两式相减得:m n y x -=-.令y x t -=,由图可知,当直线y x t =+过点(2,3)B 时,t 取得最大值1,故m n -的最大值为1.【答案】(1)(2)m n y x -=-,1.16.如图,在直角梯形ABCD 中,AB ∥CD ,∠DAB =90°,AD =AB =4,CD =1,动点P 在边BC 上,且满足AP →=mAB →+nAD →(m ,n 均为正实数),求1m +1n的最小值.【解析】 如图,建立平面直角坐标系,得A (0,0),B (4,0),D (0,4),C (1,4),则AB →=(4,0),AD →=(0,4).设AP →=(x ,y ),则BC 所在直线为4x +3y =16. 由AP →=mAB →+nAD →,即(x ,y )=m (4,0)+n (0,4),得x =4m ,y =4n (m ,n >0), 所以16m +12n =16,即m +34n =1,那么1m +1n =⎝⎛⎭⎫1m +1n ⎝⎛⎭⎫m +34n =74+3n 4m +m n ≥74+23n 4m ·m n =74+3=7+434(当且仅当3n 2=4m 2时取等号). 17.已知向量m =(cos α,-1),n =(2,sin α),其中α∈⎝⎛⎭⎫0,π2,且m ⊥n . (1)求cos 2α的值; (2)若sin(α-β)=1010,且β∈⎝⎛⎭⎫0,π2,求角β的值. 【解析】 (1)由m ⊥n ,得2cos α-sin α=0,sin α=2cos α,代入cos 2α+sin 2α=1,得5cos 2α=1, 又α∈⎝⎛⎭⎫0,π2,则cos α=55,cos 2α=2cos 2α-1=-35. (2)由α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,得α-β∈⎝⎛⎭⎫-π2,π2.因为sin(α-β)=1010,所以cos(α-β)=31010,而sin α=1-cos 2α=255, 则sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=255×31010-55×1010=22.因为β∈⎝⎛⎭⎫0,π2,所以β=π4.。
高三数学高考真题理科专题四向量、复数
专题四 向量、复数1.(2013·高考新课标全国卷Ⅰ)1+2i(1-i )2=( )A .-1-12iB .-1+12iC .1+12iD .1-12i解析:选B.1+2i (1-i )2=1+2i 1-2i +i 2=1+2i -2i =(1+2i )i 2=-1+12i. 2.(2013·高考新课标全国卷Ⅰ)若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( )A .-4B .-45C .4 D.45解析:选D.∵(3-4i)z =|4+3i|,∴z =|4+3i|3-4i =42+323-4i=5(3+4i )25=35+45i ,∴z 的虚部为45.3.(2013·高考新课标全国卷Ⅱ)|21+i|=( )A .2 2B .2 C. 2 D .1解析:选C.由21+i =2(1-i )(1+i )(1-i )=2-2i 1-i 2=1-i ,∴|21+i |=|1-i|= 2.故选C. 4.(2013·高考大纲全国卷)已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( )A .-4B .-3C .-2D .-1解析:选B.因为m +n =(2λ+3,3),m -n =(-1,-1),由(m +n )⊥(m -n ),可得(m +n )·(m -n )=(2λ+3,3)·(-1,-1)=-2λ-6=0,解得λ=-3.5.(2013·高考新课标全国卷Ⅱ)设复数z 满足(1-i)z =2i ,则z =( ) A .-1+i B .-1-i C .1+i D .1-i解析:选A.设z =a +b i ,则(1-i)(a +b i)=2i ,即(a +b )+(b -a )i =2i. 根据复数相等的充要条件得 ⎩⎪⎨⎪⎧ a +b =0,b -a =2,解得⎩⎪⎨⎪⎧a =-1,b =1, ∴z =-1+i.故选A.6.(2013·高考山东卷)复数z =(2-i )2i(i 为虚数单位),则|z |=( )A .25 B.41 C .5 D. 5解析:选C.z =(2-i )2i =4-4i +i 2i =3-4ii=-4-3i ,∴|z |=(-4)2+(-3)2=25=5.7.(2013·高考山东卷)复数z =(2-i )2i(i 为虚数单位),则|z |=( )A .25 B.41 C .5 D. 5解析:选C.z =(2-i )2i =4-4i +i 2i =3-4ii=-4-3i ,∴|z |=(-4)2+(-3)2=25=5.8.(2013·高考浙江卷)已知i 是虚数单位,则(2+i)(3+i)=( ) A .5-5i B .7-5i C .5+5i D .7+5i解析:选C.(2+i)(3+i)=6+5i +i 2=5+5i. 9.(2013·高考大纲全国卷)(1+3i)3=( ) A .-8 B .8 C .-8i D .8i解析:选A.原式=(1+3i)(1+3i)2=(1+3i)(-2+23i)=-2+6i 2=-8.10.(2013·高考山东卷)复数z 满足(z -3)(2-i)=5(i 为虚数单位),则z 的共轭复数z 为( )A .2+iB .2-iC .5+iD .5-i解析:选D.由(z -3)(2-i)=5,得z =52-i +3=5(2+i )(2-i )(2+i )+3=5(2+i )5+3=5+i ,∴z=5-i.故选D.11.(2013·高考北京卷)在复平面内,复数i(2-i)对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解析:选A.∵z =i(2-i)=2i -i 2=1+2i ,∴复数z 在复平面内的对应点为(1,2),在第一象限.12.(2013·高考福建卷)在四边形ABC D 中,AC →=(1,2),BD →=(-4,2),则该四边形的面积为( )A. 5 B .2 5 C .5 D .10解析:选C.∵AC →·BD →=(1,2)·(-4,2)=-4+4=0,∴AC →⊥BD →,∴S 四边形ABC D =12|AC →|·|BD →|=12×5×25=5. 13.(2013·高考安徽卷)在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }所表示的区域的面积是( )A .2 2B .2 3C .4 2D .4 3解析:选D.由|OA →|=|OB →|=OA →·OB →=2,知 OA →,OB →=π3.当λ≥0,μ≥0,λ+μ=1时,在△OAB 中,取OC →=λOA →,过点C 作C D ∥OB 交AB 于点D ,作DE ∥OA 交OB 于点E ,显然OD →=λOA →+CD →.由于CD OB =AC AO ,CD OB =2-2λ2,∴CD →=(1-λ)OB →,∴OD →=λOA →+(1-λ)OB →=λOA →+μOB →=OP →,∴λ+μ=1时,点P 在线段AB 上, ∴λ≥0,μ≥0,λ+μ≤1时,点P 必在△OAB 内(包括边界).考虑|λ|+|μ|≤1的其他情形,点P 构成的集合恰好是以AB 为一边,以OA ,OB 为对角线一半的矩形,其面积为S =4S △OAB =4×12×2×2s in π3=4 3.14.(2013·高考浙江卷) 设△ABC ,P 0是边AB 上一定点,满足P 0B =14AB ,且对于边AB上任一点P ,恒有PB →·PC →≥P 0B →·P 0C →,则( )A .∠ABC =90°B .∠BAC =90° C .AB =ACD .AC =BC 解析:选D.不妨设AB =4,则P 0B =1,P 0A =3. 设点C 在直线AB 上的投影为点C ′.A 项,若∠ABC =90°,如图,则PB →·PC →=|PB →|·|PC →|·co s ∠BPC =|PB →|2, P 0B →·P 0C →=|P 0B →|2.当点P 落在点P 0的右侧时,|PB →|2<|P 0B →|2,即PB →·PC →<P 0B →·P 0C →,不符合;B 项,若∠BAC =90°,如图,则PB →·PC →=|PB →|·|PC →|co s ∠BPC =-|PB →||P A →|, P 0B →·P 0A →=-|P 0B →||P 0A →|=-3.当P 为AB 的中点时,PB →·PC →=-4, PB →·PC →<P 0B →·P 0C →,不符合;C 项,若AB =AC ,假设∠BAC =120°,如图,则AC ′=2,PB →·PC →=|PB →|·|PC →|co s ∠BPC =-|PB →||PC →|,P 0B →·P 0C →=|P 0B →||P 0C →|co s ∠BP 0C =-|P 0B →||P 0C →′|=-5.当P 落在A 点时,-|PB →||PC ′→|=-8,所以PB →·PC →<P 0B →·P 0C →,不符合.故选D.15.(2013·高考福建卷)复数z =-1-2i(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解析:选C.z =-1-2i 在复平面内对应的点为(-1,-2),它位于第三象限.16.(2013·高考辽宁卷)已知点A (1,3),B (4,-1),则与向量AB →同方向的单位向量为( )A .(35,-45)B .(45,-35)C .(-35,45)D .(-45,35)解析:选A.AB →=(3,-4),则与其同方向的单位向量e =AB →|AB →|=15(3,-4)=(35,-45).17.(2013·高考辽宁卷)复数z =1i -1的模为( )A.12B.22C. 2 D .2解析:选B.因为z =1i -1=-12-12i ,所以|z |=|-12-12i|=22.18.(2013·高考陕西卷)已知向量a =(1,m ),b =(m,2),若a ∥b, 则实数m 等于( ) A .- 2 B. 2 C .-2或 2 D .0解析:选C.由a ∥b ⇒m 2=1×2⇒m =2或m =- 2. 19.(2013·高考陕西卷)设z 是复数, 则下列命题中的假命题是( )A .若z 2≥0,则z 是实数 B .若z 2<0,则z 是虚数 C .若z 是虚数,则z 2≥0 D .若z 是纯虚数,则z 2<0 解析:选C.设z =a +b i(a ,b ∈R ),选项A ,z 2=(a +b i)2=a 2-b 2+2ab i ≥0,则⎩⎪⎨⎪⎧ab =0,a 2≥b 2.故b =0或a ,b 都为0,即z 为实数,正确.选项B ,z 2=(a +b i)2=a 2-b 2+2ab i<0,则⎩⎪⎨⎪⎧ab =0,a 2<b 2,则⎩⎪⎨⎪⎧a =0,b ≠0,故z 一定为虚数,正确. 选项C ,若z 为虚数,则b ≠0,z 2=(a +b i)2=a 2-b 2+2ab i , 由于a 的值不确定,故z 2无法与0比较大小,错误.选项D ,若z 为纯虚数,则⎩⎪⎨⎪⎧a =0,b ≠0,则z 2=-b 2<0,正确.20.(2013·高考湖南卷)已知a ,b 是单位向量,a ·b =0.若向量c 满足|c -a -b |=1,则|c |的最大值为( )A.2-1B. 2C.2+1D.2+2 解析:选C.∵a ,b 是单位向量,∴|a |=|b |=1. 又a ·b =0,∴a ⊥b ,∴|a +b |= 2. ∴|c -a -b |2=c 2-2c ·(a +b )+2a ·b +a 2+b 2=1. ∴c 2-2c ·(a +b )+1=0, ∴2c ·(a +b )=c 2+1.∴c 2+1=2|c ||a +b |co s θ(θ是c 与a +b 的夹角). ∴c 2+1=22|c |co s θ≤22|c |.∴c 2-22|c |+1≤0. ∴2-1≤|c |≤2+1.∴|c |的最大值为2+1. 21.(2013·高考湖南卷)复数z =i·(1+i)(i 为虚数单位)在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 解析:选B.∵z =i·(1+i)=-1+i ,∴复数z 对应复平面上的点是(-1,1),该点位于第二象限.22.(2013·高考江西卷)复数z =i(-2-i)(i 为虚数单位)在复平面内所对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解析:选D.因为z =i(-2-i)=1-2i ,所以复数z 对应的点在第四象限.23.(2013·高考湖北卷)已知点A (-1,1),B (1,2),C (-2,-1),D(3,4),则向量AB →在CD →方向上的投影为( )A.322B.3152C .-322D .-3152解析:选A.由已知得AB →=(2,1),CD →=(5,5),因此AB →在CD →方向上的投影为AB →·CD →|CD →|=1552=322. 24.(2013·高考四川卷)如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( )A .AB .BC .CD .D解析:选B.表示复数z 的点A 在第二象限,由共轭复数的定义,设z =a +b i(a ,b ∈R ),且a <0,b >0,则z 的共轭复数为a -b i ,其中a <0,-b <0,故应为B 点.25.(2013·高考浙江卷)已知i 是虚数单位,则(-1+i)(2-i)=( ) A .-3+i B .-1+3i C .-3+3i D .-1+i 解析:选B.(-1+i)(2-i)=-2+3i -i 2=-1+3i. 26.(2013·高考北京卷)在复平面内,复数(2-i)2对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 解析:选D.∵(2-i)2=4-4i +i 2=3-4i ,∴复数(2-i)2在复平面内对应点的坐标为(3,-4), 对应的点位于复平面内第四象限. 27.(2013·高考广东卷)设a 是已知的平面向量且a ≠0.关于向量a 的分解,有如下四个命题:①给定向量b ,总存在向量c ,使a =b +c ;②给定向量b 和c ,总存在实数λ和μ,使a =λb +μc ;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使a =λb +μc ; ④给定正数λ和μ,总存在单位向量b 和单位向量c ,使a =λb +μc .上述命题中的向量b ,c 和a 在同一平面内且两两不共线,则真命题的个数是( ) A .1 B .2 C .3 D .4解析:选C.对于①,若向量a ,b 确定,因为a -b 是确定的,故总存在向量c ,满足c =a -b ,即a =b +c ,故正确;对于②,因为c 和b 不共线,由平面向量基本定理知,总存在唯一的一对实数λ,μ,满足a =λb +μ c ,故正确;对于③,如果a =λb +μ c ,则以|a |,|λb |,|μ c |为三边长可以构成一个三角形,如果b 和正数μ确定,则一定存在单位向量c 和实数λ满足a =λb +μ c ,故正确;对于④,如果给定的正数λ和μ不能满足“以|a |,|λb |,|μ c |为三边长可以构成一个三角形”,这时单位向量b 和c 就不存在,故错误.故选C.28.(2013·高考广东卷)若i(x +y i)=3+4i ,x ,y ∈R ,则复数x +y i 的模是( ) A .2 B .3 C .4 D .5解析:选D.法一:因为i(x +y i)=3+4i ,所以x +y i =3+4i i =(3+4i )(-i )i (-i )=4-3i ,故|x+y i|=|4-3i|=42+(-3)2=5,故选D.法二:因为i(x +y i)=3+4i ,所以-y +x i =3+4i ,所以x =4,y =-3,故|x +y i|=|4-3i|=42+(-3)2=5,故选D.法三:因为i(x +y i)=3+4i ,所以(-i)i(x +y i)=(-i)·(3+4i)=4-3i ,即x +y i =4-3i ,故|x +y i|=|4-3i|=42+(-3)2=5,故选D.29.(2013·高考安徽卷)设i 是虚数单位,若复数a -103-i(a ∈R )是纯虚数,则a 的值为( )A .-3B .-1C .1D .3解析:选D.因为a -103-i =a -10(3+i )(3-i )(3+i )=a -10(3+i )10=(a -3)-i ,由纯虚数的定义,知a -3=0,所以a =3.30.(2013·高考福建卷)在四边形ABC D 中,AC →=(1,2),BD →=(-4,2),则该四边形的面积为( )A. 5 B .2 5 C .5 D .10解析:选C.∵AC →·BD →=(1,2)·(-4,2)=-4+4=0,∴AC →⊥BD →,∴S 四边形ABC D =12|AC →|·|BD →|=12×5×25=5. 31.(2013·高考福建卷)已知复数z 的共轭复数z =1+2i(i 为虚数单位),则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选D.∵z =1+2i ,∴z =1-2i ,∴z 在复平面内对应的点位于第四象限. 32.(2013·高考辽宁卷)已知点A (1,3),B (4,-1),则与向量AB →同方向的单位向量为( )A .(35,-45)B .(45,-35)C .(-35,45)D .(-45,35)解析:选A.AB →=(3,-4),则与其同方向的单位向量e =AB →|AB →|=15(3,-4)=(35,-45).33.(2013·高考辽宁卷)复数z =1i -1的模为( )A.12B.22C. 2 D .2解析:选B.因为z =1i -1=-12-12i ,所以|z |=|-12-12i|=22.34.(2013·高考陕西卷)设a ,b 为向量,则“|a·b |=|a||b|”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 解析:选C.若|a ·b |=|a ||b |,若a ,b 中有零向量,显然a ∥b ; 若a ,b 均不为零向量,则 |a ·b |=|a ||b ||co s 〈a ,b 〉|=|a ||b |, ∴|co s 〈a ,b 〉|=1,∴〈a ,b 〉=π或0, ∴a ∥b ,即|a ·b |=|a ||b |⇒a ∥b . 若a ∥b ,则〈a ,b 〉=0或π, ∴|a ·b |=||a ||b |co s 〈a ,b 〉|=|a ||b |, 其中,若a ,b 有零向量也成立, 即a ∥b ⇒|a ·b |=|a ||b |. 综上知,“|a ·b |=|a ||b |”是“a ∥b ”的充分必要条件. 35.(2013·高考陕西卷)设z 1,z 2是复数,则下列命题中的假命题是( )A .若|z 1-z 2|=0,则z -1=z -2B .若z 1=z -2,则z -1=z 2C .若|z 1|=|z 2|,则z 1·z -1=z 2·z -2D .若|z 1|=|z 2|,则z 21=z 22解析:选D.A ,|z 1-z 2|=0⇒z 1-z 2=0⇒z 1=z 2⇒z -1=z -2,真命题;B ,z 1=z -2⇒z -1=z =2=z 2,真命题;C ,|z 1|=|z 2|⇒|z 1|2⇒|z 2|2⇒z 1·z -1=z 2·z -2,真命题;D ,当|z 1|=|z 2|时,可取z 1=1,z 2=i ,显然z 21=1,z 22=-1,即z 21≠z 22,假命题. 36.(2013·高考湖南卷)已知a ,b 是单位向量,a·b =0,若向量c 满足|c -a -b |=1,则|c |的取值范围是( )A .[2-1,2+1]B .[2-1,2+2]C .[1,2+1]D .[1,2+2] 解析:选A.∵a ·b =0,且a ,b 是单位向量, ∴|a |=|b |=1.又∵|c -a -b |2=c 2-2c ·(a +b )+2a ·b +a 2+b 2=1, ∴2c ·(a +b )=c 2+1. ∵|a |=|b |=1且a ·b =0,∴|a +b |=2,∴c 2+1=22|c |co s θ(θ是c 与a +b 的夹角). 又-1≤co s θ≤1, ∴0<c 2+1≤22|c |, ∴c 2-22|c |+1≤0, ∴2-1≤|c |≤2+1. 37.(2013·高考湖南卷)复数z =i·(1+i)(i 为虚数单位)在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 解析:选B.∵z =i·(1+i)=-1+i ,∴复数z 对应复平面上的点是(-1,1),该点位于第二象限.38.(2013·高考江西卷)已知集合M ={1,2,z i},i 为虚数单位,N ={3,4},M ∩N ={4},则复数z =( )A .-2iB .2iC .-4iD .4i解析:选C.因为M ={1,2,z i},N ={3,4},由M ∩N ={4},得4∈M ,所以z i =4,所以z =-4i.39.(2013·高考湖北卷)已知点A (-1,1),B (1,2),C (-2,-1),D(3,4),则向量AB →在CD →方向上的投影为( )A.322B.3152C .-322D .-3152解析:选A.由已知得AB →=(2,1),CD →=(5,5),因此AB →在CD →方向上的投影为AB →·CD →|CD →|=1552=322. 40.(2013·高考湖北卷)在复平面内,复数z =2i1+i(i 为虚数单位)的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选D.z =2i1+i =2i (1-i )(1+i )(1-i )=1+i ,所以z -=1-i ,故复数z 的共轭复数对应的点位于第四象限.41.(2013·高考四川卷)如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( ) A .A B .B C .C D .D解析:选B.设z =a +b i(a ,b ∈R ),且a <0,b >0,则z 的共轭复数为a -b i ,其中a <0,-b <0,故应为B 点.42.(2013·高考重庆卷)在平面上,AB 1→⊥AB 2→,|OB 1→|=|OB 2→|=1,AP →=AB 1→+AB 2→.若|OP →|<12,则|OA →|的取值范围是( )A.⎝⎛⎦⎤0,52B.⎝⎛⎦⎤52,72C.⎝⎛⎦⎤52,2D.⎝⎛⎦⎤72,2 解析:选D.∵AB 1→⊥AB 2→,∴AB 1→·AB 2→=(OB 1→-OA →)·(OB 2→-OA →) =OB 1→·OB 2→-OB 1→·OA →-OA →·OB 2→+OA 2→=0, ∴OB 1→·OB 2→-OB 1→·OA →-OA →·OB 2→=-OA 2→. ∵AP →=AB 1→+AB 2→, ∴OP →-OA →=OB 1→-OA →+OB 2→-OA →, ∴OP →=OB 1→+OB 2→-OA →.∵|OB 1→|=|OB 2→|=1, ∴OP 2→=1+1+OA 2→+2(OB 1→·OB 2→-OB 1→·OA →-OB 2→·OA →)=2+OA 2→+2(-OA 2→)=2-OA 2→, ∵|OP →|<12,∴0≤|OP →|2<14,∴0≤2-OA 2→<14,∴74<OA 2→≤2,即|OA →|∈⎝⎛⎦⎤72,2. 43.(2013·高考新课标全国卷Ⅱ)已知正方形ABC D 的边长为2,E 为C D 的中点,则AE →·BD →=________.解析:如图,以A 为坐标原点,AB 所在的直线为x 轴,A D 所在的直线为y 轴,建立平面直角坐标系,则A (0,0),B (2,0),D(0,2),E(1,2),∴AE →=(1,2),BD →=(-2,2), ∴AE →·BD →=1×(-2)+2×2=2. 答案:244.(2013·高考山东卷)在平面直角坐标系xOy 中,已知OA →=(-1,t ),OB →=(2,2).若∠ABO =90°,则实数t 的值为________.解析:∵∠ABO =90°,∴AB →⊥OB →,∴OB →·AB →=0. 又AB →=OB →-OA →=(2,2)-(-1,t )=(3,2-t ), ∴(2,2)·(3,2-t )=6+2(2-t )=0. ∴t =5. 答案:5 45.(2013·高考新课标全国卷Ⅰ)已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b ,若b ·c =0,则t =________.解析:|a |=|b |=1,〈a ,b 〉=60°. ∵c =t a +(1-t )b ,∴b ·c =t a ·b +(1-t )b 2=t ×1×1×12+(1-t )×1=t 2+1-t =1-t2.∵b ·c =0,∴1-t2=0,∴t =2.答案:246.(2013·高考新课标全国卷Ⅱ)已知正方形ABC D 的边长为2,E 为C D 的中点,则AE →·BD →=________.解析:如图,以A 为坐标原点,AB 所在的直线为x 轴,A D 所在的直线为y 轴,建立平面直角坐标系,则A (0,0),B (2,0),D(0,2),E(1,2),∴AE →=(1,2),BD →=(-2,2), ∴AE →·BD →=1×(-2)+2×2=2. 答案:247.(2013·高考山东卷)已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为 ________.解析:∵AP →⊥BC →,∴AP →·BC →=0. 又AP →=λAB →+AC →,BC →=AC →-AB →,∴(λAB →+AC →)(AC →-AB →)=0,即(λ-1)AC →·AB →-λAB →2+AC →2=0,∴(λ-1)|AC →||AB →|co s 120°-9λ+4=0.∴(λ-1)×3×2×(-12)-9λ+4=0.解得λ=712.答案:71248.(2013·高考江苏卷)设D ,E 分别是△ABC 的边AB ,BC 上的点,A D =12AB ,B E =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.解析:由题意DE →=BE →-BD →=23BC →-12BA →=23(AC →-AB →)+12AB →=-16AB →+23AC →,于是λ1=-16,λ2=23,故λ1+λ2=12. 答案:1249.(2013·高考江苏卷)设D ,E 分别是△ABC 的边AB ,BC 上的点,A D =12AB ,B E =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.解析:由题意DE →=BE →-BD →=23BC →-12BA →=23(AC →-AB →)+12AB →=-16AB →+23AC →,于是λ1=-16,λ2=23,故λ1+λ2=12. 答案:1250.(2013·高考浙江卷)设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则|x ||b |的最大值等于________.解析:根据题意,得 (|x ||b |)2=x 2(x e 1+y e 2)2=x 2(x e 1)2+(y e 2)2+2xy e 1·e 2=x 2x 2+y 2+2xy cosπ6=x 2x 2+y 2+3xy =11+(y x )2+3y x =1(y x +32)2+14.因为(y x +32)2+14≥14,所以0<(|x ||b |)2≤4,所以0<|x ||b |≤2.故|x ||b |的最大值为2.答案:251.(2013·高考北京卷)已知点A (1,-1),B (3,0),C (2,1).若平面区域D 由所有满足AP →=λAB →+μAC →(1≤λ≤2,0≤μ≤1)的点P 组成,则D 的面积为________.解析:设P (x ,y ),则AP →=(x -1,y +1).由题意知AB →=(2,1),AC →=(1,2). 由AP →=λAB →+μAC →知(x -1,y +1)=λ(2,1)+μ(1,2),即⎩⎪⎨⎪⎧2λ+μ=x -1,λ+2μ=y +1. ∴⎩⎨⎧λ=2x -y -33,μ=2y -x +33,∵1≤λ≤2,0≤μ≤1, ∴⎩⎪⎨⎪⎧3≤2x -y -3≤6,0≤2y -x +3≤3.作出不等式组表示的平面区域(如图阴影部分),由图可知平面区域D 为平行四边形,可求出M (4,2),N (6,3),故|MN |= 5.又x -2y =0与x -2y -3=0之间的距离为d =35,故平面区域D 的面积为S =5×35=3.答案:3 52.(2013·高考天津卷)i 是虚数单位,复数(3+i)(1-2i)=________. 解析:(3+i)(1-2i)=3-5i -2i 2=5-5i. 答案:5-5i 53.(2013·高考天津卷)在平行四边形ABC D 中,A D =1,∠BA D =60°,E 为C D 的中点.若AC →·BE →=1,则AB 的长为________.解析:由已知得AC →=AD →+AB →,BE →=AD →-12AB →,∴AC →·BE →=AD →2-12AB →·AD →+AB →·AD →-12AB →2=1+12AB →·AD →-12|AB →|2=1+12|AB →|·|AD →|co s 60°-12|AB →|2=1,∴|AB →|=12.答案:1254.(2013·高考天津卷)i 是虚数单位,复数(3+i)(1-2i)=________. 解析:(3+i)(1-2i)=3-5i -2i 2=5-5i. 答案:5-5i 55.(2013·高考浙江卷)设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则|x ||b |的最大值等于________.解析:根据题意,得 (|x ||b |)2=x 2(x e 1+y e 2)2=x 2(x e 1)2+(y e 2)2+2xy e 1·e 2=x 2x 2+y 2+2xy cosπ6=x 2x 2+y 2+3xy =11+(y x )2+3y x =1(y x +32)2+14.因为(y x +32)2+14≥14,所以0<(|x ||b |)2≤4,所以0<|x ||b |≤2.故|x ||b |的最大值为2.答案:2 56.(2013·高考北京卷)向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=________.解析:以向量a 的终点为原点,过该点的水平和竖直的网格线所在直线为x 轴、y 轴建立平面直角坐标系,设一个小正方形网格的边长为1,则a =(-1,1),b =(6,2),c =(-1,-3).由c =λ a +μ b ,即(-1,-3)=λ(-1,1)+μ(6,2),得-λ+6μ=-1,λ+2μ=-3,故λ=-2,μ=-12,则λμ=4.答案:4 57.(2013·高考天津卷)在平行四边形ABC D 中,A D =1,∠BA D =60°,E 为C D 的中点.若AC →·BE →=1,则AB 的长为________.解析:设AB 的长为a (a >0),又因为AC →=AB →+AD →,BE →=BC →+CE →=AD →-12AB →,于是AC →·BE→=(AB →+AD →)·⎝⎛⎭⎫AD →-12AB →=12AB →·AD →-12AB →2+AD →2=-12a 2+14a +1,由已知可得-12a 2+14a +1=1.又a >0,∴a =12,即AB 的长为12.答案:1258.(2013·高考湖北卷)i 为虚数单位,设复数z 1,z 2在复平面内对应的点关于原点对称,若z 1=2-3i ,则z 2=________.解析:(2,-3)关于原点的对称点是(-2,3), ∴z 2=-2+3i. 答案:-2+3i 59.(2013·高考四川卷)如图,在平行四边形ABC D 中,对角线AC 与B D 交于点O ,AB →+AD →=λAO →,则λ=________.解析:由向量加法的平行四边形法则,得AB →+AD →=AC →.又O 是AC 的中点,∴AC =2AO ,∴AC →=2AO →, ∴AB →+AD →=2AO →. 又AB →+AD →=λAO →,∴λ=2. 答案:2 60.(2013·高考天津卷)已知a ,b ∈R ,i 是虚数单位.若(a +i)·(1+i)=b i ,则a +b i =________.解析:由(a +i)(1+i)=b i 可得(a -1)+(a +1)i =b i ,因此a -1=0,a +1=b ,解得a =1,b =2,故a +b i =1+2i.答案:1+2i 61.(2013·高考重庆卷)设复数z =1+2i(i 是虚数单位),则|z |=________. 解析:∵z =1+2i ,∴|z |= 12+22= 5. 答案: 5 62.(2013·高考安徽卷)若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a 与b 夹角的余弦值为________.解析:由|a |=|a +2b |,两边平方,得|a |2=(a +2b )2=|a |2+4|b |2+4a ·b ,所以a ·b =-|b |2.又|a |=3|b |,所以co s 〈a ,b 〉=a ·b |a ||b |=-|b |23|b |2=-13. 答案:-1363.(2013·高考江西卷)设e 1,e 2为单位向量,且e 1,e 2的夹角为π3,若a =e 1+3e 2,b =2e 1,则向量a 在b 方向上的射影为________.解析:由于a =e 1+3e 2,b =2e 1,所以|b |=2,a·b =(e 1+3e 2)·2e 1=2e 21+6e 1·e 2=2+6×12=5,所以a 在b 方向上的射影为|a |·co s 〈a ,b 〉=a·b |b|=52.答案:5264.(2013·高考四川卷)在平行四边形ABC D 中,对角线AC 与B D 交于点O ,AB →+AD →=λAO →,则λ=________.解析:由向量加法的平行四边形法则,得AB →+AD →=AC →.又O 是AC 的中点,∴AC =2AO ,∴AC →=2AO →, ∴AB →+AD →=2AO →. 又AB →+AD →=λAO →,∴λ=2. 答案:265.(2013·高考重庆卷)已知复数z =5i1+2i(i 是虚数单位),则|z |=________.解析:|z |=⎪⎪⎪⎪5i 1+2i =⎪⎪⎪⎪5i (1-2i )5=|i +2|= 5. 答案: 566.(2013·高考广东卷)给定区域D :⎩⎪⎨⎪⎧x +4y ≥4,x +y ≤4,x ≥0,令点集T ={(x 0,y 0)∈D|x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D 上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.解析:画出平面区域D(图中阴影部分),z =x +y 取得最小值时的最优整数解为(0,1),取得最大值时的最优整数解为(0,4),(1,3),(2,2),(3,1),(4,0).点(0,1)与(0,4),(1,3),(2,2),(3,1),(4,0)中的任何一个点都可以构成一条直线,共有5条,又(0,4),(1,3),(2,2),(3,1),(4,0),都在直线x +y =4上,故T 中的点共确定6条不同的直线.答案:6 67.(2013·高考江苏卷)已知a =(co s α,s in α),b =(co s β,s in β),0<β<α<π. (1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值. 解:(1)证明:由题意得|a -b |2=2, 即(a -b )2=a 2-2a ·b +b 2=2. 又因为a 2=b 2=|a |2=|b |2=1, 所以2-2a ·b =2,即a ·b =0,故a ⊥b .(2)因为a +b =(co s α+co s β,s in α+s in β)=(0,1),所以⎩⎪⎨⎪⎧cos α+cos β=0,sin α+sin β=1,由此得,co s α=co s (π-β),由0<β<π,得0<π-β<π.又0<α<π,故α=π-β.代入s in α+s in β=1,得s in α=s in β=12,而α>β,所以α=5π6,β=π6. 68.(2013·高考江苏卷)已知a =(co s α,s in α),b =(co s β,s in β),0<β<α<π. (1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值. 解:(1)证明:由题意得|a -b |2=2, 即(a -b )2=a 2-2a ·b +b 2=2. 又因为a 2=b 2=|a |2=|b |2=1, 所以2-2a ·b =2,即a ·b =0,故a ⊥b .(2)因为a +b =(co s α+co s β,s in α+s in β)=(0,1),所以⎩⎪⎨⎪⎧cos α+cos β=0,sin α+sin β=1,由此得,co s α=co s (π-β),由0<β<π,得0<π-β<π.又0<α<π,故α=π-β.代入s in α+s in β=1,得s in α=s in β=12,而α>β,所以α=5π6,β=π6.。
高考数学(理科)一轮复习课件:第四章 第2讲 平面向量基本定理及坐标表示
解析:由题意,得B→D=A→D-A→B=B→C-A→B=(A→C-A→B)-A→B
=A→C-2A→B=(1,3)-2(2,4)=(-3,-5).
答案:B
(3)(2015 年江苏)已知向量 a=(2,1),b=(1,-2),若 ma+ nb=(9,-8)(m,n∈R),则 m-n 的值为__________.
B.c=a-2b
C.c=2b-a
D.c=2a-b
4.(2017 年山东)已知向量 a=(2,6),b=(-1,λ),若 a∥b,
则λ=___-__3____.
考点 1 平面向量基本定理的应用
例 1:(2017 年四川成都石室中学统测)在△ABC 中,D 是
BC 的中点,E 是 AB 的中点,CE 交 AD 于点 F,若E→F=λA→B+
第2讲 平面向量基本定理及坐标表示
平面向量的基本定理及坐标表示. (1)了解平面向量的基本定理及其意义. (2)掌握平面向量的正交分解及其坐标表示. (3)会用坐标表示平面向量的加法、减法与数乘运算. (4)理解用坐标表示的平面向量共线的条件.
1.平面向量基本定理
如果e1,e2是同一平面内的两个不共线向量,那么对于这 一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1 +λ2e2,其中不共线的向量e1,e2叫做表示这一平面内所有向 量的一组基底.
易错、易混、易漏 ⊙利用方程的思想求解平面向量问题 例题:如图 4-2-1,在△ABO 中,O→C=14O→A,O→D=12O→B, AD 与 BC 相交于点 M,设O→A=a,O→B=b,试用 a 和 b 表示向 量O→M.
图 4-2-1
正解:设O→M=ma+nb, 则A→M=O→M-O→A=ma+nb-a=(m-1)a+nb, A→D=O→D-O→A=12O→B-O→A=-a+12b. ∵A,M,D 三点共线,∴A→M与A→D共线. ∴存在实数 t,使得A→M=tA→D, 即(m-1)a+nb=t-a+12b.
高中数学人教A版必修4 平面向量专题复习PPT全文课件
途径二:“形”“数”相守 找坐标
高中数学【人教A版必修】4 平面向量专题复习PPT全文课件【完 美课件 】
y A
B (O) C 2
x
图13
高中数学【人教A版必修】4 平面向量专题复习PPT全文课件【完 美课件 】
练习1、【2017课标3,理12】在矩形ABCD中,AB=1
AD=2,
APABAD
动点P在以点C为圆心且与BD相切的圆上.若
(五)等与不等寻定值
极化恒等式
2
2
4a b a b a b
绝对值三角不等式
因对任意实数 m,n,恒有 m n m n 成立
高中数学【人教A版必修】4 平面向量专题复习PPT全文课件【完 美课件 】
高中数学【人教A版必修】4 平面向量专题复习PPT全文课件【完 美课件 】
(五)等与不等寻定值
高中数学【人教A版必修】4 平面向量专题复习PPT全文课件【完 美课件 】
高中数学【人教A版必修】4 平面向量专题复习PPT全文课件【完 美课件 】
(五)等与不等寻定值
高中数学【人教A版必修】4 平面向量专题复习PPT全文课件【完 美课件 】
高中数学【人教A版必修】4 平面向量专题复习PPT全文课件【完 美课件 】
数缺形时少直观, 形少数时难入微; 数形结合百般好, 隔离分家万事休.
(2013 年浙江省数学竞赛)已知直线 AB 与抛物线 y2 4x 交于 A, B 两点, M 为 AB的
中点, C 为抛物线上一个动点,若C0 满足 C0AC0B min CACB ,则下列一定成立的是
()
A. C0M AB C. C0 A C0B
纵观近五年的高考试题,平面向量的考查主要体现在2 个方面:
(完整版)高中数学必修4平面向量知识点总结与典型例题归纳.docx
平面向量【基本概念与公式】【任何时候写向量时都要带箭头】1. 向量:既有大小又有方向的量。
记作:uuur rAB 或 a 。
uuur r2.向量的模:向量的大小(或长度),记作: | AB |或 | a |。
r r3. 单位向量:长度为 1 的向量。
若e是单位向量,则| e| 1。
r r4.零向量:长度为 0 的向量。
记作:0。
【0方向是任意的,且与任意向量平行】5.平行向量(共线向量):方向相同或相反的向量。
6.相等向量:长度和方向都相同的向量。
7.相反向量:长度相等,方向相反的向量。
8.三角形法则:uuur uuur AB BA。
uuur uuur uuur uuur uuur uuur uuur uuur uuur uuur uuurAB BC AC;AB BC CD DE AE; AB AC CB (指向被减数)9.平行四边形法则:r r r r r r以 a, b 为临边的平行四边形的两条对角线分别为a b , a b 。
r r r r r r r r10. 共线定理:a b a / /b 。
当0 时,a与b同向;当0 时,a与b反向。
11.基底:任意不共线的两个向量称为一组基底。
12.r rx2y 2r 2r r r r r2向量的模:若 a(x, y) ,则| a |, a| a |2, | a b |( a b)r r r rr rcos ra br13.数量积与夹角公式: a b| a | | b | cos;| a || b |r r r r r r r r14.平行与垂直: a / / b a b x1 y2x2 y1; a b a b0x1 x2y1 y2 0题型 1. 基本概念判断正误:(1)共线向量就是在同一条直线上的向量。
(2)若两个向量不相等,则它们的终点不可能是同一点。
( 3)与已知向量共线的单位向量是唯一的。
( 4)四边形 ABCD是平行四边形的条件是uuur uuurAB CD 。
2015届(理科数学)二轮复习课件_专题四_三角函数与平面向量_第1讲_三角函数图象与性质
的图像向右平移 个单位,所的图像关于 y 轴对称,则 的最小正值是 .
π 解析:由题意知,平移后所得函数为 f(x)=sin (2x-2 + ), 4
若其图象关于 y 轴对称,
π 则 sin (-2 + )=±1, 4
π π 所以-2 + =kπ+ (k∈Z), 4 2 kπ π 所以 =- (k∈Z), 2 8 3π 当 k=-1 时, 取得最小正值 . 8
π π y=|cos x|,③y=cos(2x+ ),④y=tan(2x- )中,最小正周期 6 4
为π 的所有函数为( A ) (A)①②③ (B)①③④ (C)②④ (D)①③
解析:①最小正周期为π,②最小正周期为π,③最小正周期
π 为π,④最小正周期为 .故选 A. 2
π 3.(2014 高考安徽卷,理 11)若将函数 f(x)=sin (2x+ ) 4
得图象对应的函数解析式是(
)Leabharlann (A)y=cos 2x+sin 2x (B)y=cos 2x-sin 2x (C)y=sin 2x-cos 2x (D)y=sin xcos x
解析:(1)由图象可知 因此ω=2.
3 5π π 3π 2π T= -(- )= ,所以 T=π,即 =π, 12 4 3 4
2 sin(2x+
3π )的图象, 4 3π )=-sin 2x+cos 2x=cos 2x-sin 2x,故选 B. 4
而 y= 2 sin(2x+
题后反思 (1)已知函数 y=Asin(ωx+ )(A>0,ω>0)的 图象求解析式时,常采用待定系数法,由图中的最高点、 最低点求 A;由函数的周期确定ω;由图象上的关键点确 定 .
高三理科数学一轮复习 专题 平面向量课件
向量数量积满足分配律,即 $(overset{longrightarrow}{a} + overset{longrightarrow}{c}) cdot overset{longrightarrow}{b} = overset{longrightarrow}{a} cdot overset{longrightarrow}{b} + overset{longrightarrow}{c} cdot overset{longrightarrow}{b}$。
理解混合积的几何意义
详细描述
混合积的几何意义是表示三个向量的体积。 具体来说,当三个向量表示一个平行六面体 的三条边时,混合积的大小就等于这个平行 六面体的体积。
当两向量同向时,投影长度等于向量 $overset{longrightarrow}{a}$的模;当两向量反向时,投 影长度等于负的向量$overset{longrightarrow}{a}$的模; 当两向量垂直时,投影长度为0。
向量数量积的运算律
向量数量积满足交换律,即 $overset{longrightarrow}{a} cdot overset{longrightarrow}{b} = overset{longrightarrow}{b} cdot overset{longrightarrow}{a}$。
向量的模
总结词
向量的模是表示向量大小的数值,记作|a|。
详细描述
向量的模是表示向量大小的数值,记作|a|。向量的模的计算公式为$sqrt{x^2 + y^2}$,其中$x$和$y$分别是向量在x轴和y轴上的分量。
向量的加法
总结词
向量的加法是通过向量起点对齐、同向相加、反向取反的方 式进行。
(完整版)高中数学-平面向量专题
第一部分:平面向量的看法及线性运算一.基础知识自主学习1.向量的相关看法名称定义备注向量既有又有的量;向量的大小叫做向量平面向量是自由向量的(或称)零向量长度为的向量;其方向是任意的记作 0单位向量长度等于的非零向量 a 的单位向量为±a 向量|a|平行向量方向或的非零向量0 与任向来量或共线共线向量的非零向量又叫做共线向量相等向量长度且方向的向量两向量只有相等或不等,不能够比较大小相反向量长度且方向的向量0 的相反向量为 0 2.向量的线性运算向量运算定义法规 (或几何运算律意义 )加法求两个向量和的运算求 a 与 b 的相反向量-b 减法的和的运算叫做 a 与 b的差(1)交换律:a+ b= b+ a.(2)结合律:(a+ b)+ c= a+ (b+c).a- b= a+ (- b)法规求实数λ与向量 a 的积的(1)|λa|= |λ||a|.;λ(μa)=λμa;数乘(2)当λ>0 时,λa 的方向与 a 的方向运算当λ<0 时,λa 的方向与 a 的方向;当λ (λ+μ)a=λa+μa;=0 时,λa= 0.λ(a+ b)=λa+λb.3.共线向量定理向量 a(a≠0)与 b 共线的条件是存在唯一一个实数λ,使得 b=λa.二.难点正本疑点清源1.向量的两要素向量拥有大小和方向两个要素.用有向线段表示向量时,与有向线段起点的地址没相关系.同向且等长的有向线段都表示同向来量.也许说长度相等、方向相同的向量是相等的.向量只有相等或不等,而没有谁大谁小之说,即向量不能够比较大小.2.向量平行与直线平行的差异向量平行包括向量共线 (或重合 )的情况,而直线平行不包括共线的情况.所以要利用向量平行证明向量所在直线平行,必定说明这两条直线不重合.三.基础自测→→→→1.化简 OP- QP+ MS-MQ 的结果等于 ________.2.以下命题:①平行向量必然相等;②不相等的向量必然不平行;③平行于同一个向量的两个向量是共线向量;④相等向量必然共线.其中不正确命题的序号是_______.→→→→→3.在△ ABC 中, AB= c, AC= b.若点 D 满足 BD= 2DC ,则 AD = ________(用 b、 c 表示 ).4.如图,向量a- b 等于 ()A .- 4e1- 2e2B .- 2e1-4e2C. e1- 3e2 D . 3e1- e2→→→() 5.已知向量 a, b,且 AB= a+ 2b, BC=- 5a+ 6b,CD = 7a- 2b,则必然共线的三点是A . A、 B、DB .A、 B、CC. B、 C、D D .A、 C、 D四.题型分类深度剖析题型一平面向量的相关看法例 1给出以下命题:→→①若 |a|= |b|,则 a= b;②若 A,B,C,D 是不共线的四点,则AB= DC是四边形ABCD 为平行四边形的充要条件;③若 a= b,b= c,则 a= c;④ a= b 的充要条件是|a|= |b|且a∥ b;⑤若 a∥ b,b∥c,则 a∥ c.其中正确的序号是________.变式训练1判断以下命题可否正确,不正确的请说明原由.(1)若向量 a 与 b 同向,且 |a|= |b|,则 a>b ;(2)若 |a|= |b|,则 a 与 b 的长度相等且方向相同或相反;(3)若 |a|= |b|,且 a 与 b 方向相同,则 a= b;(4)由于零向量的方向不确定,故零向量不与任意向量平行;(5)若向量 a 与向量 b 平行,则向量 a 与 b 的方向相同或相反;→→(6)若向量 AB与向量 CD是共线向量,则 A, B, C, D 四点在一条直线上;(7)起点不相同,但方向相同且模相等的几个向量是相等向量;(8)任向来量与它的相反向量不相等题型二平面向量的线性运算例 2→→→ 1→→ 1→如图,以向量 OA= a, OB= b 为边作 ?OADB , BM=BC, CN=CD,用33→→→a、 b 表示 OM 、 ON、 MN.变式训练→ 2→→→2 △ABC 中, AD= AB,DE ∥BC 交 AC 于 E, BC 边上的中线 AM 交 DE 于 N.设 AB= a,AC= b,用 a、b3→ → → →→→表示向量 AE、 BC、 DE 、 DN、 AM、 AN.题型三平面向量的共线问题例 3设 e1 2→= 2e1→= e12→= 2e1是两个不共线向量,已知 AB2, CD2, e- 8e, CB+ 3e-e .(1)求证: A、B、 D 三点共线;→(2)若 BF = 3e1- ke2,且 B、D 、 F 三点共线,求 k 的值.变式训练3设两个非零向量 a 与 b 不共线,→→→(1)若 AB= a+ b, BC= 2a+8b, CD = 3(a-b).求证: A、 B、D 三点共线;(2)试确定实数 k,使 ka+b 和 a+ kb 共线.五.思想与方法5.用方程思想解决平面向量的线性运算问题试题:以下列图,在△→ 1→→ 1→→→ABO 中, OC= OA, OD = OB, AD 与 BC 订交于点 M,设 OA= a,OB= b.试用 a 和 b 42→表示向量 OM .六.思想方法感悟提高方法与技巧1.将向量用其他向量(特别是基向量)线性表示,是十分重要的技术,也是向量坐标形式的基础.→→→→2.能够运用向量共线证明线段平行或三点共线问题.如 AB∥ CD且 AB 与 CD 不共线,则 AB ∥CD ;若 AB∥ BC,则 A、B、C 三点共线.失误与防范1.解决向量的看法问题要注意两点:一是不但要考虑向量的大小,更重要的是要考虑向量的方向;二是考虑零向量可否也满足条件.要特别注意零向量的特别性.2.在利用向量减法时,易弄错两向量的序次,从而求得所求向量的相反向量,以致错误.七.课后练习1.给出以下命题:①两个拥有公共终点的向量,必然是共线向量;②两个向量不能够比较大小,但它们的模能比较大小;③ λa = 0 (λ为实数 ),则 λ必为零;④ λ, μ为实数,若 λa = μb ,则 a 与 b 共线.其中错误命题的个数为 ()A . 1B . 2C .3D .42.若 A 、B 、C 、D 是平面内任意四点,给出以下式子: → → →AD ;③ AC -AB + CD = BC + DA ;② AC + BD = BC→ → ) BD = DC + AB .其中正确的有 (A . 0 个B . 1 个C .2 个D . 3 个3. 已知 O 、 A 、 B 是平面上的三个点,直线AB 上有一点 C ,满足 2 AC CB =0,则 OC 等于 ()A. 2OA → →- OB B. OA + 2OB2 OA - 1 → D. 1 2 →C. 3OB 3OA + 3OB31→→→→4.以下列图, 在△ ABC 中, BD =DC ,AE = 3ED ,若 AB = a , AC =b ,则 BE 等于 ()21 11 1A. 3a +3bB .- 2a + 4b1 11 1 C.2a + 4b D .- 3a + 3b→,则四边形 ABCD 的形状是 (5. 在四边形 ABCD 中, AB =a + 2b, BC =- 4a -b , CD =- 5a - 3b A .矩形 B .平行四边形 C .梯形 uuur D .以上都不对uuur uuur6. AB =8, AC = 5,则 BC 的取值范围是 __________.7.给出以下命题:①向量 AB 的长度与向量 →→BA 的长度与向量 BA 的长度相等; ②向量 a 与 b 平行,则 a 与 b 的方向相同或相反; ③两个有共同起点而且相等的向量,其终点必相同;④两个有公共终点的向量,必然是共线向量;→ → ⑤向量 AB 与向量 CD 与向量 CD 是共线向量,则点 A 、 B 、 C 、 D 必在同一条直线上.其中不正确的个数为 ____________ .8.如图,在△ ABC 中,点 O 是 BC 的中点 .过点 O 的直线分别交直线AB 、AC 于不相同的两点 M 、→AB = mAM ,→AC = nAN ,则 m + n 的值为 ________. 9.设 a 与 b 是两个不共线向量,且向量 a +λb 与- (b -2a)共线,则 λ= ________.→ →10.在正六边形 ABCDEF 中, AB = a , AF = b ,求 AC, AD ,AE.11.以下列图,△ ABC 中,点 M 是 BC 的中点,点 N 在边 AC 上,且 AN =2NC , AM 与 BN 订交于点的值.12.已知点 G 是△ ABO 的重心, M 是 AB 边的中点 .→ →( 1)求 GA +GB +GO ;→→→ 11)N. 若P ,求 AP ∶ PM第二部分:平面向量的基本定理及坐标表示一.基础知识自主学习1.两个向量的夹角定义→→已知两个向量 a,b,作 OA= a,OB =b,则∠ AOB =θ叫做向量 a 与 b 的夹角 (如图 )范围向量夹角θ的范围是,当θ=时,两向量共线,当θ=时,两向量垂直,记作a⊥b.2.平面向量基本定理及坐标表示(1)平面向量基本定理若是 e1,e2是同一平面内的两个向量,那么关于这一平面内的任意向量a,一对实数λ1,λ2,使 a=.其中,不共线的向量e1, e2叫做表示这一平面内所有向量的一组.(2)平面向量的正交分解及坐标表示把一个向量分解为两个的向量,叫做把向量正交分解.(3)平面向量的坐标表示①在平面直角坐标系中,分别取与x 轴、 y 轴方向相同的两个单位向量i,j 作为基底,关于平面内的一个向量a,由平面向量基本定理可知,有且只有一对实数x,y,使 a=xi + yj,这样,平面内的任向来量 a 都可由 x,y 唯一确定,把有序数对叫做向量 a 的坐标,记作a=,其中叫做a在x轴上的坐标,叫做a在y轴上的坐标.→→→②设 OA= xi +yj,则向量 OA的坐标 (x, y)就是的坐标,即若OA=(x,y),则A点坐标为,反之亦成立. (O 是坐标原点 )3.平面向量坐标运算(1)向量加法、减法、数乘向量及向量的模设 a= (x1, y1) ,b= (x2, y2),则a+ b=,a-b=,λa=,|a|=.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设 A(x1 1→→22=, |AB., y ), B(x, y),则 AB|=4.平面向量共线的坐标表示:设 a= (x1, y1), b= (x2, y2),其中 b≠ 0a.∥ b?.二.难点正本疑点清源1.基底的不唯一性只要两个向量不共线,就可以作为平面的一组基底,对基底的采用不唯一,平面内任意向量 a 都可被这个平面的一组基底 e1,e2线性表示,且在基底确定后,这样的表示是唯一的.2.向量坐标与点的坐标的差异→a 唯一确定,此时点 A 的坐标与 a 的坐在平面直角坐标系中,以原点为起点的向量OA= a,点 A 的地址被向量标一致为 (x,y),但应注意其表示形式的差异,如点→A(x, y),向量 a=OA= (x, y).→→→→→当平面向量 OA平行搬动到 O11时,向量不变即O1A 1=OA=(x,y),但O11的起点O1和终点1的坐标都发生了变A A A 化.三.基础自测1.已知向量a= (2,- 1), b=(- 1, m),c= (- 1,2),若 (a+b) ∥c,则 m= ________.2.已知向量a= (1,2), b= (- 3,2),若 ka+ b 与 b 平行,则k= ________.3.设向量 a= (1,- 3), b= (- 2,4), c=(- 1,- 2).若表示向量4a、 4b-2c、 2(a- c)、 d 的有向线段首尾相接能构成四边形,则向量 d= ____________.→→4.已知四边形 ABCD 的三个极点 A(0,2), B(- 1,- 2), C(3,1) ,且 BC= 2AD ,则极点 D 的坐标为()A. 2,7B. 2,-1 22C. (3,2)D. (1,3)5.已知平面向量 a= (x,1), b=(- x, x2) ,则向量 a+ b()A .平行于 y 轴B .平行于第一、三象限的角均分线C.平行于 x 轴 D .平行于第二、四象限的角均分线四.题型分类深度剖析题型一平面向量基本定理的应用例 1→→→ →如图,在平行四边形ABCD 中, M, N 分别为 DC,BC 的中点,已知 AM= c, AN= d,试用 c,d 表示 AB, AD.→→→→变式训练 1 如图, P 是△ ABC 内一点,且满足条件 AP+ 2BP+ 3CP= 0,设 Q 为 CP 的延长线与AB 的交点,令CP= p,→试用 p 表示 CQ.题型二向量坐标的基本运算→→→→→例2 已知 A(-2,4), B(3,- 1), C(- 3,- 4).设 AB= a,BC= b, CA= c,且 CM = 3c,CN=- 2b,→(1) 求 3a+ b- 3c;(2) 求满足 a= mb+ nc 的实数 m, n; (3) 求 M、 N 的坐标及向量 MN 的坐标.变式训练 2(1) 已知点 A、B、 C 的坐标分别为→→ 1→A(2,- 4)、 B(0,6) 、 C(- 8,10),求向量 AB+ 2BC- AC的坐标;211(2) 已知 a= (2,1) , b= (- 3,4),求:① 3a+4b;② a- 3b;③2a-4b.题型三平行向量的坐标运算例 3平面内给定三个向量a= (3,2), b=(-1,2), c= (4,1),请解答以下问题:(1) 求满足 a= mb+ nc 的实数 m, n; (2)若 (a+ kc)∥ (2b-a) ,求实数k;(3) 若 d 满足 (d- c)∥ (a+ b),且 |d- c|= 5,求 d.变式训练3已知a=(1,0),b=(2,1).(1)求 |a+ 3b|; (2)当 k 为何实数时, ka- b 与 a+ 3b 平行,平行时它们是同向还是反向?五.易错警示8.忽视平行四边形的多样性致误试题:已知平行四边形三个极点的坐标分别为(- 1,0),(3,0) ,(1,- 5),求第四个极点的坐标.六.思想方法感悟提高方法与技巧1.平面向量基本定理的实质是运用向量加法的平行四边形法规,将向量进行分解.2.向量的坐标表示的实质是向量的代数表示,其中坐标运算法规是运算的要点,经过坐标运算可将一些几何问题转变成代数问题办理,从而向量能够解决平面剖析几何中的好多相关问题.3.在向量的运算中要注意待定系数法、方程思想和数形结合思想的运用.失误与防范1.要区分点的坐标与向量坐标的不相同,尽管在形式上它们完满相同,但意义完满不相同,向量坐标中既有方向也有大小的信息.1122),则 a∥ b 的充要条件不能够表示成x1=y1,由于 x22有可能等于0,所以应表示为 1 22.若 a=( x,y ),b= (x ,y x2y2,y x y y = 0.同时, a∥ b 的充要条件也不能够错记为x x - y y = 0, x y- x y = 0 等.- x2 1 1 21 2 1 1 2 2七.课后练习1.已知向量 a =(1,- 2), b =(1+ m,1- m),若 a ∥ b ,则实数 m 的值为 ( )A .3B .- 3C . 2D .- 2 2.已知平面向量 a = (1,2), b =(- 2, m) ,且 a ∥ b ,则 2a + 3b 等于 ( )A .( -2,- 4)B . (- 3,- 6)C .(- 4,- 8)D . (- 5,- 10)3.设向量 a = (3, 3), b 为单位向量,且 a ∥ b ,则 b 等于 ( )3 1 3 1 3 1A.2 ,- 2 或 - 2 , 2B.2 , 2313 13 1C. - 2 ,- 2D. 2 , 2或- 2 ,- 24.已知向量 a = (1,- m),b = (m 2, m),则向量 a + b 所在的直线可能为 ()A . x 轴B .第一、三象限的角均分线C . y 轴D .第二、四象限的角均分线5.已知 A(7,1) 、B(1,4), 直线 y1 →ax 与线段 AB 交于 C,且 AC2CB ,则实数 a 等于 ()245A . 2B . 1C. 5D.31+ 1的值等于 ________.6.若三点 A(2,2) ,B(a,0), C(0, b) (ab ≠ 0)共线,则 ab7.已知向量 a =(1,2) ,b = (x,1), u = a +2b , v = 2a - b ,且 u ∥ v ,则实数 x 的值为 ________. 8.若向量 a ( x 3, x 2 3 x 4) 与 AB 相等,其中 A(1,2) , B(3 , 2) ,则 =x ________.9.若平面向量 a , b 满足 |a + b|= 1, a + b 平行于 y 轴, a = (2,- 1),则 b = ______________. 10. a = (1,2), b = (- 3,2),当 k 为何值时, ka +b 与 a - 3b 平行?平行时它们是同向还是反向?11.三角形的三内角 A , B , C 所对边的长分别为 a , b , c ,设向量 m = (3c - b , a - b), n = (3a + 3b , c), m ∥n.(1) 求 cos A 的值; (2) 求 sin(A +30°)的值.12.在△ ABC 中, a 、 b 、c 分别是角 A 、 B 、 C 的对边,已知向量 m = (a , b),向量 n =(cos A , cos B),向量 p = 2 2sinB +C , 2sin A ,若 m ∥ n , p 2= 9,求证:△ ABC 为等边三角形. 2第三部分:平面向量的数量积一.基础知识 自主学习1.平面向量的数量积已知两个非零向量a 和b ,它们的夹角为 θ,则数量 _______叫做 a 和 b 的数量积 (或内积 ),记作 ________________.规定:零向量与任向来量的数量积为____.两个非零向量 a 与 b 垂直的充要条件是,两个非零向量 a 与 b 平行的充要条件是.2.平面向量数量积的几何意义数量积 a ·b 等于 a 的长度 |a|与 b 在 a 的方向上的投影 _________的乘积.3.平面向量数量积的重要性质(1)e ·a = a ·e =;(2) 非零向量 a , b ,a ⊥ b? ;(3) 当 a 与 b 同向时, a ·b =;当 a 与 b 反向时, a ·b =, a ·a = a 2,|a|=a ·a;a ·b (4)cos θ=;|a||b|(5)|a ·b|____|a|| b|.4.平面向量数量积满足的运算律(1) a ·b=(交换律 );(2)( λa )·b = =(λ为实数 );(3)( a + b) ·c =.5.平面向量数量积相关性质的坐标表示设向量 a = (x 1, y 1), b = (x 2 , y 2),则 a ·b=,由此获取(1) 若 a = (x , y),则 |a|2=或|a|=.(2) 设 A (x 1uuur.,y 1) ,B(x 2,y 2),则 A 、 B 两点间的距离 |AB|= AB =(3) 设两个非零向量 a , b , a = ( x , y ), b = (x , y ),则 a ⊥b?.1122二.难点正本 疑点清源1.向量的数量积是一个实数两个向量的数量积是一个数量, 这个数量的大小与两个向量的长度及其夹角的余弦值相关, 在运用向量的数量积解题时,必然要注意两向量夹角的范围.2.数量积的运算只适合交换律、 加乘分配律及数乘结合律, 但不满足向量间的结合律, 即 (a ·b)c 不用然等于a(b ·c).这是由于 (a ·b)c 表示一个与 c 共线的向量,而 a(b ·c)表示一个与 a 共线的向量,而 c 与 a 不用然共线.三.基础自测1.已知向量 a 和向量 b 的夹角为 30°, |a|= 2, |b|= 3,则向量 a 和向量 b 的数量积 a ·b=________.2.在△ ABC 中, AB =3, AC=2, BC=10 ,则 AB ·AC = ______.- 94.已知 |a|= 6, |b|=3, a·b=- 12,则向量 a 在向量 b 方向上的投影是()A .- 4B. 4C.- 2 D .25.已知向量a=(1,- 1), b=(1,2) ,向量 c 满足 (c+ b)⊥ a, (c- a)∥ b,则 c 等于()A . (2,1)B .(1,0)31C. 2,2D. (0,- 1)四.题型分类深度剖析题型一求两向量的数量积例1 (1) 在 Rt△ ABC 中,∠ C= 90°, AB= 5, AC=4,求AB·BC;(2)若 a= (3,- 4) ,b= (2,1),试求 (a-2b) · (2a+3b).变式训练 1 (1)若向量 a 的方向是正南方向,向量 b 的方向是正东方向,且|a|= |b|= 1,则 (- 3a) ·(a+ b)=______.uuur→ uuur(2) 如图,在△ ABC 中, AD ⊥ AB,BC= 3 BD, | AD |= 1,则AC·AD等于 ()33A . 2 3B. 2 C. 3 D.3题型二求向量的模例2 已知向量 a 与 b 的夹角为 120°,且 |a|= 4, |b|= 2,求: (1)|a+ b|; (2)|3a- 4b|; (3)(a- 2b) ·(a+b).π变式训练 2 设向量 a, b 满足 |a- b|= 2,|a|= 2,且 a- b 与 a 的夹角为3,则 |b|= ________.题型三利用向量的数量积解决夹角问题例 3已知a与b是两个非零向量,且|a|= |b|= |a- b|,求 a 与 a+ b 的夹角.变式训练 3 设 n 和 m 是两个单位向量,其夹角是60°,求向量a= 2m+ n 与 b= 2n-3m 的夹角.题型四平面向量的垂直问题例 4 已知 a= (cos α, sin α), b= (cos β, sin β)(0< α<β<π).(1)求证: a+ b 与 a- b 互相垂直;(2) 若 ka+ b 与 a- kb 的模相等,求β-α.(其中k为非零实数)uuur→uuur→→变式训练 4 已知平面内A、B、C 三点在同一条直线上,OA =(-2,m),OB=(n,1),OC=(5,-1),且OA⊥OB,求实数 m, n 的值.五.答题规范5.思想要慎重,解答要规范试题:设两向量 e1、e2满足 |e1 |= 2,|e2|= 1,e1、e2的夹角为60°,若向量 2te1+7e2与向量 e1+te2的夹角为钝角,求实数 t 的取值范围.六.思想方法感悟提高方法与技巧1.向量的数量积的运算法规不具备结合律,但运算律和实数运算律近似.如(a+ b)2=a2+2a·b+b2;22(λa+μb) ·(sa+ tb)=λs a+(λt+μs)a·b+μt b(λ,μ, s, t∈ R).2.求向量模的常用方法:利用公式|a|2= a2,将模的运算转变成向量的数量积的运算.3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法技巧.失误与防范1. (1)0 与实数 0 的差异: 0a=0≠0, a+( -a)=0≠0,a·0=0≠0;(2)0 的方向是任意的,其实不是没有方向,0 与任何向量平行,我们只定义了非零向量的垂直关系.2. a·b=0 不能够推出 a= 0 或 b= 0,由于 a·b=0 时,有可能 a⊥ b.3.一般地, (a · b)c ≠ (b即·乘c)a法的结合律不行立.因a·b是一个数量,所以(a · b)c表示一个与 c 共线的向量,同理右边 (b ·c)a表示一个与 a 共线的向量,而 a 与 c 不用然共线,故一般情况下(a ·b)c ≠(b ·c)a. 4. a·b=a· c(a ≠不0)能推出 b= c.即消去律不行立.uuur uuur5.向量夹角的看法要意会,比方正三角形ABC 中,〈AB,BC〉应为 120°,而不是 60°.- 11七.课后练习1 1()1.设向量 a = (1,0), b =( , ),则以下结论中正确的选项是22A . |a|= |b|B . a ·b= 22 C . a ∥ b D .a - b 与 b 垂直 2.若向量 a = (1,1), b = (2,5), c = (3, x),满足条件 (8a - b)·c = 30,则 x 等于 ( )A . 6B .5C . 4D . 33.已知向量 a ,b 的夹角为 60°,且 |a|=2, |b|= 1,则向量 a 与 a + 2b 的夹角等于 ()A . 150 °B . 90°C . 60°D . 30°uuur uuur4.平行四边形 ABCD 中, AC 为一条对角线,若 AB = (2,4), AC = (1,3),则 AD BD 等于 ()A . 6B .8C .- 8D .- 6πa = 2e 1)1 2的单位向量,且向量2 1 25.若 e 、e 是夹角为 3+ e ,向量 b =- 3e +2e ,则 a ·b等于 (7 7A . 1B .- 4C .- 2D.2π6.若向量 a , b 满足 |a|=1 ,|b|= 2 且 a 与 b 的夹角为 3,则 |a + b|= ________.7.已知向量 a ,b 满足 |a|= 3,|b|= 2, a 与 b 的夹角为 60°,则 a ·b=________,若 (a -mb)⊥ a ,则实数 m = ________. 8.设 a 、 b 、 c 是单位向量,且 a + b = c ,则 a ·c 的值为 ________. 9.(O 是平面上一点, A 、 B 、C 是平面上不共线的三点 .平面内的动点 P 满足 OPOA (AB AC),uuuruuur uuur若 λ=1时, PA (PBPC ) 的值为 ______.210.不共线向量 a , b 的夹角为小于 120 °的角,且 |a|= 1, |b|=2,已知向量 c = a + 2b ,求 |c|的取值范围.11.已知平面向量 a = (1, x), b = (2x +3,- x), x ∈ R.(1) 若 a ⊥ b ,求 x 的值; (2)若 a ∥b ,求 |a -b|.12.向量 a = (cos 23 ,°cos 67 °),向量 b = (cos 68 ,°cos 22 °).(1) 求 a ·b;(2)若向量 b 与向量 m 共线, u = a +m ,求 u 的模的最小值.第四部分:平面向量应用举例一.基础知识自主学习1.向量在平面几何中的应用平面向量在平面几何中的应用主若是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相似、长度、夹角等问题.(1)证明线段平行或点共线问题,包括相似问题,常用共线向量定理:a∥ b??.(2)证明垂直问题,常用数量积的运算性质a⊥ b??.(3)求夹角问题,利用夹角公式cos θ=a·b =x1 x2+ y1y222 2 2 (θ为 a 与 b 的夹角 ).|a||b|x1+ y1x2+ y22.平面向量在物理中的应用(1)由于物理学中的力、速度、位移都是,它们的分解与合成与向量的相似,能够用向量的知识来解决.(2)物理学中的功是一个标量,这是力 F 与位移 s 的数量积.即W = F·s=|F|| s|cos θ(θ为 F 与 s 的夹角 ).3.平面向量与其他数学知识的交汇平面向量作为一种运算工具,经常与函数、不等式、三角函数、数列、剖析几何等知识结合,当平面向量给出的形式中含有未知数时,由向量平行或垂直的充要条件能够获取关于该未知数的关系式.在此基础上,能够求解相关函数、不等式、三角函数、数列的综合问题.此类问题的解题思路是转变成代数运算,其转变路子主要有两种:一是利用平面向量平行或垂直的充要条件;二是利用向量数量积的公式和性质.二.难点正本疑点清源1.向量兼具代数的抽象与慎重和几何的直观,向量自己是一个数形结合的产物.在利用向量解决问题时,要注意数与形的结合、代数与几何的结合、形象思想与逻辑思想的结合.2.要注意变换思想方式,能从不相同角度看问题,要善于应用向量的相关性质解题.三.基础自测1.在平面直角坐标系xOy 中,四边形ABCD 的边 AB∥ DC , AD∥ BC.已知 A(- 2,0),B(6,8), C(8,6).则D 点的坐标为 ________.2.已知平面向量α、β,|α|=1,|β|=2,α⊥ (α-2β),则|2α+β|的值是________.y uuur 3.平面上有三个点A( - 2, y), B 0,2, C( x, y),若ABuuur⊥ BC ,则动点C的轨迹方程为_______________.uuur5,AC·CB等于 () 4.已知 A、 B 是以 C 为圆心,半径为5的圆上两点,且 | AB |=5553A .-2 B.2C. 0D.25.某人先位移向量a : “向东走 3 km ”,接着再位移向量b : “向北走 3 km ”,则 a +b 表示()A .向东南走 3 2 kmB .向东北走 3 2 kmC .向东南走 33 kmD .向东北走 3 3 km四.题型分类 深度剖析题型一 向量在平面几何中的应用 例 1 如图,在等腰直角三角形 ABC 中,∠ ACB =90°, CA = CB , D 为 BC 的中点, E 是 AB 上的一点,且 AE = 2EB.求证: AD ⊥ CE.变式训练 1在平面直角坐标系 xOy 中,已知点 A(- 1,- 2),B(2,3), C(- 2,- 1).(1) 求以线段 AB 、 AC 为邻边的平行四边形的两条对角线的长;(2) →→ →设实数 t 满足 (AB - tOC) ·OC = 0,求 t 的值.题型二平面向量在剖析几何中的应用uuuuruuur →3 →例 2 已知点 P ( 0,-3),点 A 在 x 轴上,点 M 满足 PA AM =0 ,AM =-MQ ,当点 A 在 x 轴上搬动时,求动点 M2的轨迹方程.变式训练 2 已知圆 C : (x-3) 2+(y-3)2N 在线段 MA 的延长线上,=4 及点 A ( 1,1), M 是圆上的任意一点,点 uuur →且 MA = 2AN ,求点 N 的轨迹方程.题型三 平面向量与三角函数 例 3 已知向量 a = (sin x , cos x), b = (sin x , sin x) ,c = (- 1,0).π(1)若 x = 3,求向量 a 与 c 的夹角;3π π(2)若 x ∈ - 8 , 4 ,求函数 f(x) =a ·b 的最值;2 (3) 函数 f(x)的图象能够由函数y = 2 sin 2x (x ∈ R)的图象经过怎样的变换获取?变式训练 3已知 A(3,0) , B(0,3) , C(cos α, sin α).若 uuur uuur =- 1,求 sin α+ π的值; (2) uuur uuur = ,且 α∈ , π),求 → uuur (1) AC ·若 | OA+ OC | 13 OB 与 OC 的夹角.BC 4(0五.易错警示9.忽视对直角地址的谈论致误uuur uuur试题:已知平面上三点A 、B 、C ,向量 BC = (2- k,3), AC = (2,4).(1) 若三点 A 、B 、 C 不能够构成三角形,求实数 k 应满足的条件; (2)若△ ABC 为直角三角形,求k 的值.六.思想方法 感悟提高方法与技巧1. 向量的坐标运算将向量与代数有机结合起来,这就为向量和函数的结合供应了前提,运用向量的相关知识能够解决某些函数问题.2. 以向量为载体,求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.经过向量的坐标运算,将问题转变成解不等式或求函数值域,是解决这类问题的一般方法.3. 相关线段的长度或相等,能够用向量的线性运算与向量的模.4.用向量方法解决平面几何问题的步骤(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转变成向量问题;(2)经过向量运算,研究几何元素之间的关系;(3) 把运算结果 “翻译 ”成几何关系.5.向量的坐标表示,使向量成为解决剖析几何问题的有力工具,在证明垂直、求夹角、写直线方程时显示出了它的优越性,在办理剖析几何问题时,需要将向量用点的坐标表示,利用向量的相关法规、性质列出方程,从而使问 题解决.失误与防范1.向量关系与几何关系其实不完满相同,要注意差异.比方:向量2.加强平面向量的应企图识,自觉地用向量的思想和方法去思虑问题.uuurAB→∥ CD 其实不能够说明AB ∥CD .七.课后练习1.已知△ ABC ,AB AC ,则必然有()A .AB⊥ACB .AB = ACC. ( AB + AC)⊥ ( AB - AC)D.AB + AC= AB - AC2.点 P 在平面上做匀速直线运动,速度向量v= (4,- 3)( 即点 P 的运动方向与v 相同,且每秒搬动的距离为|v|个单位 ) .设开始时点 P 的坐标为 ( - 10,10),则 5 秒后质点 P 的坐标为 ()A . (- 2,4)B .( -30,25)C. (10,- 5)D. (5,- 10)uuur uuur uuur uuur uuur3.平面上有四个互异点)A、 B、 C、D ,已知 (DB DC2DA) (AB AC) 0 ,则△ ABC 的形状是 (A .直角三角形B .等腰三角形C.等腰直角三角形D.等边三角形uuur uuur4.如图,△ ABC 的外接圆的圆心为 O,AB=2,AC=3,BC=7 ,则AO BC等于()35A. 2B.2C. 2D. 35.平面上 O、 A、 B 三点不共线,设OA a,OB,则△ OAB 的面积等于 ()bA.|a|2|b|2- (a·b)2B.|a|2 |b|2+ (a·b)2122- (a·b)21 2 2+ (a·b)2C.2D.2|a| |b||a| |b|6.已知 |a|= 3, |b|=2,〈 a, b〉= 60°,则 |2a+ b|= ________.7.河水的流速为 2 m/s,一艘小船想以垂直于河岸方向10 m/s 的速度驶向对岸,则小船的静水速度大小为________.→→ →→8.已知△ ABO 三极点的坐标为A(1,0), B(0,2), O(0,0),P(x,y)是坐标平面内一点,且满足 AP·OA≤0,BP·OB≥0,则 OP·AB的最小值为 ________.uuur uuur 9.在△ ABC 中,角 A、B、 C 所对的边分别为a、 b、 c,若AB·AC=BA BC 10.如右图,在Rt△ABC 中,已知 BC=a,若长为 2a 的线段 PQ 以点 A 为中心,问的值最大?并求出这个最大值.1,那么c=________.→→PQ 与BC的夹角θ取何值时BP·CQ11.已知向量a= (sin θ, cos θ- 2sin θ), b= (1,2).(1)若 a∥ b,求 tan θ的值; (2) 若 |a|= |b|,0<θ<π,求θ的值.12.在△ ABC 中,角 A、B、 C 的对边分别为a、 b、 c,若AB·AC BA·BC =k (k∈R).(1) 判断△ ABC 的形状; (2)若 c=2,求 k 的值.- 16。
高中数学必修4平面向量知识点总结.doc
高中数学必修4平面向量知识点总结高中数学必修4平面向量知识点坐标表示法平面向量的坐标表示:在直角坐标系中,分别取与x轴、y 轴方向相同的两个单位向量作为基底。
由平面向量的基本定理知,该平面内的任一向量可表示成,由于与数对(x,y)是一一对应的,因此把(x,y)叫做向量的坐标,记作=(x,y),其中x叫作在x 轴上的坐标,y叫做在y轴上的坐标。
来表示平面内的各个方向在数学中,我们通常用点表示位置,用射线表示方向.在平面内,从任一点出发的所有射线,可以分别用向量的表示向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.向量也可用字母a①、b、c等表示,或用表示向量的有向线段的起点和终点字母表示.向量的大小,也就是向量的长度(或称模),记作|a|长度为0的向量叫做零向量,记作0.长度等于1个单位长度的向量,叫做单位向量.方向相同或相反的非零向量叫做平行向量.向量a、b、c平行,记作a∥b∥c.0向量长度为零,是起点与终点重合的向量,其方向不确定,我们规定0与任一向量平行.长度相等且方向相同的向量叫做相等向量.向量a与b相等,记作a=b.零向量与零向量相等.任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.向量的运算1、向量的加法:AB+BC=AC设a=(x,y) b=(x ,y )则a+b=(x+x ,y+y )向量的加法满足平行四边形法则和三角形法则。
向量加法的性质:交换律:a+b=b+a结合律:(a+b)+c=a+(b+c)a+0=0+a=a2、向量的减法AB-AC=CBa-b=(x-x ,y-y )若a//b则a=eb则xy`-x`y=0若a垂直b则ab=0则xx`+yy`=03、向量的乘法设a=(x,y) b=(x ,y )a b(点积)=x x +y y =|a| |b|*cos夹角4、向量有关概念:(1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题四 理科数学平面向量
一、选择题
1.(四川理4)如图,正六边形ABCDEF 中,BA CD EF ++
=
A .0
B .BE
C .AD
D .CF
【答案】D
【解析】BA CD EF BA AF EF BF EF CE EF CF ++=++=+=+=
2.(山东理12)设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A
A A A λ=
(λ∈R ),1412A
A A A μ= (μ∈R ),且1
1
2
λ
μ
+
=,则称3A ,4A 调和分割1A ,2A ,已知
平面上的点C ,D 调和分割点A ,B 则下面说法正确的是 A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点 C .C ,D 可能同时在线段AB 上 D .C ,D 不可能同时在线段AB 的延长线上 【答案】D
3.(全国新课标理10)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题
12:||1[0,
)3p a b πθ+>⇔∈ 22:||1(,]3p a b π
θπ+>⇔∈
13:||1[0,)3p a b πθ->⇔∈ 4:||1(,]3p a b π
θπ->⇔∈
其中真命题是
(A ) 14,p p (B ) 13,p p (C ) 23,p p (D ) 24,p p 【答案】A
4.(全国大纲理12)设向量a ,b ,c 满足a =b =1,a b =1
2-
,,a c b c --=060,则
c 的最大值等于 A .2
B
C
D .1
【答案】A
5.(辽宁理10)若a ,b ,c 均为单位向量,且0=⋅b a ,0)()(≤-⋅-c b c a ,则|
|c b a -+的最大值为
(A )12- (B )1
(C )2
(D )2
【答案】B
6.(湖北理8)已知向量a=(x +z,3),b=(2,y-z ),且a ⊥ b .若x ,y 满足不等式
1x y +≤,
则z 的取值范围为 A .[-2,2] B .[-2,3] C .[-3,2] D .[-3,3] 【答案】D
7.(广东理3)若向量a,b,c满足a∥b且a⊥b,则(2)c a b ∙+= A .4 B .3 C .2 D .0 【答案】
D
8.(广东理5)已知在平面直角坐标系xOy 上的区域D
由不等式组02x y x ⎧≤≤⎪
≤⎨⎪
≤⎩给定。
若
(,)M x y 为D 上的动点,点A
的坐标为,则z OM OA =⋅
的最大值为C
A
. B
.
C .4
D .3
【答案】
9.(福建理8)已知O 是坐标原点,点A (-1,1)若点M (x,y )为平面区域21y 2
x y x +≥⎧⎪≤⎨⎪≤⎩,上
的一个动点,则OA ·OM
的取值范围是
A .[-1.0]
B .[0.1]
C .[0.2]
D .[-1.2]
【答案】C 二、填空题
10.(重庆理12)已知单位向量1e ,2e 的夹角为60°,则122e e -=__________
11.(浙江理14)若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的
平行四边形的面积为1
2,则α与β的夹角θ的取值范围是 。
【答案】5[,]
66ππ
12.(天津理14)已知直角梯形ABCD 中,AD //BC ,0
90ADC ∠=,2,1AD BC ==,P 是
腰DC 上的动点,则3PA PB
+ 的最小值为____________.
【答案】5
13.(上海理11)在正三角形ABC 中,D 是BC 上的点,3,1AB BD ==,则
A B A D ⋅= 。
【答案】152
14.(江苏10)已知→
→
21,e e 是夹角为π
32的两个单位向量,,,22121→→→→→→+=-=e e k b e e a 若
0=⋅→
→b a ,则k 的值为 .
【答案】45
15.(安徽理13)已知向量,a b 满足()()a b a b +2⋅-=-6,且1a =,2b =,
则a 与b 的夹角为 .
【答案】3π
16.(北京理10)已知向量a =
1),b =(0,-1),c =(k。
若a -2b 与c 共线,
则k=__________。
【答案】1
17.(湖南理14)在边长为1的正三角形ABC 中, 设2,3,BC BD CA CE ==
则
AD BE ⋅=
__________________.
【答案】14-
18.(江西理11)已知2a b == ,(2)
a b + ·a b - ()=-2,则a 与b 的夹角为
【答案】3π。