中考数学总复习《数与式》

合集下载

2024年中考数学总复习第一章《数与式》第一节:实数(附答案解析)

2024年中考数学总复习第一章《数与式》第一节:实数(附答案解析)

2024年中考数学总复习第一章《数与式》第一节:实数★解读课标★--------------熟悉课标要求,精准把握考点1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小;了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值;2.借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a|的含义;3.会用科学记数法表示数;4.了解平方根、算术平方根、立方根的概念.会用根号表示数的平方根、算术平方根、立方根,会用平方运算求百以内整数的平方根;5.掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主);能运用有理数的运算解决简单的问题.★中考预测★--------------统计考题频次,把握中考方向1.实数与运算在历年中考中以考查基础为主,也是考查重点,年年考查,是广大考生的得分点,分值为14~28分。

2.预计2024年各地中考还将继续重视对正负数的意义、相反数、绝对值、倒数、数轴等实数的相关概念及实数的分类的考查,也会对有理数的运算、科学记数法、数的开方、零次幂、负整数指数幂、二次根式及运算等进行考查,且考查形式多样,为避免丢分,学生应扎实掌握。

★聚焦考点★--------------直击中考考点,落实核心素养有理数及其相关概念1.整数和分数统称为有理数。

(有限小数与无限循环小数都是有理数。

)2.正整数、0、负整数统称为整数。

正分数、负分数统称分数。

3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

4.正数和负数表示相反意义的量。

【注意】0既不是正数,也不是负数。

数轴 1.数轴的三要素:原点、正方向、单位长度。

数轴是一条直线。

2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表第1页共44页。

中考数学总复习第一章数与式课件

中考数学总复习第一章数与式课件

点的距离⑥相等 .
⑦ a (a > 0),
几何意义:在数轴上表 |a|= ⑧ 0 (a = 0),
示数 a 的点与原点的距
⑨ -a (a < 0),
离,记作|a|.
绝对值具有非负性.
乘积是⑩ 1 的两 (1)ab=1⇔a,b 互为倒数;
个数互为倒数,非零实 (2)0 没有倒数;
数 a 的倒数为 1 a.
考点1 考点2 考点3 考点4 考点5
PART 02
方法帮
方法帮 命题角度 1 整式的运算
C
D
方法帮 命题角度 2 整式的化简求值
方法帮 命题角度 2 整式的化简求值
第三节 分 式
PART 01
考点帮
考点1 分式的有关概念 考点2 分式的性质 考点3 分式的运算
考点帮 分式的有关概念
考点1 考点2 考点3
考点帮
考点1 考点2 考点3 考点4 考点5 考点6
实数的运算
1.四则 运算法 则
运算名称 同号两数相加
加 法 异号两数相加
一个数同 0 相加 减法
运算法则
若 a>0,b>0,则 a+b=+(|a| + |b|); 若 a<0,b<0,则 a+b= - (|a|+|b|).
若 a>0,b<0,|a|>|b|,则 a+b=+(|a|-|b|); 若 a>0,b<0,|a|<|b|,则 a+b=-(|b|-|a|); 若 a,b 互为相反数,则 a+b=0.
题.
方法帮 命题角度 4 平方根、算术平方根、立方根
7.[2018 贵州安顺] 4的算术平方根是( B )

中考总复习之数与式超全知识点及经典例题

中考总复习之数与式超全知识点及经典例题

中考总复习之数与式超全知识点及经典例题中考总复之数与式本部分内容是初中代数部分的基石,是数学研究历程中重要的延伸。

在小学的基础上,引入了平方根、立方根,从将数扩充到了实数范围。

认识了整式、分式、根式,将特殊的数字延伸到了能表示一般规律的代数式范围,其中涉及的代数式的计算,为今后高中研究奠定基础,也是中考综合题复杂运算必需的技能。

在中考试卷中,该部分内容独立考题所占分值较小,多以选择、填空、计算题出现。

然而在综合题型中,这部分内容的应用却处处存在。

实数的分类实数可以按照定义和正负两个方面进行分类。

其中,正负数的分类包括正整数、负整数、有限小数或有理数、正分数、分数、负分数、正无理数、负无理数。

有理数是指任何一个可以写成p/q形式的数,其中p、q是互质的整数。

无理数则包括开不尽的方根、特定结构的无限不循环小数以及特定意义的数,如π、e、一些三角函数等。

实数中的几个概念相反数是指只有符号不同的两个数,它们互为相反数。

一个实数a的相反数是-a,而a和b互为相反数当且仅当a+b=0.倒数是指一个数的倒数是1/a,而a和b互为倒数当且仅当ab=1.需要注意的是,0没有倒数。

绝对值是一个非负数,实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

n次方根是指平方根、立方根和其他次方根。

平方根是指设a≥0,称±a叫a的算术平方根,其中正数的平方根有两个,它们互为相反数。

负数没有平方根。

立方根是指3次方根,即3√a,其中一个正数有一个正的立方根,而负数的立方根是负数。

其他次方根的计算方法与此类似。

单项式的乘积仍然是单项式。

②单项式乘多项式:将多项式中的每一项与单项式相乘,然后将结果相加得到最终结果。

③多项式乘多项式:将每一项都与另一个多项式中的每一项相乘,然后将结果相加得到最终结果。

中考数学复习数与式知识点总结

中考数学复习数与式知识点总结

中考数学复习数与式知识点总结第一部分:教材知识梳理-系统复第一单元:数与式第1讲:实数知识点一:实数的概念及分类1.实数是按照定义和正负性来分类的。

其中,既不属于正数也不属于负数的数是零。

无理数有几种常见形式:含π的式子是正有理数;无限不循环小数是无理数;开方开不尽的数是无理数;三角函数型的数是实数。

有理数包括正有理数、负有理数和零。

负无理数和正无理数的定义很明确。

2.在判断一个数是否为无理数时,需要注意开得尽方的含根号的数属于无理数,而开得尽的数属于有理数。

3.数轴有三个要素:原点、正方向和单位长度。

实数与数轴上的点一一对应,数轴右边的点表示的数总比左边的点表示的数大。

4.相反数是具有相反符号的两个数,它们的和为0.数轴上表示互为相反数的两个点到原点的距离相等。

5.绝对值是一个数到原点的距离。

它有非负性,即绝对值大于等于0.若|a|+b2=0,则a=b=0.绝对值等于该数本身的数是非负数。

知识点二:实数的相关概念2.数轴是一个直线,用来表示实数。

数轴上的每个点都对应着一个实数,反之亦然。

3.相反数是具有相反符号的两个数,它们的和为0.4.绝对值是一个数到原点的距离。

它有非负性,即绝对值大于等于0.5.倒数是乘积为1的两个数互为倒数。

a的倒数是1/a(a≠0)。

6.科学记数法是一种表示实数的方法,其中1≤|a|<10,n为整数。

确定n的方法是:对于数位较多的大数,n等于原数的整数位减去1;对于小数,写成a×10n,1≤|a|<10,n等于原数中左起至第一个非零数字前所有零的个数(含小数点前面的一个)。

7.近似数是一个与实际数值很接近的数。

它的精确度由四舍五入到哪一位来决定。

例:用科学记数法表示为2.1×104.19万用科学记数法表示为1.9×10^5,0.0007用科学记数法表示为7×10^-4.知识点三:科学记数法、近似数科学记数法是一种表示极大或极小数的方法,它的基本形式是a×10^n,其中1≤a<10,n为整数。

中考总复习《数与式》教案

中考总复习《数与式》教案

中考总复习教案第一章数与式《数与式》是初中数学的基础知识,是中考命题的重要内容之一,年年考查,北京近三年来在新课标中考试题中“数与式”部分的权重:35%左右,分量之中,不容忽视!一、本章知识要点与课时安排(大致安排五课时左右)(一)实数(一课时)(二)整式与因式分解(一至两课时)(三)分式与二次根式(两课时)(四)数式规律的探索(可以揉到前面几讲中去讲,也可以单设一课时)说明:您可以根据自己学生的学习程度,合理安排复习内容.二、课时教案第一课时实数教学目的1.理解有理数的意义,了解无理数等概念。

2.能用数轴上的点表示有理数,掌握相反数的性质,会求实数的绝对值.3。

会用科学记数法表示数。

4.会比较实数的大小,会利用绝对值知识解决简单化简问题.5.掌握有理数的运算法则,并能灵活的运用.教学重点与难点重点:数轴、绝对值等概念及其运用,有理数的运算。

难点:利用绝对值知识解决简单化简问题,实数的大小比较.教学方法:用例习题串知识(复习时要注意知识综合性的复习).教学过程(一)知识梳理1。

2.(二)例习题讲解与练习例1在3.14,1-,0,,cos30°,,,0.2020020002…(数字2后面“0”的个数逐次多一个)这八个数中,哪些是有理数?哪些是无理数?(考查的知识点:有理数、实数等概念.考查层次:易)(最基本的知识,由学生口答,师生共同归纳、小结)【归纳】:(1)整数与分数统称为有理数(强调数字0的特点);无限不循环小数是无理数。

注意:常见的无理数有三类①π,…②,,…,(不是无理数)③0.1010010001…(数字1后面“0”的个数逐次多一个).(2)一个无理数加、减、乘、除一个有理数(0除外)仍是无理数(是无理数).注:此题可以以其它形式出现,如练习题中2或12题等例2(1)已知a—2与2a+1互为相反数,求a的值;(2)若x、y是实数,且满足(x—2)2+=0,求(x+y)2的值.(考查的知识点:相反数的性质、二次根式的性质、非负数等概念.考查层次:易)(这是基础知识,由学生解答,老师总结)【总结】:(1)对于一个具体的数,要会求它的相反数(倒数、绝对值、平方根与算术平方根),对于一个代数式,也要会求它的相反数.解答是要注意从概念中蕴涵的数学关系入手:a、b互为相反数a+b=0;a、b互为倒数a·b=1.(2)非负数概念:例3 (1)若数轴上的点A表示的数为x,点B表示的数为—3,则A与B两点间的距离可表示为________________.(2)实数a、b在数轴上分别对应的点的位置如图所示,请比较a,—b,a-b,a+b的大小(用“<"号连接)___________________.(3)①化简_________;②=__________;③估计与0.5的大小关系是0.5(填“ > "、“="、“〈”) .(答案:(1);(2)a+b〈a〈-b<a—b;(3)①;②;③>)(考查的知识点:数轴、绝对值、比较大小等概念,无理数的估算、有理数的运算法则等。

人教版初中数学中考复习专题复习 数与式(37张PPT)

人教版初中数学中考复习专题复习 数与式(37张PPT)

知识回顾
五、实数的运算 1.包括加法、减法、乘法、除法、乘方、开方共六种,
运算时先确定___符__号___,再运算. 2.实数的运算顺序:先算乘方、开方,再算__乘__除____,
最后算_加__减_____;如果有括号,先算__括__号____里面的; 同级运算按照_从__左__到__右_的顺序依次计算. 六、整式的有关概念 1.整式:__单__项__式__和_多__项__式__统称为整式. 单项式中的_数__字__因__数_叫作单项式的系数,所有字母的 __指__数__和__叫作单项式的次数. 组成多项式的每一个单项式叫作多项式的__项______,多 项式的每一项都要带着前面的符号.
中考·数学
2020版
第一部分 系统复习
第一讲 数与式
知识回顾
一.按实数的定义分类:
负整数
分数
正分数
负无理数
知识回顾
二、实数的基本概念和性质 1.数轴 (1)定义:规定了 _原__点____ 、 _正__方__向__ 、 _单__位__长__度__的直
线叫作数轴. (2)性质: _实___数___和数轴上的点是一一对应的. 2.相反数 (1)定义:a的相反数是___-a____ ,0的相反数是__0___ . (2)性质:a,b互为相反数⇔ __a_+_ b_=__0__ .
2.整式的乘法
知识回顾
(1)单项式乘单项式:把它们的系数、相同字母分别 ___相__乘___,对于只在一个单项式里含有的字母,则连同 它的__指__数____作为积的一个因式.
(2)单项式乘多项式:பைடு நூலகம்单项式去乘多项式的每一项,再 把所得的积__相__加____.
即m(a+b+c)=___m__a_+_m_b_+_m__c__.

数与式的中考复习汇总

数与式的中考复习汇总

数与式的中考复习汇总数与式是数学中的基本概念,对于中考来说是非常重要的内容。

下面是数与式的中考复习汇总,供你参考。

一、基本概念1.数与式的概念:数是表示事物数量的抽象概念,式是由数和运算符号组成的算式。

2.数的分类:整数、有理数、无理数、实数。

3.有理数的性质:有理数可表示为有限小数、无限循环小数、无限不循环小数。

4.无理数的概念和性质:无理数不能表示为有限小数或无限循环小数。

5.实数的分类:有理数和无理数的并集即为实数。

6.数的比较:相等、大于、小于、不等于的概念。

二、整数运算1.加法和减法法则:同号相加、异号相减,记号保持与被减数相同。

2.乘法和除法法则:同号得正,异号得负;分数相乘,正负性由分数的正负号决定;除法可以转化为乘法运算。

3.绝对值:一个数与其绝对值的关系。

4.整数的混合运算:根据运算顺序,先乘除后加减。

三、分数运算1.分数的概念:分子和分母的含义及分数的整体含义。

2.分数的比较:分数的大小比较通过通分后比较分子大小。

3.分数的化简和约分:将分数化为最简形式。

4.分数的加法和减法:通分后进行分子的加减运算,记号与被减数一致。

5.分数的乘法和除法:将分子和分母分别相乘或相除。

6.假分数和带分数的相互转化。

7.分数的四则运算:根据运算顺序,先乘除后加减。

四、代数式的运算1.代数式的概念:由运算符号和字母组成的式子。

2.代数式的加法和减法:同类项合并。

3.代数式的乘法:乘法法则及乘法交换律。

4.代数式的除法:除法法则及除法运算的定义。

5.代数式的混合运算:根据运算顺序进行相应的运算。

6.同义式的应用:解方程、证明恒等式等。

7.开平方的应用:判断二次根式是否为整数、化简二次根式。

五、数与式的综合运用1.合理估算:对于结果的大小进行近似计算。

2.适当计算:选择合适的运算方法和顺序计算。

3.合理求解:根据实际问题列出代数式,解方程或计算。

4.应用题:根据题意进行有关运算,解决实际问题。

六、错误分类与分析1.基础错误:对基本概念和运算法则理解不清。

中考数学专题复习《数与式》测试卷(附带答案)

中考数学专题复习《数与式》测试卷(附带答案)

中考数学专题复习《数与式》测试卷(附带答案) 学校:___________班级:___________姓名:___________考号:___________一.科学记数法—表示较大的数(共13小题)1.(2024•平谷区一模)从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70000000000用科学记数法表示为()A.7×108B.7×109C.7×1010D.7×10112.(2024•房山区一模)据中国国家铁路集团有限公司消息:在2024年为期40天的春运期间,全国铁路累计发送旅客4.84亿人次,日均发送12089000人次.将12089000用科学记数法表示应为()A.12.089×106B.1.2089×106C.1.2089×107D.0.12089×1083.(2024•石景山区一模)2023年10月26日,搭载神舟十七号载人飞船的长征二号F摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F(代号:CZ﹣2F,简称:长二F,绰号:神箭)主要用于发射神舟飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为()A.85×102B.8.5×102C.8.5×103D.0.85×1044.(2024•通州区一模)2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为()A.0.223×1011B.2.23×1010C.22.3×109D.223×1085.(2024•北京一模)2023年,我国共授权发明专利92.1万件,同比增长15.4%.将921000用科学记数法表示应为()A.92.1×104B.9.21×104C.9.21×105D.0.921×1066.(2024•西城区一模)2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为()A.0.1×1011B.1×1010C.1×1011D.10×1097.(2024•朝阳区一模)2024年1月21日北京市第十六届人民代表大会第二次会议开幕,在政府工作报告中提到,2023年北京向天津、河北输出技术合同成交额74870000000元,将74870000000用科学记数法表示应为()A.74.87×109B.7.487×1010C.7.487×109D.0.7487×10118.(2024•大兴区一模)2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为()A.43.7×106B.4.37×107C.4.37×108D.0.437×1099.(2024•海淀区一模)据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17500000用科学记数法表示应为()A.175×105B.1.75×106C.1.75×107D.0.175×10810.(2024•东城区一模)2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A.1.33×107B.13.3×105C.1.33×106D.0.13×10711.(2024•丰台区一模)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.一架C919飞机最大储油量超过19000千克.将数据19000用科学记数法表示为()A.0.19×105B.1.9×104C.1.9×103D.19×10312.(2024•顺义区一模)全国绿化委员会办公室发布的《2023年中国国土绿化状况公报》显示,2023年全国完成国土绿化任务超800万公顷,其中造林3998000公顷.将3998000用科学记数法表示应为()A.3.998×107B.3.998×106C.3998×103D.3.998×10313.(2024•门头沟区一模)近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为()A.2.1×107B.2.1×108C.2.1×109D.2.1×1010二.实数与数轴(共4小题)14.(2024•大兴区一模)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b﹣c>0B.ac>0C.b+c<0D.ab<115.(2024•海淀区一模)实数a在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a≥﹣2B.a<﹣3C.﹣a>2D.﹣a≥316.(2024•东城区一模)若实数a,b在数轴上的对应点的位置如图所示,在下列结论中,正确的是()A.|a|<|b|B.a+1<b+1C.a2<b2D.a>﹣b17.(2024•顺义区一模)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.a>﹣1B.b>1C.﹣a<b D.﹣b>a三.估算无理数的大小(共1小题)18.(2024•平谷区一模)写出一个大于1且小于4的无理数.(答案不唯一)四.实数的运算(共12小题)19.(2024•平谷区一模)计算:2cos30°+()﹣1+|﹣1|﹣.20.(2024•房山区一模)计算:.21.(2024•石景山区一模)计算:.22.(2024•通州区一模)计算:.23.(2024•北京一模)计算:4sin45°+|﹣2|﹣+()﹣1.24.(2024•西城区一模)计算:|﹣|﹣()﹣1+2sin60°﹣.25.(2024•朝阳区一模)计算:+|1﹣|+(2﹣π)0﹣2sin45°.26.(2024•大兴区一模)计算:.27.(2024•海淀区一模)计算:2sin60°+|﹣1|+()﹣1﹣.28.(2024•东城区一模)计算:.29.(2024•丰台区一模)计算:|﹣3|+2cos30°﹣.30.(2024•顺义区一模)计算:.五.整式的混合运算—化简求值(共5小题)31.(2024•通州区一模)已知2x2﹣x﹣1=0,求代数式4x(x﹣1)+(2x+1)(2x﹣1)的值.31.(2024•北京一模)已知2x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)﹣3x(x+1)的值.32.(2024•西城区一模)已知x2﹣x﹣4=0,求代数式(x﹣2)2+(x﹣1)(x+3)的值.33.(2024•大兴区一模)已知a2+3a﹣1=0,求代数式(a+1)2+a(a+4)﹣2的值.34.(2024•顺义区一模)已知x2+2x=1,求代数式4(x+1)+(x﹣1)2的值.六.提公因式法与公式法的综合运用(共11小题)36.(2024•平谷区一模)分解因式:ax2+2ax+a=.37.(2024•房山区一模)分解因式:x2y﹣4y=.38.(2024•石景山区一模)分解因式:xy2﹣4x=.39.(2024•北京一模)分解因式:8a2﹣8b2=.40.(2024•西城区一模)分解因式:x2y﹣12xy+36y=.41.(2024•朝阳区一模)分解因式:3x2+6xy+3y2=.42.(2024•大兴区一模)分解因式:ax2﹣4a=.43.(2024•海淀区一模)分解因式:a3﹣4a=.44.(2024•东城区一模)因式分解:2xy2﹣18x=.45.(2024•丰台区一模)分解因式:ax2﹣4ay2=.46.(2024•顺义区一模)分解因式:4m2﹣4=.七.分式有意义的条件(共3小题)47.(2024•房山区一模)若代数式有意义,则实数x的取值范围是.48.(2024•丰台区一模)若代数式有意义,则实数x的取值范围是.49.(2024•顺义区一模)代数式有意义,则实数x的取值范围是.八.分式的值(共2小题)50.(2024•海淀区一模)已知b2﹣4a=0,求代数式的值.51.(2024•东城区一模)已知2x﹣y﹣9=0,求代数式的值.九.分式的加减法(共1小题)52.(2024•平谷区一模)化简:的结果为.一十.分式的化简求值(共2小题)52.(2024•石景山区一模)已知x2﹣3x﹣6=0,求代数式的值.53.(2024•丰台区一模)已知x﹣3y﹣2=0,求代数式的值.一十一.二次根式有意义的条件(共6小题)55.(2024•平谷区一模)若代数式有意义,则实数x的取值范围是.56.(2024•石景山区一模)若在实数范围内有意义,则实数x的取值范围是.57.(2024•通州区一模)若在实数范围内有意义,则实数x的取值范围为.58.(2024•朝阳区一模)若式子在实数范围内有意义,则x的取值范围是.59.(2024•海淀区一模)代数式在实数范围内有意义,则x的取值范围是.60.(2024•东城区一模)若二次根式有意义,则实数x的取值范围是.参考答案与试题解析一.科学记数法—表示较大的数(共13小题)1.(2024•平谷区一模)从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70000000000用科学记数法表示为()A.7×108B.7×109C.7×1010D.7×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:70000000000=7×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2024•房山区一模)据中国国家铁路集团有限公司消息:在2024年为期40天的春运期间,全国铁路累计发送旅客4.84亿人次,日均发送12089000人次.将12089000用科学记数法表示应为()A.12.089×106B.1.2089×106C.1.2089×107D.0.12089×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:12089000=1.2089×107故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2024•石景山区一模)2023年10月26日,搭载神舟十七号载人飞船的长征二号F摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F(代号:CZ﹣2F,简称:长二F,绰号:神箭)主要用于发射神舟飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为()A.85×102B.8.5×102C.8.5×103D.0.85×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:8500=8.5×103故选:C.【点评】本题考查了科学记数法表示绝对值较大的数的方法,掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数是关键.4.(2024•通州区一模)2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为()A.0.223×1011B.2.23×1010C.22.3×109D.223×108【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:22300000000=2.23×1010故选:B.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.5.(2024•北京一模)2023年,我国共授权发明专利92.1万件,同比增长15.4%.将921000用科学记数法表示应为()A.92.1×104B.9.21×104C.9.21×105D.0.921×106【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:921000=9.21×105故选:C.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.6.(2024•西城区一模)2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为()A.0.1×1011B.1×1010C.1×1011D.10×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:10000000000=1×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(2024•朝阳区一模)2024年1月21日北京市第十六届人民代表大会第二次会议开幕,在政府工作报告中提到,2023年北京向天津、河北输出技术合同成交额74870000000元,将74870000000用科学记数法表示应为()A.74.87×109B.7.487×1010C.7.487×109D.0.7487×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:74870000000=7.487×1010故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(2024•大兴区一模)2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为()A.43.7×106B.4.37×107C.4.37×108D.0.437×109【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:43700000=4.37×107.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.9.(2024•海淀区一模)据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17500000用科学记数法表示应为()A.175×105B.1.75×106C.1.75×107D.0.175×108【分析】根据科学记数法的规则进行作答即可.【解答】解:17500000=1.75×107.故选:C.【点评】本题主要考查科学记数法,解题的关键是熟练掌握科学记数法的规则.10.(2024•东城区一模)2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A.1.33×107B.13.3×105C.1.33×106D.0.13×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:1330000=1.33×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(2024•丰台区一模)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.一架C919飞机最大储油量超过19000千克.将数据19000用科学记数法表示为()A.0.19×105B.1.9×104C.1.9×103D.19×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:19000=1.9×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(2024•顺义区一模)全国绿化委员会办公室发布的《2023年中国国土绿化状况公报》显示,2023年全国完成国土绿化任务超800万公顷,其中造林3998000公顷.将3998000用科学记数法表示应为()A.3.998×107B.3.998×106C.3998×103D.3.998×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:3998000=3.998×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(2024•门头沟区一模)近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为()A.2.1×107B.2.1×108C.2.1×109D.2.1×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:210000000=2.1×108故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二.实数与数轴(共4小题)14.(2024•大兴区一模)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b﹣c>0B.ac>0C.b+c<0D.ab<1【分析】根据数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1,由此逐一判断各选项即可.【解答】解:由数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1A、∵﹣2<b<﹣1,0<c<1,∴b﹣c<0,故选项A不符合题意;B、∵﹣3<a<﹣2,0<c<1,∴ac<0,故选项B不符合题意;C、∵﹣2<b<﹣1,0<c<1,∴b+c<0,故选项C符合题意;D、∵﹣3<a<﹣2<b<﹣1,∴ab>1,故选项D不符合题意;故选:C.【点评】本题考查的是实数与数轴,熟悉数轴上各点的分布特点是解题的关键.15.(2024•海淀区一模)实数a在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a≥﹣2B.a<﹣3C.﹣a>2D.﹣a≥3【分析】由数轴可知,﹣3<a<﹣2,由此逐一判断各选项即可.【解答】解:由数轴可知,﹣3<a<﹣2A、﹣3<a<﹣2,故选项A不符合题意;B、﹣3<a<﹣2,故选项B不符合题意;C、∵﹣3<a<﹣2,∴2<﹣a<3,故选项C符合题意;D、∵﹣3<a<﹣2,∴2<﹣a<3,故选项D不符合题意;故选:C.【点评】本题考查的是实数与数轴,从题目中提取已知条件是解题的关键.16.(2024•东城区一模)若实数a,b在数轴上的对应点的位置如图所示,在下列结论中,正确的是()A.|a|<|b|B.a+1<b+1C.a2<b2D.a>﹣b【分析】根据图示,可得﹣2<a<﹣1,0<b<1,据此逐项判断即可.【解答】解:根据图示,可得﹣2<a<﹣1,0<b<1∵﹣2<a<﹣1,0<b<1∴1<|a|<2,0<|b|<1∴|a|>|b|∴选项A不符合题意;∵﹣2<a<﹣1,0<b<1∴a<b∴a+1<b+1∴选项B符合题意;∵﹣2<a<﹣1,0<b<1∴1<a2<4,0<b2<1∴a2>b2∴选项C不符合题意;∵0<b<1∴﹣1<﹣b<0∵﹣2<a<﹣1∴a<﹣b∴选项D不符合题意.故选:B.【点评】此题主要考查了实数大小比较的方法,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.17.(2024•顺义区一模)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.a>﹣1B.b>1C.﹣a<b D.﹣b>a【分析】根据图示,可得﹣2<a<﹣1,0<b<1,据此逐项判断即可.【解答】解:根据图示,可得﹣2<a<﹣1,0<b<1∵a<﹣1∴选项A不符合题意;∵b<1∴选项B不符合题意;∵﹣2<a<﹣1∴1<﹣a<2∵0<b<1∴﹣a>b∴选项C不符合题意;∵0<b<1∴﹣1<﹣b<0∵﹣2<a<﹣1∴﹣b>a∴选项D符合题意.故选:D.【点评】此题主要考查了实数大小比较的方法,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.三.估算无理数的大小(共1小题)18.(2024•平谷区一模)写出一个大于1且小于4的无理数π.(答案不唯一)【分析】由于开方开不尽的数是无理数,然后确定的所求数的范围即可求解.【解答】解:∵1=,4=∴只要是被开方数大于1而小于16,且不是完全平方数的都可.同时π也符合条件.【点评】此题主要考查了无理数的大小的比较,其中无理数包括开方开不尽的数,和π有关的数,有规律的无限不循环小数.四.实数的运算(共12小题)19.(2024•平谷区一模)计算:2cos30°+()﹣1+|﹣1|﹣.【分析】根据特殊角的三角函数值、负整数指数幂、绝对值、二次根式的化简分别计算即可.【解答】解:2cos30°+()﹣1+|﹣1|﹣===1.【点评】本题考查了实数的运算,熟练掌握特殊角的三角函数值、负整数指数幂、绝对值、二次根式的化简是解题的关键.20.(2024•房山区一模)计算:.【分析】利用特殊锐角三角函数值,负整数指数幂,绝对值的性质,二次根式的性质计算即可.【解答】解:原式=6×+2+3﹣3=3+2+3﹣3=5.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.21.(2024•石景山区一模)计算:.【分析】利用绝对值的性质,二次根式的性质,特殊锐角三角函数值及负整数指数幂计算即可.【解答】解:原式=2﹣+2﹣2×+5=2﹣+2﹣+5=7.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.22.(2024•通州区一模)计算:.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负整数指数幂的性质分别化简得出答案.【解答】解:原式=4×=2+4+1=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.23.(2024•北京一模)计算:4sin45°+|﹣2|﹣+()﹣1.【分析】sin45°=,再根据实数和指数幂的运算法则计算即可.【解答】解:原式=4×+2﹣3+2=2﹣3+4=4.【点评】本题考查的是实数的运算,指数幂和特殊角的三角函数值,熟练掌握上述知识点是解题的关键.24.(2024•西城区一模)计算:|﹣|﹣()﹣1+2sin60°﹣.【分析】利用特殊角的三角函数值及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式===﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.25.(2024•朝阳区一模)计算:+|1﹣|+(2﹣π)0﹣2sin45°.【分析】分别根据绝对值、零指数幂及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=2=3=2.【点评】本题考查的是实数的运算,熟知绝对值、零指数幂的运算法则,熟记特殊角的三角函数值是解答此题的关键.26.(2024•大兴区一模)计算:.【分析】cos45°=,再根据实数和指数幂的运算法则计算即可.【解答】解:原式==.【点评】本题考查的是实数的运算,指数幂和特殊角的三角函数值,熟练掌握上述知识点是解题的关键.27.(2024•海淀区一模)计算:2sin60°+|﹣1|+()﹣1﹣.【分析】根据实数的运算法则、负整数指数幂和特殊角的三角函数值的定义进行计算.【解答】解:原式=2×+1+2﹣2=+1+2﹣2=3﹣.【点评】本题考查了实数的运算法则、负整数指数幂和特殊角的三角函数值,掌握实数的运算法则、负整数指数幂和特殊角的三角函数值的定义是关键.28.(2024•东城区一模)计算:.【分析】利用二次根式的性质,特殊锐角三角函数值,零指数幂,绝对值的性质计算即可.【解答】解:原式=4﹣2×+1﹣2=4﹣+1﹣2=3﹣1.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.29.(2024•丰台区一模)计算:|﹣3|+2cos30°﹣.【分析】直接利用特殊角的三角函数值、负整数指数幂的性质、二次根式的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=3+2×﹣3﹣2=3+﹣3﹣2=﹣.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2024•顺义区一模)计算:.【分析】利用负整数指数幂,特殊锐角三角函数值,二次根式的性质,零指数幂计算即可.【解答】解:原式=﹣4×+2+1=﹣2+2+1=.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.五.整式的混合运算—化简求值(共5小题)31.(2024•通州区一模)已知2x2﹣x﹣1=0,求代数式4x(x﹣1)+(2x+1)(2x﹣1)的值.【分析】利用平方差公式,单项式乘多项式的法则进行计算,然后把2x2﹣x=1代入化简后的式子进行计算,即可解答.【解答】解:4x(x﹣1)+(2x+1)(2x﹣1)=4x2﹣4x+4x2﹣1=8x2﹣4x﹣1∵2x2﹣x﹣1=0∴2x2﹣x=1∴当2x2﹣x=1时,原式=4(2x2﹣x)﹣1=4×1﹣1=4﹣1=3.【点评】本题考查了整式的混合运算﹣化简求值,平方差公式,准确熟练地进行计算是解题的关键.32.(2024•北京一模)已知2x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)﹣3x(x+1)的值.【分析】利用平方差公式,单项式乘多项式的法则进行计算,然后把2x2﹣x=1代入化简后的式子进行计算,即可解答.【解答】解:(3x+2)(3x﹣2)﹣3x(x+1)=9x2﹣4﹣3x2﹣3x=6x2﹣3x﹣4∵2x2﹣x﹣1=0∴2x2﹣x=1当2x2﹣x=1时,原式=3(2x2﹣x)﹣4=3×1﹣4=3﹣4=﹣1.【点评】本题考查了整式的混合运算﹣化简求值,平方差公式,准确熟练地进行计算是解题的关键.33.(2024•西城区一模)已知x2﹣x﹣4=0,求代数式(x﹣2)2+(x﹣1)(x+3)的值.【分析】利用完全平方公式,多项式乘多项式的法则进行计算,然后把x2﹣x=4代入化简后的式子进行计算,即可解答.【解答】解:(x﹣2)2+(x﹣1)(x+3)=x2﹣4x+4+x2+3x﹣x﹣3=2x2﹣2x+1∵x2﹣x﹣4=0∴x2﹣x=4∴当x2﹣x=4时,原式=2(x2﹣x)+1=2×4+1=8+1=9.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.34.(2024•大兴区一模)已知a2+3a﹣1=0,求代数式(a+1)2+a(a+4)﹣2的值.【分析】利用完全平方公式,单项式乘多项式法则进行计算,然后把a2+3a=1代入化简后的式子进行计算即可解答.【解答】解:(a+1)2+a(a+4)﹣2=a2+2a+1+a2+4a﹣2=a2+a2+2a+4a+1﹣2=2a2+6a﹣1∵a2+3a﹣1=0∴a2+3a=1当a2+3a=1时,原式=2(a2+3a)﹣1=2×1﹣1=2﹣1=1.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.35.(2024•顺义区一模)已知x2+2x=1,求代数式4(x+1)+(x﹣1)2的值.【分析】利用完全平方公式,单项式乘多项式的法则进行计算,然后把x2+2x=1代入化简后的式子进行计算,即可解答.【解答】解:4(x+1)+(x﹣1)2=4x+4+x2﹣2x+1=x2+2x+5当x2+2x=1时,原式=1+5=6.【点评】本题考查了整式的混合运算﹣化简求值,代数式求值,完全平方公式,准确熟练地进行计算是解题的关键.六.提公因式法与公式法的综合运用(共11小题)【分析】先提取公因式,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:ax2+2ax+a=a(x2+2x+1)﹣﹣(提取公因式)=a(x+1)2.﹣﹣(完全平方公式)【点评】本题考查了提公因式法与公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意要分解彻底.37.(2024•房山区一模)分解因式:x2y﹣4y=y(x+2)(x﹣2).【分析】先提公因式,再利用平方差公式继续分解即可解答.【解答】解:x2y﹣4y=y(x2﹣4)=y(x+2)(x﹣2)故答案为:y(x+2)(x﹣2).【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.38.(2024•石景山区一模)分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2)故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.39.(2024•北京一模)分解因式:8a2﹣8b2=8(a+b)(a﹣b).【分析】提公因式后利用平方差公式因式分解即可.【解答】解:原式=8(a2﹣b2)=8(a+b)(a﹣b)故答案为:8(a+b)(a﹣b).【点评】本题考查因式分解,熟练掌握因式分解的方法是解题的关键.40.(2024•西城区一模)分解因式:x2y﹣12xy+36y=y(x﹣6)2.【分析】提取公因式后用完全平方公式分解即可.【解答】解:x2y﹣12xy+36y=y(x2﹣12x+36)=y(x﹣6)2故答案为:y(x﹣6)2.【点评】本题考查了因式分解,熟练掌握提取公因式和公式法分解因式是关键.【分析】先利用提取公因式法提取数字3,再利用完全平方公式继续进行分解.【解答】解:3x2+6xy+3y2=3(x2+2xy+y2)=3(x+y)2【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.42.(2024•大兴区一模)分解因式:ax2﹣4a=a(x+2)(x﹣2).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ax2﹣4a=a(x2﹣4)=a(x+2)(x﹣2).【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.43.(2024•海淀区一模)分解因式:a3﹣4a=a(a+2)(a﹣2).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.44.(2024•东城区一模)因式分解:2xy2﹣18x=2x(y+3)(y﹣3).【分析】提取公因式后再用平方差公式分解即可.【解答】解:2xy2﹣18x=2x(y2﹣9)=2x(y+3)(y﹣3).故答案为:2x(y+3)(y﹣3).【点评】本题考查了因式分解,熟练掌握公式法和提取公因式法是关键.45.(2024•丰台区一模)分解因式:ax2﹣4ay2=a(x+2y)(x﹣2y).【分析】观察原式ax2﹣4ay2,找到公因式a,提出公因式后发现x2﹣4y2符合平方差公式,利用平方差公式继续分解可得.【解答】解:ax2﹣4ay2=a(x2﹣4y2)。

中考数学第一轮复习“数与式”知识点总结

中考数学第一轮复习“数与式”知识点总结

中考数学第一轮复习“数与式”知识点总结1. 实数-实数的定义与分类:实数包括有理数和无理数。

有理数进一步分为整数(正整数、0、负整数)和分数(正分数、负分数)。

无理数则是不能表示为两个整数之比的数。

-实数的性质:包括实数的有序性、数轴上的表示(实数与数轴上的点一一对应)、相反数、绝对值、倒数等概念。

-实数的运算:掌握实数加、减、乘、除、乘方等基本运算法则,特别是对于带有绝对值和根号的实数的运算,要特别注意运算顺序和运算法则。

2. 代数式-代数式的概念:用字母表示数(或式)的式子叫做代数式。

它可以是单独的一个数、一个字母,也可以是数与字母的积或幂等形式。

-代数式的书写规则:掌握代数式书写的基本规则,如乘法时数应写在字母前面,乘号通常省略不写等。

-代数式的值:当代数式中的字母取定一个值时,代数式就有了一个确定的值。

了解代数式求值的基本步骤和方法。

3. 整式-整式的概念:单项式和多项式统称为整式。

单项式是只含有一个项的代数式,多项式则是由有限个单项式相加或相减得到的代数式。

-整式的加减:整式的加减实际上就是合并同类项的过程,要理解同类项的概念,并会识别和合并同类项。

-整式的乘除:掌握单项式乘单项式、单项式乘多项式、多项式乘多项式等运算法则。

对于整式的除法,重点是掌握多项式除以单项式的运算方法。

-整式的乘方与开方:了解整式乘方的基本性质和运算法则,特别是积的乘方和幂的乘方的运算规则。

对于开方,要了解算术平方根和平方根的概念,并能进行简单的开方运算。

4. 分式-分式的概念:一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子A/B就叫做分式。

了解分式有意义、无意义、值为零的条件。

-分式的基本性质:分式的基本性质是分式的分子和分母都乘以(或除以)同一个不为零的整式,分式的值不变。

-分式的加减乘除:掌握分式的加减(需要通分)、乘除(转化为乘法进行)、乘方(幂的乘方与积的乘方)等运算法则。

特别地,对于分式的除法,要会将其转化为乘法进行运算。

初中中考数学复习数与式课件课件

初中中考数学复习数与式课件课件

数的估算与近似值
03
大数四舍五入法
小数位数判断法
近似值比较法
掌握大数的四舍五入估算方法,理解进一 法和去尾法的应用。
根据题目要求,判断小数应保留几位有效 数字。
比较两个近似值的大小,判断哪个更接近 真实值。
数的混合运算顺序
01
先乘除后加减
按照先乘除后加减的顺序进行 混合运算,注意括号内的优先
级。
代数式具有加法交换律、结合律 ,乘法交换律、结合律、分配律 等基本性质。
代数式的运算
代数式可以进行加、减、乘、除 等运算,运算时要注意运算顺序 和运算法则。
05
式的运算性质与技巧
整式的加减法
01
02
03
合并同类项
将整式中的同类项进行合 并,简化整式的形式。
去括号法则
根据括号前正负号,去掉 括号后,括号内各项的符 号发生变化。
初中中考数学复习数与式课 件课件
汇报人:
汇报时间:202X-01-02
目录
• 数的基础概念 • 数的运算性质 • 数的运算技巧 • 式的概念与表示 • 式的运算性质与技巧 • 数与式在实际问题中的应用
01
数的基础概念
数的定义与性质
有理数
包括整数和分数,具有稠密性和连续性 。
无理数
无限不循环小数,无法表示为分数。
在解决代数问题时,利用运算性质简化表达式。
在证明数学定理时,利用运算性质进行等式的变形。
在实际生活中,利用运算性质进行计算,提高计算效率 和准确性。
运算性质的注意事项
运算性质适用于实数、复数和矩阵等 数学对象。
对于一些特殊的运算性质,如乘法的 消去律(ab=ac→a=0或b=c)和加 法的消去律(a+b=a+c→b=c),需 要特别注意其适用条件。

中考数学复习数与式知识点总结

中考数学复习数与式知识点总结

知识清单梳理
知识点一:代数式及相关概念
关键点拨及对应举例
1.代数

(D代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的主
强连接而成的式子,单独的一个数或一个字母也是代数式.
(2)求代数式的值:用具体数值代替代数式中的字母,计算得出的结果,叫做 求代数式的值.
求代数式的值常运用整体代入法计算.
加减法
⑴同分母:分母不变,分子相加减 .即不二=77;
c c c
(2)异分母:先通分,变为同分母的分式,再加减.即a岑-氏子. b d bd
例:―x_ = — 1.x 1 1 x
112a
a 1 a 1 a21.
6.分式的
乘除法
…h、, ac ac/c、小、#a cad
(1)乘法:£ 1=滔;(2)除法:一—=—;
x1
3.基本性

(1)基本性质:(CW0)
B B C B C
(2)由基本性质可推理出变号法则为:
A AAAAA
;.
B BBB BB
由分式的基本性质可将分式进行化简:2.
例:化简:r一」=立.
x 2x1x1
知识点三:
分式的运算
4.分式的
约分和 通分
(i)约分(可化简分式):把分式的分子和分母中的公因式约去,
例:—2(3a-2b-1)=-6a+4b+2.
4.哥运
算法 则
(1)同底数嘉的乘法:aman= amn;
(2)嘉的乘方:(am)n=%;
(3)积的乘方:(ab)n= anbn;
(4)同底数嘉的除法:amnan = am二(ajQ)
其中m,n
都在整数

2024年中考数学总复习第一部分考点精讲第一单元数与式第1课时实数

2024年中考数学总复习第一部分考点精讲第一单元数与式第1课时实数

命题点 1 实数的相关概念8年7考
1. (2023广东1题3分)负数的概念最早出现在我国古代著名的数学
专著《九章算术》中.如果把收入5元记作+5元,那么支出5元
记作( A )
A. -5元
B. 0元
C. +5元
D. +10元
第1课时 实 数
2. (2022广东1题3分)|-2|=( B )
1
A. -2
分类 常用正负数表示两种具有_相__反__意__义__的量,如“+5” 表示向东5米,则“-5”表示_向__西__5_米__
第1课时 实 数
返回目录
表示方法及三要素: 数轴
性质: _实__数__与数轴上的点是一一对应的
实数的相
a(a>0) 即|a|具有非负性
关概念
|a|= 0(a=0) 注:绝对值最小的实数
平方根为0 4.平方根等于它本身的数是0;算
立方根 实数a的立方 术平方根等于它本身的数是0,1; 根为_3_a__ 立方根等于它本身的数是0,±1
第1课时 实 数
返回目录
数轴比较法:数轴上两个点表示的数,右边的点表
示的数总比左边的点表示的数_大__
类别比较法:正数>0>负数;两个负数比较大小, 实数的大 绝对值大的反而小
3.π及化简后含有π的数:如__3__,_π_+__1_等(负面清单)
4.有规律的无限不循环小数:如0.101 001…(相邻两个1
之间依次多一个0)等
1、2、3答案不唯一
第1课时 实 数
返回目录
按大小分:正数、0、负数(既不是正数也不是负数的 实数的 数是__0_;非负数包括_正__数__和__0_)
算 = __4__(口诀:倒底数,反指数)

中考数学总复习《数与式》

中考数学总复习《数与式》
随着x的增大或减小,y值 都减小或增大,即反比例 函数在各自象限内单调递 减。
二次函数
二次函数定义
形如y=ax^2+bx+c(a≠0)的函 数,其中x和y为变量,a、b、c为
常数。
二次函数图像
抛物线,开口方向由a决定,a>0 时开口向上,a<0时开口向下。
二次函数性质
对称轴为x=-b/2a,顶点坐标为(b/2a, c-b^2/4a)。根据判别式 Δ=b^2-4ac的值判断与x轴的交点 个数。
详细描述
一元一次方程在实际生活中有着广泛的应 用,例如购物时计算找零、计算时间、速 度和距离等。
一元二次方程
总结词
高阶方程形式,解法相对复杂
详细描述
一元二次方程的一般形式为 ax^2+bx+c=0,解法相对复杂,需要使 用公式法或者因式分解法进行求解。
总结词
一元二次方程在数学中的重要性
详细描述
一元二次方程在数学中具有重要的地位,它是代数知识体系中的重要 组成部分,也是后续学习一元高次方程、多元方程的基础。
目录
• 数的概念与性质 • 数的运算 • 代数式 • 方程与不等式 • 函数及其图像
01
数的概念与性质
有理数
01 有理数定义
有理数是可以表示为两个整数之比的数,包括整 数和分数。
02 有理数性质
有理数具有封闭性、传递性、稠密性和有序性等 性质。
整数乘法
掌握整数乘法的计算方法,理解乘法的交 换律、结合律和分配律。
整数减法
掌握整数减法的计算方法,理解减法的性 质。
整数除法
掌握整数除法的计算方法,理解除法的性 质。
分数运算
分数加法

2023年中考数学总复习第一章《数与式》第二节 二次根式

2023年中考数学总复习第一章《数与式》第二节 二次根式

2023年中考数学总复习第一章《数与式》第二节二次根式一、选择题1.[2020·邯郸丛台区二模]下列二次根式中,是最简二次根式的是()A.B.C.D.2.[2020·上海]下列二次根式中,与是同类二次根式的是()A.B.C.D.3.[2020·衡水模拟]下列计算正确的是()A.B.C.D.4.[2020·宜昌]对于无理数,添加关联的数或者运算符号组成新的式子,其运算结果能成为有理数的是()A.B.C.D.5.[2020·石家庄模拟]如图,表示的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与BC.A与C D.B与C(第5题图)6.[2020·原创]下列运算正确的是()A. B.C. D.7.[2020·聊城]计算的结果正确的是()A.1B.C.5D.98.[人八下课本P11,T12高仿]如图,从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形,则余下部分的面积为()A.78cm2B.cm2C.cm2D.cm2(第8题图)9.[易错][2020·秦皇岛模拟]按如图所示的运算程序,若输入数字“9”,则输出的结果是()A.7B.C.1D.(第9题图)二、填空题10.[2020·扬州]代数式在实数范围内有意义,则实数x的取值范围是_______.11.[2020·保定模拟]若2□=6,则“□”内的运算符号为_______.12.[2020·河北模拟]计算×-的结果是_______.13.[2020·保定定兴县一模]==_______.14.[2020·哈尔滨]计算的结果是______.15.[2020·常德]计算:=_______.16.[2020·山西]计算:=_______.三、解答题17.[2019·石家庄新华区模拟]计算:.18.[创新][2020·遵化二模]利用平方差公式可以进行简便计算:例1:99×101=(100-1)(100+1)=1002-12=10000-1=9999;例2:39×410=39×41×10=(40-1)(40+1)×10=(402-12)×10=(1600-1)×10=1599×10=15990.请你参考上述算法,运用平方差公式简便计算:(1)。

中考数学专题复习--数与式

中考数学专题复习--数与式

教学目标数与式是初中数学的基础知识,且知识点较多,是以大容量、小综合的形式命题,试题的难度为中低档,主要考查灵活运用知识的能力,一般考生都 能解答.常见题型有填空题、选择题、计算题以及部分开放性探索型试题,这些题占总题量的4%~6%,分值占总分的4%~8%.重点、难点数与式的综合练习。

教 学 内 容知识梳理:数与式 一.实数和代数式的有关概念 1.实数分类:实数⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数2.数轴:规定了原点、正方向和单位长度的直线。

数轴上所有的点与全体实数是一一对应关系,即每个实数都可以用数轴上的一个点表示;反过来,数轴上的每一个点都表示一个实数。

3.相反数:只有符号不同的两个数叫做互为相反数。

0的相反数是0。

数轴上,表示互为相反数的两个点位于原点的两边(0除外),并且与原点的距离相等。

4.倒数:1除以一个数的商,叫做这个数的倒数。

一般地,实数a 的倒数为a1。

0没有倒数。

两个互为倒数的数之积为1.反之,若两个数之积为1,则这两个数必互为倒数。

5.绝对值:一个正实数的绝对值等于它本身,零的绝对值等于零,负实数的绝对值等于它的相反数。

a =()()()⎪⎩⎪⎨⎧<-=>0000a a a a a ,绝对值的几何意义:数轴上表示一个数到原点的距离。

6.实数大小的比较:在数轴上表示的两个数,右边的数总比左边的数大。

(1)正数大于零,零大于负数。

(2)两正数相比较绝对值大的数大,绝对值小的数小。

(3)两负数相比较绝对值大的数反而小,绝对值大小的数反而大。

(4)对于任意两个实数a 和b ,①a>b,②a=b,③a<b,这三种情况必有一种成立,而且只能有一种成立。

7.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子,叫代数式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲┃ 归类示例
科学记数法的表示方法:
(1)当原数的绝对值大于或等于10时,n等于原数的整数位
数减1.
(2)当原数的绝对值小于1时,n是负整数,它的绝对值等
于原数中左起第一位非零数字前所有零的个数(含小数点前 的0).
(3)有数字单位的科学记数法,先把数字单位转化为数字 表示,再用科学记数法表示
如sin30°、tan45°也不是无理数,一个数是不
是无理数关键在于不同形式表示的数的最终结果
是不是无限不循环小数.
第1讲┃ 归类示例
► 类型之二 实数的有关概念
命题角度: 1.数轴、相反数、倒数等概念; 2.绝对值的概念及计算.
例2 填空题: (1)相反数等于它本身的数是___0______; (2)倒数等于它本身的数是___±__1________; (3)平方等于它本身的数是__0_或__1________; (4)平方根等于它本身的数是___0___________; (5)绝对值等于它本身的数是__非__负__数____________.
第1讲┃ 考点聚焦 考点2 实数的有关概念
名称 数轴 相反数 倒数
定义
性质
规定了__原__点___、 __正__方__向_、_单__位__长__度_的
直线
只有__符__号__不同的两个 数互为相反数
数轴上的点与实数一 一对应
若a、b互为相反数, 则有a+b=0,|a|= |b|.0的相反数是0
___乘__积___为1的两个数 0没有倒数,倒数等于
A.1 个 B.2 个 C.3 个 D.4 个 [解析] 3 8 =2是有理数,cos45°=是无理数.故无理数有 3 8 ,π, cos45°共三个.
第1讲┃ 归类示例
对无理数的判定,不能只被表面形式迷惑,
而应从最后结果去判断.一般来说,用根号表示
的数不一定就是无理数,如
是有理数,
用三角函数符号表示的数也不一定就是无理数,
互为倒数
本身的数是1或-1
第1讲┃ 考点聚焦
名称 定义
性质
绝对 值
数法
数轴上表示数a的点与原点的________, 记作距|a离|
a(a>0) |a|=0(a=0)

-a(a<0)
设这个数为m,①当
|m|≥10时,n等于
把一个数写成__a_×__1_0_n_的形式.(其中
1≤|a|<10.n为整数),这种记数法
中考数学总复习
第1讲 实数的有关概念 第2讲 实数的运算与实数的大小比较 第3讲 整式及因式分解 第4讲 分式 第5讲 数的开方及二次根式
第1讲┃ 实数的有关概念
第1讲┃ 考点聚焦
考点聚焦
考点1 实数的概念及分类
1.按定义分类:


实数
有理数


整数
分数

正整数 零 负整数
向右滚动一周,圆上的一点由原点到达点O′,点O′的 坐标是多少?
图1-1
第1讲┃ 回归教材
解:从图中可以看出,OO′的长就是这个圆的周长π , 所以O′的坐标是π .
[点析] 用画图的方法可以将一个无理数用数轴上的点 表示出来.事实上每一个无理数都可以用数轴上的一个点 表示出来.
第1讲┃ 回归教材
第1讲┃归类示例
► 类型之四 创新应用 命题角度: 1.探究数字规律; 2.探究图形与数字的变化关系.
例4 [2012·恩施] 观察数表:
根据表中数的排列规律,则B+D=__2__3__
第1讲┃ 归类示例
[解析] 仔细观察每一条虚线或与虚线平行的直线上 的数字,从左至右相加等于最后一个数字,
∴1+4+3=B,1+7+D+10+1=34, ∴B=8,D=15,∴B+D=8+15=23.
中考变式 1.[2012·泰州] 如图1-2,数轴上的点P表示的数是-1, 将点P向右移动3个单位长度得到点P′,则点P′表示的数是
命题角度: 用科学记数法表示数.
例3 [2012·绵阳] 绵阳市统计局发布2012年一季 度全市完成GDP共317亿元,居全省第二位,将这一数 据用科学计数法表示为( B ) A.31.7×109元 B.3.17×1010元 C.3.17×1011元 D.31.7×1010元 [解析] 1亿=108,317亿元=317×108元=3.17×1010元
正分数 有限小数或 负分数 无限循环小数

无理数

正 负无 无理 理数 数无限不循环小数
第1讲┃ 考点聚焦
2.按正负分类:

正有理数
正实数

正整数 正分数
实数
正无理数 零

负有理数
负实数

负整数 负分数

负无理数
原数的整数位数减1;
②当|m|≤1时,|n|
叫科学记数法
等于原数左起第一
个非零数字前所有
零的个数
近似 数
一个近似数四舍五入到哪一位,那么就说这个近似数精确到哪 一位.对于带计数单位的近似数,由近似数的位数和后面的 单位共同确定.如3.618万,数字8实际上是十位上的数字, 即精确到十位
第1讲┃ 考点聚焦
第1讲┃ 归类示例
此类实数规律性的问题的特点是给定一列 数或等式或图形,要求适当地进行计算,必要 的观察,猜想,归纳,验证,利用从特殊到一 般的数学思想,分析特点,探索规律,总结结 论.
第1讲┃ 回归教材
回归教材
硬币在数轴上滚动得到的启示 教材母题 人教版八上P83探究 如图1-1,直径为1个单位长度的圆从原点沿数轴
考点3 非负数
非负数 的概念
常见的 非负数
非负数的 性质
正数和零叫做非负数
/a/,a2,√a(a≥0,a可代表一个数或一个
式)
若几个非负数的和等于零,则这几个数都为0
第1讲┃ 归类示例
归类示例
► 类型之一 实数的概念及分类 命题角度: 1.有理数与无理数的概念; 2.实数的分类.
例1 [2012·六盘水] 数字 2,13,π ,3 8,cos45°,0.3·2·中是无理数的 有( C )
第1讲┃ 归类示例
(1)求一个数的相反数,直接在这个数的前面加上负 号,有时需要化简得出.
(2)一个负数的绝对值等于它的相反数.反过来,一 个数的绝对值等于它的相反数,则这个数是非正数.
(3)解绝对值和数轴的有关问题时常用到字母表示数 的思想、分类讨论思想和数形结合思想.
第1讲┃ 归类示例
► 类型之三 科学记数法
相关文档
最新文档