细胞生物学重点名词解释
医学细胞生物学名词解释
医学细胞生物学名词解释重点医学细胞生物学名词解释1. 细胞〔cell〕是组成包括人类在内的所有生物体的根本单位,这一根本单位的含义即包括结构上的,也包括功能上的。
2. 细胞生物学〔cell biology〕是在细胞水平上研究生物体的生长、运动、遗传、变异、分化、衰老、死亡等生命现象的学科。
3. 医学细胞生物学〔medical cell biology〕以人体或医学为对象的细胞生物学研究或学科。
4. 原核细胞〔prokaryotic cell〕是组成原核生物的细胞,这类细胞主要特征是细胞内没有分化为以膜为根底的具有专门结构与功能的细胞器和细胞核膜,且遗传信息量小,因此进化地位较低。
5. 真核细胞〔eukaryotic cell〕指含有真核〔被核膜包围的核〕的细胞,主要特征是有细胞膜、兴旺的内膜系统和细胞骨架体系。
6. 生物大分子〔biological macromolecules〕也称多聚体,由许多小分子单体通过共价键连接而成,相对分子质量比拟大,包括蛋白质、核酸和多糖等。
7. 多肽链〔polypeptide chain〕多个氨基酸通过肽键组成的肽称为多肽链。
8. 细胞蛋白质组〔proteome〕将细胞内基因活动和表达后所产生的全部蛋白质作为一个整体,研究在个体发育的不同阶段,在正常或异常情况下,某种细胞内所有蛋白质的种类、数量、结构和功能状态,从而说明基因的功能。
9. 拟核〔nucleoid〕原核细胞没有核膜包被的细胞核,也没有核仁,DNA位于细胞中央的核区就称为拟核。
10. 质粒〔plasmid〕很多细菌除了基因组DNA外,还有一些小的双链环形DNA分子,称为质粒。
11. 细胞膜〔cell membrane〕又称质膜,是指围绕在细胞最外层,由脂质、蛋白质和糖类所组成的生物膜。
12. 生物膜(biological membrane)人们把生物膜和细胞内各种模性结构统称为生物膜。
13. 单位膜(unit membrane)生物膜在电镜下呈现出较为一致的3层结构,即电子致密度高的内、外两层之间夹着电子密度较低的中间层。
细胞生物学考试重点
细胞生物学考试重点一、名词解释:1、拟核:在细胞质内含有DNA区域,但无被膜包围,该区域一般称为拟核。
2、基因组:细胞或生物体的一套完整的单倍体遗传物质称为基因组,它是所有染色体上全部基因和基因间的DNA的总和。
3、复合糖:细胞中寡糖或多糖存在的主要形式有糖蛋白、蛋白聚糖、糖脂和脂多糖等,这些复合产物也成为复合糖。
4、被动扩散:转运是由高浓度向低浓度方向进行,所需要的能量来自高浓度本身所包含的势能,不需要细胞提供能量,故也称为被动扩散。
5、被动运输:多种载体蛋白和通道蛋白介导溶质穿膜转运时不消耗能量,称其为被动运输。
6、主动运输:细胞也需要逆电化学梯度转运一些溶质,这时不但需要运输蛋白的参与,还需要消耗能量,这种细胞膜利用代谢产生的能量来驱动物质的逆浓度梯度的转运称为主动运输。
7、内膜系统:是细胞之中那些在结构、功能及其发生上相互密切关联的膜性结构细胞器之总称。
主要包括:内质网、高尔基复合体、溶酶体、各种转运小泡以及核膜等功能结构。
还有过氧化物酶体。
8、细胞呼吸:在细胞内特定的细胞器(主要是线粒体)内,在O2的参与下,分解各种大分子物质,产生CO2;与此同时,分解代谢所释放的能量储存于ATP中,这一过程称为细胞呼吸。
9、网质蛋白:是普遍存在于内质网网腔中的一类蛋白质。
驻留信号可通过与内质网膜上相应受体的识别结合而驻留于内质网腔不被转运。
10、肌质网:在肌细胞中,十分发达的光面内质网特化为一种特殊的结构——肌质网。
11、核型:是指一个体细胞中的全部染色体,按其大小、形态特征顺序排列所构成的图像。
12、核型分析:将待测细胞的核型进行染色体数目、形态特征的分析,称为核型分析。
13、转录:是将遗传信息从DNA传递给RNA分子的过程,是细胞合成蛋白质所必需的重要环节。
14、基因:是DNA分子中含有特定遗传信息的核苷酸序列。
15、基因组:实质细胞或生物体的一套完整的单倍体遗传物质,是所有染色体上全部基因和基因间的DNA的总和,它含有一个生物体进行各种生命活动所需要的全部遗传信息。
细胞生物学名词解释(超全)
一、细胞概述1. 细胞(cell)细胞是由膜包围着含有细胞核(或拟核)的原生质所组成, 是生物体的结构和功能的基本单位, 也是生命活动的基本单位。
细胞能够通过分裂而增殖,是生物体个体发育和系统发育的基础。
细胞或是独立的作为生命单位, 或是多个细胞组成细胞群体或组织、或器官和机体;细胞还能够进行分裂和繁殖;细胞是遗传的基本单位,并具有遗传的全能性。
2. 细胞质(cell plasma)是细胞内除核以外的原生质, 即细胞中细胞核以外和细胞膜以内的原生质部分, 包括透明的粘液状的胞质溶胶及悬浮于其中的细胞器。
3. 原生质(protoplasm)生活细胞中所有的生活物质, 包括细胞核和细胞质。
4. 原生质体(potoplast)脱去细胞壁的细胞叫原生质体, 是一生物工程学的概念。
如植物细胞和细菌(或其它有细胞壁的细胞)通过酶解使细胞壁溶解而得到的具有质膜的原生质球状体。
动物细胞就相当于原生质体。
5. 细胞生物学(cell biology)细胞生物学是以细胞为研究对象, 从细胞的整体水平、亚显微水平、分子水平等三个层次,以动态的观点, 研究细胞和细胞器的结构和功能、细胞的生活史和各种生命活动规律的学科。
细胞生物学是现代生命科学的前沿分支学科之一,主要是从细胞的不同结构层次来研究细胞的生命活动的基本规律。
从生命结构层次看,细胞生物学位于分子生物学与发育生物学之间,同它们相互衔接,互相渗透。
6. 细胞学说(cell theory)细胞学说是1838~1839年间由德国的植物学家施莱登和动物学家施旺所提出,直到1858年才较完善。
它是关于生物有机体组成的学说,主要内容有:①细胞是有机体,一切动植物都是由单细胞发育而来,即生物是由细胞和细胞的产物所组成;②所有细胞在结构和组成上基本相似;③新细胞是由已存在的细胞分裂而来;④生物的疾病是因为其细胞机能失常。
7. 原生质理论(protoplasm theory)1861年由舒尔策(Max Schultze)提出, 认为有机体的组织单位是一小团原生质,这种物质在一般有机体中是相似的,并把细胞明确地定义为:“细胞是具有细胞核和细胞膜的活物质”。
医学细胞生物学_重点名词解释
第三章真核细胞的基本结构3.1细胞膜和细胞表面unit menmbrane单位膜细胞膜性结构在电镜下观察呈现出较为一致的3层结构,即电子致密度高的内外两层之间夹着电子致密度较低的中间层,称为单位膜。
fluid mosaic model流动镶嵌模型该模型认为细胞膜由流动的脂双层和嵌在其中的蛋白质组成,具有液晶态特性。
磷脂分子以疏水性尾部相对,极性头部朝向水相组成膜骨架;脂双层构成膜的连续主体,既具有晶体分子排列的有序性,又具有液体的流动性;球形蛋白质分子以各种形式与脂质双分子层结合。
糖类附在膜外表面。
强调细胞膜的流动性和不对称性。
Cell surface细胞表面人们把细胞膜、细胞外被、细胞膜内面的胞质溶胶、各种细胞连接结构和细胞膜的一些特化结构统称为细胞表面。
fluidity细胞膜的流动性是指膜脂和膜蛋白处于不断运动的状态。
这是生物膜的基本特征之一。
cell coat细胞外被细胞膜上的糖蛋白和糖脂上所有糖类都位于膜的外表面。
在大多数真核细胞膜的表面,富糖类的周缘区常被称为细胞外被或糖萼。
细胞外被中的寡糖和多糖能吸附水分,形成黏性表面,可以保护细胞表面免受机械损伤和化学损伤;而且细胞外被在细胞与细胞间的识别和黏附方面也有重要作用。
cell junction 细胞连接多细胞生物的已经丧失了某些独立性,为了促进细胞间的相互联系,相邻细胞膜接触区域特化形成一定的连接结构,称为细胞连接,其作用是加强细胞间的机械联系,维持组织结构的完整性,协调细胞间的功能活动。
分为闭锁连接、锚定连接、通讯连接。
amphipathic molecule双亲媒性分子:既亲水又疏水的分子叫做双亲媒性分子。
比如磷脂,头部为由磷酸和碱基组成的磷脂酰碱基,极性很强,有亲水性;尾部是两条非极性的脂肪酸链,有疏水性。
liposome脂质体:为了进一步减少双分子层两端疏水尾部与水接触的机会,脂质分子在水中排列成双分子后形成一种自我封闭的双层球型结构。
医学细胞生物学_重点名词解释
unit menmbrane单位膜细胞膜性结构在电镜下观察呈现出较为一致的3层结构,即电子致密度高的内外两层之间夹着电子致密度较低的中间层,称为单位膜。
fluid mosaic model流动镶嵌模型该模型认为细胞膜由流动的脂双层和嵌在其中的蛋白质组成,具有液晶态特性。
磷脂分子以疏水性尾部相对,极性头部朝向水相组成膜骨架;脂双层构成膜的连续主体,既具有晶体分子排列的有序性,又具有液体的流动性;球形蛋白质分子以各种形式与脂质双分子层结合。
糖类附在膜外表面。
强调细胞膜的流动性和不对称性。
Cell surfac e细胞表面人们把细胞膜、细胞外被、细胞膜内面的胞质溶胶、各种细胞连接结构和细胞膜的一些特化结构统称为细胞表面。
fluidity细胞膜的流动性是指膜脂和膜蛋白处于不断运动的状态。
这是生物膜的基本特征之一。
cell c oat细胞外被细胞膜上的糖蛋白和糖脂上所有糖类都位于膜的外表面。
在大多数真核细胞膜的表面,富糖类的周缘区常被称为细胞外被或糖萼。
细胞外被中的寡糖和多糖能吸附水分,形成黏性表面,可以保护细胞表面免受机械损伤和化学损伤;而且细胞外被在细胞与细胞间的识别和黏附方面也有重要作用。
cell junction 细胞连接多细胞生物的已经丧失了某些独立性,为了促进细胞间的相互联系,相邻细胞膜接触区域特化形成一定的连接结构,称为细胞连接,其作用是加强细胞间的机械联系,维持组织结构的完整性,协调细胞间的功能活动。
分为闭锁连接、锚定连接、通讯连接。
amphipathic mole cule双亲媒性分子:既亲水又疏水的分子叫做双亲媒性分子。
比如磷脂,头部为由磷酸和碱基组成的磷脂酰碱基,极性很强,有亲水性;尾部是两条非极性的脂肪酸链,有疏水性。
liposome脂质体:为了进一步减少双分子层两端疏水尾部与水接触的机会,脂质分子在水中排列成双分子后形成一种自我封闭的双层球型结构。
Endomembrane内膜系统位于细胞之中的膜性结构将细胞内部区域化,形成执行不同功能的膜性细胞器,如内质网、GC、溶酶体、过氧化物酶体以及小泡和液泡等,统称为内膜系统。
细胞生物学名词解释(精华版)必过
1、cell biology(细胞生物):从细胞整体水平、亚显微结构水平和分子水平三个层面来研究细胞的结构及其生命活动规律的科学。
2、细胞内膜(Intracellular Membranes):真核细胞内所有细胞器的界膜的统称。
5、跨膜蛋白(transmembrane protein):膜内在蛋白贯穿整个脂双层,两端暴露于膜的内外表面,这种类型的膜蛋白称为跨膜蛋白。
6、单位膜(unit membrne):生物膜在透射电镜下呈现“两暗夹一明”的三层结构,内外两个电子致密的“暗”层中间夹着电子低的亮层,总厚度约7nm,称为单位膜。
7、流动镶嵌模型(fluid mosaic model):生物膜分子结构的一种模型,该模型认为流动的脂双分子层构成膜的连续主体,蛋白质分子以不同程度镶嵌于脂质双层中。
强调了膜的流动性和不对称性。
8、锚定蛋白(Lipid anchored protein):位于膜的两侧,以共价键与脂双层分子结合;只能用去垢剂分离11、简单扩散(simple diffusion):某些小分子物质直接溶于膜脂双层,由高浓度向低浓度跨膜转运,又称被动扩散。
不需要膜蛋白协助,不需要细胞提供能量。
12、易化扩散(facilitated diffusion):各种极性分子和无机离子,如葡萄糖、氨基酸、核苷酸以及细胞代谢物等通过膜转运蛋白顺浓度梯度或电化学梯度降低方向的跨膜转运过程称为易化扩散。
13、被动运输(passive transport):包括简单扩散和易化扩散,物质顺浓度梯度或电化学梯度降低方向的跨膜转运,不需要耗能。
17、胞吞作用(Endocytosis):又称入胞作用,是通过质膜的变形运动将细胞外物质转入细胞内的过程。
不能透过细胞膜的大分子物质转运到细胞内部的运输方式20、细胞连接(cell junction):细胞与细胞间或细胞与细胞外基质间紧密接触而特化形成的连接结构。
包括封闭连接、锚定连接以及通讯连接。
细胞生物学名词解释
医学细胞生物学重点名次解释1. 电子传递链(呼吸链):在内膜上有序地排列成相互关联的链状的传递H、电子的酶体系。
2. 氧化磷酸化:指生物氧化过程中所释放能量的转移过程与ADP的磷酸化过程结合起来,而将生物氧化过程中释放出来的能量转移到ATP的高能磷酸键中,又称为氧化磷酸化偶联。
3. 核孔复合体:是内外核膜融合产生的圆环状结构,由多个蛋白质颗粒以特定方式排列而成的蛋白分子复合物,称为核孔复合体。
包括胞质环,核质环,辐,中央栓和若干纤维。
其主要功能是介导细胞核与细胞质间的物质交换。
4. 核纤层:位于内层核膜内侧,由三种核纤维蛋白形成的立体纤维网络状结构,核纤维蛋白属中间纤维蛋白。
核纤层通过蛋白质嵌入到内层核膜,与中间纤维、核骨架相连。
作用是为核膜及染色质提供了结构支架,参与核膜的解体和重建,维持核孔位置,参与染色质和核的组装。
5. 核骨架:又称核基质,是指真核细胞间期核中除核膜、染色体和核仁以外的部分,是一个以非组蛋白为主构成的纤维网架结构,其化学组成多数为非组蛋白性的纤维蛋白,但含有少量RNA。
作用是为DNA复制提供支架,参与基因转录过程,参与染色体和核膜的构建,参与病毒复制。
6. 核小体:是染色体的基本结构单位,由核心颗粒与DNA连续纤维组成的圆盘状颗粒,被称为染色质组装的一级结构。
核小体串珠的形成使DNA分子压缩了7倍。
7. 螺线管:是染色体组装的二级结构,由核小体串珠结构盘旋而成的中空结构,螺线管的形成使核小体串珠结构压缩了约6倍。
8. 端粒:是染色体末端的特化部位,由富含鸟嘌呤核苷酸(G)的端粒DNA和蛋白质构成。
端粒的生物学作用在于维持染色体的稳定性与完整性,参与染色体在核内的空间排布及同源染色体的正确配对。
9. 有丝分裂:也称间接分裂,是高等真核生物细胞分裂的主要方式。
分裂过程中出现染色体,纺锤丝,纺锤体,有DNA复制,形成专门执行有丝分裂功能的暂时性细胞结构——有丝分裂器。
分裂结束后子细胞和母细胞具有相同的遗传物质。
细胞生物学名词解释(完整版)
细胞生物学名词解释1.生物大分子(biological macromolecules):细胞中大部分物质是由生物大分子组成。
细胞内主要生物大分子包括多糖、脂质、蛋白质和核酸等,分子结构复杂,在细胞内格子执行独特的生理功能,从而导致生物形态与行为的多样化。
2.肽键(peptide bond):蛋白质的基本组成单位是肽键。
蛋白质中一个氨基酸分子上的α氨基与另一个氨基酸分子上的α羧基脱水后形成的酰胺键,称为肽键,肽键属共价键。
3.常染色质(euchromatin):间期核内,一条染色体上的染色质并不是处于完全相同的包装状态,其中相对伸展的形式就是常染色质,它是异染色质之间的浅染区域,由30nm纤维和袢环两个结构层次组成。
4.异染色质(heterochromatin):(在间期细胞核染色质的形态是聚集成簇或团块的高电子密度颗粒以及夹杂其间的浅染区域,这些高电子密度的颗粒团块为异染色质)间期核内,一条染色体上的染色质并不是处于完全相同的包装状态,其中最紧缩的形式就是异染色质。
主要分布于内层核膜下面和核仁周围,并分散于核内各处。
大部分折叠成异染色质的DNA不含有基因,约只有10%基因组包装在其内。
被包装的基因通常不能表达。
对端粒和着丝粒的维持很重要。
(异染色质为高度卷曲紧缩的染色质,大部分为不含有基因的DNA,或所含的基因不进行转录,而常染色质为松解伸展的DNA部分,正在进行活跃的基因转录活动。
)5.组蛋白(histon):是含量最高的一种染色体蛋白质,(其总量相当于DNA的量,分子量较小)含大量带正电的精氨酸和赖氨酸。
可分为:H1、H2A、H2B、H3、H4。
五种组蛋白因其在染色质上的位置不同可分为两大组:核小体组蛋白(包括H2A、H2B、H3、H4)和H1组蛋白。
核小体组蛋白的作用是将DNA分子盘绕城核小体,H1组蛋白不参与核小体的组建,而是负责把核小体包装成更高一级的结构(在某些种属中可以没有H1)。
细胞生物学名词解释大全
细胞生物学名词解释大全以下是一些细胞生物学中的常见名词解释:1. 细胞:生物体基本和重要的结构单位和功能单位,由细胞膜、细胞质、细胞核等组成。
2. 细胞膜:细胞的外层薄膜,负责细胞内外物质的交换和信号传递。
3. 细胞质:细胞内部的胶状物质,包含细胞器、染色体、核糖体等。
4. 细胞核:细胞的中央部分,包含DNA和染色质,控制细胞的遗传和代谢活动。
5. 染色体:细胞核中的遗传物质,由DNA和蛋白质组成。
6. DNA:双链螺旋形的遗传物质,包含细胞分裂和遗传信息传递所需的基因和序列。
7. RNA:单链螺旋形的分子,负责将DNA的遗传信息传递给蛋白质合成系统。
8. 转录:将DNA的遗传信息通过RNA分子传递给蛋白质合成系统的过程。
9. 翻译:将RNA的遗传信息通过氨基酸合成蛋白质的过程。
10. 蛋白质:细胞中最重要的分子之一,由氨基酸组成,负责细胞内外信号的传递和细胞的代谢和修复。
11. 酶:由蛋白质组成的生物催化剂,负责加速细胞内的化学反应。
12. 细胞器:细胞内的亚结构,包括线粒体、内质网、高尔基体等,负责特定的生物化学反应和功能。
13. 线粒体:细胞内的能量工厂,负责产生细胞所需的ATP能量。
14. 内质网:细胞内的蛋白质合成和加工系统,负责蛋白质的折叠和运输。
15. 高尔基体:细胞内的物质运输和分泌系统,负责将蛋白质和其他物质包装成小囊泡并发送到细胞膜外。
16. 微管和微丝:细胞骨架的主要组成部分,微管是中空的管状结构,微丝是纤维状结构,它们在细胞运动和形态维持中起重要作用。
17. 溶酶体:细胞内的消化系统,包含多种酶,负责分解衰老和损伤的细胞器和蛋白质。
18. 膜蛋白:细胞膜上的蛋白质,负责物质跨膜运输和信号传递。
19. 细胞周期:细胞分裂和繁殖的过程,包括G1期、S期、G2期和M期等四个阶段。
20. 有丝分裂:细胞分裂的一种形式,其中染色体和核膜在细胞分裂期间复制和分离。
21. 无丝分裂:细胞分裂的一种形式,其中染色体不复制,但细胞核在分裂期间分裂成两个新的细胞核。
《细胞生物学》名词解释
《细胞生物学》名词解释第二章细胞的统一性和多样性1.原核生物:由原核细胞构成的有机体。
2.细胞体积守恒定律:器官的大小与细胞的数量有关,与细胞的数量成正比,与细胞的大小无关。
3.古细菌:一些长在极端环境中的细菌。
4.光学片层:蓝细菌中位于细胞质部分的同心环样的膜片层结构。
5.真核生物:由真核细胞构成的有机体。
6.细胞表面:细胞膜及其相关结构。
7.细胞骨架系统:由一系列特异的结构蛋白组装而成的网架系统,包括细胞质骨架和细胞核骨架。
第四章细胞质膜1.细胞质膜:围绕在细胞最外层,由脂质和蛋白质组成的生物膜。
2.生物膜:细胞内膜系统和质膜的统称。
3.脂质体:根据磷脂分子在水相中形成稳定的脂双层膜的趋势而制备的一种人工膜。
4.去垢剂:一段亲水另一端疏水的两性分子,是分离与研究膜蛋白的常用试剂。
5.成斑现象:在某些细胞中,当荧光抗体标记时间继续延长,均匀分布在细胞表面的标记荧光会重新分布,聚集于细胞表面的某些部位。
6.成帽现象:在某些细胞中,当荧光抗体标记时间继续延长,均匀分布在细胞表面的标记荧光会重新分布,聚集于细胞表面的某些部位,进而聚集于细胞的一端。
7.相变温度:膜脂由液态转变为晶态的温度。
8.膜的不对称性:细胞膜中各种成分分布不均匀,包括数量和种类的不均匀。
9.脂筏:一种相对稳定、分子排列紧密、流动性低的膜脂微区结构。
10.膜骨架:一种在细胞膜下与膜蛋白相连的,由纤维蛋白组成的网架结构。
第五章物质的跨膜运输1.载体蛋白:存在于细胞膜上的一种具有特异性传导功能的蛋白质,它能与特定的溶质结合,通过构型的改变介导分子的跨膜运输。
2.通道蛋白:存在于细胞膜上的一种跨膜亲水性离子通道,允许特定的离子顺浓度梯度通过。
3.被动运输:通过简单扩散或协助扩散实现物质由高浓度到低浓度方向的跨膜转运。
4.协助扩散:各种极性分子以及金属离子如氨基酸、糖、核苷酸,以及细胞代谢产物等借助协助蛋白顺浓度梯度或电化学梯度,无需细胞提供能量的进行跨膜转运的一种运输方式。
细胞生物学知识点整理
细胞生物学知识点整理 LELE was finally revised on the morning of December 16, 2020一、名词解释细胞生物学:研究细胞基本生命活动规律的科学,它从不同层次(显微、亚显微和分子水平)上研究细胞结构与功能,细胞增殖、分化、衰老与凋亡,细胞信号转导,细胞基因表达与调控,细胞起源与分化等。
细胞分化:其本质是细胞内基因选择性表达功能蛋白质的过程。
细胞质膜(plasma membrane):又称细胞膜,指围绕在细胞最外层,由脂质和蛋白质组成的生物膜。
内膜:形成各种细胞器的膜。
生物膜(biomembrane):质膜和内膜的总称。
细胞外被:也叫糖萼,由质膜表面寡糖链形成。
膜骨架:质膜下起支撑作用的网络结构。
细胞表面:由细胞外被、质膜和表层胞质溶胶构成。
脂筏模型(lipid rafts model) :即在生物膜上胆固醇等富集而形成有序脂相,如同脂筏一样载着各种蛋白。
脂筏是质膜上富含胆固醇和鞘磷脂的微结构域。
被动运输指通过简单扩散或协助扩散实现物质由高浓度到低浓度方向的跨膜运输。
水孔蛋白(aquporins;AQPs):或称水分子通道,是一类具有选择性、高效转运水分的膜通道蛋白。
不具有“水泵”功能,通过减小水分跨膜运动的阻力而使细胞间的水分迁移速度加快。
协助扩散:也称促进扩散(facilitated diffusion):各种极性分子和无机离子顺着浓度梯度或电化学梯度的跨膜运输。
通道蛋白:跨膜亲水性通道,允许特定离子顺浓度梯度通过,又称离子通道。
配体门通道:受体与细胞外的配体结合,引起通道构象改变,“门”打开,又称离子通道型受体。
协同运输:靠间接提供能量完成主动运输,所需能量来自膜两侧离子的浓度梯度。
动物细胞中常常利用膜两侧Na+浓度梯度来驱动。
植物细胞和细菌常利用H+浓度梯度来驱动。
分为:同向协同和反向协同。
膜泡运输:真核细胞通过胞吞作用(endocytosis)和胞吐作用(exocytosis)完成大分子与颗粒性物质的跨膜运输。
细胞生物学重点名词解释
细胞通讯(cell communication)(p156)一个信号产生细胞发出的信息通过介质传递到另一个细胞并和靶细胞相应的受体相互作用,然后通过细胞信号转导产生靶细胞内一系列生理生化变化,最终表现为细胞整体的生物学效应的过程。
信号转导(signal transduction)是细胞通讯的基本概念, 强调信号的接收和接收后信号转换的方式(途径)和结果, 包括配体和受体结合、第二信使的产生及其后的级联反应等, 即信号的识别、转移和转换。
信号转导(signal transduction) 强调信号的接受和放大③信号分子和靶细胞表面受体特异性结合并激活受体;④活化受体启动靶细胞内一种或多种信号转导途径;⑤细胞内信号作用于效应分子,进行逐步放大的级联反应,引起效应。
⑥信号的解除,细胞反应终止。
受体(receptor)(p158)一种能够识别和选择性结合某种配体(信号分子)的大分子,多为糖蛋白,至少包括两个功能区域:配体结合区域和产生效应的区域。
根据存在部位分为:①细胞内受体(intercellular receptor)离子通道耦联受体②细胞表面受体 G蛋白耦联受体(GPCR)(cell-surface receptor) 酶联受体G蛋白G蛋白是细胞内信号传导途径中起着重要作用的三聚体GTP结合调节蛋白的简称,位于质膜胞浆一侧,由α,β,γ三个不同亚基组成。
细胞质膜:围绕在细胞最外层,由脂质、蛋白质和糖类组成的生物膜生物膜(biomembrane):细胞内的膜系统和细胞质膜统称为生物膜单位膜(unit membrane)生物膜内外两侧为电子密度高的暗线,约为2nm,中间位电子密度低的明线,约为3.5nm,总厚度为7.5 nm,这种“暗-明-暗”的结构。
流动镶嵌模型生物膜的流动镶嵌模型是一种生物膜结构的模型,它认为生物膜是磷脂以疏水作用形成的双分子层为骨架,磷脂分子是流动性的,可以发生侧移、翻转等。
蛋白质分子镶嵌于双分子层的骨架中,可能全部埋藏或者部分埋藏,埋藏的部分是疏水的,同样,蛋白质分子也可以在膜上自由移动。
医学细胞生物学名词解释重点
1、医学细胞生物学:从细胞角度研究生命的发生与分化、发育与生长、遗传与变异、健康与疾病、衰老与死亡等基本生物学现象。
以细胞生物学的原理与方法来研究人体细胞的结构、功能和生命活动规律以及同疾病发生关系的原理2、单位膜:生物膜在电镜下“两暗夹一明”的三层结构3、被动运输:物质顺浓度或电化学梯度的跨膜运输,不需要消耗细胞代谢能量,主要方式有简单扩散、离子通道扩散、易化扩散4、主动运输:物质逆浓度或电化学梯度的跨膜运输,需要膜特异性载体蛋白的介导,需要消耗能量。
5、简单扩散:小分子物质通过膜由高浓度侧向低浓度侧扩散的现象,不消耗细胞代谢能,不需要膜蛋白的协助,运输速度取决于分子的大小和脂溶性,且与溶质浓度差成正比。
6、易化扩散:在特异性载体蛋白的介导下,各种极性分子和无机离子顺电化学梯度的跨膜转运,不消耗细胞的代谢能,属于被动运输,具有选择性、特异性、饱和性。
存在最大的转运速度,可被竞争性抑制剂阻断,也可以被非竞争性抑制剂破坏。
7、离子通道扩散:介导被动运输,对被转运的离子具有高度的选择性,多数不持续开放,受“闸门”控制。
8、协同运输:是一类由Na+-K+泵与载体蛋白协同作用,间接消耗A TP所完成的主动运输9、胞吞作用:质膜内陷,包围细胞外物质形成胞吞泡,脱离质膜进入细胞内的过程。
可分为吞噬作用、胞饮作用、受体介导的内吞作用10胞吐作用:又称外排作用或入胞作用。
指细胞将合成的外输性物质和代谢废物,通过囊泡转运至细胞膜,与质膜融合后将物质排出细胞外的过程。
11 吞噬作用:细胞膜凹陷或形成伪足,摄入直径大于250nm的颗粒物质的过程,形成的小囊泡称吞噬体或吞噬泡。
12 吞饮作用:细胞膜凹陷,非特异性摄入溶质或液体的过程,形成的小囊泡称吞噬体或吞噬泡13 受体介导的内吞作用:细胞通过受体的介导摄取细胞外特异性蛋白质或其他化合物的过程,为细胞提供了可选择性、高效地摄取细胞外大分子物质的方式。
14 结构性分泌途径:一些外分泌性物质在内质网合成后,立即转运到高尓基复合体,经修饰、浓缩、分选后,装入分泌囊泡,转运至细胞膜,与质膜融合后将分泌物排出细胞外的过程。
细胞生物学的名词解释
细胞生物学的名词解释细胞生物学是研究细胞结构、功能和生物过程的科学领域。
下面是对细胞生物学中一些重要的名词的解释:1. 细胞膜(Cell Membrane):细胞膜是包裹着细胞的薄层膜,由双层脂质和蛋白质组成,起到保护细胞内环境、控制物质的进出和细胞间通讯的作用。
2. 细胞核(Cell Nucleus):细胞核是细胞中一个重要的结构,含有细胞遗传信息的DNA和指导蛋白质合成的RNA。
细胞核扮演着维持遗传信息的稳定和调控基因表达的重要角色。
3. 基因(Gene):基因是存在于细胞核中的DNA段,携带特定遗传信息,指导蛋白质的合成。
基因控制了细胞的结构和功能,是生物遗传信息的基本单位。
4. RNA(Ribonucleic Acid):RNA是一类核酸分子,作为DNA的一种转录产物,在细胞中参与蛋白质合成的过程。
RNA担任信息传导和调控基因表达的重要角色。
5. 蛋白质(Protein):蛋白质是由氨基酸构成的生物高分子,是生物体内最基本的功能分子。
细胞内的大部分生物化学反应都依赖蛋白质的催化作用,蛋白质还参与细胞结构构建、信号传导、免疫系统的功能等。
6. 染色体(Chromosome):染色体是存在于细胞核内的DNA结构,它们携带着细胞的全部遗传信息。
人类细胞核内有46条染色体,其中23条来自父母。
7. 基因表达(Gene Expression):基因表达是指从DNA到蛋白质的信息转换过程。
包括基因的转录(产生RNA)、剪接(处理RNA前体)、翻译(合成蛋白质)等步骤。
8. 组织(Tissue):组织是一种由具有相似形态和功能的细胞构成的生物体结构。
不同类型的组织(如肌肉组织、神经组织)具有不同的细胞构成和生理功能。
9. 细胞凋亡(Apoptosis):细胞凋亡是一种计划性的细胞自死过程。
细胞凋亡对于维持组织的内稳态、清除受损细胞和调节发育等都起着重要作用。
10. 代谢(Metabolism):代谢是指细胞中所有化学反应的总和。
细胞生物学名词解释
细胞生物学名词解释称为质膜。
其基本作用是保持细胞有相对独立和稳定的内环境,控制细胞内外物质、信息、能量的出入,同时还参与细胞的运动。
DNA复制和RNA转录的场所,对细胞代谢、生长、分化及繁殖具有重要的调控作用,是细胞生命活动的调控中心。
内膜系统、细胞骨架和包容物组成,是生命活动的主要场所。
复合体、线粒体、细胞核、溶酶体和过氧物酶体等)等。
层之间夹着厚约3.5nm的电子致密度较低的中间层。
自发地以特殊方式排列起来——分子与分子相互聚拢,亲水头部暴露于水,疏水尾部则藏在内部。
这样的排列可以形成2中构造:球形的分子团和双分子层。
在细胞膜的双分子层中,2层分子的疏水尾部被亲水头部夹在中间。
可能是双亲媒性分子,可不同程度地嵌入脂双层分子中,其与膜的结合非常紧密。
或跨膜蛋白膜区域的蛋白。
外周蛋白是水溶性的,可用离子溶液分离提取。
其内部,或横跨整个脂双层;糖类附在膜外表面。
细胞膜具有液晶态特性。
流动性较差,如同漂浮在脂质双分子层上的“脂筏”一样。
脂筏中含有各种各样执行某些特定生物学功能的膜蛋白。
胞质内部区域。
普遍存在于动植物细胞中,位置不局限于内质,也可以是分布在整个细胞质中。
依靠核糖体连接蛋白与核糖体的大亚基相连。
与蛋白质合成修饰加工与转运有关。
功能的结构,在一些特化的细胞中含量比较丰富。
18.微粒体(microsome):密度梯度离心后内质网断裂而形成。
仍保留内质网的基本特性,的囊泡系统,由小泡、扁平囊、大泡三种基本形态组成。
源性物质,被称为细胞内的消化器官。
多种氧化酶,是细胞内糖、脂和氮的重要代谢部位。
囊中,并使扁平囊的膜结构和内容物不断地得到补充。
呈小球状膨大而成的,带有扁平囊的分泌物质离去,在其中分泌物继续浓缩。
的结果,它将核物质围于一个相对稳定的环境,成为相对独立的系统。
电镜下,核膜包括内、外两层膜,核周间隙,核孔复合体和核纤层。
低的一侧,它不消耗细胞代谢的能量。
定的浓度差即可发生这种运输。
孔的表面,小孔持续开放。
细胞生物学重要的名词解释
细胞生物学重要的名词解释细胞生物学是研究细胞结构、功能以及生长、繁殖和变化规律的科学领域。
在细胞生物学中,有许多重要的名词,这些名词涉及到细胞的组成、机制和功能等方面的知识。
本文将从不同的角度解释一些细胞生物学中的重要名词,希望能够帮助读者更好地理解和应用细胞生物学知识。
一、细胞膜(Cell Membrane)细胞膜是细胞与外界环境之间的重要隔离屏障,它由脂质双层构成,具有选择透性,能够控制物质的进出。
细胞膜除了保护和维持细胞内稳定环境外,还参与细胞间的相互作用及信息传递。
在细胞膜上有很多不同类型的蛋白质,它们承担信号传递、物质运输和细胞附着等功能,使细胞膜具有了更多的生物学功能。
二、细胞核(Cell Nucleus)细胞核是细胞中最重要的器官之一,它包含了细胞的遗传物质——DNA。
细胞核内的DNA分为染色质和核仁两种形式。
染色质包含了细胞的遗传信息,核仁则参与蛋白质的合成。
细胞核还通过核孔与细胞质相连,使遗传物质能够传递到细胞质内,并控制细胞的生长、分化和繁殖等重要过程。
三、线粒体(Mitochondria)线粒体是细胞中能量的主要生产场所,也被称为“细胞的动力站”。
线粒体分为内膜和外膜两部分,内膜上有很多折叠的嵴(Cristae),这些嵴上富含能产生ATP 的酶,通过氧化还原反应将葡萄糖等有机物氧化成二氧化碳和水,同时释放出大量的能量。
线粒体还参与脂类和某些氨基酸的合成,以及调节细胞的凋亡等重要功能。
四、内质网(Endoplasmic Reticulum)内质网是细胞质内一种被平面膜片所围成的连续腔道系统,可分为粗面内质网和滑面内质网。
粗面内质网上有许多颗粒状的核糖体,参与蛋白质的合成;滑面内质网则主要参与脂类和部分蛋白质的合成。
内质网还参与细胞质内物质的转运和质膜的合成,对于维持细胞内平衡和调控细胞的代谢活动具有重要作用。
五、高尔基体(Golgi Apparatus)高尔基体是细胞中的一个复合体结构,由一系列的扁平囊泡组成。
细胞生物学名词解释
1.免疫荧光技术:(检测膜脂及膜蛋白运动速率)将待测细胞用荧光物质标记,借助高强度脉冲式激光造成某区域荧光分子的光淬灭;通过显微镜探测该区域周围的非淬灭荧光分子向受照射区域扩散的速率。
2.细胞工程:指应用细胞生物学和分子生物学的方法,通过某种工程学手段,在细胞整体水平或细胞器水平上,按照人们的意愿来改变细胞内的遗传物质或获得细胞产品的一门综合技术科学。
3.原位杂交:在不破坏细胞或细胞器的情况下,用核酸探针检测特定核苷酸序列在染色体上的精确位置的技术。
染色体在高pH值条件下,DNA解链,带标记的核酸探针即刻与染色体一定部位杂交。
既可检测DNA序列,也可检测RNA序列。
4.再生:生物成体丢失的组织或器官重新生长和修复的过程。
5.脂质体:根据磷脂分子可在水相中形成稳定的脂双层膜的趋势而制备的人工膜。
6.微粒体:应用蔗糖密度梯度离心法从组织匀浆中分离出的由内质网膜等膜性碎片断裂形成的封闭小泡,有糙面微粒体和滑面微粒体。
7.主动运输:由载体蛋白介导的,逆电化学梯度或浓度梯度的跨膜转运方式。
8.协同运输:是一类靠间接提供能量完成的主动运输方式9.初级溶酶体:直径约0.2~0.5um,膜厚7.5nm,内含物均一,无明显颗粒。
含有多种水解酶,无反应底物。
10.次级溶酶体:正在进行或完成消化作用的溶酶体,内含水解酶和相应的底物,可分为自噬溶酶体和异噬溶酶体,前者消化的物质来自细胞本身的各种组分,后者消化的物质来自外源。
11.残余小体:次级溶酶体内的消化吸收作用到饲喂了最后阶段,酶的活力消失,此时溶酶体中只含有一些带有不能再消化分解的底物残渣,故称为残余小体12.多线染色体:一种缆状的巨大染色体,见于某些生物生命周期的某些阶段里的某些细胞中。
由核内有丝分裂产生的多股染色单体平行排列而成。
13.灯刷染色体:是卵母细胞进行第一次减数分裂时停留在双线期的染色体。
它是一个二价体, 含4条染色单体, 由轴和侧丝组成, 形似灯刷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
细胞通讯(cell communication)(p156)一个信号产生细胞发出的信息通过介质传递到另一个细胞并与靶细胞相应的受体相互作用,然后通过细胞信号转导产生靶细胞内一系列生理生化变化,最终表现为细胞整体的生物学效应的过程。
信号转导(signal transduction)是细胞通讯的基本概念, 强调信号的接收与接收后信号转换的方式(途径)和结果, 包括配体与受体结合、第二信使的产生及其后的级联反应等, 即信号的识别、转移与转换。
信号转导(signal transduction) 强调信号的接受与放大③信号分子与靶细胞表面受体特异性结合并激活受体;④活化受体启动靶细胞内一种或多种信号转导途径;⑤细胞内信号作用于效应分子,进行逐步放大的级联反应,引起效应。
⑥信号的解除,细胞反应终止。
受体(receptor)(p158)一种能够识别和选择性结合某种配体(信号分子)的大分子,多为糖蛋白,至少包括两个功能区域:配体结合区域和产生效应的区域。
根据存在部位分为:①细胞内受体(intercellular receptor)离子通道耦联受体②细胞表面受体 G蛋白耦联受体(GPCR)(cell-surface receptor) 酶联受体G蛋白G蛋白是细胞内信号传导途径中起着重要作用的三聚体GTP结合调节蛋白的简称,位于质膜胞浆一侧,由α,β,γ三个不同亚基组成。
细胞质膜:围绕在细胞最外层,由脂质、蛋白质和糖类组成的生物膜生物膜(biomembrane):细胞内的膜系统与细胞质膜统称为生物膜单位膜(unit membrane)生物膜内外两侧为电子密度高的暗线,约为2nm,中间位电子密度低的明线,约为3.5nm,总厚度为7.5 nm,这种“暗-明-暗”的结构。
流动镶嵌模型生物膜的流动镶嵌模型是一种生物膜结构的模型,它认为生物膜是磷脂以疏水作用形成的双分子层为骨架,磷脂分子是流动性的,可以发生侧移、翻转等。
蛋白质分子镶嵌于双分子层的骨架中,可能全部埋藏或者部分埋藏,埋藏的部分是疏水的,同样,蛋白质分子也可以在膜上自由移动。
因此称为流动镶嵌模型。
膜脂存在于质膜及细胞内膜的脂质。
主要是甘油磷脂、固醇和少量的鞘脂。
膜蛋白则镶嵌在膜脂中。
所有的膜脂(membrane lipids)都具有双亲媒性(amphipathic),即这些分子都有一个亲水末端(极性端)和一个疏水末端(非极性端)。
这种性质使生物膜具有屏障作用,大多数水溶性物质不能自由通过,只允许亲脂性物质通过。
内在膜蛋白(又称integral protein 整合蛋白)、跨膜蛋白(transmembrane protein) 部分或全部镶嵌在细胞膜中或内外两侧,以非极性氨基酸与脂双分子层的非极性疏水区相互作用而结合在质膜上。
受体病(receptor disease)细胞膜受体数量的增减和结构的缺陷以及其特异性、结合力等出现异常引起的疾病细胞质基质在真核细胞的细胞质中,除去可分辨的细胞器以外的胶状物质,占据细胞膜内、细胞核外的细胞空间,称为细胞质基质内膜系统(p112)在结构、功能、乃至发生上相互关联,由单层膜包被的细胞器或细胞结构。
主要包括内质网、高尔基体、溶酶体、胞内体和分泌泡等。
N-连接糖基化( N- linked glycosylation)在ER和Golgi中,由酶催化将寡糖链连接到蛋白质天冬酰胺氮原子上的糖基化形式。
直接结合的糖是O-连接糖基化( O- linked glycosylation)在高尔基体中,糖基化发生在靶蛋白丝氨酸、苏氨酸、羟赖氨酸、羟脯氨酸残基上。
直接结合的糖是分子“伴侣” (molecular chaperones )细胞中的某些蛋白质分子可以识别正在合成的多肽或部分折叠的多肽并与多肽的某些部位相结合,从而帮助这些多肽转运、折叠或装配,这一类分子本身并不参与最终产物的形成。
如Bip是属于Hsp70的分子伴侣。
M6P (甘露糖-6-磷酸)分选途径1、M6P分选信号的形成①N-乙酰葡糖胺磷酸转移酶:顺面膜囊中,使甘露糖残基磷酸化②磷酸葡糖苷酶:在中间膜囊中,去掉GlcNAc,暴露磷酸基团,形成M6P标志。
溶酶体储积症(lysosomal storage diseases) (P135)为先天性溶酶体病,都是由于先天性缺乏某种溶酶体酶以致相应底物不能被消化,这些物质储积在溶酶体内,造成代谢障碍,是一种代谢性疾病I细胞病由于N-乙酰葡糖胺磷酸转移酶单基因的缺损,不能形成M6P信号,致使异常转运不能进入溶酶体而分泌进入血液,结果底物在溶酶体内蓄积形成很大的包含体信号肽(signal peptide)位于新合成肽链的N端,一般16~30个氨基酸残基,含有6-15个连续排列的带正电荷的非极性氨基酸,由于信号肽又是引导肽链进入内质网腔的一段序列,又称开始转移序列(start transfer sequence);共翻译转运(co-translational translocation) (p139)分泌蛋白在信号肽引导下边翻译边跨膜转运的过程。
后翻译转运(post-translational translocation)(p140)蛋白质在细胞质基质合成以后在导肽的指导下转运到线粒体、叶绿体和过氧化物酶体的过程。
参见后半部分整理染色质的概念(常染色质和异染色质,结构异染色质和兼性异染色质)基因组和C值矛盾细胞周期调控的基本概念:(PCC MPF 细胞周期蛋白cyclin CDK CKI 泛素-蛋白水解酶复合物系统)癌基因和抑癌基因1、双信使系统:胞外信号分子与细胞表面G蛋白偶联的受体结合后,激活质膜上的磷脂酶C(PLC),使质膜上的二磷酸磷脂酰肌醇分解成三磷酸肌醇(IP3)和二酰基甘油(DG)两个第二信使,将胞外信号转导为胞内信号,两个第二信使分别激动两个信号传递途径即IP3—Ca+和DG—PKC途径,实现对胞外信号的应答,因此将这一信号系统称为“双信使系统”。
2、ABC超家族(ABC superfamily)ABC超家族是一类ATP驱动的膜转运蛋白,利用ATP 水解释放的能量将多肽及多种小分子物质进行跨膜转运。
3、第二信使:第一信使分子(激素或其他配体)与细胞表面受体结合后,在细胞内产生或释放到细胞内的小分子物质,如cAMP, IP3, Ca2+等,有助于信号向胞内进行传递。
4、分子开关(molecular switch) 胞信号转导过程中,通过结合GTP与水解GTP,或者通过蛋白质磷酸化与去磷酸化而开启或关闭蛋白质的活性。
5、细胞骨架(cytokeleton)由微管、微丝和中间丝组成的蛋白网络结构,具有为细胞提供结构支架、维持细胞形态、负责细胞内物质和细胞器转运和细胞运动等功能。
6、细胞周期(cell cycle)一次细胞分裂结束到下一次分裂完成之间的有序过程。
7、脂筏(lipid raft)生物膜上富含(神经)鞘脂和胆固醇的微小区域,与生物膜某些功能的发挥有关。
8.成熟促进因子(MPF):是一种在G2期形成,能促进M期启动的调控因子,MPF为一种蛋白激酶,能使组蛋白H1上与有丝分裂有关的特殊位点磷酸化,促进有丝分裂的启动及染色质的凝集。
9.细胞同步化:使处于细胞周期不同阶段的细胞共同进入周期某一特定阶段的过程。
10.细胞调亡(apoptosis):为维持内环境稳定,由基因控制的细胞自主的有序性的死亡。
亦称程序性细胞死亡(progremmed cell death, PCD)。
11.次级溶酶体:初级溶酶体在细胞质中与含被水解底物的小泡融合,从而使水解酶被激活,底物开始水解,此时的溶酶体就称为次级溶酶体。
12、细胞衰老:细胞衰老又称老化,是细胞的一个基本的生命现象。
是指细胞随着年龄的增加,生理机能和结构发生退行性变化,趋向死亡的不可逆的现象。
13、染色体的早期凝集:将细胞同步化在细胞周期的不同时期,通过细胞融合,将M期细胞与其他间期细胞融合后培养一段时间,与M期细胞融合的间期细胞发生了形态各异的染色体凝集现象。
14、内质网应激(endoplasmic reticulum stress,ERS)当某些细胞内外因素使内质网生理功能发生紊乱,钙稳态失调,未折叠及错误折叠的蛋白质在内质网腔内超量积累时引发的反应。
15、死亡受体死亡受体是近年发现的一组细胞表面标记,属于肿瘤坏死因子受体超家族,它们与相应的配体结合后,可以通过一系列的信号转导过程,将凋亡信号向细胞内部传递。
这个过程涉及到多个家族的蛋白质,包括TNF/TNFR超家族、TRAF超家族、死亡结构域蛋白质等,最终引起细胞凋亡的执行者caspase蛋白酶家族的活化,这些蛋白酶剪切相应的底物,使细胞发生凋亡。
16、药物靶标药物靶标是指体内具有药效功能并能被药物作用的生物大分子,如某些蛋白质和核酸等生物大分子。
(那些编码靶标蛋白的基因也被称为靶标基因。
事先确定靶向特定疾病有关的靶标分子是现代新药开发的基础。
)17、组合调控(combinatory control ):细胞活动过程中的一个步骤(如转录起始)受一个蛋白质组合而不是单个蛋白质调控的现象。
18、干细胞主要来源有骨髓干细胞、外周血干细胞、脐血干细胞等。
其中脐血中造血干细胞含量丰富,细胞原始、纯净,且采集简便,目前已成为临床治疗用干细胞的主要来源之一。
19、细胞的基本共性1.相似的化学组成:C、H、O、N、P、S等形成的氨基酸、核苷酸、脂质以及糖类是构成细胞的基本构件2. 脂 - 蛋白体系的生物膜;3. 相同的遗传装置,细胞生物的遗传物质都是DNA4.一分为二的分裂方式。
20、影响细胞膜流动的因素主要来自膜本身的组分,遗传因子及环境因子等。
1、胆固醇:胆固醇的含量增加会降低膜的流动性。
2、脂肪酸链的饱和度:脂肪酸链所含双键越多越不饱和,使膜流动性增加。
3、脂肪酸链的链长:长链脂肪酸相变温度高,膜流动性降低。
4、卵磷脂/鞘磷脂:该比例高则膜流动性增加,是因为鞘磷脂粘度高于卵磷脂。
5. 其他因素:膜蛋白和膜脂的结合方式、温度、酸碱度、离子强度等。
21、内膜系统在结构、功能、乃至发生上相互关联,由单层膜包被的细胞器或细胞结构。
主要包括内质网、高尔基体、溶酶体、胞内体和分泌泡等。
22、 IF装配与MF、MT装配相比的特点①IF装配的单体是纤维状蛋白(MF,MT的单体呈球形)。
②反向平行的四聚体导致IF不具有极性。
③IF在体外装配时不需要核苷酸或结合蛋白的辅助,在体内装配后,细胞中几乎不存在IF单体(但IF的存在形式也可以受到细胞调节,如核纤层的装配与解聚)。
1、内质网、高尔基体、溶酶体的功能:1)内质网:糙面内质网核糖体的附着与蛋白质的跨膜转运、蛋白质糖基化、内质网腔中蛋白质的其他修饰行为(二硫键的形成);光面内质网脂类合成与运输、糖原的合成与分解、药物代谢与解毒。