职高数学公式整理
职校高中数学知识点总结及公式大全
职校高中数学知识点总结及公式大全全文共四篇示例,供读者参考第一篇示例:职校高中数学知识点总结及公式大全一、初等代数1. 二项式定理(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)a b^(n-1) + C(n,n)b^n2. 多项式的加减乘除运算多项式加减法:合并同类项多项式乘法:展开式,按每一项分配展开多项式除法:长除法或者直接使用因式分解3. 一元二次方程一元二次方程的一般形式为ax^2 + bx + c = 0求根公式:x = (-b ± 根号(b^2 - 4ac)) / 2a判别式:Δ = b^2 - 4ac根的情况:Δ > 0,有两个不相等的实根Δ = 0,有两个相等的实根Δ < 0,无实数根4. 不等式解不等式的方法与解方程式类似,但需要注意不等式号的方向常见的不等式:线性不等式、一元二次不等式不等式的解集写法:用数轴表示或者写成区间形式5. 函数函数的定义:对于每个元素x,存在唯一的元素y 与之对应函数的图像:以y 轴为对称轴的曲线常见函数:一次函数、二次函数、指数函数、对数函数、三角函数二、平面几何1. 几何基本定理射影定理:两平行线被一截线相交,所成的两对对应角相等全等三角形的判定:SSS、SAS、ASA、AAS、HL相似三角形的判定:AA、SSS、SAS比例定理正弦定理:a/sinA = b/sinB = c/sinC余弦定理:c^2 = a^2 + b^2 - 2ab cosC2. 圆圆的相关性质:半径、直径、周长、面积圆的弦、割、切切线与半径的垂直性:切线与半径垂直于接触点圆内角的性质:内切圆、外切圆4. 向量向量的表示:用一个有向线段或者坐标表示向量的模:|a| = √(a1^2 + a2^2)向量的运算:加减法、数量积、向量积5. 空间几何点、直线、平面在空间中的位置关系直线和平面的交点及夹角平行线和垂直线的性质空间几何问题的解决方法第二篇示例:职校高中数学知识点总结在职校的高中数学课程中,学生将会接触到许多重要的数学知识点和公式。
职业高中常用数学公式
职业高中常用数学公式三、指数部分与对数部分常用公式1、指数部分:⑵分数指数幂与根式形式的互化: ① nmnm a a= ② nmnm aa1=-)1*,(>∈n N n m 且、①10=a② a a n n =)( ③ ⎩⎨⎧=为偶数,当为奇数当n a n a a n n ||,2、对数部分:⑴1log =a a ;⑵01log =a ;⑶对数恒等式:N aNa =log 。
⑷N M N M a a a log log )(log +=⋅ ⑸N M NMa a a log log )(log -=; ⑹ M p M a pa log log =⑺换底公式:abb c c a log log log =﹡四、三角部分公式 1、弧度与角度⑴换算公式:1800=π,10=180πrad 1rad=π0180≈57018'=57.3002、角α终边经过点P ),(y x ,22y x r +=,则r y =αsin ,r x =αcos ,xy=αtan 1、 三角函数在各象限的正负情况:4、同角函数基本关系式:5、简化公式:①⎪⎩⎪⎨⎧-=-=--=-ααααααtan )tan(cos )cos(sin )sin( ②⎪⎩⎪⎨⎧-=-=--=-ααπααπααπtan )2tan(cos )2cos(sin )2sin( ③⎪⎩⎪⎨⎧-=--=-=-ααπααπααπtan )tan(cos )cos(sin )sin( ④ ⎪⎩⎪⎨⎧=+-=+-=+ααπααπααπtan )tan(cos )cos(sin )sin( ⑤⎪⎩⎪⎨⎧=+=+=+ααπααπααπtan )2tan(cos )2cos(sin )2sin(k k k (k Z ∈)⑥⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=-ααπααπααπcot )2tan(sin )2cos(cos )2sin(6、两角和与差的正弦、余弦、正切:⑴两角和与差的正弦:βαβαβαsin cos cos sin )sin(+=+βαβαβαsin cos cos sin )sin(-=-⑵两角和与差的余弦:βαβαβαsin sin cos cos )cos(-=+βαβαβαsin sin cos cos )cos(+=-⑶两角和与差的正切:βαβαβαtan tan 1tan tan )tan(-+=+βαβαβαtan tan 1tan tan )tan(+-=-7、二倍角公式:⑴二倍角的正弦:αααcos sin 22sin =⑵二倍角的余弦:ααα22sin cos 2cos -== α2sin 21-= 1cos 22-α⑶二倍角的正切:ααα2tan 1tan 22tan -=五、几何部分 1、 向量④向量的数量积:θcos ||||⋅⋅=⋅b a b a(其中θ为两个向量的夹角)﹡ ⑵代数方式的运算:设),(21a a a =,)(2,1b b b = ,①加法:),(2211b a b a b a ++=+②减法:),(2211b a b a b a --=-③数乘向量:),(21a a a λλλ=④向量的数量积:2211b a b a b a +=⋅(结果为实数)⑶两个向量平行与垂直的判定:设),(21a a a =,)(2,1b b b = ,①平行的判定:a ∥b ⇔a bλ=⇔1221b a b a =②垂直的判定:a ⊥b ⇔0=⋅b a⇔02211=+b a b a⑷其它公式:设),(21a a a =,)(2,1b b b =①向量的长度:2221||a a a +=﹡②设),(),,(2211y x B y x A ,则),(1212y y x x B A --=;|212212)()(|y y x x B A -+-=﹡③设),(),,(2211y x B y x A ,则线段AB 的中点M 的坐标为M )2,2(2121y y x x ++﹡④两个向量的夹角为θ,则222122212211||||cos b b a a b a b a b a ba +++=⋅= θ2、 直线部分⑴斜率公式:①)为直线的倾斜角,090(tan ≠=αααk②)(211212x x x x y y k ≠--=⑵直线方程的形式:① 点斜式:)(00x x k y y -=- (k 为斜率,),(00y x 为直线过的点); ② 斜截式:b kx y +=(k 为斜率,b 为直线在y 轴上的截距); ③ 一般式:)0(0≠=++A C By Ax (斜率BCb B A k -=-=,) ⑶两条直线平行或垂直的条件:① 两条直线斜率为21,k k ,且不重合则1l ∥2l ⇔21k k = ② 两条直线的斜率为21,k k ,则1l ⊥2l ⇔121-=⋅k k ⑷两条直线的夹角公式(设夹角为θ): ①21k k =时,1l ∥2l ,夹角θ=00; ②121-=⋅k k 时,1l ⊥2l ,则夹角θ=900; ⑷点),(00y x 到直线0=++C By Ax 的距离公式: ||2200BA CBy Ax d +++=⑸两平行线0:11=++C By Ax l 与0:22=++C By Ax l 间距离 ||2221B A C C d ++=3、圆部分⑴圆的方程:① 标准方程:222)()(r b y a x =-+-(其中圆心为),(b a ,半径为r ) ② 一般方程:022=++++F Ey Dx y x (其中圆心为)2,2(ED --,半径为2422FE D r -+=)六、数列1、 已知前n 项和公式n S :⎩⎨⎧∈≥-==-),2()1(11Z n n s s n s a n n n2、 等差数列:⑴通项公式d n a a n )1(1-+=(1a 是首项;d 为公差n 为项数;n a 为通项即第n 项)⑵等差公式:a ,A ,b 三数成等差数列,A 为a 与b 的等差中项,则)2(2b a A ba A +=+=或 ⑶前n 项和公式:① d n n n a S n 2)1(1-+=(已知n d a ,,1时应用此公式) ②2)(1n n a a n S +=(已知n a a n ,,1时应用此公式) ③特殊地:当数列为常数列,,,a a a ----时,na S n = 3、等比数列:⑴通项公式:11-=n n qa a⑵等比中项公式:若a ,A ,b 三数成等比数列,则A 为a 与b 的等比中项,则)(2b a A b a A ⋅±=⋅=或⑶前n 项和公式:①)1(1)1(1≠--=q qq a S nn (已知n q a ,,1时应用)②)1(1)1≠--=q qq a a S n n (已知n a a n ,,1时应用)③当1=q 时,数列为常数列,则1na S n =。
职高数学知识点总结及公式大全
职高数学知识点总结及公式大全一、数学知识点总结1. 数列与数列的概念数列是由一系列有序数按照一定排列顺序组成的数集合。
常见的数列有等差数列、等比数列等。
2. 几何图形的性质几何图形的性质包括平行四边形的性质、三角形的性质、圆的性质等。
3. 概率与统计概率与统计是数学中重要的分支,包括事件的概率、随机变量、概率分布、统计参数估计等内容。
4. 三角函数三角函数是用来描述角度与边长之间关系的函数,包括正弦函数、余弦函数、正切函数等。
5. 导数与微分导数是描述函数变化率的概念,微分是导数的一种形式化表达。
6. 积分积分是导数的逆运算,用来求函数与坐标轴之间的面积。
二、常见公式大全1. 等差数列求和公式等差数列的前n项和公式为:Sn = n * (a1 + an) / 2,其中n为项数,a1为首项,an为末项。
2. 二项式定理(a + b)^n = C(n,0)*a^n*b^0 + C(n,1)*a^(n-1)*b^1 + ... +C(n,k)*a^(n-k)*b^k + ... + C(n,n)*a^0*b^n。
3. 正弦定理在三角形ABC中,有a/sinA = b/sinB = c/sinC。
4. 求导法则常用的求导法则包括幂函数的导数、指数函数的导数、对数函数的导数等。
5. 积分表积分表包括基本积分表、换元法、分部积分法等。
6. 概率公式常用的概率公式包括加法法则、乘法法则、独立事件的概率计算等。
三、数学知识点的应用1. 在工程中的应用数学知识在工程领域中有着广泛的应用,包括力学、材料力学、电路原理、数值计算等方面。
2. 在金融中的应用金融数学是数学在金融领域的应用,包括利率计算、复利计算、金融衍生品定价等。
3. 在科学研究中的应用科学研究中常常需要运用数学方法进行建模、分析数据、进行实验设计等。
4. 在日常生活中的应用数学知识在日常生活中有着广泛的应用,比如计算购物折扣、理财规划、家庭预算等。
职高数学知识点的掌握对于学生的学习和未来的发展都具有重要意义。
中职数学公式大全总结
中职数学公式大全总结中职数学公式大全总结1、三角形的面积公式:S=1/2 × a × b ×sin C2、圆柱体体积公式:V = r2 × h × π3、球体的表面积公式:S=4πr^24、圆的面积公式:S=πr^25、椭圆的面积公式:S=π × a × b6、平面向量内积公式:a•b= |a||b|cos<a,b>7、圆段面积公式:S=1/2 × R2 ×2θ8、矩形面积公式:S=a × b9、正多边形面积公式:S=1/2 × a2 ×sin(2π/n )10、梯形面积公式:S= 1/2 × (a+b) × h11、等边三角形面积公式:S=a2/4 × √312、平行四边形面积公式:S=a × b ×sin C13、三维空间两向量夹角公式: cos<a,b>= a•b/|a||b|14、切线斜率公式:k=1/tan α15、三角函数的基本关系公式:sin2α+cos2α=116、边长关系公式:a2=b2+c2-2bc cosA17、余弦定理公式:a2=b2+c2-2bc cosA18、角平分线公式:tanα/2=√(1/2-cosα/1+cosα)19、平面角平分线公式:1/tanα/2=1-cosα/1+cosα20、椭圆长轴短轴公式:a2-b2=e221、内切圆半径公式:r=abc/(4s)22、外切圆半径公式:R=abc/(4S-a)23、法线方程公式:nx+ny+c=024、贝塞尔曲线参数方程公式:(x-x0)^2+(y-y0)^2=(x0x1)^2+(y0y1)^225、中心弦长公式:2R sin (1/2α)26、中心角公式:α=2sin-1(2R/2a)27、等差数列求和公式:Sn= n/2 ×(a1+an)28、等比数列求和公式:Sn=a1(1-qn)/1-q29、等分被积函数求定积分公式:∫f(x)dx=1/n × (f(a1)+f(an))30、双曲线椭圆方程: x2/a2-y2/b2=131、积分计算公式:∫f(x) dx = Rf(x) + C32、利用抛物线方程计算公式:x=Vt+1/2at233、发散函数求和公式:∑a(n) = a+2a2 + 3a3 + …… + n an以上就是中职数学的一些常用公式汇总,熟练掌握这些公式,可以帮助中职生们更好地解决数学难题,提高学习效率,提高考试分数。
中职数学常用公式及常用结论大全
中职数学常用公式及常用结论大全一、基本运算公式1.加法公式:- (a + b)² = a² + 2ab + b²- (a - b)² = a² - 2ab + b²-(a+b)(a-b)=a²-b²2.乘法公式:- (a + b) · (c + d) = ac + ad + bc + bd- (a - b) · (c - d) = ac - ad - bc + bd- (a + b)² = a² + 2ab + b²3.除法公式:-(a+b)/c=a/c+b/c4.平方公式:- (a + b)² = a² + 2ab + b²- (a - b)² = a² - 2ab + b²二、代数公式1.因式分解公式:-a²-b²=(a+b)(a-b)- a³ + b³ = (a + b)(a² - ab + b²)- a³ - b³ = (a - b)(a² + ab + b²)2.二次方程公式:- 一元二次方程: ax² + bx + c = 0根的求法:x = (-b ± √(b² - 4ac))/(2a)- 二项式平方公式:(a + b)² = a² + 2ab +b²- 二项式差平方公式:(a - b)² = a² - 2ab + b²三、几何公式1.周长和面积:-正方形:周长P=4a,面积S=a²- 长方形:周长P = 2(a + b),面积S = ab- 三角形:周长P = a + b + c,面积S = 1/2bh-圆形:周长C=2πr,面积S=πr²2.三角函数公式:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:c² = a² + b² - 2abcosC- 正切公式:tanA = sinA/cosA3.三角恒等式:- sin²A + cos²A = 1- 1 + tan²A = sec²A- 1 + cot²A = csc²A四、概率统计公式1.期望公式:-离散型随机变量:E(X)=Σx·P(x)- 连续型随机变量:E(X) = ∫xf(x)dx2.方差公式:-离散型随机变量:D(X)=Σ(x-E(X))²·P(x)- 连续型随机变量:D(X) = ∫(x - E(X))²f(x)dx 3.二项分布公式:-P(x)=C(n,x)·pˣ·(1-p)^(n-x)4.正太分布公式:-P(x)=1/√(2πσ²)·e^(-(x-μ)²/(2σ²))五、常用结论1.公倍数与公约数:-两数的最小公倍数=两数的乘积/最大公约数-两数的最大公约数=两数的乘积/最小公倍数2.平行线与三角形:-平行线截割等腰直角三角形得到的两个三角形相似-平行线截割等腰三角形得到的两个三角形相似3.三角形中位线和中心线:-三角形的中位线交于一点,分割成6个全等的小三角形-三角形的中心线交于一点。
中职数学常用公式及常用结论大全
中职数学常用公式及常用结论大全一、代数运算常用公式:1. 平方差公式:(a + b)² = a² + 2ab + b²,(a - b)² = a² - 2ab + b²2.完全平方公式:a²-b²=(a+b)(a-b)3. 二次方程求根公式:对于二次方程ax² + bx + c = 0 (a ≠ 0),其解为 x = [-b ± √(b² - 4ac)] / (2a)4. 一元二次方程因式分解公式:ax² + bx + c = a(x - α)(x - β),其中α和β是方程的两个根。
二、几何公式和结论:1.圆的周长公式:C=2πr,其中C为圆的周长,r为半径。
2.圆的面积公式:A=πr²,其中A为圆的面积,r为半径。
3.直角三角形勾股定理:a²+b²=c²,其中c为斜边,a和b为两条边。
4.等腰三角形底边中线和高的关系:底边中线的长度等于等腰三角形的高。
5.平行四边形面积公式:A=底边×高,其中A为面积,底边为底边的长度,高为平行于底边的线段的长度。
三、函数与方程常用公式:1.直线的斜率公式:斜率m=(y₂-y₁)/(x₂-x₁),其中P₁(x₁,y₁)和P₂(x₂,y₂)为直线上的两个点。
2. 一次函数的一般式方程:y = kx + b,其中k为斜率,b为y轴截距。
3. 二次函数顶点坐标公式:对于二次函数y = ax² + bx + c,其顶点坐标为(-b/2a, -(b² - 4ac)/4a)。
4. 一元一次方程求解公式:对于一元一次方程ax + b = 0,其解为x = -b/a。
四、概率与统计常用公式:1.随机事件的概率公式:P(A)=n(A)/n(S),其中P(A)为事件A发生的概率,n(A)为事件A发生的次数,n(S)为样本空间中的总次数。
职中数学公式总结大全
职中数学公式总结大全1.代数公式:- 二次方程求根公式: 对于二次方程a某^2 + b某 + c = 0,解的公式为某 = (-b ± √(b^2 - 4ac))/(2a)。
- 因式分解公式: 根据巴斯卡定理和二项式定理,可以将多项式进行因式分解,如(a+b)^2 = a^2 + 2ab + b^2。
- 平方差公式: (a+b)(a-b) = a^2 - b^2,(a+b)^2 - (a-b)^2 =4ab。
- 三角函数公式:例如sin(a+b) = sin(a)cos(b) + cos(a)sin(b),cos^2(a) + sin^2(a) = 1等。
2.几何公式:-直角三角形的勾股定理:对于直角三角形,边长分别为a、b,斜边长为c,满足a^2+b^2=c^2。
-圆的面积和周长公式:圆的面积为πr^2,周长为2πr,其中r为半径。
- 三角形面积公式: 三角形的面积可以通过海伦公式或两边夹角的正弦公式计算,如S = 1/2ab某sin(c),其中a、b为两边长,c为两边夹角。
-直线方程:直线方程可以用点斜式、截距式或一般式表示。
3.概率公式:-计算概率公式:概率P=事件发生的次数/总次数。
-互斥事件概率公式:对于互斥事件A、B,概率P(A∪B)=P(A)+P(B)。
-条件概率公式:对于事件A和事件B,P(A,B)=P(A∩B)/P(B)。
-乘法定理:对于两个独立事件A和B,P(A∩B)=P(A)某P(B)。
4.统计公式:-平均数公式:平均数=总和/数量。
-方差公式:方差是指每个数据与均值之差的平方的平均数。
-标准差公式:标准差是方差的平方根。
-正态分布公式:正态分布可以由概率密度函数表示,公式为f(某)=(1/√(2πσ^2))某e某p(-(某-μ)^2/(2σ^2)),其中μ为均值,σ为标准差。
以上只是一些常见的职中数学公式的总结,仅包含了一小部分,实际应用中还有很多其他公式。
在数学学习和工作中,熟练掌握这些公式对于解题和计算非常有帮助。
中职数学知识点总结及公式大全
中职数学知识点总结及公式大全一、集合。
1. 集合的概念。
- 集合是由确定的元素组成的总体。
例如,一个班级的所有学生可以组成一个集合。
- 元素与集合的关系:属于(∈)和不属于(∉)。
如果a是集合A中的元素,就说a∈ A;如果a不是集合A中的元素,就说a∉ A。
2. 集合的表示方法。
- 列举法:把集合中的元素一一列举出来,写在大括号内。
例如A = {1,2,3}。
- 描述法:用确定的条件表示某些对象是否属于这个集合。
例如B={xx >0,x∈ R},表示所有大于0的实数组成的集合。
3. 集合间的基本关系。
- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊆ B(或B⊇ A)。
- 真子集:如果A⊆ B,且B中至少有一个元素不属于A,那么A是B的真子集,记作A⊂neqq B。
- 相等:如果A⊆ B且B⊆ A,那么A = B。
4. 集合的运算。
- 交集:A∩ B={xx∈ A且x∈ B}。
例如A = {1,2,3},B={2,3,4},则A∩ B = {2,3}。
- 并集:A∪ B={xx∈ A或x∈ B}。
对于上面的A和B,A∪ B={1,2,3,4}。
- 补集:设U是全集,A⊆ U,则∁_UA={xx∈ U且x∉ A}。
二、不等式。
1. 不等式的基本性质。
- 对称性:如果a > b,那么b < a;如果b < a,那么a > b。
- 传递性:如果a > b,b > c,那么a > c。
- 加法单调性:如果a > b,那么a + c>b + c。
- 乘法单调性:如果a > b,c>0,那么ac > bc;如果a > b,c < 0,那么ac < bc。
2. 一元一次不等式。
- 一般形式为ax + b>0(a≠0)或ax + b < 0(a≠0)。
- 求解步骤:移项、合并同类项、系数化为1。
职高数学公式范文
职高数学公式范文1.代数公式:-二次方程的求根公式:对于一元二次方程ax^2 + bx + c = 0,其中a≠0,方程的根可以通过以下公式求解:x = (-b ± √(b^2 - 4ac)) / (2a)-二项式展开:(a+b)^n=C(n,0)a^nb^0+C(n,1)a^(n-1)b^1+C(n,2)a^(n-2)b^2+...+C(n,n-1)a^1b^(n-1)+C(n,n)a^0b^n其中C(n,k)表示从n个不同元素中取k个元素的组合数。
-平方差公式:(a+b)(a-b)=a^2-b^22.几何公式:-三角形的面积公式:三角形的面积可以根据三条边长a、b和c来计算,使用海伦公式:S=√(p(p-a)(p-b)(p-c))其中p=(a+b+c)/2是半周长。
-直角三角形的勾股定理:直角三角形中,a、b和c分别表示两个直角边和斜边的长度,满足以下关系:a^2+b^2=c^2-圆的面积和周长公式:圆的半径为r,面积可以计算如下:S=πr^2周长可以计算如下:C=2πr3.指数与对数公式:-指数运算法则:a^m*a^n=a^(m+n)(a^m)^n = a^(mn)(a*b)^n=a^n*b^n-对数运算法则:log_a (mn) = log_a m + log_a nlog_a (m/n) = log_a m - log_a nlog_a (m^n) = n * log_a m4.统计与概率公式:-加法原理:对于两个事件A和B,它们不同时发生的概率可以通过以下公式计算:P(A∪B)=P(A)+P(B)-P(A∩B)-乘法原理:对于两个独立事件A和B,它们同时发生的概率可以通过以下公式计算:P(A∩B)=P(A)*P(B)-排列组合:排列公式用于计算从n个不同元素中取出m个元素的不同排列个数,可以使用以下公式计算:A(n,m)=n!/(n-m)!组合公式用于计算从n个不同元素中取出m个元素的不同组合个数,可以使用以下公式计算:C(n,m)=n!/(m!*(n-m)!)以上是一些常见的职业高中数学公式,希望对你的学习和应用有所帮助。
职高高考数学公式大全
10、和角差角公式: sin cos cos sin sin( )
cos cos sin sin cos( )
11、倍角公式: sin 2 2sin cos
cos2 2 cos2 1 1 2sin2
c2 c2
2bc cos A 2ac cosB
c2 a2 b2 2ab cosC
7、在三角形 ABC 中, sin A : sin B : sin C a : b : c
8 、 asinx bcosx a2 b2 sin(x ) , 最 大 值 为 a2 b2 , 最 小 值 为 a2 b2 ,最小正周期:T 2
数列称为等差数列;常数称为该数列的公差,记作:d ②、等差数列的通项公式
an a1 (n 1)d 推 广形式an am (n m)d
③、等差数列的前 n 项和公式
Sn
n(a1 2
an )
na1
n(n 1) d 2
④、等差数列的性质:在等差数列an 中
(1)若2m p q,则2am a p aq ; (2)若m n p q, 则am an a p aq ; (3)Sn , S2n Sn , S3n S2n ,成等差数列.
x
b 2a
时,
y最大或最小
4ac 4a
b2
②单调性: y ax2 bx c
Ⅰ、
a
0 时,递增:
,
b 2a
,递减:
b 2a
,
Ⅱ、
a
o
时,递增:
b 2a
,
,递减:
,
b 2a
如: y 5x2 4x 3
递增:
职高数学概念公式(最全)
职高数学概念与公式预备知识:(必会)1. 相反数、绝对值、分数的运算2. 因式分解(1)公式法:平方差公式:))((22b a b a b a -+=-完全平方公式:222)(2b a b ab a +=++ 222)(2b a b ab a -=+- (2) 十字相乘法:acx 2+(ad+cb )x+bd=(ax+b )(cx+d ) 如:)2)(13(2532-+=--x x x x(3) 两根法:ax 2+bx+c=a (x-x 1)(x-x 2) 如:)251)(251(12--+-=--x x x x 3. 配方法:ax 2+bx+c=a (x+a b 2)2+a ac b 442- 如:825)41(23222-+=-+x x x4. 分数(分式)的运算5. 常见方程的解法(1) 一元一次方程的解法:去分母;去括号;移项;合并同类项;系数化1。
(2) 一元二次方程的解法:直接开平方法;配方法;因式分解法;公式法 (x=aacb b 242-±-)(3) 二元一次方程组的解法:代入消元法;加减消元法。
6.常见的几种函数:(1)一次函数:y=kx+b (k ≠0) (2)反比例函数:y=xk(k ≠0) (3)二次函数:①一般式:c bx ax x f ++=2)((0≠a )②顶点式:h k x a x f +-=2)()( (0≠a ),其中),(h k 为顶点③两根式:))(()(21x x x x a x f --= (0≠a ),其中21x x 、是0)(=x f 的两根7.常用公式:(1)完全平方和(差)公式:222)(2b a b ab a +=++ 222)(2b a b ab a -=+-(2)平方差公式:))((22b a b a b a -+=-(3)立方和(差)公式:))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=-∆注:所有的公式中凡含有“=”的,注意把公式反过来运用。
高职高考数学公式大全
高职高考数学公式大全一、函数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数;],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数;对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。
.二、三角函数、三角变换、解三角形、平面向量2、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin . 3、正弦、余弦的诱导公式απ±k 的正弦、余弦,等于α的同名函数,前面加上把α看成锐角时该函数的符号;αππ±+2k 的正弦、余弦,等于α的余名函数,前面加上把α看成锐角时该函数的符号。
3、和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=; tan tan tan()1tan tan αβαβαβ±±=.5、二倍角公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-. 22tan tan 21tan ααα=-. 公式变形: ;22cos 1sin ,2cos 1sin 2;22cos 1cos ,2cos 1cos 22222αααααααα-=-=+=+= 6、三角函数的周期函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=. 7、 函数sin()y x ωϕ=+的周期、最值、单调区间、图象变换8、辅助角公式 )sin(cos sin 22ϕ++=+=x b a x b x a y 其中ab =ϕtan9、正弦定理2sin sin sin a b c R A B C===. 10、余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.11、三角形面积公式111sin sin sin 222S ab C bc A ca B ===. 12、三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+13、a 与b 的数量积(或内积)θcos ||||b a b a ⋅=⋅14、平面向量的坐标运算(1)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(2)设a =11(,)x y ,b =22(,)x y ,则b a ⋅=2121y y x x +.(3)设a =),(y x ,则22y x a +=15、两向量的夹角公式 设a =11(,)x y ,b =22(,)x y ,且0≠b ,则 222221212121cos y x y x y y x x b a ba +⋅++=⋅=θ16、向量的平行与垂直b a //⇔a b λ= 12210x y x y ⇔-=.)0(≠⊥a b a ⇔0=⋅b a 12120x x y y ⇔+=.三、数列17、数列的通项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).18、等差数列的通项公式 *11(1)()n a a n d dn a d n N =+-=+-∈;19、等差数列其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 20、等比数列的通项公式1*11()n n n a a a q q n N q-==⋅∈;21、等比数列前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或 11,11,1n n a a q q q s na q -⎧≠⎪-=⎨⎪=⎩.四、不等式22、已知y x ,都是正数,则有xy y x ≥+2,当y x =时等号成立。
职业高中常用数学公式
职业高中常用数学公式一、 解不等式﹡1、一元二次不等式:),,0(21两根是对应一元二次方程的x x a >﹡2、分式不等式: ⑴0>++dcx b ax ⇔0))((>++d cx b ax⑵0≥++dcx b ax ⇔⎩⎨⎧≠+≥++00))((d cx d cx b ax ⑶0<++dcx bax ⇔0))((<++d cx b ax⑷0≤++dcx bax ⇔⎩⎨⎧≠+≤++00))((d cx d cx b ax ﹡3、绝对值不等式:( c > 0 ) ⑴cb ax <+||⇔c b ax c <+<- ⑵c b ax >+||⇔c b ax c b ax >+-<+或 ⑶c b ax ≤+||⇔c b ax c ≤+≤- ⑷c b ax ≥+||⇔c b ax c b ax ≥+-≤+或二、函数部分1、 几种常见函数的定义域 ⑴整式形式:⎩⎨⎧++=+=c bx ax x f b ax x f 2)()(一元二次函数:一元一次函数:定义域为R 。
﹡⑵分式形式:)()()(x g x f x F =要求分母0)(≠x g 不为零 ﹡⑶二次根式形式:)()(x f x F =要求被开方数0)(≥x f⑷指数函数:)10(≠>=a a a y x 且,定义域为R﹡⑸对数函数:)10(log ≠>=a a x y a 且,定义域为(0,+∞) 对数形式的函数:)(log x f y a =,要求0)(>x f ⑹三角函数:⎪⎪⎩⎪⎪⎨⎧∈+≠===},2||{tan cos sin Z k k x x x y R x y R x y ππ的定义域为正切函数:的定义域为余弦函数:的定义域为正弦函数: ⑺几种形式综合在一起的,求定义域即在求满足条件的各式解集的交集。
2、常见函数求值域⑴一次函数b ax x f +=)(:值域为R ﹡⑵一元二次函数)0()(2≠++=a c bx ax x f :⎪⎪⎩⎪⎪⎨⎧-≤<-≥>}44|{0}44|{022a b ac y y a a b ac y y a 时,值域为当时,值域为当 ﹡⑶形如函数)0()(≠+++=d cx dcx bax x f 的值域:}|{c a y y ≠,(其中a 为分子中x 的系数,b 为分母中x 的系数);⑷指数函数:)10(≠>=a a a y x 且值域为(0,+∞) ⑸对数函数:)10(l o g ≠>=a a x y a 且,值域为R ⑹三角函数:⎪⎩⎪⎨⎧=-=*-=*R x y x y x y 的值域为正切函数:,的值域为余弦函数:,的值域为正弦函数:tan ]11[cos ]11[sin ﹡函数)s i n(φω+=x A y 的值域为[-A,A] 3、函数的性质 ﹡ ⑴奇偶性①⎩⎨⎧=--=-轴对称图像关于偶函数图像关于原点对称奇函数:y x f x f x f x f ),()(:),()(②判断或证明奇偶函数的步骤:第一步:求函数的定义域,判断是否关于原点对称第二步:如果定义域不关于原点对称,则为非奇非偶函数;如果对称,则求)(x f -第三步:若)()(x f x f -=-,则函数为奇函数 若)()(x f x f =-,则函数为偶函数 ﹡⑵单调性①判断或证明函数为单调增、减函数的步骤:第一步:在给定区间(如果没给定,一定要先求函数的定义域)内任取1x 、2x 且1x <2x 。
职高数学公式整理
第一册数学公式一、集合实数集R 空集 ∅ 有理数集Q 自然数集N 正整数集*+Z Z 或 整数集 Z交集:{}B ∈A ∈=B ⋂A χχχ且 并集:{}B ∈A ∈=B ⋃A χχχ或补集:{}A ∉∈=A χχχ且U C U充分条件:条件p ⇒结论q必要条件:条件p ⇐结论q 充要条件:条件p ⇔结论q三、函数()x f y =函数奇偶性奇函数:设函数的定义域为数集D ,如果对于任意的,都有D x ∈-且)()(x f x f -=-,那么函数)(x f 叫做奇函数。
偶函数:设函数的定义域为数集D ,如果对于任意的,都有D x ∈-且)()(x f x f =-,那么函数)(x f 叫做偶函数。
不具有奇偶性的函数叫做非奇非偶函数。
四、指数函数与对数函数分式指数幂:n mnm a a= nmnm aa1=-实数指数幂:qp qpa a a +=⋅ ()pq qpa a = ()p p pb a ab ⋅=幂函数:)(R x ∈=αγα指数函数:)10(≠>=a a a x且γ 性质:1)函数的定义域为R ,域值为()∞+,0; 2)当0=x 时,函数值1=y ;3)当()()内是减函数。
时,函数在内是增函数,当时,函数在+∞∞-<<+∞∞->,10,1a a对数:b N N a a b=⇔=log性质:1)01log =a 2)1log =a a 3)0>N ,即零和负数没有对数 常用对数:N N lg log 10简记为自然对数:以无理数e (e=2.71928……)为底的对数,N N e ln log 简记为 积、商、幂的对数:)0,0(lg lg )lg(>>+=N M N M MN N M NMlg lg lg-= M n M n lg lg = 对数函数:x y a log = 性质:1)函数的定义域为()∞+,0,域值为R ; 2)当1=x 时,函数值0=y ;3)当()()内是减函数。
《职高数学》公式及定理表
《数学》公式及定理表1、 乘法公式:(1)(a+b )²=a 2+2ab+b 2 (2)(a —b)²=a ²-2ab+b ² (3)(a+b)(a-b)=a ²-b ² (4)a ³+b ³=(a+b)(a ²-ab+b ²) (5)a ³-b ³=(a-b)(a ²+ab+b ²)2、 集合运算(1)集合的交:{}B ∈∧A ∈=B ⋂A x x x (公共部分) (2)集合的并:{}B ∈∨A ∈=B ⋃A x x x (全部)(3)集合的补:{}A ∉∧∈=A x U x x C u (属于U 但不属于A )3、 逻辑:若B ⇒A , 则 (1)A 是B 的充分条件;(2)B 是A 的必要条件。
若B ⇔A , 则 A 是B 的充分必要条件。
4、一元二次方程:02=++c bx ax(1)求根公式:a ac b b x 242-±-=()42≥-ac b(2)判别式:ac b 42-=∆当Δ>0时,方程有两个不相等的实根; 当Δ=0时,方程有两个相等的实根; 当Δ<0时;方程没有实数根。
(3)根与系数的关系:a b x x -=+21 ac x x =⋅21 5、二次函数:c bx ax y ++=2(1)顶点:⎪⎪⎭⎫ ⎝⎛--ab ac a b 44,22(2)对称轴:a b x 2-= (3)当0>a 时,ab ac y 442min-=;当0<a 时,a b ac y 442max -=6.绝对值不等式(0a >)(1)若x a <,则:a x a -<<; (2)x a >,则:x a <-或x a >7、奇偶性:(1)奇函数:()()x f x f -=- (图象关于原点对称) (2)偶函数:()()x f x f =- (图象关于y 轴对称) (3)性质:奇奇奇=±; ;非奇非偶偶奇=± 偶偶偶=± ;偶奇奇=÷⨯ ;奇偶奇=÷⨯ 偶偶偶=÷⨯8、指数公式:(1)()010a a =≠ (2)()10pp aa a-=≠ (3)nma = (4)mnm na a a+= (5)mm nm n n a a a a a-÷== (6)()n m mn a a =(7)()nnnab a b = (8)(b a )n =n nba (9)n a =(10)n a = (11)n a =9、指数与对数关系:(1)若b a N =,则log a b N = (2)若10b N =,则lg b N =10、对数公式:(1)b a b a =log ()b b =10lg 2 ()01log 3=a()01lg 4= ()N a Na=log5 ()N N =lg 106 11、对数法则:()()N M MN a a a log log log 1+= ()N M NMa a alog log log 2-= ()M n M a n a log log 3= (4)换底公式:aN N a lg lg log =12.导数(1)导数公式: ()0C '=; ()1n n x nx -'=; ()u v u v '''±=±; ()Cu Cu ''= (2)切线斜率:0x x k y ='= (3)切线:()00y y k x x -=-13、三角函数定义:若点()y x P , 222y x r +=()r y =αsin 1 ()r x=αcos 2 ()x y =αtan 3 ()y x =αcot 4 ()x r =αsec 5 ()yr =αcsc 614、三角恒等式:(1)22sin cos 1αα+= (2)221tan sec αα+=(3)221cot csc αα+=(4)sin tan cos aa α= (5)cos cot sin a a α= (6)1cot tan aα= (7)1csc sin a α=(8)1sec cos aα= 15、特殊角三角函数值:16、三角符号:17、周期公式:若()()ϕω+=x A y sin 1 ()ϕω+=x A y cos x b x a y ϖϖcos sin +=则周期:ωπ2=T若()()ϕω+=x A y tan 2 ()ϕω+=x A y cot 则周期:ωπ=T 18、三角函数基本公式:()()βαβαβαsin cos cos sin sin 1±=±()()βαβαβαsin sin cos cos cos 2 =±()()βαβαβαtan tan 1tan tan tan 3⋅±=±19、倍角公式:(1)sin 22sin cos ααα= (2)22tan tan 21(tan )aa α=-(3)2222cos 2cos sin 2cos 112sin ααααα=-=-=-20、半角公式(降幂公式):(1)21cos sin 22a α-=(2)21cos cos 22a α+=(3)sin 1cos tan 21cos sin aaααα-==+21.题型(1)x b x a y cos sin ±= 则:22max b a y +=,22min b a y +-=(2)形如:ααcos sin ± 方法:平方(3)求AB 的垂直平分线 方法:设动点();,y x P 则:PB PA =22.正弦定理:CcB b A a sin sin sin == 23.余弦定理:()A bc c b a cos 21222-+=()B ac c a b cos 22222-+=()C ab b a c cos 23222-+=24.函数定义域求法:(1)分式中的分母不能为0, (a1α≠0) (2)负数不能开偶次方,(a α≥0) (3)对数中的真数必须大于0, (log a N N>0)25.等差数列:(1)公差:1--=n n a a d (2)通项:()d n a a n ⋅-+=11 (3)前n 项的和:()21na a S n n ⋅+=或 ()d n n na S n 211-+=(4)等差中项:若a ,A ,b 成等差b a A +=⇔2(5)若m+n=p+q ,则:q p n ma a a a +=+26.等比数列:(1)公比:1-=n na a q (2)通项:11-=n n q a a (3)前n 项的和:()q q a S nn --=111 或 q q a a S n n --=11(4)等比中项:若a ,G ,b 成等比ab G =⇒2(5)若m+n=p+q ,则:q p n ma a a a ⋅=⋅27.向量:若点()()222111,,,y x P y x P 则:(1)向量:()121221,y y x x P P --=→(2)距离:()()21221221y y x x P P -+-=(3)中点公式:若点()00,y x M 是21P P 的中点则:2210x x x +=,2210y y y += 28、向量的坐标运算:若:()()2121,,,b b b a a a ==→→ 则:()()2211,1b a b a b a ++=+→→()()2211,2b a b a b a --=-→→ ()()21,3a a a λλλ=→()2211,cos 4b a b a b a b a b a +=〉〈⋅⋅=⋅→→→→→→(22215a a +=()26a =29.向量的关系(1)平行:→a ∥2211b a b a b a b =⇔=⇔→→→λ(2)垂直:→a ⊥002211=+⇔=⋅⇔→→→b a b a b a b(3)夹角, 则:=30 倾斜角和斜率(1)倾斜角α:直线向上的方向与x 轴的正方向的所成的最小正角.[)00180,0∈α(2)斜率k αtan =k 或 1212x x y y k --=或 由 y kx b =+ 得31.直线方程形式:(1) 点斜式:()00y y k x x -=-0 (2) 斜截式:y kx b =+ (3)截距式:1=+bya x (4) 两点式:121121x x x x y y y y --=-- (5)一般式:0=++C By Ax 32.两条直线关系若 L 1:y=k 1x+b 1 L 2:y=k 2x+b 2(1) 平行:若L 1∥L 2,则k 1=k 2,b 1≠b 2 (2) 垂直:若L 1⊥L 2,则k 1*k 2=-1 (3)夹角θ, 则:21211tan k k k k +-=θ33.距离(1)点()00,y x P 到直线:0=++C By Ax 距离:2200BA CBy Ax d +++=(2)两条平行线的距离:1122:0;:0l Ax By C l Ax By C ++=++=则:2221B A C C d +-=34.圆(1)标准方程:若圆心()b a C ,, 半径:r 则:()()222r b y a x =-+-(2)一般方程:022=++++F Ey Dx y x35.椭圆 ()222b a c -= ()b a > 其中定义:a PF PF 221=+其中:长轴:2a 短轴:2b 焦距:2c 离心率:ae =(e<1) 36.双曲线: ()222b a c+=其中定义:a PF PF 221=-其中:实轴:2a 虚轴:2b 焦距:2c 离心率:ace =(e>1) 37.抛物线: 离心率:e=1其中定义:PMPF =)0(>p38.求()x f y =的反函数的方法(1) 方法:将()x f y =化成()y g x = ; 将x 与y 互换,得反函数:()()x g x f y ==-1(2)反函数性质:图象关于x y =对称39.排列,组合,概率,统计(1)排列:()()()121mn A n n n n m =---+ 阶乘:n n A =n ﹗=n(n-1)(n-2) (1)(2)组合:()()11(1)21m n n n n m C m m --+=-⨯; m n m n n C C -=; 01n n n C C ==(3)概率:互斥事件;()()()P A B P A P B +=+ 对立事件:()()1P A P A =- 独立事件:()()()P AB P A P B =独立重复试验:()()1n kk kn nP k C p p -=-(4)统计:平均数:12nx x x x n +++=方差:()()()2222121n s x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦。
高职高考数学知识点公式
高职高考数学知识点公式一、函数与方程1. 一元一次方程公式一元一次方程是指一个未知数的一次方程,可以表示为ax+b=0的形式,其中a和b为已知数,x为未知数。
该方程的解可以使用以下公式求出:x=-b/a。
2. 一元二次方程公式一元二次方程是指一个未知数的二次方程,可以表示为ax^2+bx+c=0的形式,其中a、b和c为已知数,x为未知数。
可以使用求根公式来解这种方程:x=(-b±√(b^2-4ac))/(2a)。
其中,±表示两个解,√表示对一个数开平方。
3. 线性函数斜率公式线性函数表示为y=kx+b的形式,其中k为斜率,b为截距。
斜率表示函数曲线的倾斜程度,可以使用以下公式计算:k=(y2-y1)/(x2-x1)。
其中,(x1, y1)和(x2, y2)为直线上的两个点的坐标。
4. 二次函数顶点公式二次函数表示为y=ax^2+bx+c的形式,其中a、b和c为已知数。
顶点是二次函数曲线的最高点或最低点,在求解最值问题时经常用到。
可以使用以下公式计算二次函数的顶点坐标:xv=-b/(2a),yv=f(xv)。
5. 指数函数与对数函数公式指数函数表示为y=a^x的形式,其中a为底数,x为指数。
对数函数是指数函数的反函数,表示为y=loga(x)的形式。
两者之间有以下的等价关系:a^x=y 等价于 x=loga(y)。
二、平面几何1. 直角三角形勾股定理直角三角形是指其中一个角为90度的三角形。
勾股定理是直角三角形中最基本的定理之一,可以用于计算三角形的边长。
它的公式表达为a^2+b^2=c^2,其中a、b和c分别表示直角三角形的两条直角边和斜边。
2. 三角形面积公式三角形是平面几何中最常见的形状之一,可以使用以下公式计算三角形的面积:S=1/2×底×高。
其中,底表示三角形的底边长度,高表示从底边到对应顶点的垂直距离。
3. 圆的面积和周长公式圆是平面几何中的一个重要概念,可以使用以下公式计算圆的面积和周长。
职高数学公式
职高数学公式一次函数的一般式:\[y=ax+b\]一次函数的斜率公式:\[a=\frac{{y_2-y_1}}{{x_2-x_1}}\]一次函数的截距公式:\[b=y_1-ax_1\]一次函数的解析式:\[y=ax+b\]二次函数的一般式:\[y=ax^2+bx+c\]二次函数顶点坐标:\[(h, k)\]二次函数的顶点坐标公式:\[h=-\frac{b}{2a}\] 和 \[k=f(h)=-\frac{D}{4a}\]二次函数的判别式:\[D=b^2-4ac\]二次函数的解析式:\[y=ax^2+bx+c\]指数函数:\[y=a^x\]对数函数:\[y=\log_a(x)\]三角函数:\[y=\sin(x), y=\cos(x), y=\tan(x)\]正弦定理:\[\frac{a}{\sin(A)}=\frac{b}{\sin(B)}=\frac{c}{\sin(C)}\]余弦定理:\[a^2=b^2+c^2-2bc\cos(A)\]正切定理:\[\frac{a-b}{a+b}=\frac{\tan(\frac{A-B}{2})}{\tan(\frac{A+B}{2})}\]勾股定理:\[c^2=a^2+b^2\]射影定理:\[\frac{AD}{AB}=\frac{CD}{CB}\]平行线性质:对于平行线BC和DE:\[\frac{AB}{CD}=\frac{AC}{CE}=\frac{BC}{DE}\]相似三角形性质:对于相似三角形ABC和DEF:\[\frac{AB}{DE}=\frac{BC}{EF}=\frac{AC}{DF}=\frac{K_{ABC}}{K_ {DEF}}\]正方形的周长公式:\[P=4a\]正方形的面积公式:\[A=a^2\]长方形的周长公式:\[P=2(a+b)\]长方形的面积公式:\[A=ab\]圆的周长公式:\[C=2\pi r\]圆的面积公式:\[A=\pi r^2\]圆柱体的表面积公式:\[S=2\pi rh+2\pi r^2\]圆柱体的体积公式:\[V=\pi r^2h\]球体的表面积公式:\[S=4\pi r^2\]球体的体积公式:\[V=\frac{4}{3}\pi r^3\]直角三角形中,两直角边的平方和等于斜边的平方:\[a^2+b^2=c^2\] 等边三角形中,所有边长相等:\[a=b=c\]等腰三角形中,两边相等的角度也相等:\[\angle A=\angle B\]正多边形中,所有边长和角度相等:\[n\angle A=360°\]。
职高数学概念公式
职高数学概念公式1.几何概念和公式-长方形:周长P=2(l+w),面积A=l×w-正方形:周长P=4s,面积A=s^2-圆:周长C=2πr,面积A=πr^2-三角形:面积A=0.5×b×h,其中b是底边的长度,h是对应的高-直角三角形:勾股定理a^2+b^2=c^2,其中c是斜边的长度-平行四边形:面积A=b×h,其中b是底边的长度,h是对应的高-梯形:面积A=0.5×(a+b)×h,其中a和b是上下底边的长度,h是对应的高2.代数概念和公式-相反数:两个数的和为0,则它们互为相反数-绝对值:一个数与0的距离-平方:一个数的平方等于该数乘以自身,即a^2=a×a-立方:一个数的立方等于该数乘以自身两次,即a^3=a×a×a-公式:一种用字母和符号表示的数学关系式- 一次方程:形如 ax + b = 0 的方程,其中 a 和 b 是已知数,x 是未知数- 二次方程:形如 ax^2 + bx + c = 0 的方程,其中 a、b 和 c 是已知数,x 是未知数-因式分解:将一个多项式表示为若干个因子的乘积的过程-根式:形如√a的表达式,表示使得x^2=a的解x-比例:两个数之间的相对大小关系-百分数:以百分号%表示的分数,表示每一百份中的几分之几-方程组:包含多个方程的集合3.概率与统计概念和公式-事件:一次试验的结果-样本空间:所有可能结果的集合-概率:一些事件发生的可能性,用P(A)表示-互斥事件:两个事件不能同时发生-独立事件:两个事件发生与否互不影响-随机变量:对应样本空间到实数集上的映射-期望:随机变量的平均值,记为E(X)- 方差:随机变量离期望的平均距离的平方,记为 Var(X)-正态分布:一种连续型概率分布,均值为μ,标准差为σ-中心极限定理:大量独立同分布变量之和的分布收敛于正态分布这些只是职高数学中的一小部分概念和公式,但它们是在日常生活和工作中经常会用到的基本数学知识。
职高数学公式总结大全
职高数学公式总结大全一、集合。
1. 集合的基本运算。
- 交集:A∩ B = {xx∈ A且x∈ B}- 并集:A∪ B={xx∈ A或x∈ B}- 补集:设U为全集,∁_U A={xx∈ U且x∉ A}2. 集合元素个数关系(容斥原理)- n(A∪ B)=n(A)+n(B)-n(A∩ B)二、函数。
1. 一次函数y = kx + b(k≠0)- 斜率k=(y_2 - y_1)/(x_2 - x_1)(两点(x_1,y_1),(x_2,y_2)在直线上)- 当b = 0时,y=kx为正比例函数。
2. 二次函数y=ax^2+bx + c(a≠0)- 顶点坐标(-(b)/(2a),(4ac - b^2)/(4a))- 对称轴方程x = -(b)/(2a)- 判别式Δ=b^2 - 4ac,当Δ>0时,方程ax^2+bx + c = 0有两个不同实根;当Δ = 0时,有两个相同实根;当Δ<0时,无实根。
3. 函数的单调性。
- 设x_1,x_2∈ D(函数y = f(x)的定义域),且x_1。
- 如果f(x_1),则y = f(x)在区间D上是增函数;如果f(x_1)>f(x_2),则y = f(x)在区间D上是减函数。
4. 函数的奇偶性。
- 对于函数y = f(x),如果对于定义域内任意x,都有f(-x)=f(x),则y = f(x)是偶函数,其图象关于y轴对称;如果f(-x)= - f(x),则y = f(x)是奇函数,其图象关于原点对称。
三、三角函数。
1. 弧度制与角度制的换算。
- 180^∘=π弧度,所以1^∘=(π)/(180)弧度,1弧度=frac{180^∘}{π}。
2. 三角函数定义(在单位圆中)- 设角α终边上一点P(x,y),r=√(x^2 + y^2),则sinα=(y)/(r),cosα=(x)/(r),tanα=(y)/(x)(x≠0)。
3. 同角三角函数的基本关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公式
一、集合实数集R 空集∅ 有理数集Q 自然数集N 正整数集*
N 整数集Z 交集:{}B ∈A ∈=B ⋂A χχχ且 并集:{}B ∈A ∈=B ⋃A χχχ或
补集:
{}A ∉∈=A χχχ且U C U
充分条件:条件p ⇒结论q 必要条件:条件p ⇐结论q 充要条件:条件p ⇔结论q
三、函数)(x f =γ 函数奇偶性
奇函数:设函数的定义域为数集D ,如果对于任意的,都有D x ∈-且)()(x f x f -=-,那么函数)(x f 叫做奇函数。
偶函数:设函数的定义域为数集D ,如果对于任意的,都有D x ∈-且)()(x f x f =-,那么函数)(x f 叫做偶函数。
不具有奇偶性的函数叫做非奇非偶函数。
四、指数函数与对数函数 分式指数幂:n m
n
m a
a
=n
m
n
m a
a
1
=
-
实数指数幂:q p q p a a a +=⋅()
pq q
p a a =()p p p
b a ab ⋅=
幂函数:)(R x ∈=αγα
指数函数:)10(≠>=a a a x 且γ 性质:
1)函数的定义域为R ,域值为()∞+,
0; 2)当0=x 时,函数值1=y ;
3)当()()内是减函数。
时,函数在内是增函数,当时,函数在+∞∞-<<+∞∞->,10,1a a
对数:b N N a a b =⇔=log
性质:1)01log =a 2)1log =a a 3)0>N ,即零和负数没有对数 常用对数:N N lg log 10简记为
自然对数:以无理数e (e=……)为底的对数,N N e ln log 简记为 积、商、幂的对数: 对数函数:x y a log = 性质:
1)函数的定义域为()∞+,
0,域值为R ; 2)当1=x 时,函数值0=y ;
3)当()()内是减函数。
时,函数在内是增函数,当时,函数在+∞<<+∞>,010,01a a
三角函数:
角α终边相同的角的集合:{}
Z ∈⋅+=k k ,360οαββ 任意角的正弦、余弦和正切函数
22α
sin 各象限的三角函数正负号
正切()()βαβ
αβαβ
αβ
αβαtan tan 1tan tan tan tan tan 1tan tan tan ⋅+-=
-⋅-+=
+
二倍角公式
由公式1cos sin 22=+αα可变形为:
正弦型函数()ϕωχγ+=sin A 1>ω横坐标缩短..
为原来的ω
1
倍 10<<ω横坐标伸长..
为原来的ω
1倍ωχγsin =
0<ϕ横坐标向右.平移ω
ϕ
个单位 0>ϕ横坐标向左.
平移ω
ϕ
个单位)sin(ϕωχγ+=
1>A 纵坐标伸长..为原来的A 倍 10<<A 纵坐标缩短..为原来的A 倍 ①周期ω
π
2=T
②振幅=A ③频率T =
1f ④相位=ϕωχ+初相:当x=0时,ϕ
ωχ+的值
关键五点法:()ϕωχγ+=sin A 正弦定理:
余弦定理六、数列
等差数列d a a n n +=+1(d :公差) 通项公式:()d n a a n 11-+= 前n 项和公式:2)(1n n a a n S +=
d n n na S n 2
)
1(1-+= 等比数列q a a n n ⋅=+1(q :公比) 通项公式:11-⋅=n n q a a
前n 项和公式:)1(1)1(1≠--=
q q q a S n n )1(11≠--=q q
q
a a S n n 当q=1时,前n 项和为1na S n = 七、平面向量
平面向量的加法:b a =+=+ 平面向量的减法:=-
平面向量的数乘运算:a a λλ=若0≠a λ,则当0>λ时,的a λ方向与a 的方向相同,当0<λ时,a λ的方向与a 相反。
对于非零向量b a 、,当0≠λ时有,一般的,有00,00==λa 法则:
1)a a a a -=-=)1(;12)()()()a a a λμμλλμ== 3)()λμλμλ+=+a a 4)()b a b a λλλ+=+ 平面向量的坐标()1212,y y x x --=
向量线性运算的坐标:()2121,y y x x b a ++=+()2121,y y x x b a --=-()11,y x a λλλ= 共线向量的坐标表示:),(11y x a ),(22y x b 01221=-y x y x 平面向量的内积:><=⋅b a b a b a ,cos
内积的坐标表示:2121y y x x b a +=⋅22y x a += 八、直线和圆的方程
两点间的距离:()()21221221y y x x P P -+-===
线段中点坐标:2210x x x +=
2
2
10y y y += 直线的斜率:)(211
21
2x x x x y y k ≠--=
直线的点斜式...方程:)(00x x k y y -=- 直线的斜截式...方程:b kx y ==(b 为截距) 直线的一般式...方程:0=++C By Ax (A 、B 不全为零) 两条直线的位置关系:平行、相交。
点到直线的距离:2
2
00B
A C
By Ax d +++=
圆的标准方程:222)()(r b y a x =-+-圆心:(a,b ) 圆的一般方程:022=++++F Ey Dx y x (0422>-+F E D )
圆心:)2
,2(E
D --半径:2422F
E D -+
直线与圆的位置关系:判断d 与r 的大小。
排列及排列数的计算 组合及组合数的计算 二项式定理 二项分布
伯努利公式:k n k k
n
n p p C k P --⋅⋅=)1()(。