浙大版概率论与数理统计答案---第五章
概率论与数理统计及其应用_习题答案_(浙大_盛骤谢式千版本)
《概率论与数理统计》习题解答教材:《概率论与数理统计及其应用》,浙江大学盛骤、谢式千编,高等教育出版社,2004年7月第一版目录第一章随机事件及其概率1第二章随机变量及其分布9第三章随机变量的数字特征25第四章正态分布33第五章样本及抽样分布39第六章参数估计42第七章假设检验53第一章 随机事件及其概率1、解:(1){}67,5,4,3,2=S (2){} ,4,3,2=S (3){} ,,,TTH TH H S =(4){}6,5,4,3,2,1,,T T T T T T HT HH S =2、设A , B 是两个事件,已知81)(,21)(,41)(===AB P B P A P ,求)(B A P ,)(B A P ,)(AB P ,)])([(AB B A P 解:81)(,21)(,41)(===AB P B P A P ∴)()()()(AB P B P A P B A P -+= 85812141=-+= )()()(AB P B P B A P -=838121=-=87811)(1)(=-=-=AB P AB P)])([(AB B A P )]()[(AB B A P -=)()(AB P B A P -= )(B A AB ⊂218185=-=3、解:用A 表示事件“取到的三位数不包含数字1”2518900998900)(191918=⨯⨯==C C C A P4、在仅由0,1,2,3,4,5组成且每个数字至多出现一次的全体三位数字中,任取一个三位数,(1)该数是奇数的概率;(2)求该数大于330的概率。
解:用A 表示事件“取到的三位数是奇数”,用B 表示事件“取到的三位数大于330”(1) 455443)(2515141413⨯⨯⨯⨯==A C C C C A P =0.48 2) 455421452)(251514122512⨯⨯⨯⨯+⨯⨯=+=A C C C A C B P =0.485、袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率 (1)4只中恰有2只白球,1只红球,1只黑球; (2)4只中至少有2只红球; (3)4只中没有白球解:用A 表示事件“4只中恰有2只白球,1只红球,1只黑球”(1)412131425)(C C C C A P ==495120=338(2)用B 表示事件“4只中至少有2只红球”16567)(4124418342824=++=C C C C C C B P 或4124838141)(C C C C B P +-==16567495201= (3)用C 表示事件“4只中没有白球”99749535)(41247===C C C P 6、解:用A 表示事件“某一特定的销售点得到k 张提货单”nkn k n MM C A P --=)1()( 7、解:用A 表示事件“3只球至少有1只配对”,B 表示事件“没有配对”(1)3212313)(=⨯⨯+=A P 或321231121)(=⨯⨯⨯⨯-=A P (2)31123112)(=⨯⨯⨯⨯=B P 8、(1)设1.0)(,3.0)(,5.0)(===AB P B P A P ,求(),(),(),(),P A B P B A P A B P A A B(),()P AB A B P A AB ;(2)袋中有6只白球,5只红球每次在袋中任取一只球,若取到白球,放回,并放入1只白球,若取到红球不放回也不再放回另外的球,连续取球四次,求第一、二次取到白球且第三、四次取到红球的概率。
概率论与数理统计-浙江大学数学系
定理5.2 契比雪夫定理的特殊情形 : 设随机变量序列X 1 , X 2 , , X n , 相互独立,且具有相同的 数学期望 和相同的方差 2,作前n个随机变量的算术平均: Yn 1 X k , n k 1
n
则 0,有:
1 n lim P Yn lim P X k 1. n n n k 1 n 1 P 即, X k . n k 1 1 n 证明:由于E Yn E X k 1 n , n k 1 n 2 1 n 1 n 2 1 D Yn D X k 2 D X k 2 n n n n k 1 n k 1
师介绍——》统计研究所——》张彩伢
►
2
第五章 大数定律和中心极限定理
关键词: 契比雪夫不等式
大数定律 中心极限定理
3
§1 大数定律
背景
本章的大数定律,对第一章中提出的 “频率稳定性”,给出理论上的论证
为了证明大数定理,先介绍一个重要不等式
4
定理5.1 契比雪夫不等式 :设随机变量X 具有数学期望E X , 方差D X 2
此外,定理中要求随机变量的方差存在,但当随 机变量服从相同分布时,就不需要这一要求。
定理5.3 辛钦定理 : 设随机变量序列X 1 , X 2 , , X n , 相互独立,服从同一分布, 且存在数学期望,作前n个随机变量的算术平均:Yn 1 X k n k 1 则 0,有: 1 n lim P Yn lim P X k 1. n n n k 1
§2 中心极限定理
背景:
有许多随机变量,它们是由大量的相互独立 的随机变量的综合影响所形成的,而其中每 个个别的因素作用都很小,这种随机变量往 往服从或近似服从正态分布,或者说它的极 限分布是正态分布,中心极限定理正是从数 学上论证了这一现象,它在长达两个世纪的 时期内曾是概率论研究的中心课题。
概率论和数理统计浙江大学第四版-课后习题答案解析[完全版]
概率论与数理统计习题答案 第四版 盛骤 (浙江大学)浙大第四版(高等教育出版社) 第一章 概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。
(1)A 发生,B 与C 不发生。
表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。
表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生, 表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生。
相当于:C B A ,,中至少有一个发生。
故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。
相当于:AB ,BC ,AC 中至少有一个发生。
《概率论与数理统计答案》第五章
P{ X − 8 > 3} = 0.1336
3.设 X 1 , X 2 , " , X n 为来自总体 X ~ P (λ ) 的一个样本, X 、 S 2 分别为样本均值 和样本方差。求 DX 及 ES 2 。 答案与提示:此题旨在考察样本均值的期望、方差以及样本方差的期望与总体 期望、总体方差的关系,显然应由定理 5-1 来解决这一问题。
2
=(
1
hd a
) e
n 2 − 1
n
为
2σ 2
2πσ 2
w. c
∑ ( xi − µ )2
i =1
om
,
8.设 X 1 , X 2 , " , X n 为来自正态总体 X ~ N ( µ , σ 2 ) 的一个样本, µ 已知,求 σ 2
第五章 习题参考答案与提示
⎧ ⎪λax a −1e − λx , x > 0, (2) f ( x, λ ) = ⎨ ⎪ x ≤ 0, ⎩ 0,
1 3 1 (3) X 1 + X 2Leabharlann + X 3 。 5 10 2
om
(1)
(2)
第五章 习题参考答案与提示
3,求 θ 的矩估计值和极大似然估计值。
ˆ = 1/ 4 。 答案与提示: θ 的矩估计值为 θ
对于给定的样本值,似然函数为 L(θ ) = 4θ 6 (1 − θ ) 2 (1 − 2θ ) 4 ,解得
其中 θ > −1 为未知参数。
网
9.设 X ~ N ( µ , 1) , X 1 , X 2 , " , X n 为来自正态总体 X 的一个样本,试求 µ 的极
浙大《概率论与数理统计(第四版)简明本》盛骤著 课后习题解答
即样本空间 S={ 62 个基本事件}。事件 AB={两颗骰子点数之间和为 7,且有一颗为 1 点},
两颗骰子点数之和为 7 的可能结果为 6 个,即
A={(1,6),(2,5),(3,4),(6,1),(5,2),(4,3)}
解 利用组合法计数基本事件数。从 10 人中任取 3 人组合数为 C130 ,即样本空间
{ } S= C130 = 120个基本事件 。
(1)令事件 A={最小号码为 5}。最小号码为 5,意味着其余号码是从 6,7,8,9,10 的 5
{ } 个号码中取出的,有 C52 种取法,故 A= C52 = 10个基本事件 ,所求概率为
其中由 P( AB) = P(BC) = 0, 而 ABC ⊂ AB 得 P( ABC) = 0 。
------------------------------------------------------------------------------6.在房间里有 10 个人,分别佩戴从 1 号到 10 号的纪念章,任选 3 人记录其纪念章的号码。 求 (1)最小号码为 5 的概率; (2)最大号码为 5 的概率。
∑200
P(B) = P( A2 ∪ A3 ∪⋯∪, A200)= P( Ai )
i=2
显然,这种解法太麻烦,用对立事件求解就很简单。令事件 B ={恰有 0 个次品或恰有
1 个次品},即 B = A0 ∪ A1 ,而
P(B)
=
P( A0
∪
A1 )
=
P( A0 ) +
P( A1)
=
C 200 1100
概率论与数理统计浙大四版习题答案第五章
第五章 大数定理和中心极限定理1. [一] 据以往经验某种电器元件的寿命服从均值为100小时的指数分布, 现在随机的抽取16只, 设它们的寿命是相互独立的, 求这16只元件寿命总和大于1920小时的概率。
解:设第i 只寿命为Xi, (1≤i ≤16), 故E (Xi )=100, D (Xi )=1002(l=1,2,…,16).依本章定理1知⎪⎪⎪⎪⎪⎭⎫⎝⎛≤-=⎪⎪⎪⎪⎪⎭⎫⎝⎛⨯-≤⨯-=≤∑∑∑===8.040016001001616001920100161600)1920(1616161i i i i i i X P X P X P.7881.0)8.0(=Φ=从而.2119.07881.01)1920(1)1920(161161=-=≤-=>∑∑==i ii iXP XP3. [三] 计算机在进行加法时, 对每个加数取整(取为最接近它的整数), 设所有的取整误差是相互独立的, 且它们都在(-0.5, 0.5)上服从均匀分布,(1)若将1500个数相加, 问误差总和的绝对值超过15的概率是多少? (2)几个数相加在一起使得误差总和的绝对值小于10的概率不小于0.90 解:(1)设取整误差为Xi ( , 1500), 它们都在(-0.5, 0.5)上服从均匀分布。
于是:12112)]5.0(5.0[)(2=--=i X D 18.111251211500)(,0)(==⨯==i i X nD X nE ⎭⎬⎫⎩⎨⎧≤≤--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>∑∑∑===1515115115150011500115000i i i i i i X P X P X P⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤≤--=∑=18.111518.1118.1115115001i i X P1802.0]9099.01[2)]34.1(1[2)]34.1()34.1([1=-⨯=Φ-=-Φ-Φ-=8. 某药厂断言, 该厂生产的某种药品对于医治一种疑难的血液病的治愈率为0.8, 医院检验员任意抽查100个服用此药品的病人, 如果其中多于75人治愈, 就接受这一断言, 否则就拒绝这一断言。
浙江大学盛骤概率论第1-5章课后答案
第二章 随机变量及其分布1.[一] 一袋中有5只乒乓球,编号为1、2、3、4、5,在其中同时取三只,以X 表示取出的三只球中的最大号码,写出随机变量X 的分布律解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为也可列为下表 X : 3, 4,5 P :106,103,101 3.[三] 设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。
解:任取三只,其中新含次品个数X 可能为0,1,2个。
3522)0(315313===C C X P 3512)1(31521312=⨯==C C C X P 351)2(31511322=⨯==C C C X P 再列为下表X : 0, 1, 2 P :351,3512,3522 4.[四] 进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0<p <1) (1)将实验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律。
(此时称X 服从以p 为参数的几何分布。
)(2)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律。
x1 2O P(此时称Y 服从以r, p 为参数的巴斯卡分布。
)(3)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率。
解:(1)P (X=k )=q k -1pk=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111 ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p ,或记r+n=k ,则 P {Y=k }= ,1,,)1(11+=----r r k p p C rk r r k (3)P (X=k ) = (0.55)k -10.45k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P 6.[六] 一大楼装有5个同类型的供水设备,调查表明在任一时刻t 每个设备使用的概率为0.1,问在同一时刻(1)恰有2个设备被使用的概率是多少?0729.0)9.0()1.0()2(322525225=⨯⨯===-C q p C X P(2)至少有3个设备被使用的概率是多少?00856.0)1.0()9.0()1.0()9.0()1.0()3(5554452335=⨯+⨯⨯+⨯⨯=≥C C C X P(3)至多有3个设备被使用的概率是多少?3225415505)9.0()1.0()9.0(1.0)9.0()3(⨯⨯+⨯⨯+=≤C C C X P99954.0)9.0()1.0(2335=⨯⨯+C(4)至少有一个设备被使用的概率是多少?40951.059049.01)0(1)1(=-==-=≥X P X P[五] 一房间有3扇同样大小的窗子,其中只有一扇是打开的。
概率论与数理统计第五章课后习题及参考答案
概率论与数理统计第五章课后习题及参考答案1.用切比雪夫不等式估计下列各题的概率.(1)废品率为03.0,1000个产品中废品多于20个且少于40个的概率;(2)200个新生儿中,男孩多于80个而少于120个的概率(假设男孩和女孩的概率均为5.0).解:(1)设X 为1000个产品中废品的个数,则X ~)1000,03.0(B ,有30)(=X E ,1.29)(=X D ,由切比雪夫不等式,得)3040303020()4020(-<-<-=<<X P X P )103010(<-<-=X P )1030(<-=X P 709.0101.2912=-≥.(2)设X 为200个新生儿中男孩的个数,则X ~)200,5.0(B ,有100)(=X E ,50)(=X D ,由切比雪夫不等式,得)10012010010080()12080(-<-<-=<<X P X P )2010020(<-<-=X P )20100(<-=X P 87205012=-≥.2.一颗骰子连续掷4次,点数总和记为X ,估计)1810(<<X P .解:设i X 为该骰子掷第i 次出现的点数,则61)(==k X P i ,6,,2,1 =i ,6,,2,1 =k .27)654321(61)(=+++++=i X E ,691)654321(61)(2222222=+++++=i X E ,35)]([)()(22=-=i i i X E X E X D ,4,3,2,1=i .因为4321X X X X X +++=,且1X ,2X ,3X ,4X 相互独立,故有14)(=X E ,335)(=X D .由切比雪夫不等式,得)1418141410()1810(-<-<-=<<X P X P )4144(<-<-=X P )414(<-=X P 271.0433512=-≥.3.袋装茶叶用及其装袋,每袋的净重为随机变量,其期望值为100g ,标准差为10g ,一大盒内装200袋,求一盒茶叶净重大于5.20kg 的概率.解:设i X 为一袋袋装茶叶的净重,X 为一盒茶叶的净重,由题可知∑==2001i i X X ,100)(=i X E ,100)(=i X D ,200,,2,1 =i .因为1X ,2X ,…,200X 相互独立,则20000)()(2001==∑=i i X E X E ,20000)()(2001==∑=i i X D X D .)()(20500)()(()20500(2001X D X E X D X E X P X P i i ->-=>∑=)1020020000205001020020000(⋅->⋅-=X P )2251020020000(>⋅-=X P 由独立同分布的中心极限定理,1020020000⋅-X 近似地服从)1,0(N ,于是0002.0)5.3(1)2251020020000(=Φ-≈>⋅-X P .4.有一批建筑用木桩,其80%的长度不小于3m .现从这批木桩中随机取出100根,试问其中至少有30根短于3m 的概率是多少?解:设X 为100根木桩中短于3m 的根数,则由题可知X ~)2.0,100(B ,有20)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)30(1)30(<-=≥X P X P )42030(1)()((1-Φ-=-Φ-=X D X E X 0062.0)5.2(1=Φ-=.5.某种电器元件的寿命服从均值为100h 的指数分布.现随机选取16只,设它们的寿命是相互独立的.求这16只元件寿命总和大于1920h 的概率.解:设i X 为第i 只电器元件的寿命,由题可知i X ~)01.0(E ,16,,2,1 =i ,且1X ,2X ,…,16X 相互独立,则100)(=i X E ,10000)(=i X D .记∑==161i i X X ,则1600)()(161==∑=i i X E X E ,160000)()(161==∑=i i X D X D .))()(1920)()(()1920(X D X E X D X E X P X P ->-=>)400160019204001600(->-=X P )8.04001600(>-=X P ,由独立同分布的中心极限定理,1600-X 近似地服从)1,0(N ,于是2119.0)8.0(1)8.04001600(=Φ-=>-X P .6.在数值计算中中,每个数值都取小数点后四位,第五位四舍五入(即可以认为计算误差在区间]105,105[55--⨯⨯-上服从均匀分布),现有1200个数相加,求产生的误差综合的绝对值小于03.0的概率.解:设i X 为每个数值的误差,则i X ~)105,105(55--⨯⨯-U ,有0)(=i X E ,1210)(8-=i X D ,1200,,2,1 =i .从而0)()(12001==∑=i i X E X E ,61200110)()(-===∑i i X D X D .由独立同分布的中心极限定理,X 近似地服从)10,0(6-N ,于是)03.0(<X P ))()(03.0)()((X D X E X D X E X P -≤-=12101200003.0121012000(44--⋅-≤⋅-=X P 9974.01)3(2=-Φ=.7.某药厂断言,该厂生产的某药品对医治一种疑难的血液病治愈率为8.0.医院检验员任取100个服用此药的病人,如果其中多于75个治愈,就接受这一断言,否则就拒绝这一断言.(1)若实际上此药对这种病的治愈率是8.0,问接受这一断言的概率是多少?(2)若实际上此药对这种病的治愈率是7.0,问接受这一断言的概率是多少?解:设X 为100个服用此药的病人中治愈的个数,(1)由题可知X ~)8.0,100(B ,则80)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 48075(1))()((1-Φ-=-Φ-=X D X E X 8944.0)25.1(=Φ=.(2)由题可知X ~)7.0,100(B ,则70)(=X E ,21)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 217075(1)()((1-Φ-=-Φ-=X D X E X 1379.0)09.1(1=Φ-=.8.一射手在一次射击中,所得环数的分布律如下表:X678910P 05.005.01.03.05.0求:(1)在100次射击中环数介于900环与930环之间的概率是多少?(2)超过950环的概率是多少?解:设X 为100次射击中所得的环数,i X 为第i 次射击的环数,则∑==1001i i X X ,15.9)(=i X E ,95.84)(2=i X E ,2275.1)]([)()(22=-=i i i X E X E X D ,100,,2,1 =i .由1X ,2X ,…,100X 相互独立,得915)()(1001==∑=i i X E X E ,75.122)()(1001==∑=i i X D X D .由独立同分布的中心极限定理,75.122915-X 近似地服从)1,0(N ,于是(1))930900(≤≤X P ))()(930)()()()(900(X D X E X D X E X X D X E P -≤-≤-=75.12291593075.12291575.122915900(-≤-≤-=X P )75.1221575.122915(≤-=X P 823.01)35.1(2=-Φ≈.(2))950(>X P ))()(950)()((X D X E X D X E X P ->-=75.122915950)()((->-=X D X E X P 001.0)1.3(1=Φ-≈.9.设有30个电子元件1A ,2A ,…,30A ,其寿命分别为1X ,2X ,…,30X ,且且都服从参数为1.0=λ的指数分布,它们的使用情况是当i A 损坏后,立即使用1+i A (29,,2,1 =i ).求元件使用总时间T 不小于350h 的概率.解:由题可知i X ~)1.0(E ,30,,2,1 =i ,则10)(=i X E ,100)(=i X D .记∑==301i i X T ,由1X ,2X ,…,30X 相互独立,得300)()(301==∑=i i X E T E ,3000)()(301==∑=i i X D T D .))()(350)()(()350(T D T E T D T E T P T P ->-=>30103003503010300(⋅->⋅-=T P )91.03010300(>⋅-≈T P ,由独立同分布的中心极限定理,3010300⋅-T 近似地服从)1,0(N ,于是1814.0)91.0(1)91.03010300(=Φ-=>⋅-T P .10.大学英语四级考试,设有85道选择题,每题4个选择答案,只有一个正确.若需要通过考试,必须答对51道以上.试问某学生靠运气能通过四级考试的概率有多大?解:设X 为该学生答对的题数,由题可知X ~41,85(B ,则25.21)(=X E ,9375.15)(=i X D ,85,,2,1 =i .由棣莫弗—拉普拉斯中心极限定理,近似地有9375.1525.21-X ~)1,0(N ,得)8551(≤≤X P ))()(85)()()()(51(X D X E X D X E X X D X E P -≤-≤-=)9375.1525.21859375.1525.219375.1525.2151(-≤-≤-=X P 0)45.7()97.15(=Φ-Φ=.即学生靠运气能通过四级考试的概率为0.。
概率论与数理统计第五章习题解答.dot
当零假设H o 成立时,变量:汕 X32.0. 6~N(0, 1)1.10.89 1.9632.0,所以可以认为这批机制砖的平均抗断强度 显着为32.0kg/cm 2。
解:这是检验正态总体数学期望是否大于10提出假设:H 。
:10, H 1 : 10 即:H 0 :10,H 1 :10由题设,样本容量n5,20.12,0.120.1,检验解:这是检验正态总体数学期望提出假设:H 。
:32.0, 由题设,样本容量n 6,是否为H 1 : 32.01.21,1.21 1.1,所以用 U因检验水平 0.05,由 P{| U|0.05,查表得1.96得到拒绝域: |u |1.96计算得:1(32.6 30.0 31.6632.0 31.8 31.6) 31.600-壮叫0.89它没有落入拒绝域,于是不能拒绝H 。
,而接受H 0,即可以认为X 10.1万 km ,所以用U 检验当零假设H o 成立时, 变量: X10一5~N(0,1)0.1因检验水平 0.05,由P{U} 0.05,查表得'1.64得到拒绝域: 1.64计算得:ux 0 斤 10.1n0.110” 52.242.24 1.64它落入拒绝域, 于是拒绝零假设 H 0,而接受备择假设H 1,即可认为 10所以可以认为这批新摩托车的平均寿命 有显者提高。
解:这是检验正态总体数学期望是否小于240提出假设:H 。
:即:H 。
:由题设,样本容量n240, H 1 : 240 240,H 1 : 2402625,、625 25, x 220,所6 以用U 检验当零假设H o 成立时, 变量:因检验水平 0.05, 由P{U得到拒绝域: u1.64计算得:u Xn220U 02406 25”nX 2406 ~ N(0,1)250.05,查表得'1.641.959它落入拒绝域,于是拒绝H o,而接受H i,即可以认为240所以可以认为今年果园每株梨树的平均产量显着减少。
概率论与数理统计及其应用课后答案(浙江大学-盛骤版)
概率论与数理统计及其应用课后答案(浙江大学-盛骤版)
目录
第一章随机变量及其概率. (2)
第二章随机变量及其分布. (13)
第三章随机变量的数字特征. (30)
第四章正态分布. (39)
第五章样本及抽样分布. (49)
第六章参数估计. (55)
第七章假设检验. (68)
第一章随机变量及其概率
1,写出下列试验的样本空间:
(1)连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。
(2)连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。
(3)连续投掷一枚硬币直至正面出现,观察正反面出现的情况。
(4)抛一枚硬币,若出现H则再抛一次;若出现T,则再抛一颗骰子,观察出现的各种结果。
解:(1)S {2,345,6,7} ;(2)S {2,3,4, } ;(3)S
{H ,TH ,TTH ,TTTH , };
(4)S {HH , HT,T1,T2,T3,T4,T5,T6} o
2,设A,B 是两个事件,已知P(A) 0.25,P(B) 0.5,P(AB) 0.125,,求
P(A B), P(AB), P(AB), P[( A B)(AB)]。
解:P(A B) P(A) P(B) P(AB) 0.625,
P(AB) P[(S A)B] P(B) P(AB) 0.375,
P(AB) 1 P(AB) 0.875,
P[(A B)(AB)] P[(A B)(S AB)] P(A B) P[(A B)( AB)] 0.625 P(AB) 0.5。
概率论与数理统计习题及答案-第五章
习题五1.一颗骰子连续掷4次,点数总和记为X .估计P {10<X <18}.【解】设i X 表每次掷的点数,则41i i X X==∑22222221111117()123456,666666211111191()123456,6666666i i E X E X =⨯+⨯+⨯+⨯+⨯+⨯==⨯+⨯+⨯+⨯+⨯+⨯= 从而 22291735()()[()].6212i i i D X E X E X ⎛⎫=-=-= ⎪⎝⎭ 又X 1,X 2,X 3,X 4独立同分布.从而44117()()()414,2i i i i E X E X E X =====⨯=∑∑ 44113535()()()4.123i i i i D X D X D X =====⨯=∑∑ 所以 235/3{1018}{|14|4}10.271,4P X P X <<=-<≥-≈ 2. 假设一条生产线生产的产品合格率是0.8.要使一批产品的合格率达到在76%与84%之间的概率不小于90%,问这批产品至少要生产多少件?【解】令1,,0,i i X ⎧⎨⎩若第个产品是合格品其他情形. 而至少要生产n 件,则i =1,2,…,n ,且X 1,X 2,…,X n 独立同分布,p =P {X i =1}=0.8.现要求n ,使得1{0.760.84}0.9.n i i X P n =≤≤≥∑即0.80.9ni X n P -≤≤≥∑ 由中心极限定理得0.9,Φ-Φ≥整理得0.95,Φ≥⎝⎭1.64,≥ n ≥268.96, 故取n =269.3. 某车间有同型号机床200部,每部机床开动的概率为0.7,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产.【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m要满足200部机床中同时开动的机床数目不超过m 的概率为95%,于是我们只要供应15m 单位电能就可满足要求.令X 表同时开动机床数目,则X ~B (200,0.7),()140,()42,E X D X ==0.95{0}().P X m P X m =≤≤=≤=Φ 查表知1.64,= ,m =151. 所以供电能151×15=2265(单位).4. 一加法器同时收到20个噪声电压V k (k =1,2,…,20),设它们是相互独立的随机变量,且都在区间(0,10)上服从均匀分布.记V =∑=201k k V,求P {V >105}的近似值.【解】易知:E (V k )=5,D (V k )=10012,k =1,2,…,20 由中心极限定理知,随机变量20205~(0,1).k V Z N -⨯==∑近似的于是105205{105}10P V P ⎧⎫⎪⎪-⨯⎪>=>⎬⎪⎪⎭1000.3871(0.387)0.348,10V P ⎧⎫⎪⎪-⎪⎪=>≈-Φ=⎨⎬⎪⎪⎭即有 P {V >105}≈0.3485. 有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100根,问其中至少有30根短于3m 的概率是多少?【解】设100根中有X 根短于3m ,则X ~B (100,0.2)从而{30}1{30}1P X P X ≥=-<≈-Φ 1(2.5)10.99380.0062.=-Φ=-=6. 某药厂断言,该厂生产的某种药品对于医治一种疑难的血液病的治愈率为0.8.医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言,否则就拒绝这一断言.(1) 若实际上此药品对这种疾病的治愈率是0.8,问接受这一断言的概率是多少?(2) 若实际上此药品对这种疾病的治愈率是0.7,问接受这一断言的概率是多少?【解】1,,1,2,,100.0,.i i X i ⎧==⎨⎩ 第人治愈其他 令1001.ii X X ==∑ (1) X ~B (100,0.8),1001{75}1{75}1i i P X P X =>=-≤≈-Φ∑ 1( 1.25)(1.25)0.8944.=-Φ-=Φ=(2) X ~B (100,0.7),1001{75}1{75}1i i P X P X =>=-≤≈-Φ∑11(1.09)0.1379.=-Φ=-Φ= 7. 用Laplace 中心极限定理近似计算从一批废品率为0.05的产品中,任取1000件,其中有20件废品的概率.【解】令1000件中废品数X ,则p =0.05,n =1000,X ~B (1000,0.05),E (X )=50,D (X )=47.5.故130{20} 6.895 6.895P X ϕ⎛⎫===- ⎪⎝⎭6130 4.510.6.895 6.895ϕ-⎛⎫==⨯ ⎪⎝⎭ 8. 设有30个电子器件.它们的使用寿命T 1,…,T 30服从参数λ=0.1[单位:(小时)-1]的指数分布,其使用情况是第一个损坏第二个立即使用,以此类推.令T 为30个器件使用的总计时间,求T 超过350小时的概率. 【解】11()10,0.1i E T λ=== 21()100,i D T λ== ()1030300,E T =⨯= ()3000.D T =故{350}111(0.913)0.1814.P T >≈-Φ=-Φ=-Φ= 9. 上题中的电子器件若每件为a 元,那么在年计划中一年至少需多少元才能以95%的概率保证够用(假定一年有306个工作日,每个工作日为8小时).【解】设至少需n 件才够用.则E (T i )=10,D (T i )=100,E (T )=10n ,D (T )=100n .从而1{3068}0.95,ni i P T =≥⨯=∑即0.05.≈Φ 故0.95, 1.64272.n =Φ=≈所以需272a 元.10. 对于一个学生而言,来参加家长会的家长人数是一个随机变量,设一个学生无家长、1名家长、2名家长来参加会议的概率分别为0.05,0.8,0.15.若学校共有400名学生,设各学生参加会议的家长数相与独立,且服从同一分布.(1) 求参加会议的家长数X 超过450的概率?(2) 求有1名家长来参加会议的学生数不多于340的概率.【解】(1) 以X i (i =1,2,…,400)记第i 个学生来参加会议的家长数.则X i 的分布律为 X i 0 1 2P 0.05 0.80.15 易知E (Xi =1.1),D (X i )=0.19,i =1,2, (400)而400i i X X=∑,由中心极限定理得400400 1.1~(0,1).i X N -⨯=∑近似地 于是{450}1{450}1P X P X >=-≤≈-Φ 1(1.147)0.1357.=-Φ= (2) 以Y 记有一名家长来参加会议的学生数.则Y ~B (400,0.8) 由拉普拉斯中心极限定理得{340(2.5)0.9938.P Y ≤≈Φ=Φ= 11. 设男孩出生率为0.515,求在10000个新生婴儿中女孩不少于男孩的概率?【解】用X 表10000个婴儿中男孩的个数,则X ~B (10000,0.515) 要求女孩个数不少于男孩个数的概率,即求P {X ≤5000}. 由中心极限定理有{5000}(3)1(3)0.00135.P X ≤≈Φ=Φ-=-Φ= 12. 设有1000个人独立行动,每个人能够按时进入掩蔽体的概率为0.9.以95%概率估计,在一次行动中:(1)至少有多少个人能够进入?(2)至多有多少人能够进入?【解】用X i 表第i 个人能够按时进入掩蔽体(i =1,2,…,1000).令 S n =X 1+X 2+…+X 1000.(1) 设至少有m 人能够进入掩蔽体,要求P {m ≤S n ≤1000}≥0.95,事件{}.n m S ≤=≤ 由中心极限定理知:{}1{}10.95.n n P m S P S m ≤=-<≈-Φ≥ 从而 0.05,Φ≤ 故1.65,=- 所以 m =900-15.65=884.35≈884人(2) 设至多有M 人能进入掩蔽体,要求P {0≤S n ≤M }≥0.95.{}0.95.n P S M ≤≈Φ==1.65,M =900+15.65=915.65≈916人. 13. 在一定保险公司里有10000人参加保险,每人每年付12元保险费,在一年内一个人死亡的概率为0.006,死亡者其家属可向保险公司领得1000元赔偿费.求:(1) 保险公司没有利润的概率为多大;(2) 保险公司一年的利润不少于60000元的概率为多大?【解】设X 为在一年中参加保险者的死亡人数,则X ~B (10000,0.006).(1) 公司没有利润当且仅当“1000X =10000×12”即“X =120”.于是所求概率为{120}P X =≈21(60230.18110.0517e 0--===⨯≈(2) 因为“公司利润≥60000”当且仅当“0≤X ≤60” 于是所求概率为{060}P X ≤≤≈Φ-Φ(0)0.5.⎛=Φ-Φ≈ ⎝ 14. 设随机变量X 和Y 的数学期望都是2,方差分别为1和4,而相关系数为0.5试根据契比雪夫不等式给出P {|X -Y |≥6}的估计. (2001研考)【解】令Z =X -Y ,有()0,()()()()2 3.E Z D Z D X Y D X D Y ρ==-=+-=所以2()31{|()|6}{||6}.63612D X Y P ZE Z P X Y --≥=-≥≤== 15. 某保险公司多年统计资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查的100个索赔户中,因被盗向保险公司索赔的户数.(1) 写出X 的概率分布;(2) 利用中心极限定理,求被盗索赔户不少于14户且不多于30户的概率近似值.(1988研考)【解】(1) X 可看作100次重复独立试验中,被盗户数出现的次数,而在每次试验中被盗户出现的概率是0.2,因此,X ~B (100,0.2),故X 的概率分布是100100{}C 0.20.8,1,2,,100.k k k P X k k -===(2) 被盗索赔户不少于14户且不多于30户的概率即为事件{14≤X≤30}的概率.由中心极限定理,得{1430}P X ≤≤≈Φ-Φ (2.5)( 1.5)0.994[9.33]0.927.=Φ-Φ-=--=16. 一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克,若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977.【解】设X i (i =1,2,…,n )是装运i 箱的重量(单位:千克),n 为所求的箱数,由条件知,可把X 1,X 2,…,X n 视为独立同分布的随机变量,而n 箱的总重量T n =X 1+X 2+…+X n 是独立同分布随机变量之和,由条件知:()50,i E X = 5,=()50,n E T n = =依中心极限定理,当n ~(0,1)N 近似地,故箱数n 取决于条件{5000}n P T P ≤=≤0.977(2).≈Φ>=Φ 2>解出n <98.0199,即最多可装98箱.。
概率论与数理统计及其应用课后答案(浙大版)第5章 样本及抽样分布
第5章 样本及抽样分布1,解:因为X 的概率密度为x e x f 22)(-=,0>x ,所以(1) 联合概率密度为)()()()(),,,(43214321x f x f x f x f x x x x g =)(2432116x x x x e+++-=,(0,,,4321>X X X X )(2)21,X X 的联合概率密度为)(2212x x e+-,所以⎰⎰⎰⎰----==<<<<2.17.02215.01215.02.17.02122212121224}2.17.0,15.0{dx edx edx dx eX X P x x x x))((4.24.121------=ee ee(3),21)(41)(41==∑=i i X E X E1612141)(161)(241=⎪⎭⎫⎝⎛⨯==∑=i i X D X D ; (4)41)()()(2121==X E X E X XE ,(由独立性)]41)()([21]41[21])5.0[()(])5.0([222222221221+-=+-=-=-X E XE XXE XE X E XX E 81]412141[21]4121)()([212222=-⎪⎭⎫ ⎝⎛+=+-+=X E X D ; (5)222212122212141)()()(])[()(⎪⎭⎫⎝⎛-=-=X E X E X X E X X E X X D163161)4141)(4141(161)]()()][()([222121=-++=-++=X E X D X E X D 。
2,解:(1)=<<<=<}85,85,85{}85),,{max(321321X X X P X X X P()3131321}1075851075{}85{}85{}85{}85{⎪⎭⎫ ⎝⎛-<-=<=<<<X P X P X P X P X P5955.08413.0)]1([33==Φ=;(2))9075()8060()}9075()8060{(3131<<+<<=<<⋃<<X P X P X X P}1075901075107575{}1075801075107560{}9075{}8060{3131-<-<-+-<-<-=<<<<-X P X P X P X P }1075901075107575{}1075801075107560{31-<-<--<-<--X P X P)]0()5.1()][5.0()5.0([)]0()5.1([)]5.0()5.0([Φ-Φ-Φ-Φ-Φ-Φ+-Φ-Φ=6503.04332.0383.04332.0383.0]5.09332.0][1)5.0(2[]5.09332.0[]1)5.0(2[=⨯-+=--Φ--+-Φ= (本题与答案不符) (3)323121232221232221]75100[)]()([)()()()(+=+==X E X D X E X E X E X X X E11108764.1⨯=;(4))(108764.1)(])[()(161132122321321X E X X X E X X X E X X XD -⨯=-=961110662.975108764.1⨯=-⨯=;1400)()(9)(4)32(321321=++=--X D X D X D X X X D ;(5)因为)200,150(~21N X X +,所以4443.05557.01)102(1)200150148(}148{21=-=Φ-=-Φ=≤+XX P 。
概率论与数理统计浙大四版习题答案第五章-推荐下载
第五章 大数定理和中心极限定理1.[一]据以往经验某种电器元件的寿命服从均值为100小时的指数分布,现在随机的抽取16只,设它们的寿命是相互独立的,求这16只元件寿命总和大于1920小时的概率。
解:设第i 只寿命为X i ,(1≤i ≤16),故E (X i )=100,D (X i )=1002(l=1,2,…,16).依本章定理1知⎪⎪⎪⎪⎪⎭⎫⎝⎛≤-=⎪⎪⎪⎪⎪⎭⎫⎝⎛⨯-≤⨯-=≤∑∑∑===8.040016001001616001920100161600)1920(1616161i i i i i i X P X P X P .7881.0)8.0(=Φ=从而.2119.07881.01)1920(1)1920(161161=-=≤-=>∑∑==i ii iXP XP 3.[三] 计算机在进行加法时,对每个加数取整(取为最接近它的整数),设所有的取整误差是相互独立的,且它们都在(-0.5,0.5)上服从均匀分布,(1)若将1500个数相加,问误差总和的绝对值超过15的概率是多少?(2)几个数相加在一起使得误差总和的绝对值小于10的概率不小于0.90解:(1)设取整误差为X i (,1500),它们都在(-0.5, 0.5)上服从均匀,2,1=i 分布。
于是:025.05.0)(=+-==p X E i12112)]5.0(5.0[)(2=--=i X D18.111251211500)(,0)(==⨯==i i X nD X nE⎭⎬⎫⎩⎨⎧≤≤--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>∑∑∑===1515115115150011500115000i i i i i i X P X P X P⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤≤--=∑=18.111518.1118.1115115001i i X P1802.0]9099.01[2)]34.1(1[2)]34.1()34.1([1=-⨯=Φ-=-Φ-Φ-=8.某药厂断言,该厂生产的某种药品对于医治一种疑难的血液病的治愈率为0.8,医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言,否则就拒绝这一断言。
[学习]概率论与数理统计浙大四版第五章第五章2讲
P{|
1 n
n k 1
Xk
0.3
0.1 |
n
n} 30
2(
n ) 1 30
欲使 2( n ) 1 0.95 30
即 查表得
( n ) 0.975 30 即至少应取球3458次
n 1.96 30
才能使“0”出现的频 率在0.09-0.11之间的 概率至少是0.95.
从中解得 n 3458
求满足 P(X≤N)≥0.999 的最小的N.
(由于每台车床在开工时需电力1千瓦, N台工作所需电力即N千瓦.)
由德莫佛-拉普拉斯极限定理
X np(1
np p)
近似N(0,1),
于是 P(X≤N)= P(0≤X≤N)
( N 120) ( 120)
48
48
( N 120) 48
这里 np=120, np(1-p)=48
(1) 设 Xk
1 第k次取到号码0
0
否则
,k=1,2, …
问对序列{Xk},能否应用大数定律?
解:
1 Xk ~ 0.1
0 0.9,
E(Xk)=0.1, k=1,2, …
诸Xk 独立同分布, 且期望存在, 故能使 用大数定律.
解:
1 Xk ~ 0.1
00.9,
E(Xk)=0.1,
k=1,2, …
由3σ准则, 此项为0。
由 ( N 120)≥0.999, 查正态分布函数表得
48 (3.1) 0.999
故 N 120≥ 3.1,
48
从中解得N≥141.5, 即所求N=142.
也就是说, 应供应142 千瓦电力就能以 99.9%的概率保证该车间不会因供电不 足而影响生产.
概率论与数理统计浙大第四版答案_第五章
H 1 : µ ≠ µ 0 = 72
T=
X − 72 S / 10
~ t (9)
由
查表得: t 0.05 (9) = 2.2622 ,故拒绝域为 ( −∞ ,−2.2622 ) U ( 2.2622,+∞ ) .
2
代入样本值得 T 值为
T=
67.4 − 72 5.93 / 10
= 2.453 > 2.2622
查表得: F 0.05 (10,8) = 4.3,
2
F
0.05 1− 2
(10,8) =
1 1 = = 0.2597 , F0.025 (8,10 ) 3.85
故拒绝域为 (0, 0.2597 ) U ( 4.3, + ∞ ) . 代入样本值 s12 = 0.253 2 ,
2 s2 = 0.173 2 得 F 值为 F =
2 2 和 0.5006。若甲、乙测定值的总体都是正态分布,其方差分别为 σ 甲 ,试在水平 α = 0.05 下 和σ 乙 2 2 2 2 检验假设 H 0 : σ 甲 。 = σ乙 , H1 :σ甲 ≠ σ乙
.k
1 1 + 11 9
8 × (0.007) 2 = 15.68 > 15.507 (0.005) 2
所以拒绝 H 0 ,故可以认为这批导线的标准差显著地偏大。 7. 某厂使用两种不同的原料 A, B 生产同一类产品,现抽取用原料 A 生产的样品 220 件,测得平均 重量为 2.46kg,标准差为 0.57kg。抽取用原料 B 生产的样品 205 件,测得平均重量为 2.55kg,标 准差为 0.48kg。设这两个总体都服从正态分布,且方差相等,问在显著水平 α = 0.05 下能否认为 使用原料 B 生产的产品平均重量较使用原料 A 生产的产品平均重量为大? 解:在检验水平 α = 0.05 下,检验假设 H 0 : µ A = µ B 当假设 H 0 为真时,取检验统计量
概率论与数理统计_浙大四版_习题解_第5章_极限定理
5000 P X i 2510 i 1
求样本和的期望和方差如下
5000 E X i 5000 E X i 5000 0.5 2500 i 1
5
5000 Var X i 5000Var X i 5000 0.12 50 i 1
12
2
0.5 0.5 1 12 12
2
1500 E X i 1500 E X i 1500 0 0 i 1 1 1500 Var X i 1500Var X i 1500 125 12 i 1
概率论与数理统计(浙大四版)习题解 第 5 章 极限定理
【习题 5.1】据以往经验,某种电器元件的寿命服从均值为 100h 的指数分布,现随机地取 16 只,设它们的寿命是相互独立的。求这 16 只元件的寿命总和大于 1920h 的概率。 〖解〗 设随机抽取的第 i 个电器元件的寿命(h)为 X i ,则 16 个寿命观测为独立同分布样本
样本容量足够大,引用独立同分布样本和中心极限定理,计算事件的概率如下
50 P X i 300 1 FTS 300 i 1 300 250 1 300 1 2.89 1 0.9981 0.0019
结论:抽样 16 只元件的寿命总和大于 1920h 的概率为 0.2119。 〖小资料〗 X 服从指数分布,则它的概率密度和分布函数分别是
1 x 1 e x x 0 e , x0 f x 和 F x 0 x 0 0, x 0
样本容量足够大,引用独立同分布样本和中心极限定理,计算事件的概率如下
浙大版概率论与数理统计答案---第五章
第五章 大数定律及中心极限定理注意: 这是第一稿(存在一些错误)1、 解(1)由于{0}1P X ≥=,且()36E X =,利用马尔科夫不等式,得(){50}0.7250E X P X ≥≤= (2)2()2D X =,()36E X =,利用切比雪夫不等式,所求的概率为:223{3240}1(364)10.75164P X P X <<=--≥≥-==2、解:()500,0.1iX B ,5005001211500111610%5%192.8%5000.05125i i i i D X P X ==⎛⎫ ⎪⎧⎫⎝⎭-<≥-==⎨⎬⎩⎭∑∑3、 解 ξ服从参数为0.5的几何分布,11(),(2,3,4)2n P n n ξ-⎛⎫=== ⎪⎝⎭可求出2()()3,()2n E nP n D ξξξ∞=====∑于是令()2a b E ξ+=,2b aε-=,利用切比雪夫不等式,得 有2()()1(())175%D P a b P E ξξξξεε<<=--≥≥-=从而可以求出()3()3a E b E εξεξε==-=-=+=+4、解:()()()()()()()1,,n nnX n n n x F x P X x P X x X x F x a=≤=≤≤==,()0,x a ∈。
则()()()()()11nn n X n nx p x n F x p x a--==,()0,x a ∈。
()()101n n aX n nx n E x x dx a a n -=⋅=+⎰,()()()()21222121n n aX n nx n n D x x dx a a a n n n -⎛⎫=⋅-= ⎪+⎝⎭++⎰。
()()()222121n n n P X a a n n n εε⎧⎫-≥≤⎨⎬+++⎩⎭, 所以(){}lim 0n n P X a ε→∞-≥=。
5、 解 服从大数定律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 大数定律及中心极限定理注意: 这是第一稿(存在一些错误)1、 解(1)由于{0}1P X ≥=,且()36E X =,利用马尔科夫不等式,得(){50}0.7250E X P X ≥≤= (2)2()2D X =,()36E X =,利用切比雪夫不等式,所求的概率为:223{3240}1(364)10.75164P X P X <<=--≥≥-==2、解:()500,0.1i X B :,5005001211500111610%5%192.8%5000.05125i i i i D X P X ==⎛⎫⎪⎧⎫⎝⎭-<≥-==⎨⎬⎩⎭∑∑3、 解 ξ服从参数为的几何分布,11(),(2,3,4)2n P n n ξ-⎛⎫=== ⎪⎝⎭L可求出2()()3,()2n E nP n D ξξξ∞=====∑于是令()2a b E ξ+=,2b aε-=,利用切比雪夫不等式,得 有2()()1(())175%D P a b P E ξξξξεε<<=--≥≥-=从而可以求出()3()3a E b E εξεξε==-=-=+=+4、解:()()()()()()()1,,n nnX n n n x F x P X x P X x X x F x a=≤=≤≤==L ,()0,x a ∈。
则()()()()()11nn n X n nx p x n F x p x a--==,()0,x a ∈。
()()101n n aX n nx n E x x dx a a n -=⋅=+⎰,()()()()21222121n n aX n nx n n D x x dx a a a n n n -⎛⎫=⋅-= ⎪+⎝⎭++⎰。
()()()222121n n n P X a a n n n εε⎧⎫-≥≤⎨⎬+++⎩⎭, 所以(){}lim 0n n P X a ε→∞-≥=。
5、 解 服从大数定律。
由题意得:()2/32/32/3{},()()!kii i i i e P X k E X D X i k -====由1/32/32221111111()()0nn n n i i i i i D X D X i n n n n ->∞===⎛⎫==≤−−−→ ⎪⎝⎭∑∑∑根据马尔科夫大数定律,可判断该序列服从大数定律的。
6、解:(1)()2h x x =,则()h x 连续。
()()22211E h X EX σμ==+<∞,则0ε∀>,有()22211lim 0n i n i P X n σμε→∞=⎧⎫-+≥=⎨⎬⎩⎭∑,则()22211n p i i X n σμ=−−→+∑,()n →∞。
(2)()()2h x x μ=-连续,()()()2211E h X E X μσ=-=<∞,则0ε∀>,有()2211lim 0n i n i P X n μσε→∞=⎧⎫--≥=⎨⎬⎩⎭∑,则()2211n p i i X n μσ=-−−→∑,()n →∞。
(3)12122211lim pnnnnn iii i X X X X X X EXX→∞==++++++−−→∑∑L L12pn X X X X n μ+++=−−→L ,()()2222111np i i X n S nX n n σμ==-+−−→-+∑,故()12222221lim1pnnn ii X X X n n n Xμμσμσμ→∞=+++−−→=-++∑L(4)原式依概率收敛,即lim pn E→∞−−→lim lim n n nX →∞→∞=n XS=)n Sμ=+n Sμ= E Sμ=μσ=7 解 (1)由题意得:221111{}1110n n i i i i P X a P X a n n εε==⎧⎫-≥=--<=-=⎨⎬⎩⎭∑∑根据推论,可求得22122()x a E X x e dx λλλ∞-===⎰(2)由题意得:211(),()i i E X D X λλ==,100100100211112111(),()()5050250025i i i i i i E X D X D X λλ======∑∑∑ 根据中心极限定理,可知10021121~(,)5025ii X N λλ=∑ (3) 2224224(),()i i E X a D X λλ===,利用中心极限定理,可知10022411224~(,)100100ii X N λλ=∑ 从而10022112{}0.5100i i P X λ=≤=∑8、解:()500,150X N -:近似地,()()()506016010.210.27.9%50X P P X P X P -⎛⎫=>=-≤=-≤=-Φ= ⎪⎝⎭9、解 (1)由题意得:记{}20.95 1.050.95 1.05 1.122p P X =<<=--,引入随机变量 10,i i Y i ⎧=⎨⎩L ,第次试验中该事件发生,i=1,2,3第次试验中该事件不发生,且(1)i P Y p ==于是1n ii Y Y ==∑服从二项分布:1001001001()()(1)n k k ii P Y k P Y k Cp p -=====-∑方法一:(Y 的精确分布)10099(2)1(0)(1)1(1)100(1)99.756%P Y P Y P Y p p p >=-=-==----=方法二(泊松分布)Y 近似服从参数为100p 的泊松分布100100(2)1(0)(1)110099.66%p p P Y P Y P Y e pe -->=-=-==--=方法三:(中心极限定理)Y 近似服从(100,100(1))N p p p -于是:(2)1(2)199.55%P Y P Y >=-≤=-Φ=(2)设至少需要n 次观察 记133224q P X ⎧⎫=<<=⎨⎬⎩⎭,这时(1)i P Y q ==于是1ni i Y Y ==∑近似服从(,(1))N nq nq q -95%(80)1P Y P ≤≥=≥=-Φ1.65≈,从而求得n=11710、解:1,0.3,2,0.5,3,0.2. X⎧⎪=⎨⎪⎩10.320.500.2 1.3EX=⨯+⨯+⨯=,2220.30.30.70.5 1.30.20.61 DX=⨯+⨯+⨯=,()80011.30,1iXN-∑:近似地,则8008001110001.3 1.31000iiiXP X P=⎛⎫--⎪⎛⎫>=>⎪⎝⎭∑∑()1.8196.48%=Φ=11 、解(1)由题意得,引入随机变量101000,0iiXi⎧=⎨⎩L,第名选手得分,i=1,2,3,第名选手不得分,且(1)0.3iP X==所求的概率为:100100110.33586.21%iiiXP X P=-⎛⎫≤=≤=Φ=⎪⎝⎭∑∑(2)用iX表示第i名选手的得分,则23(0)0.2,(1)0.2*0.80.16(2)0.2*0.80.128,(4)0.80.512i ii iP X P XP X P X===========并且() 2.464,() 2.793i iE X D X==1002.464*100~(0,1)iXN-∑,于是所求的概率为:1001(220)1(1.58)94.3%iiP X=≥=-Φ=Φ=∑。