分数应用题之行程问题
行程问题
行程问题中的几种数学模型,在具体情境中还可以表现为接送问题、发车间隔、电梯问题.我们透过具体情境,发现它仍然是行程问题中基本数学模型的变型.行程问题是研究速度、时间和路程三量之间关系的问题,它是小学数学应用题的难点,是升学试卷中常见的压轴题.行程问题常与分数、比例等知识结合在一起,综合性强,且运用形式多变,解答时应注意以下几点:⑴采用作线段图的方法,正确反映数量之间变化关系,帮助分析思考.⑵行程问题常结合分数应用题,解答时要巧妙地假设单位“l ”使问题简单化,有时还可以联系整数知识,把路程理解为若干份.⑶复杂行程问题经常运用到比例知识.速度一定,时间和路程成正比;时间一定,速度和路程成正比;路程一定,速度和时间成反比.⑷碰到综合性问题可先把综合问题分解成几个单一问题,然后逐个解决.【例 1】 A 、B 两地相距1100米,甲、乙两人同时从A 地出发,在A 、B 间往返锻炼.甲步行每分钟行60米,乙跑步每分钟行160米,40分钟后停止运动.甲、乙两人第几次相遇时距B 地最近?最近距离是多少米?【解析】 甲、乙的运行图如下,图中实线为甲,虚线为乙.BA图上每一格代表5分钟.由上图知,第2次相遇时距B 地最近.第2次相遇时两人共行两个来回,用 ()110046016020⨯÷+=分. 距B 地60201100100⨯-=米.第 4讲行程问题(二)【例 2】 一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少? 【分析】 这个过程是火车错车,对于坐在快车上的人来讲,相当于他以快车的速度和慢车的车尾相遇,相遇路程和是慢车长;对于坐在慢车上的人来讲,相当于他以慢车的速度和快车的车尾相遇,相遇的路程变成了快车的长.相当于是同时进行的两个相遇过程,不同点在于路程和一个是慢车长,一个是快车长,相同点在于速度和都是快车速度加上慢车速度.所以可先求出两车的速度和:3851135÷=(米/秒),然后再求另一过程的相遇时间280358÷=秒.【例 1】 有两个班的小学生要到少年宫参加活动,但只有一辆可乘坐一个班学生的汽车接送,第一班的学生坐车从学校出发的同时,第二班学生开始步行;车到途中某处,让第一班学生下车步行,车立刻返回接第二班学生上车并直接开往少年宫,学生步行速度为每小时4公里,满载时车速每小时40公里,空载时车速为每小时50公里.问:要使两班学生同时到达少年宫,第一班学生要步行全程的几分之几?【分析】 由于两个班的同学都是一段路步行、一段路乘车,而乘车的速度比步行快,中间又没有停留,因此要同时到达少年宫,两个班的同学步行的路程一定一样长.如图所示,图中A 是学校,B 是少年宫,C 是第一班学生下车的地点,D 是第二班学生上车的地点.由上所述AD 和C B 一样长,设第一班同学下车时,第二班同学走到E 处.由于满载时车速为每小时40公里,而步行的速度为每小时4公里,是车速的110,因而AE 是A C 的110.在第一班学生下车后,汽车从C 处迎着第二班学生开,车速是每小时50公里,而第二班学生从E 处以每小时4公里的速度向前走,汽车和第二班学生在D 点相遇.这是普通的行程问题,不难算出ED 是EC 的454.由于EC 是A C 的1911010-=,可见ED 是A C 的491541015⨯=.这样AD 就是A C 的11110156+=.又A D C B =,AD就是AB 的1111667⎛⎫÷+= ⎪⎝⎭,故第一班学生步行了全程的17.[拓展] 甲班与乙班学生同时从学校出发去公园,甲班步行的速度是每小时4千米,乙班步行的速度是每小时3千米,学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生.为了使两班学生在最短时间内到达公园,那么甲班学生与乙班学生需要步行的距离之比是多少?[分析] 不妨设乙班学生先步行,汽车将甲班学生送至A 地后返回,在B 处接到乙班学生,最后汽车与甲班学生同时到达公园,如图:公圆学校根据条件有比例关系::1:12V V =甲车,:1:16V V =乙车乙班从C 至B 时,汽车从C 经过A 到B ,则两者路程之比为1:16,不妨设1C B =,则从C 经过A 到达B 的路程为16,()11628.5CA =+÷=,则有:1:7.5C B BA =; 类似设1AD =,分析可得:1:5.5AD BA =,综合得::22:165:30C B BA AD =,说明甲乙两班步行 的距离之比是15:11,若假设甲班先步行,结果同上.[拓展] 三个人同时前往相距30千米的甲地,已知三人行走的速度相同,都是5千米每小时;现在还有一辆自行车,但只能一个人骑,已知骑车的速度为10千米每小时.现先让其中一人先骑车,到中途某地后将车放下,继续前进;第二个人到达后骑上再行驶一段后又放下让最后那个人骑行,自己继续前进,这样三人同时到达甲地.问,三人花的时间为多少?[分析] 由于每人的速度相同,所以每人行走的路程相同,骑车的路程也要相同,这样每人骑车的距离都是13,所以时间就是20510105÷+÷=小时.【例 2】 甲乙两人同时从学校出发去距离33千米外的公园,甲步行的速度是每小时4千米,乙步行的速度是每小时3千米.他们有一辆自行车,它的速度是每小时5千米,这辆车只能载一个人,所以先让其中一人先骑车到中途,然后把车放下之后继续前进,等另一个人赶到放车的位置后再骑车赶去,这样使两人同时到达公园.那么放车的位置距出发点多少千米?【分析】 根据两人到达公园所花时间相等这一等量关系可列出方程,设放车的位置距出发点x 千米,如果甲先骑车,方程为:33333545x x x x --+=+,如果乙先骑车,方程为:33334535x x x x --+=+,两条方程分别解得9x =和24x =,所以有9千米和24千米两种答案.【例 3】 (2008年“数学解题能力展示”读者评选活动)A 、B 两地相距22.4千米.有一支游行队伍从A 出发,向B 匀速前进;当游行队伍队尾离开A 时,甲、乙两人分别从A 、B 两地同时出发.乙向A 步行;甲骑车先追向队头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向队尾……当甲第5次追上队头时恰与乙相遇在距B 地5.6千米处;当甲第7次追上队头时,甲恰好第一次到达B 地,那么此时乙距A 地还有多少千米?【分析】 设第一次追上队头与第二次追上队头时队伍所行的距离为x 千米,从队头到队尾时甲所行距离为y千米.则有:2 5.6722.4x x y =⎧⎨+=⎩,解得2.82.8x y ==.所以有2.825+2.845.6v v ⨯⨯⨯乙甲=,得到:7:1v v =乙甲,因为()2.82+2.8271S ⨯⨯乙=所以 2.4S =乙所以22.4 5.6 2.414.4--=(千米)[铺垫]海淀区劳动技术学校有100名学生到离学校33千米的郊区参加采摘活动,学校只有一辆限乘25人的中型面包车.为了让全体学生尽快地到达目的地,决定采取步行与乘车相结合的办法.已知学生步行的速度是每小时5千米,汽车行驶的速度是每小时55千米.请你设计一个方案,使全体学生都能到达目的地的最短时间是多少小时? [分析] 要使全体学生都能到达目的地的时间最短,就要让全体学生同时出发,同时到达.把100名学生平均分成4组,每组25人.第一组的25名同学先乘车出发,其他同学也同时步行出发,行一段时间后,第一组的同学在途中某地下车,继续往前步行到达目的地.汽车再返回去接第二组的同学,第二组的同学在途中某地下车,继续往前步行到达目的地.汽车再返回去接第三组的同学,第三组的同学在途中某地下车,继续往前步行到达目的地.汽车再返回去接第四组的同学,直接开往目的地,这样使全体同学同时到达.根据这个方案和汽车速度是步行速度的1 l 倍,把全程平均分成9份,演示出汽车和同学所走的过程,这样问题就可以解决了.4321由于汽车的速度是步行速度的11倍,那么其中一组同学走一段的路程,汽车一来一回应走同样的11段路程.出发时,第一组乘车,其他三组同学步行.当汽车行到某处返回接第二组同学时,人和车应共走12段的路程.整体考虑,步行走了一段路程,即图中AB ,汽车走了11段路程(图中A G G B +).人和车总是这样不停地行走,就会同时到达终点.根据这个方案,学校到采摘园的路程就被平均分成了9份,汽车共行了这样的39份路程,那么题目隐藏的条件也就出现了:一段路程×9=33.根据这个条件,可挖掘出等量关系:汽车速度×时间=汽车行39段的路程.3393955 2.6÷⨯÷=(小时).与流水行船问题类似的有自动扶梯上行走的问题,与行船问题类似的,自动扶梯的速度有以下两条关系式:顺行速度=正常行走速度+扶梯运行速度逆行速度=正常行走速度-扶梯运行速度与流水行船不同的是,自动扶梯上的行走速度有两种度量,一种是“单位时间运动了多少米”,一种是“单位时间走了多少级台阶”,这两种速度看似形同,实则不等,拿流水行程问题作比较,“单位时间运动了多少米”对应的是流水行程问题中的“船只顺(逆)水速度”,而“单位时间走了多少级台阶”对应的是“船只静水速度”,一般奥赛题目涉及自动扶梯的问题中更多的只出现后一种速度,即“单位时间走了多少级台阶”,所以处理数量关系的时候要非常小心,理清了各种数量关系,自动扶梯上的行程问题会变得非常简单.【例 4】 商场的自动扶梯以匀速由下往上行驶,两个孩子在行驶的扶梯上上下走动,女孩由下往上走,男孩由上往下走,结果女孩走了40级到达楼上,男孩走了80级到达楼下.如果男孩单位时间内走的扶梯级数是女孩的2倍,则当该扶梯静止时,可看到的扶梯梯级有多少级?【分析】 因为男孩的速度是女孩的2倍,所以男孩走80级到达楼下与女孩走40级到达楼上所用时间相同,在这段时间中,电梯"伸"出的级数或"缩"进的级数是相等的, 所以-===可见级数“伸出”级数“缩进”级数可见级数-40 所以扶梯可见部分()8040260+÷=(级).[拓展]商场的自动扶梯以匀速由下往上行驶,两个孩子在行驶的扶梯上上下走动,女孩由下往上走,男 孩由上往下走,结果女孩走了40级到达楼上,男孩走了80级到达楼下.如果男孩单位时间内走 的扶梯级数是女孩的3倍,则当该扶梯静止时,可看到的扶梯梯级有多少级? [分析] 男孩与女孩走完电梯的时间比为:8040:2:331= 所以有 80=电梯可见部分级数+2×电梯运行速度40=电梯可见部分级数-3×电梯运行速度解得 电梯运行速度=8(级).所以 电梯可见部分级数为 802864-⨯=(级). [点评]本题的关键是求出男孩和女孩走完电梯的时间比,另外结合二元一次方程比较容易理解 数量关系.请对比原例题,体会其中的数量关系.【例 5】 在商场里,小明从正在向上移动的自动楼梯顶部下120级台阶到达底部,然后从底部上90级台阶回到顶部.自动楼梯从底部到顶部的台阶数是不变的,假设小明单位时间内下的台阶数是他上的台阶数的2倍.则该自动楼梯从底到顶的台阶数为______.【分析】 本题要知道向上与向下的时间之比(即是电梯运行时间的比),可用量化思想.12090:60:902:321== 设该自动楼梯从底到顶的台阶数为x 级,自动楼梯的速度为y 级/单位时间.则有:2120390x y x y +=⎧⎨-=⎩,解得1086x y =⎧⎨=⎩.[铺垫]在地铁车站中,从站台到地面有一架向上的自动扶梯.小强乘坐扶梯时,如果每秒向上迈一级台 阶,那么他走过20级台阶后到达地面;如果每秒向上迈两级台阶,那么走过30级台阶到达地面.从 站台到地面有_____级台阶. [分析] 设20秒扶梯向上走x 级,则15秒走34x级.由扶梯长度可得320304x x+=+,解得40x =,扶梯长204060+=(级).本题非常类似于“牛吃草问题”,如将题目改为:“在地铁车站中,从站台到地面有一架向上的自动扶梯.小强乘坐扶梯时,如果每秒向上迈一级台阶,那么他走过10秒后到达地面;如果每秒向上迈两级台阶,那么走过15秒到达地面.问:从站台到地面有多少级台阶?”【例 6】 甲在商场中乘自动扶梯从一层到二层,并在顺扶梯运行方向向上走,同时乙站在速度相等的并排扶梯从二层到一层.当甲乙处于同一高度时,甲反身向下走,结果他走了60级到达一层.如果他到了顶端再从“上行扶梯”返回,则要往下走80级.那么,自动扶梯不动时甲从下到上要走多少级? [分析] 首先,由于第一种情况下甲走的总台阶数是第二种情况下的360804÷=,说明第一种情况下,甲乙相遇时甲的高度是两层之间高度的34.那么可知甲和自动扶梯的速度和与自动扶梯的速度之比是33:13:144⎛⎫-= ⎪⎝⎭,说明甲走动的速度是扶梯速度的2倍.如果甲沿着扶梯向下走,那么整体的速度就和自动扶梯的速度一样,是整体向上走时速度的13,所用的时间就是向上走所用时间的3倍,那么甲所走的台阶数就是向上时所走台阶数的3倍.因此甲向上走时实际走了808033÷=级台阶.甲走803级台阶的同时自动扶梯向上移动了403级台阶,因此如果扶梯不动,甲从下到上要走80404033+=级台阶.【例 7】 从电车总站每隔一定时间开出一辆电车.甲与乙两人在一条街上沿着同一方向步行.甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车.那么电车总站每隔多少分钟开出一辆电车?【分析】 可先讲解火车和行人相遇和追及的基本原理,即火车和行人相遇和追及的路程和与差都是一个火车长.教师最好用图解的方法来求解.这类问题一般要求两个基本量:相邻两电车间距离、电车的速度.甲与电车属于相遇问题,他们 的路程和即为相邻两车间距离,根据公式得()10min S V V =+⨯甲车,类似可得()10.25min S V V =+⨯乙车, 那么()10.25()10V V V V +⨯=+⨯乙甲车车,即()()6010.258210V V +⨯=+⨯车车,有关公共汽车与行人的问题,主要涉及到这几个量:行人速度、汽车速度、前后相邻汽车间距、汽车发车时间间隔、相遇(追及)事件时间间隔.这些貌似不相关的数量之间隐含着很多数量关系:1. 我们首先分析一下公共汽车的发车过程:从一辆汽车发车到下一辆汽车发车,经过一个“汽车发车时间间隔”,所以当下一辆车发车的时候,前一辆车已经行驶了“一个汽车发车时间间隔”的时间,这个时间内前一辆车共行驶了“汽车发车时间间隔”乘以“汽车速度”,之后两辆车之间的距离保持不变,即距离保持为“相邻汽车间距”,所以我们得到第一条公式:⨯汽车间距=汽车速度汽车发车时间间隔2. 与公共汽车发车过程类似的,如果行人和汽车相向(反向)行驶,那么从行人遇到第一辆车到遇到第二辆车的过程可以看作一个相遇问题,所以有如下数量关系: =⨯汽车间距(汽车速度+行人速度)相遇事件时间间隔 同样的如果行人和汽车同向行驶,则有关系式:=⨯汽车间距(汽车速度-行人速度)追及事件时间间隔解得820V =车米/分,代入上述公式可得9020S =米,因此发车间隔为902082011÷=分钟. 【点评】 根据学生的理解能力,引入参照物和相对速度的概念:1. 参照物:观察或测量物体运动的平台.2. 相对速度:顾名思义一个物体相对于另一个物体运动的速度.乘客在火车车厢中行走(从车尾走向车头)的速度为1米/秒,这是乘客相对于车厢(或火车)的速度(其中车厢或火车为参照物),但在火车以外的的人看来,他以21米/秒的速度运动(参照物为车厢以外的人或地面等),这样即可得到火车行驶的速度(参照物为地面)为20米/秒. 3. 我们通常所说的速度一般以地面为参照物.如果两个物体相对于地面的运动方向相同,那么其中一个物体相对于另一个物体的运动速度等于它们相对于地面运动速度之差(反向运动的物体可以视作运动速度为负数).用参照物和相对速度的思想来理解发车问题比较容易一些,事实上在追及问题中,两个物体的速度差就是其中一个物体相对于另一个物体的相对速度,而相遇问题中,两个物体的速度和即是其中一个物体相对于另一个物体的相对速度.发车问题中将公交车群视作参照物,观察人以相对于公交车的速度运动,则可得到公式:公交车间隔距离=观察人(行人、自行车等)相对(公交车群)速度×相遇(或追及)间隔时间.教师在讲述以下各题时尽量提点参照物和相对速度的概念.【例 8】 在公路上骑车的速度是步行的3倍,行人发现每隔6分钟就有一辆公共汽车超过自己,而骑车人发现每隔10分钟有一辆公共汽车超过自己,如果公共汽车始发站发车的时间间隔保持不变,那么车站每隔多少分钟有一辆公共汽车出发?【分析】 要求出汽车的发车时间间隔,要先求出相邻两汽车之间的距离和汽车的速度之比,但题目没有直接告诉我们这两个条件.由题可知:相邻两汽车之间的距离(以下简称间隔距离)是不变的,当一辆公共汽车超过步行人时,紧接着下一辆公共汽车与步行人之间的距离就是间隔距离,每隔6分钟就有一辆汽车超过步行人,这就是说:当一辆汽车超过步行人时,下一辆汽车要用6分钟才能追上步行人,汽车与行人的路程差就是相邻两汽车的间隔距离.对于骑车人可作同样的分析.因此,如果我们把汽车的速度记作V 汽,骑车人的速度为V 自,步行人的速度为V 人(单位都是米/分钟),则:()6V V =-⨯人汽间隔距离, ()10V V =-⨯汽自间隔距离, 3V V =人自.综合上面的三个式子,可得:6V V =人汽,则:1656V V V ⎛⎫=-⨯= ⎪⎝⎭汽汽汽间隔距离(米);所以,汽车的发车时间间隔就等于:55V V V ÷=÷=汽汽汽间隔距离(分钟).【例 9】 小峰骑自行车去小宝家聚会,在途中小峰注意到,每隔9分钟就有一辆公交车从后方超过自己,半路上自行车发生故障,小峰只好弃车打的前往小宝家,这时小峰又发现出租车也是每隔9分钟超越一辆公交车,已知出租车的速度是小峰骑车速度的5倍,那么如果公交车的发车时间间隔和行驶速度固定的话,那么公交车的发车时间间隔为多少分钟?【分析】 由题目条件可以得到两条等量关系:()9=-⨯间隔距离公交速度骑车速度分钟;()9=-⨯间隔距离出租车速度公交速度分钟; 所以,-=-公交速度骑车速度出租车速度公交速度;()()322++⨯===⨯骑车速度出租车速度骑车速度5骑车速度公交速度骑车速度;由此可知,()9=-⨯间隔距离公交速度骑车速度分钟;29=⨯⨯骑车速度分钟 3=⨯⨯骑车速度6分钟 ⨯=公交速度6分钟所以公交车站每隔6分钟发一辆公交车.[拓展]甲城的车站总是以20分钟的时间间隔向乙城发车,甲乙两城之间既有柏油路又有碎石路和水泥路,车辆(包括自行车)在碎石路和水泥路上的速度分别是柏油路上的80%和120%,有一名学生从乙城骑车去甲城,已知该学生的骑车速度是汽车速度的四分之一(相同路况),那么该骑车学生在柏油路、碎石路、水泥路分别每隔多少分钟遇到一辆汽车? [分析] 先看柏油路上的情况,汽车每分钟行驶汽车柏油路上汽车间隔的120,那么每分钟自行车在柏油路上行驶汽车柏油路上间隔的180,所以在柏油路上自行车与汽车每分钟合走汽车在柏油路上间隔的111208016+=,所以该学生每隔16分钟遇到一辆汽车,对于碎石路、水泥路的情况同样用这种方法考虑,三种情况中学生都是每隔16分钟遇到一辆汽车.[点评]在这道题中之所以碎石路、水泥路、柏油路速度改变的情况下遇到汽车的时间间隔都是16分钟, 是因为汽车与汽车之间的位置间隔随着汽车速度的改变也随之改变,在碎石路、水泥路上汽车与 汽车之间的位置间隔分别是柏油路上汽车位置间隔的80%、120%,在这道题中“甲乙两城之间既 有柏油路又有碎石路和水泥路,车辆(包括自行车)碎石路和水泥路的速度分别是柏油路上的80% 和120%,”实际上是一个多余条件.【例10】 (2008年日本算术奥林匹克初赛)A 城每隔30分钟有直达班车开往B 镇,速度为每小时60千米;小王骑车从A 城去B 镇,速度为每小时20千米.当小王出发30分钟时,正好有一趟班车(这是第一趟)追上并超过了他;当小王到达B 镇时,第三趟班车恰好与他同时到达.A ,B 间路程为___千米.【分析】 班车与班车之间的间隔时间为30600.5÷=小时.班车与班车之间的间隔距离为0.56030⨯=千米,而自行车速度和班车的速度差为40千米/小时,所以小王与班车相遇的时间间隔为30400.75÷=小时.所以从小王遇到第一辆班车到遇到第三辆班车的时间差为1.5小时,小王骑车的总时间为0.5 1.52+=小时,所以A 、B 之间距离为20240⨯=千米.【例11】 某人乘坐观光游船沿河流方向从A 港前行。
数学分数除法(行程问题)
六年级上册数学分数除法(行程问题)1、 相遇问题相遇时间=路程÷速度和 路程=速度和×相遇时间 速度和=路程÷相遇时间2、 追击问题相遇时间=路程÷速度差 路程=速度差×相遇时间 速度差=路程÷相遇时间一、环形路的相遇问题和追击问题1、 基本题(1) 一条环形跑道,小亮要8分钟走完,而爷爷要10分钟走完。
A 、两人同时同地出发,相背而行,多少分钟后两人相遇?B 、两人同时同地出发,同向而行,多少分钟后小亮超出爷爷一圈?2、 加深题(1)两人同时同地出发,相背而行,爷爷先走2分钟,这时小亮再走,小亮走多少分钟后两人相遇?(2) 两人同时同地出发,同向而行,多少分钟后小亮超出爷爷半圈?(3) 两人同时同地出发,同向而行,爷爷先走5分钟,这时小亮再去追赶爷爷,多少分钟后小亮能追上爷爷?(4) 两人同时同地出发,同向而行,小亮先走2分钟,这时小亮再走,多少分钟后小亮能追上爷爷?二、直线上的相遇问题和追击问题从A 城到B 城,如果汽车行驶要15小时,货车行驶要20小时。
1、 现在汽车从A 城,货车从B 城同时相向而行,多少小时后两车相遇?2、 现在汽车从A 城现行3小时,这时货车再从B 城出发与汽车相向而行,相遇时汽车共行多少小时?3、 汽车和货车同时从A 城开往B 城,多少小时后汽车超出货车全程的15?4、 货车从A 城先行2小时开往B 城,这时汽车再从A 城出发也开往B 城,汽车多少小时后能追上货车?分数除法应用题补充练习1、 一批土豆粉,6车运走25,剩下的土豆粉还要运几车?2、 一煤矿分三班采煤,一班计划全年采煤165吨,二班比一班计划多采211,三班比二班少采13,三班全年计划采煤多少吨?3、 商店2月份新运进盘锦大米3000千克,吉林大米2500千克,本月共销售两种大米总量的35,商店本月还剩新进大米多少千克?4、 学校有科普读物320本,占全部图书的25 ,科普读物相当于故事书的43。
第十六讲行程问题(专项复习讲义)小升初数学专项复习讲义(苏教版)(含答案)
第十六讲行程问题(专项复习讲义)小升初数学专项复习讲义(苏教版)(含答案)第十六讲行程问题(专项复习讲义)(知识梳理+专项练习)1、行程问题行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。
解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。
2、解题关键及规律同时同地相背而行:路程=速度和×时间。
同时相向而行:相遇时间=速度和×时间同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。
同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。
一、选择题1.从家到学校,小明要走8分钟,小红要走12分钟,则小明与小红的速度比为()A.8:12 B.2:3 C.3:2 D.12:82.平平骑自行车从甲地到乙地,开始时0.2时骑了3千米,剩下的路又以每分钟0.3千米的速度骑了18分钟,平平从甲地到乙地骑自行车的平均速度是()千米/时。
A.8.4 B.12 C.14 D.16.83.一列火车长200米,以每分钟1200米的速度经过一座大桥,从车头进到车尾出一共用了2分钟.求桥的长度是多少米?正确的算式是()A.1200×2+200 B.1200×2-200 C.(1200+200)×2 D.(1200-200)×24.小明由家去学校然后又按原路返回,去时每分钟行a米,回来时每分钟行b米,求小明来回的平均速度的正确算式是()。
A.(a+b)÷2 B.2÷(a+b)C.1÷(+)D.2÷(+)5.芳芳和媛媛各走一段路.芳芳走的路程比媛媛多,芳芳用的时间比媛媛多,芳芳和媛媛的速度比是( ).A.5:8 B.8:5 C.27:20 D.16:156.船在水中行驶的时候,水流增加对船的行驶时间()。
A.增加B.减小C.不增不减D.都有可能二、填空题7.甲、乙二人分别从,两地出发相向而行.如果二人同时出发,则12小时相遇;如果甲先出发2小时后,乙再出发,则3小时后二人共走完全程的.甲、乙二人的速度比是( ).8.从甲城到乙城,汽车要8小时,客车要10小时,则汽车的速度比客车快25%。
分数百分数基础应用题(行程问题)
六、行程问题
1.客货两车分别从甲乙两地同时相向而行,几小时后客车离乙地有8
1,货车到达中点,这时客车比货车多行90千米,甲乙两地相距多少千米?
2.客车从甲地、货车从乙地同时相对开出,6小时后,客车距乙地还有全程的8
1,货车距甲地还有138千米,已知客车每小时比货车多行15千米,甲乙两地相距多少千米?
3.一列快车和一列慢车分别从甲乙两地同时相对开出,5小时相遇,相遇后两车继续行驶2小时,这时快车距乙地还有全程的25%,慢车共行585千米,求甲乙两地相距多少千米?
4.甲乙两车从AB 两地同时相对开出。
甲车行全程需要7小时,乙车每小时行45千米,两车行1小时后,共行的路程比全程的15%少12千米,求全程多少千米?
5.甲乙两车从AB 两地同时相对开出,3小时后甲车距中点24千米,乙车超过
中点3.6千米。
已知甲车每小时比乙车每小时慢5
1,求乙车每小时行多少千米?
6.AB两地相距800米,甲乙两车从AB两地同时相对开出,4小时相遇,相遇后两车继续行驶,甲车又行3小时到达B地。
这时乙车离A地多少千米?
7.甲乙两车分别从AB两地同时相对开出,经过5小时相遇,相遇后乙车又继续行驶了3小时到达A地,AB两地相距多少米?。
行程问题工程问题
工程问题+行程问题典型应用题工程问题+行程问题首先给大家讲下分数工程问题,这种题一般不给出总量。
这种题的解法重点是:1 把总工作量看做单位“1”2 工作效率*工作时间=工作量3 变式关系式:工作量÷工作效率=工作时间;工作量÷工作时间=工作效率4 比如一项工程甲单独做需要6天完成,乙单独做需要10天完成,那么甲的工作效率就是可1/6,乙的为1/10(即1天工作全部工程1/6或1/10)例题1一项工程,甲、乙队合作20天可以完成。
共同做了8天后,甲离开了,由乙继续做了18天才完成。
如果这项工程单独由甲队或乙队单独完成,各需要几天?思路导航:设这项工程为单位“1”,当甲离开后,乙做的工作量为:1-1/20*8=3/5乙单独做这项工程的时间为18除以3/5 18÷3/5=30天甲单独做的时间:1÷(1/20-1/30)=60天例题2师傅和徒弟合做一件工作要15天才能完成。
若让师傅先做10天,则剩下的工作,徒弟单独做还需要17天才能完成。
徒弟单独做这件工作需要多少天才能完成?思路导航:由于给出条件是“合做15天完成”,所以,将分开做的转化成为合做10天共做多少:1/15*10;还剩下多少:1-1/15*10=1/3。
徒弟单独做几天完成:(17-10)/1/3=21天。
写下解析就是:1-1/15*10=1/317-10=77÷1/3=21当然可以解方程,但是比较麻烦:1/X+1/Y=1/1510/X+17/Y=1例题3一批稿件,甲单独做20分钟打完;乙单独30分钟打完。
现在两人合打这批稿件,合做中,甲因有事离开了5分钟,乙休息了若干分钟,这样共用了16分钟打完。
乙休息了多少分钟?思路导航:由于不知16分钟有多少是在合作,也不知道甲、乙各自单独做了几分钟,因此,假设既没有离开也没有休息,16分钟全部在工作,次题就好做了。
甲、乙合作不休息16分钟能打:(1/20+1/30)*16=4/34/3-1=1/3-------表示甲5分钟打的加上乙为休息做的甲5分钟能打多少?5*1/20=1/4乙休息的时间能打多少?1/3-1/4=1/12乙休息了多少时间?1/12÷1/30=5/2即乙休息了5/2分钟。
六年级数学路程问题应用题试题答案及解析
六年级数学路程问题应用题试题答案及解析1.(3分)一辆货车从甲地开往乙地,平均每小时行55千米.当这辆货车行了全程的20%时,如果再行79.2千米,那么已行的路程与全程的比正好是3:5.这辆货车从甲地到乙地要行多少时间?【答案】3.6小时.【解析】当这辆货车行了全程的20%时,如果再行79.2千米,那么已行的路程与全程的比正好是3:5,也就是已行的路程是全程的,79.2千米占全程的﹣20%,用除法得出甲乙两地的路程,再除以货车的速度即可得这辆货车从甲地到乙地要行的时间.解:79.2÷(﹣20%)=79.2÷40%=198(千米),198÷55=3.6(小时),答:这辆货车从甲地到乙地要行3.6小时.点评:本题考查了简单的行程问题﹣比的应用.得出79.2千米占全程的﹣20%.2.(5分)快、慢两车同时从相距480千米的两地相向而行,3小时后还相距全程的﹣,照这样的速度,两车还要经过几小时才能相遇?【答案】6小时【解析】3小时后还相距全程的,即两车三小时共行了全程的1﹣,根据分数除法的意义,两车共行全程即相遇需要3÷(1﹣)小时,所以照这样的速度,两车还要经过3÷(1﹣)﹣3小时才能相遇.解:3÷(1﹣)﹣3=3﹣3=9﹣3=6(小时)答:两车还需要6小时相遇.点评:完成本题根据分数除法的意义求出共需多少时间较简便,不需要计算具体速度.3.有一座时钟现在显示10时整.那么,经过多少分钟,分针与时针第一次重合;再经过多少分钟,分针与时针第二次重合?【答案】经过分钟,时针与分针第一次重合;经过时针与分针第二次重合。
【解析】在lO点时,时针所在位置为刻度10,分针所在位置为刻度12;当两针重合时,分针必须追上50个小刻度,设分针速度为“l”,有时针速度为“”,于是需要时间:。
所以,再过分钟,时针与分针将第一次重合.第二次重合时显然为12点整,所以再经过分钟,时针与分针第二次重合。
第一讲 行程问题
第一讲行程问题第一讲行程问题2011-01-18 19:59二、环形路上的行程问题人在环形路上行走,计算行程距离常常与环形路的周长有关.例9 小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是180米/分.(1)小张和小王同时从同一地点出发,反向跑步,75秒后两人第一次相遇,小张的速度是多少米/分?(2)小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?解:(1 )75秒-1.25分.两人相遇,也就是合起来跑了一个周长的行程.小张的速度是500÷1.25-180=220(米/分).(2)在环形的跑道上,小张要追上小王,就是小张比小王多跑一圈(一个周长),因此需要的时间是500÷(220-180)=12.5(分).220×12.5÷500=5.5(圈).答:(1)小张的速度是220米/分;(2)小张跑5.5圈后才能追上小王.例10 如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C点第一次相遇,C 离A点80米;在D点第二次相遇,D点离B点6O米.求这个圆的周长. 解:第一次相遇,两人合起来走了半个周长;第二次相遇,两个人合起来又走了一圈.从出发开始算,两个人合起来走了一周半.因此,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,那么从A到D的距离,应该是从A到C距离的3倍,即A到D是80×3=240(米).240-60=180(米).180×2=360(米).答:这个圆的周长是360米.在一条路上往返行走,与环行路上行走,解题思考时极为类似,因此也归入这一节.例11 甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少?解:画示意图如下:如图,第一次相遇两人共同走了甲、乙两村间距离,第二次相遇两人已共同走了甲、乙两村间距离的3倍,因此所需时间是40×3÷60=2(小时).从图上可以看出从出发至第二次相遇,小张已走了6×2-2=10(千米).小王已走了6+2=8(千米).因此,他们的速度分别是小张10÷2=5(千米/小时),小王8÷2=4(千米/小时).答:小张和小王的速度分别是5千米/小时和4千米/小时.例12 小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了3.5×3=10.5(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2=8.5(千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程.其中张走了3.5×7=24.5(千米),24.5=8.5+8.5+7.5(千米).就知道第四次相遇处,离乙村8.5-7.5=1(千米).答:第四次相遇地点离乙村1千米.下面仍回到环行路上的问题.例13 绕湖一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王以4千米/小时速度每走1小时后休息5分钟;小张以6千米/小时速度每走50分钟后休息10分钟.问:两人出发多少时间第一次相遇?解:小张的速度是6千米/小时,50分钟走5千米我们可以把他们出发后时间与行程列出下表:12+15=27比24大,从表上可以看出,他们相遇在出发后2小时10分至3小时15分之间.出发后2小时10分小张已走了此时两人相距24-(8+11)=5(千米).由于从此时到相遇已不会再休息,因此共同走完这5千米所需时间是5÷(4+6)=0.5(小时).2小时10分再加上半小时是2小时40分.答:他们相遇时是出发后2小时40分.例14 一个圆周长90厘米,3个点把这个圆周分成三等分,3只爬虫A,B,C分别在这3个点上.它们同时出发,按顺时针方向沿着圆周爬行.A的速度是10厘米/秒,B的速度是5厘米/秒,C的速度是3厘米/秒,3只爬虫出发后多少时间第一次到达同一位置?解:先考虑B与C这两只爬虫,什么时候能到达同一位置.开始时,它们相差30厘米,每秒钟B能追上C(5-3)厘米0.30÷(5-3)=15(秒).因此15秒后B与C到达同一位置.以后再要到达同一位置,B要追上C一圈,也就是追上90厘米,需要90÷(5-3)=45(秒).B与C到达同一位置,出发后的秒数是15,,105,150,195,……再看看A与B什么时候到达同一位置.第一次是出发后30÷(10-5)=6(秒),以后再要到达同一位置是A追上B一圈.需要90÷(10-5)=18(秒),A与B到达同一位置,出发后的秒数是6,24,42,,78,96,…对照两行列出的秒数,就知道出发后60秒3只爬虫到达同一位置.答:3只爬虫出发后60秒第一次爬到同一位置.请思考,3只爬虫第二次到达同一位置是出发后多少秒?例15 图上正方形ABCD是一条环形公路.已知汽车在AB上的速度是90千米/小时,在BC上的速度是120千米/小时,在CD上的速度是60千米/小时,在DA上的速度是80千米/小时.从CD上一点P,同时反向各发出一辆汽车,它们将在AB中点相遇.如果从PC中点M,同时反向各发出一辆汽车,它们将在AB上一点N处相遇.求解:两车同时出发至相遇,两车行驶的时间一样多.题中有两个“相遇”,解题过程就是时间的计算.要计算方便,取什么作计算单位是很重要的.设汽车行驶CD所需时间是1.根据“走同样距离,时间与速度成反比”,可得出分数计算总不太方便,把这些所需时间都乘以24.这样,汽车行驶CD,BC,AB,AD所需时间分别是24,12,16,18.从P点同时反向各发一辆车,它们在AB中点相遇.P→D→A与P→C→B所用时间相等.PC上所需时间-PD上所需时间=DA所需时间-CB所需时间=18-12=6.而(PC上所需时间+PD上所需时间)是CD上所需时间24.根据“和差”计算得PC上所需时间是(24+6)÷2=15,PD上所需时间是24-15=9.现在两辆汽车从M点同时出发反向而行,M→P→D→A→N与M→C→B→N所用时间相等.M是PC中点.P→D→A→N与C→B→N时间相等,就有BN上所需时间-AN上所需时间=P→D→A所需时间-CB所需时间=(9+18)-12= 15.BN上所需时间+AN上所需时间=AB上所需时间=16.立即可求BN上所需时间是15.5,AN所需时间是0.5.从这一例子可以看出,对要计算的数作一些准备性处理,会使问题变得简单些.三、稍复杂的问题在这一节希望读者逐渐掌握以下两个解题技巧:(1)在行程中能设置一个解题需要的点;(2)灵活地运用比例.例16 小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?解:画一张示意图:图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A之间这段距离,它等于这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5.4-4.8)千米/小时.小张比小王多走这段距离,需要的时间是1.3÷(5.4-4.8)×60=130(分钟).这也是从出发到张、李相遇时已花费的时间.小李的速度10.8千米/小时是小张速度5.4千米/小时的2倍.因此小李从A到甲地需要130÷2=65(分钟).从乙地到甲地需要的时间是130+65=195(分钟)=3小时15分.答:小李从乙地到甲地需要3小时15分.上面的问题有3个人,既有“相遇”,又有“追及”,思考时要分几个层次,弄清相互间的关系,问题也就迎刃而解了.在图中设置一个B点,使我们的思考直观简明些.例17 小玲和小华姐弟俩正要从公园门口沿马路向东去某地,而他们的家要从公园门口沿马路往西.小华问姐姐:“是先向西回家取了自行车,再骑车向东去,还是直接从公园门口步行向东去快”?姐姐算了一下说:“如果骑车与步行的速度比是4∶1,那么从公园门口到目的地的距离超过2千米时,回家取车才合算.”请推算一下,从公园到他们家的距离是多少米?解:先画一张示意图设A是离公园2千米处,设置一个B点,公园离B与公园离家一样远.如果从公园往西走到家,那么用同样多的时间,就能往东走到B点.现在问题就转变成:骑车从家开始,步行从B点开始,骑车追步行,能在A 点或更远处追上步行.具体计算如下:不妨设B到A的距离为1个单位,因为骑车速度是步行速度的4倍,所以从家到A的距离是4个单位,从家到B的距离是3个单位.公园到B是1.5个单位.从公园到A是1+1.5=2.5(单位).每个单位是2000÷2.5=800(米).因此,从公园到家的距离是800×1.5=1200(米).答:从公园门口到他们家的距离是1200米.这一例子中,取计算单位给计算带来方便,是值得读者仿照采用的.请再看一例.例18 快车和慢车分别从A,B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了12.5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间?解:画一张示意图:设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了12.5-5=7.5(小时).我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位.慢车每小时走2个单位,快车每小时走3个单位.有了上面“取单位”准备后,下面很易计算了.慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢?去掉它在B停留1小时.快车行驶7小时,共行驶3×7=21(单位).从B到C再往前一个单位到D点.离A 点15-1=14(单位).现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是14÷(2+3)=2.8(小时).慢车从C到A返回行驶至与快车相遇共用了7.5+0.5+2.8=10.8(小时).答:从第一相遇到再相遇共需10小时48分.例19 一只小船从A地到B地往返一次共用2小时.回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米.求A至B两地距离.解:1小时是行驶全程的一半时间,因为去时逆水,小船到达不了B地.我们在B之前设置一个C点,是小船逆水行驶1小时到达处.如下图第二小时比第一小时多行驶的行程,恰好是C至B距离的2倍,它等于6千米,就知C至B是3千米.为了示意小船顺水速度比逆水速度每小时多行驶8千米,在图中再设置D点,D至C是8千米.也就是D至A顺水行驶时间是1小时.现在就一目了然了.D至B是5千米顺水行驶,与C至B逆水行驶3千米时间一样多.因此顺水速度∶逆水速度=5∶3.由于两者速度差是8千米.立即可得出A至B距离是12+3=15(千米).答:A至B两地距离是15千米.例20 从甲市到乙市有一条公路,它分成三段.在第一段上,汽车速度是每小时40千米,在第二段上,汽车速度是每小时90千米,在第三段上,汽车速度是每小时50千米.已知第一段公路的长恰好是第三段的2倍.现有两辆汽车分别从甲、乙两市同时出发,相向而行.1小时20分后,在第二段的解一:画出如下示意图:当从乙城出发的汽车走完第三段到C时,从甲城出发的汽车走完第一段的到达D处,这样,D把第一段分成两部分时20分相当于因此就知道,汽车在第一段需要第二段需要30×3=90(分钟);甲、乙两市距离是答:甲、乙两市相距185千米.把每辆车从出发到相遇所走的行程都分成三段,而两车逐段所用时间都相应地一样.这样通过“所用时间”使各段之间建立了换算关系.这是一种典型的方法.例8、例13也是类似思路,仅仅是问题简单些.还可以用“比例分配”方法求出各段所用时间.第一段所用时间∶第三段所用时间=5∶2.时间一样.第一段所用时间∶第二段所用时间=5∶9.因此,三段路程所用时间的比是5∶9∶2.汽车走完全程所用时间是80×2=160(分种).例21 一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达.那么甲、乙两地相距多少千米?解:设原速度是1.%后,所用时间缩短到原时间的这是具体地反映:距离固定,时间与速度成反比.用原速行驶需要同样道理,车速提高25%,所用时间缩短到原来的如果一开始就加速25%,可少时间现在只少了40分钟,72-40=32(分钟).说明有一段路程未加速而没有少这个32分钟,它应是这段路程所用时间真巧,320-160=160(分钟),原速的行程与加速的行程所用时间一样.因此全程长答:甲、乙两地相距270千米.十分有意思,按原速行驶120千米,这一条件只在最后用上.事实上,其他条件已完全确定了“原速”与“加速”两段行程的时间的比例关系,当然也确定了距离的比例关系.全程长还可以用下面比例式求出,设全程长为x,就有x∶120=72∶32.第一讲行程问题2011-01-18 19:56第一讲行程问题走路、行车、一个物体的移动,总是要涉及到三个数量:距离走了多远,行驶多少千米,移动了多少米等等;速度在单位时间内(例如1小时内)行走或移动的距离;时间行走或移动所花时间.这三个数量之间的关系,可以用下面的公式来表示:距离=速度×时间很明显,只要知道其中两个数量,就马上可以求出第三个数量.从数学上说,这是一种最基本的数量关系,在小学的应用题中,这样的数量关系也是最常见的,例如总量=每个人的数量×人数.工作量=工作效率×时间.因此,我们从行程问题入手,掌握一些处理这种数量关系的思路、方法和技巧,就能解其他类似的问题.当然,行程问题有它独自的特点,在小学的应用题中,行程问题的内容最丰富多彩,饶有趣味.它不仅在小学,而且在中学数学、物理的学习中,也是一个重点内容.因此,我们非常希望大家能学好这一讲,特别是学会对一些问题的思考方法和处理技巧.这一讲,用5千米/小时表示速度是每小时5千米,用3米/秒表示速度是每秒3米一、追及与相遇有两个人同时在行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的距离,也就是要计算两人走的距离之差.如果设甲走得快,乙走得慢,在相同时间内,甲走的距离-乙走的距离= 甲的速度×时间-乙的速度×时间=(甲的速度-乙的速度)×时间.通常,“追及问题”要考虑速度差.例1 小轿车的速度比面包车速度每小时快6千米,小轿车和面包车同时从学校开出,沿着同一路线行驶,小轿车比面包车早10分钟到达城门,当面包车到达城门时,小轿车已离城门9千米,问学校到城门的距离是多少千米?解:先计算,从学校开出,到面包车到达城门用了多少时间.此时,小轿车比面包车多走了9千米,而小轿车与面包车的速度差是6千米/小时,因此所用时间=9÷6=1.5(小时).小轿车比面包车早10分钟到达城门,面包车到达时,小轿车离城门9千米,说明小轿车的速度是面包车速度是54-6=48(千米/小时).城门离学校的距离是48×1.5=72(千米).答:学校到城门的距离是72千米.例2 小张从家到公园,原打算每分种走50米.为了提早10分钟到,他把速度加快,每分钟走75米.问家到公园多远?解一:可以作为“追及问题”处理.假设另有一人,比小张早10分钟出发.考虑小张以75米/分钟速度去追赶,追上所需时间是50 ×10÷(75- 50)=20(分钟)·因此,小张走的距离是75× 20=1500(米).答:从家到公园的距离是1500米.还有一种不少人采用的方法.家到公园的距离是一种解法好不好,首先是“易于思考”,其次是“计算方便”.那么你更喜欢哪一种解法呢?对不同的解法进行比较,能逐渐形成符合你思维习惯的解题思路.例3 一辆自行车在前面以固定的速度行进,有一辆汽车要去追赶.如果速度是30千米/小时,要1小时才能追上;如果速度是35千米/小时,要40分钟才能追上.问自行车的速度是多少?解一:自行车1小时走了30×1-已超前距离,自行车40分钟走了自行车多走20分钟,走了因此,自行车的速度是答:自行车速度是20千米/小时.解二:因为追上所需时间=追上距离÷速度差1小时与40分钟是3∶2.所以两者的速度差之比是2∶3.请看下面示意图:马上可看出前一速度差是15.自行车速度是35- 15=20(千米/小时).解二的想法与第二讲中年龄问题思路完全类同.这一解法的好处是,想清楚后,非常便于心算.例4 上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?解:画一张简单的示意图:图上可以看出,从爸爸第一次追上到第二次追上,小明走了8-4=4(千米).而爸爸骑的距离是4+8=12(千米).这就知道,爸爸骑摩托车的速度是小明骑自行车速度的12÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8×3=24(千米).但事实上,爸爸少用了8分钟,骑行了4+12=16(千米).少骑行24-16=8(千米).摩托车的速度是1千米/分,爸爸骑行16千米需要16分钟.8+8+16=32.答:这时是8点32分.下面讲“相遇问题”.小王从甲地到乙地,小张从乙地到甲地,两人在途中相遇,实质上是小王和小张一起走了甲、乙之间这段距离.如果两人同时出发,那么甲走的距离+乙走的距离=甲的速度×时间+乙的速度×时间=(甲的速度+乙的速度)×时间.“相遇问题”,常常要考虑两人的速度和.例5 小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟.他们同时出发,几分钟后两人相遇?解:走同样长的距离,小张花费的时间是小王花费时间的36÷12=3(倍),因此自行车的速度是步行速度的3倍,也可以说,在同一时间内,小王骑车走的距离是小张步行走的距离的3倍.如果把甲地乙地之间的距离分成相等的4段,小王走了3段,小张走了1段,小张花费的时间是36÷(3+1)=9(分钟).答:两人在9分钟后相遇.例6 小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4千米.两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离.解:画一张示意图离中点1千米的地方是A点,从图上可以看出,小张走了两地距离的一半多1千米,小王走了两地距离的一半少1千米.从出发到相遇,小张比小王多走了2千米小张比小王每小时多走(5-4)千米,从出发到相遇所用的时间是2÷(5-4)=2(小时).因此,甲、乙两地的距离是(5+4)×2=18(千米).本题表面的现象是“相遇”,实质上却要考虑“小张比小王多走多少?”岂不是有“追及”的特点吗?对小学的应用题,不要简单地说这是什么问题.重要的是抓住题目的本质,究竟考虑速度差,还是考虑速度和,要针对题目中的条件好好想一想.千万不要“两人面对面”就是“相遇”,“两人一前一后”就是“追及”.请再看一个例子.例7 甲、乙两车分别从A,B两地同时出发,相向而行,6小时后相遇于C点.如果甲车速度不变,乙车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点12千米;如果乙车速度不变,甲车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点16千米.求A,B两地距离.解:先画一张行程示意图如下设乙加速后与甲相遇于D点,甲加速后与乙相遇于E点.同时出发后的相遇时间,是由速度和决定的.不论甲加速,还是乙加速,它们的速度和比原来都增加5千米,因此,不论在D点相遇,还是在E点相遇,所用时间是一样的,这是解决本题的关键.下面的考虑重点转向速度差.在同样的时间内,甲如果加速,就到E点,而不加速,只能到D点.这两点距离是12+16=28(千米),加速与不加速所形成的速度差是5千米/小时.因此,在D点(或E点)相遇所用时间是28÷5=5.6(小时).比C点相遇少用6-5.6=0.4(小时).甲到达D,和到达C点速度是一样的,少用0.4小时,少走12千米,因此甲的速度是12÷0.4=30(千米/小时).同样道理,乙的速度是16÷0.4=40(千米/小时).A到B距离是(30+40)×6=420(千米).答:A,B两地距离是420千米.很明显,例7不能简单地说成是“相遇问题”.例8 如图,从A到B是1千米下坡路,从B到C是3千米平路,从C到D是2.5千米上坡路.小张和小王步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时.问:(1)小张和小王分别从A,D同时出发,相向而行,问多少时间后他们相遇?(2)相遇后,两人继续向前走,当某一个人达到终点时,另一人离终点还有多少千米?解:(1)小张从A到B需要1÷6×60=10(分钟);小王从D到C也是下坡,需要2.5÷6×60=25(分钟);当小王到达C点时,小张已在平路上走了25-10=15(分钟),走了因此在B与C之间平路上留下3- 1=2(千米)由小张和小王共同相向而行,直到相遇,所需时间是2 ÷(4+4)×60=15(分钟).从出发到相遇的时间是25+15=40 (分钟).(2)相遇后,小王再走30分钟平路,到达B点,从B 点到A点需要走1÷2×60=30分钟,即他再走60分钟到达终点.小张走15分钟平路到达D点,45分钟可走小张离终点还有2.5-1.5=1(千米).答:40分钟后小张和小王相遇.小王到达终点时,小张离终点还有1千米.分数应用2009-12-10 20:49师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?(170-10÷1/3)÷(1+1/4÷1/3)=80(个)分析1:师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个。
六年级数学行程问题应用题及参考答案
六年级数学行程问题应用题及参考答案1、甲乙两车同时从AB 两地相对开出。
甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。
求AB 两地相距多少千米?2、一辆客车和一辆货车分别从甲乙两地同时相向开出。
货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。
甲乙两地相距多少千米?3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。
求乙绕城一周所需要的时间?4、甲乙两人同时从A 地步行走向B 地,当甲走了全程的41时,乙离B 地还有640米,当甲走余下的65时,乙走完全程的107,求AB 两地距离是多少米?5、甲,乙两辆汽车同时从A ,B 两地相对开出,相向而行。
甲车每小时行75千米,乙车行完全程需7小时。
两车开出3小时后相距15千米,A,B 两地相距多少千米?6、甲,已两人要走完这条路,甲要走30 分,已要走20 分,走3 分后,甲发现有东西没拿,拿东西耽误 3 分,甲再走几分钟跟乙相遇?7、甲,乙两辆汽车从A 地出发,同向而行,甲每小时走36 千米,乙每小时走48 千米,若甲车比乙车早出发 2 小时,则乙车经过多少时间才追上甲车?8、甲乙两人分别从相距36 千米的ab 两地同时出发,相向而行,甲从a 地出发至1 千米时,发现有物品遗忘在a 地,便立即返回,取了物品又立即从a 地向b 地行进,这样甲、乙两人恰好在a,b 两地的中点处相遇,又知甲每小时比乙多走0.5 千米,求甲、乙两人的速度?9、两列火车同时从相距400 千米两地相向而行,客车每小时行60 千米,货车小时行40千米,两列火车行驶几小时后,相距有100 千米?10、甲每小时行驶9 千米,乙每小时行驶7 千米。
两者在相距 6 千米的两地同时向背而行,几小时后相距150 千米?11、甲乙两车从相距600 千米的两地同时相向而行,已知甲车每小时行42 千米,乙车每小时行58 千米,两车相遇时乙车行了多少千米?12、一辆客车和一辆货车相向而行,6小时相遇,后经4小时,客车到达,货车还有188千米,问两地相距多少千米?13、甲乙两地相距600千米,客车和货车从两地相向而行,6小时相遇,已知货车的速度是客车的三分之二,求二车的速度?14、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相距4千米,再经过多长时间相遇?15、甲、乙两车分别从a b两地开出,甲车每小时行50千米,乙车每小时行40千米,甲车比乙车早1小时到,两地相距多少?16、两辆车从甲乙两地同时相对开出,4时相遇。
人教版数学五年级上册综合行程问题课件(共26张PPT)
两地相距多少千米? 乙车行了全程的: 3 =3
3+2 5
两人共行:3 + 4 =41 >1
5 7 35
AB相距:120÷(3 + 4 -1)=700(千米)
57
答:两地相距700千米。
变式1、小新和小芳两车分别从A、B两地同时相向而行,速度比是5:3,小新
行了全程的
3 7
后又行了66千米,正好与小芳相遇。A、B两地相距多少千米?
变式6、小东的船以25千米/时的速度顺流行驶,突然发现前方120千米处 有一顶帽子,请问小东的船经过多长时间才能遇到帽子?
120÷25=4.8(小时) 答:小东的船经过4.8小时才能遇到水壶。
相遇时,速度比=路程比=5:3 相遇时,小新行了全程的:5+53=58 全程:66÷(58 - 37)=336(千米) 答:两地相距336千米。
平均速度 平均速度≠速度的平均值 平均速度=总路程÷总时间 ※设数法:设题目已知的速度的最小公倍数为路程
练习2、新东方小学组织学生去爬山,上山的路程有6千米,小新上山平均每分 钟走30米,下山按原路返回,平均每分钟走60米,他上山和下山的平均速度 是多少? 6千米=6000米 上山时间:6000÷30=200(分) 下山时间:6000÷60=100(分) 总路程:6000×2=12000(米) 平均速度:12000÷(200+100)=40(米/分) 答:上山和下山的平均速度是40米/分。
第1次相遇,两人合走1个全程,小芳走:80米 第2次相遇,两人合走3个全程,小芳走:80×3=240(米) A、B两地的距离:(240+160)÷2=200(米) 答:A、B两地的距离为200米。
变式4、小东和小芳驾车同时从A地开出去往B地,小芳先到达B地后立即返 回,两人第一次在离A地95千米处迎面相遇。相遇后继续前进,小东到达B 地后也立即返回,两人第二次在离B地25千米处迎面相遇。求A、B两地间 的距离是多少千米?
小学六年级数学思维提升培优拓展题讲解之《4分数行程应用题》
X=144
或: 28÷( 4 - 1 )=144(千米)
4+5 4
答:甲、乙两地相距144千米。
9.一辆汽车以每小时45千米的速度行了全程的
1 5
后,离中点还有90千米,照
这样的速度,行完全程要多少小时?
汽车
全程?小时
中 点
1 5
中点处即是全程的 一半,可以求出90千 米对应的全程的分数。
90千米
小红跑的路程:400+
1760 3
=
2960 3
(米)
小红跑的速度:29360 ÷
16 3
=185(米/分)
答:小红跑步的速度 是185米/分。
7.一辆客车和一辆货车分别从甲、乙两地同时出发,相向而行,货车的速度
是客车的
2 3
,两车在距离中点30千米处相遇。甲、乙两地相距( 300 )千米。
思考:
1
( 4 - 5 )÷ 5 =25%
2.一列火车
3 5
小时行了45千米,照这样计算,从甲城到乙城用了
甲、乙两城之间的铁路长( 100 )千米。
4 小时, 3
先算出1小时行驶的千米数,再用速度乘时间就是路程。
45÷
3 5
×
4 3
=100(千米)
3.客车和货车从甲乙两地同时相对开出,经过3小时客车行了全程的
12.小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家
里了,随即骑车去给小明送书,追上时,小明还有
3 10
的路程未走完,小明随即上
了爸爸的车,由爸爸送往学校,这样小明比独自步行提前5分钟到校。小明从家到
小学六年级数学思维提升培优拓展题讲解 行程问题
数学应用题步骤
数学应用题步骤一、行程问题(3题)1. 一辆汽车从甲地开往乙地,速度是每小时60千米,3小时后到达乙地。
返回时只用了2小时,返回时的速度是多少?- 步骤:- 首先根据去程的速度和时间求出甲乙两地的距离,根据公式路程 =速度×时间,可得甲乙两地距离为60×3 = 180千米。
- 然后根据回程的路程(与去程相同为180千米)和时间(2小时),求回程速度,根据公式速度=(路程)/(时间),可得回程速度为180÷2 = 90千米/小时。
- 解析:这道题主要考查了行程问题中路程、速度和时间的关系,通过先求出路程,再利用路程不变求出回程速度。
2. 甲、乙两人分别从A、B两地同时出发相向而行,甲的速度是5米/秒,乙的速度是3米/秒,经过10秒两人相遇。
A、B两地相距多少米?- 步骤:- 根据公式路程 = 速度和×相遇时间,甲、乙的速度和为5 + 3=8米/秒,相遇时间是10秒。
- 所以A、B两地相距8×10 = 80米。
- 解析:本题是典型的相遇问题,关键是要掌握速度和与相遇时间相乘得到路程的公式。
3. 小明骑自行车去学校,先以12千米/小时的速度骑了15分钟,后因车胎漏气,以4千米/小时的速度推行了5分钟到达学校。
小明家到学校的距离是多少千米?- 步骤:- 先将时间单位换算成小时,15分钟=(15)/(60)=(1)/(4)小时,5分钟=(5)/(60)=(1)/(12)小时。
- 根据公式路程 = 速度×时间,骑行的路程为12×(1)/(4)=3千米,推行的路程为4×(1)/(12)=(1)/(3)千米。
- 小明家到学校的距离为3+(1)/(3)=(9 + 1)/(3)=(10)/(3)千米。
- 解析:这题涉及到不同速度下的行程计算,要注意时间单位的换算,最后将两段路程相加得到总路程。
二、工程问题(3题)1. 一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成。
(8)分数应用题之行程问题
八、分数应用题之行程问题题型一(1)甲乙两地之间的公路长216千米。
一辆汽车从甲地开往乙地,行了全程的38,离乙地还有多少千米?画线段图:(2)一辆汽车从甲地开往乙地,行了全程的38,正好行了81千米。
两地之间的公路长多少千米?画线段图:(3)一辆汽车从甲地开往乙地,行了全程的38,离乙地还有135千米。
两地之间的公路长多少千米?画线段图:(4)一辆汽车从甲地开往乙地,第一小时行了全程的14,第二小时行了全程的518,两小时行了114千米。
两地之间的公路长多少千米?画线段图:例1,客车从A 站开往B 站,3小时行了全程的41;货车从B 站开往A 站,212小时行了全程的61,现客车与货车同时从A 、B 两站相向相行,多少小时能相遇?例2,甲、乙两车同时从A 、B 两地相向而行,4.8小时后相遇,已知甲车从A 地开往B 地需要12小时,乙车从B 地开往A 地需要多少小时?1、快车和慢车分别从A 、B 两地相向而行。
已知快车行完全全程需要8小时,慢车行完全程需要12小时,多少小时后两车能相遇?2、甲车从A 地开往B 地需要15小时,乙车从B 开往A 地比甲车少用3小时。
两车同时从两地相向而行,多少小时能相遇?3、甲车从A 地开往B 地需要9小时,乙车所用时间是甲车的32。
两车同时从A 、B 两地相向而行,多少小时能相遇?4、货车从甲地开往乙地,211小时行了全程的81,客车的速度是货车的311倍,两车从甲、乙两地相向而行,多少小时能相遇?题型二例1,快车从甲地开往乙地需要20小时,慢车从乙地开往甲地需要30小时,两车同时从甲、乙两地相向而行。
相遇时,快车比慢车多行180千米,快车和慢车各行了多少千米?1、甲、乙两车同时从A 、B 两地相向而行,733小时后相遇。
已知甲车从A 地开往B 地需要6小时,乙在从B 地开往A 地需要多少小时?2、快车从甲地开往乙地,212小时行了全程的41,与此同时,慢车从乙地开往甲地,6小时后两车相遇。
小学六年级奥数第35讲 行程问题(三)(含答案分析)
第35讲 行程问题(三)一、知识要点本周主要讲结合分数、百分数知识相关的较为复杂抽象的行程问题。
要注意:出发的时间、地点和行驶方向、速度的变化等,常常需画线段图来帮助理解题意。
二、精讲精练【例题1】客车和货车同时从A 、B 两地相对开出。
客车每小时行驶50千米,货车的速度是客车的80%,相遇后客车继续行3.2小时到达B 地。
A 、B 两地相距多少千米?图35——1AB 货车客车如图35-1所示,要求A 、B 两地相距多少千米,先要求客、货车合行全程所需的时间。
客车3.2小时行了50×3.2=160(千米),货车行160千米所需的时间为:160÷(50×80%)=4(小时) 所以(50+50×80%)×4=360(千米) 答:A 、B 两地相距360千米。
练习1:1、甲、乙两车分别从A 、B 两地同时出发相向而行,相遇点距中点320米。
已知甲的速度是乙的速度的56,甲每分钟行800米。
求A 、B 两地的路程。
2、甲、乙两人分别从A 、B 两地同时出发相向而行,匀速前进。
如果每人按一定的速度前进,则4小时相遇;如果每人各自都比原计划每小时少走1千米,则5小时相遇。
那么A 、B 两地的距离是多少千米?3、甲、乙两人同时骑自行车从东、西两镇相向而行,甲、乙的速度比是3:4。
已知甲行了全程的13,离相遇地点还有20千米,相遇时甲比乙少行多少千米?【例题2】从甲地到乙地的路程分为上坡、平路、下坡三段,各段路程之比是1:2:3,某人走这三段路所用的时间之比是4:5:6。
已知他上坡时的速度为每小时2.5千米,路程全长为20千米。
此人从甲地走到乙地需多长时间?要求从甲地走到乙地需多长时间,先求上坡时用的时间。
上坡的路程为20×11+2+3=103(千米),上坡的时间为103÷2.5=43(小时),从甲地走到乙地所需的时间为:43÷44+5+6=5(小时)答:此人从甲地走到乙地需5小时。
行程问题技巧
行程问题技巧行程问题是研究速度、时间和路程三量之间关系的问题,这种题型是公务员考试题的重点考察内容。
行程问题常与分数、比例等知识结合在一起,综合性强,且运用形式多变,解答时应注意几点。
行程问题是研究速度、时间和路程三量之间关系的问题,这种题型是公务员考试题的重点考察内容。
行程问题常与分数、比例等知识结合在一起,综合性强,且运用形式多变,解答时应注意以下几点:1、尽可能采用作线段图的方法,正确反映数量之间变化关系,帮助分析思考。
2、行程问题常结合分数应用题,解答时要巧妙地假设单位“l”使问题简单化,有时还可以联系整数知识,把路程理解为若干份。
3、复杂行程问题经常运用到比例知识。
速度一定,时间和路程成正比;时间一定,速度和路程成正比;路程一定,速度和。
时间成反比4、碰到综合性问题可先把综合问题分解成几个单一问题,然后逐个解决。
例1、甲、乙两辆汽车同时分别从A、B两站相对开出。
第一次在离A站90千米处相遇。
相遇后两车继续以原速前进,到达目的地后又立刻返回。
第二次相遇在离A站50千米处。
求A、B两站之间的路程。
A、150千米B、160千米C、180千米D、200千米解析:甲、乙两辆汽车同时从A、B两站相对开出到第二次相遇共行了3个全程。
由于两车合行一个全程时,甲车行90千米。
在两车两次相遇的三个全程中,甲车共行了90×3=270(千米),这时离A站正好有50千米,加上50即为两个全程270+50=320(千米)。
所以A、B两站之间的路程是320÷2=160(千米)。
答案选择B练习1、两辆汽车同时从东、西两站相对开出。
第一次在离西站45千米的地方相遇之后,两车继续以原来的速度前进。
各自到站后都立即返回,又在距中点东侧15千米处相遇。
两站相距多少千米?A、80千米B、100千米C、120千米D、140千米例2、甲、乙两辆汽车分别从A、B两地同时相对开出。
甲每小时行42千米,乙每小时行54千米。
行程问题典型题库
第一讲行程问题走路、行车、一个物体的移动,总是要涉及到三个数量:距离走了多远,行驶多少千米,移动了多少米等等;速度在单位时间内例如1小时内行走或移动的距离;时间行走或移动所花时间.这三个数量之间的关系,可以用下面的公式来表示:距离=速度×时间很明显,只要知道其中两个数量,就马上可以求出第三个数量.从数学上说,这是一种最基本的数量关系,在小学的应用题中,这样的数量关系也是最常见的,例如总量=每个人的数量×人数.工作量=工作效率×时间.因此,我们从行程问题入手,掌握一些处理这种数量关系的思路、方法和技巧,就能解其他类似的问题.当然,行程问题有它独自的特点,在小学的应用题中,行程问题的内容最丰富多彩,饶有趣味.它不仅在小学,而且在中学数学、物理的学习中,也是一个重点内容.因此,我们非常希望大家能学好这一讲,特别是学会对一些问题的思考方法和处理技巧.这一讲,用5千米/小时表示速度是每小时5千米,用3米/秒表示速度是每秒3米一、追及与相遇有两个人同时在行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的距离,也就是要计算两人走的距离之差.如果设甲走得快,乙走得慢,在相同时间内,甲走的距离-乙走的距离=甲的速度×时间-乙的速度×时间=甲的速度-乙的速度×时间.通常,“追及问题”要考虑速度差.例1小轿车的速度比面包车速度每小时快6千米,小轿车和面包车同时从学校开出,沿着同一路线行驶,小轿车比面包车早10分钟到达城门,当面包车到达城门时,小轿车已离城门9千米,问学校到城门的距离是多少千米解:先计算,从学校开出,到面包车到达城门用了多少时间.此时,小轿车比面包车多走了9千米,而小轿车与面包车的速度差是6千米/小时,因此所用时间=9÷6=小时.小轿车比面包车早10分钟到达城门,面包车到达时,小轿车离城门9千米,说明小轿车的速度是面包车速度是54-6=48千米/小时.城门离学校的距离是48×=72千米.答:学校到城门的距离是72千米.例2小张从家到公园,原打算每分种走50米.为了提早10分钟到,他把速度加快,每分钟走75米.问家到公园多远解一:可以作为“追及问题”处理.假设另有一人,比小张早10分钟出发.考虑小张以75米/分钟速度去追赶,追上所需时间是50×10÷75-50=20分钟·因此,小张走的距离是75×20=1500米.答:从家到公园的距离是1500米.还有一种不少人采用的方法.家到公园的距离是一种解法好不好,首先是“易于思考”,其次是“计算方便”.那么你更喜欢哪一种解法呢对不同的解法进行比较,能逐渐形成符合你思维习惯的解题思路.例3一辆自行车在前面以固定的速度行进,有一辆汽车要去追赶.如果速度是30千米/小时,要1小时才能追上;如果速度是35千米/小时,要40分钟才能追上.问自行车的速度是多少解一:自行车1小时走了30×1-已超前距离,自行车40分钟走了自行车多走20分钟,走了因此,自行车的速度是答:自行车速度是20千米/小时.解二:因为追上所需时间=追上距离÷速度差1小时与40分钟是3∶2.所以两者的速度差之比是2∶3.请看下面示意图:马上可看出前一速度差是15.自行车速度是35-15=20千米/小时.解二的想法与第二讲中年龄问题思路完全类同.这一解法的好处是,想清楚后,非常便于心算.例4上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分解:画一张简单的示意图:图上可以看出,从爸爸第一次追上到第二次追上,小明走了8-4=4千米.而爸爸骑的距离是4+8=12千米.这就知道,爸爸骑摩托车的速度是小明骑自行车速度的12÷4=3倍.按照这个倍数计算,小明骑8千米,爸爸可以骑行8×3=24千米.但事实上,爸爸少用了8分钟,骑行了4+12=16千米.少骑行24-16=8千米.摩托车的速度是1千米/分,爸爸骑行16千米需要16分钟.8+8+16=32.答:这时是8点32分.下面讲“相遇问题”.小王从甲地到乙地,小张从乙地到甲地,两人在途中相遇,实质上是小王和小张一起走了甲、乙之间这段距离.如果两人同时出发,那么甲走的距离+乙走的距离=甲的速度×时间+乙的速度×时间=甲的速度+乙的速度×时间.“相遇问题”,常常要考虑两人的速度和.例5小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟.他们同时出发,几分钟后两人相遇解:走同样长的距离,小张花费的时间是小王花费时间的36÷12=3倍,因此自行车的速度是步行速度的3倍,也可以说,在同一时间内,小王骑车走的距离是小张步行走的距离的3倍.如果把甲地乙地之间的距离分成相等的4段,小王走了3段,小张走了1段,小张花费的时间是36÷3+1=9分钟.答:两人在9分钟后相遇.例6小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4千米.两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离.解:画一张示意图离中点1千米的地方是A点,从图上可以看出,小张走了两地距离的一半多1千米,小王走了两地距离的一半少1千米.从出发到相遇,小张比小王多走了2千米小张比小王每小时多走5-4千米,从出发到相遇所用的时间是2÷5-4=2小时.因此,甲、乙两地的距离是5+4×2=18千米.本题表面的现象是“相遇”,实质上却要考虑“小张比小王多走多少”岂不是有“追及”的特点吗对小学的应用题,不要简单地说这是什么问题.重要的是抓住题目的本质,究竟考虑速度差,还是考虑速度和,要针对题目中的条件好好想一想.千万不要“两人面对面”就是“相遇”,“两人一前一后”就是“追及”.请再看一个例子.例7甲、乙两车分别从A,B两地同时出发,相向而行,6小时后相遇于C点.如果甲车速度不变,乙车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点12千米;如果乙车速度不变,甲车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点16千米.求A,B两地距离.解:先画一张行程示意图如下设乙加速后与甲相遇于D点,甲加速后与乙相遇于E点.同时出发后的相遇时间,是由速度和决定的.不论甲加速,还是乙加速,它们的速度和比原来都增加5千米,因此,不论在D点相遇,还是在E点相遇,所用时间是一样的,这是解决本题的关键.下面的考虑重点转向速度差.在同样的时间内,甲如果加速,就到E点,而不加速,只能到D点.这两点距离是12+16=28千米,加速与不加速所形成的速度差是5千米/小时.因此,在D点或E点相遇所用时间是28÷5=小时.比C点相遇少用=小时.甲到达D,和到达C点速度是一样的,少用小时,少走12千米,因此甲的速度是12÷=30千米/小时.同样道理,乙的速度是16÷=40千米/小时.A到B距离是30+40×6=420千米.答:A,B两地距离是420千米.很明显,例7不能简单地说成是“相遇问题”.例8如图,从A到B是1千米下坡路,从B到C是3千米平路,从C到D是2.5千米上坡路.小张和小王步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时.问:1小张和小王分别从A,D同时出发,相向而行,问多少时间后他们相遇2相遇后,两人继续向前走,当某一个人达到终点时,另一人离终点还有多少千米解:1小张从A到B需要1÷6×60=10分钟;小王从D到C也是下坡,需要÷6×60=25分钟;当小王到达C点时,小张已在平路上走了25-10=15分钟,走了因此在B与C之间平路上留下3-1=2千米由小张和小王共同相向而行,直到相遇,所需时间是2÷4+4×60=15分钟.从出发到相遇的时间是25+15=40分钟.2相遇后,小王再走30分钟平路,到达B点,从B点到A点需要走1÷2×60=30分钟,即他再走60分钟到达终点.小张走15分钟平路到达D点,45分钟可走小张离终点还有千米.答:40分钟后小张和小王相遇.小王到达终点时,小张离终点还有1千米. 二、环形路上的行程问题人在环形路上行走,计算行程距离常常与环形路的周长有关.例9小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是180米/分.1小张和小王同时从同一地点出发,反向跑步,75秒后两人第一次相遇,小张的速度是多少米/分2小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王解:175秒分.两人相遇,也就是合起来跑了一个周长的行程.小张的速度是500÷=220米/分.2在环形的跑道上,小张要追上小王,就是小张比小王多跑一圈一个周长,因此需要的时间是500÷220-180=分.220×÷500=圈.答:1小张的速度是220米/分;2小张跑圈后才能追上小王.例10如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C点第一次相遇,C离A点80米;在D点第二次相遇,D点离B点6O米.求这个圆的周长.解:第一次相遇,两人合起来走了半个周长;第二次相遇,两个人合起来又走了一圈.从出发开始算,两个人合起来走了一周半.因此,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,那么从A到D的距离,应该是从A到C距离的3倍,即A到D是80×3=240米.240-60=180米.180×2=360米.答:这个圆的周长是360米.在一条路上往返行走,与环行路上行走,解题思考时极为类似,因此也归入这一节.例11甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走到达另一村后就马上返回.在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少解:画示意图如下:如图,第一次相遇两人共同走了甲、乙两村间距离,第二次相遇两人已共同走了甲、乙两村间距离的3倍,因此所需时间是40×3÷60=2小时.从图上可以看出从出发至第二次相遇,小张已走了6×2-2=10千米.小王已走了6+2=8千米.因此,他们的速度分别是小张10÷2=5千米/小时,小王8÷2=4千米/小时.答:小张和小王的速度分别是5千米/小时和4千米/小时.例12小张与小王分别从甲、乙两村同时出发,在两村之间往返行走到达另一村后就马上返回,他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远相遇指迎面相遇解:画示意图如下.第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了×3=千米.从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是=千米.每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离3+2+2倍的行程.其中张走了×7=千米,=++千米.就知道第四次相遇处,离乙村千米.答:第四次相遇地点离乙村1千米.下面仍回到环行路上的问题.例13绕湖一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王以4千米/小时速度每走1小时后休息5分钟;小张以6千米/小时速度每走50分钟后休息10分钟.问:两人出发多少时间第一次相遇解:小张的速度是6千米/小时,50分钟走5千米我们可以把他们出发后时间与行程列出下表:12+15=27比24大,从表上可以看出,他们相遇在出发后2小时10分至3小时15分之间.出发后2小时10分小张已走了此时两人相距24-8+11=5千米.由于从此时到相遇已不会再休息,因此共同走完这5千米所需时间是5÷4+6=小时.2小时10分再加上半小时是2小时40分.答:他们相遇时是出发后2小时40分.例14一个圆周长90厘米,3个点把这个圆周分成三等分,3只爬虫A,B,C分别在这3个点上.它们同时出发,按顺时针方向沿着圆周爬行.A的速度是10厘米/秒,B的速度是5厘米/秒,C的速度是3厘米/秒,3只爬虫出发后多少时间第一次到达同一位置解:先考虑B与C这两只爬虫,什么时候能到达同一位置.开始时,它们相差30厘米,每秒钟B能追上C5-3厘米0.30÷5-3=15秒.因此15秒后B与C到达同一位置.以后再要到达同一位置,B要追上C一圈,也就是追上90厘米,需要90÷5-3=45秒.B与C到达同一位置,出发后的秒数是15,,105,150,195,……再看看A与B什么时候到达同一位置.第一次是出发后30÷10-5=6秒,以后再要到达同一位置是A追上B一圈.需要90÷10-5=18秒,A与B到达同一位置,出发后的秒数是6,24,42,,78,96,…对照两行列出的秒数,就知道出发后60秒3只爬虫到达同一位置.答:3只爬虫出发后60秒第一次爬到同一位置.请思考,3只爬虫第二次到达同一位置是出发后多少秒例15图上正方形ABCD是一条环形公路.已知汽车在AB上的速度是90千米/小时,在BC上的速度是120千米/小时,在CD上的速度是60千米/小时,在DA上的速度是80千米/小时.从CD上一点P,同时反向各发出一辆汽车,它们将在AB中点相遇.如果从PC中点M,同时反向各发出一辆汽车,它们将在AB上一点N处相遇.求解:两车同时出发至相遇,两车行驶的时间一样多.题中有两个“相遇”,解题过程就是时间的计算.要计算方便,取什么作计算单位是很重要的.设汽车行驶CD所需时间是1.根据“走同样距离,时间与速度成反比”,可得出分数计算总不太方便,把这些所需时间都乘以24.这样,汽车行驶CD,BC,AB,AD 所需时间分别是24,12,16,18.从P点同时反向各发一辆车,它们在AB中点相遇.P→D→A与P→C→B所用时间相等.PC上所需时间-PD上所需时间=DA所需时间-CB所需时间=18-12=6.而PC上所需时间+PD上所需时间是CD上所需时间24.根据“和差”计算得PC上所需时间是24+6÷2=15,PD上所需时间是24-15=9.现在两辆汽车从M点同时出发反向而行,M→P→D→A→N与M→C→B→N所用时间相等.M是PC中点.P→D→A→N与C→B→N时间相等,就有BN上所需时间-AN上所需时间=P→D→A所需时间-CB所需时间=9+18-12=15.BN上所需时间+AN上所需时间=AB上所需时间=16.立即可求BN上所需时间是,AN所需时间是.从这一例子可以看出,对要计算的数作一些准备性处理,会使问题变得简单些.三、稍复杂的问题在这一节希望读者逐渐掌握以下两个解题技巧:1在行程中能设置一个解题需要的点;2灵活地运用比例.例16小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间解:画一张示意图:图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A之间这段距离,它等于这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是千米/小时.小张比小王多走这段距离,需要的时间是÷×60=130分钟.这也是从出发到张、李相遇时已花费的时间.小李的速度10.8千米/小时是小张速度5.4千米/小时的2倍.因此小李从A到甲地需要130÷2=65分钟.从乙地到甲地需要的时间是130+65=195分钟=3小时15分.答:小李从乙地到甲地需要3小时15分.上面的问题有3个人,既有“相遇”,又有“追及”,思考时要分几个层次,弄清相互间的关系,问题也就迎刃而解了.在图中设置一个B点,使我们的思考直观简明些.例17小玲和小华姐弟俩正要从公园门口沿马路向东去某地,而他们的家要从公园门口沿马路往西.小华问姐姐:“是先向西回家取了自行车,再骑车向东去,还是直接从公园门口步行向东去快”姐姐算了一下说:“如果骑车与步行的速度比是4∶1,那么从公园门口到目的地的距离超过2千米时,回家取车才合算.”请推算一下,从公园到他们家的距离是多少米解:先画一张示意图设A是离公园2千米处,设置一个B点,公园离B与公园离家一样远.如果从公园往西走到家,那么用同样多的时间,就能往东走到B点.现在问题就转变成:骑车从家开始,步行从B点开始,骑车追步行,能在A点或更远处追上步行.具体计算如下:不妨设B到A的距离为1个单位,因为骑车速度是步行速度的4倍,所以从家到A的距离是4个单位,从家到B的距离是3个单位.公园到B是个单位.从公园到A是1+=单位.每个单位是2000÷=800米.因此,从公园到家的距离是800×=1200米.答:从公园门口到他们家的距离是1200米.这一例子中,取计算单位给计算带来方便,是值得读者仿照采用的.请再看一例.例18快车和慢车分别从A,B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A用了小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间解:画一张示意图:设C点是第一次相遇处.慢车从B到C用了5小时,从C到A用了=小时.我们把慢车半小时行程作为1个单位.B到C10个单位,C到A15个单位.慢车每小时走2个单位,快车每小时走3个单位.有了上面“取单位”准备后,下面很易计算了.慢车从C到A,再加停留半小时,共8小时.此时快车在何处呢去掉它在B停留1小时.快车行驶7小时,共行驶3×7=21单位.从B到C再往前一个单位到D点.离A点15-1=14单位.现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间是14÷2+3=小时.慢车从C到A返回行驶至与快车相遇共用了++=小时.答:从第一相遇到再相遇共需10小时48分.例19一只小船从A地到B地往返一次共用2小时.回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米.求A至B两地距离.解:1小时是行驶全程的一半时间,因为去时逆水,小船到达不了B地.我们在B之前设置一个C点,是小船逆水行驶1小时到达处.如下图第二小时比第一小时多行驶的行程,恰好是C至B距离的2倍,它等于6千米,就知C至B是3千米.为了示意小船顺水速度比逆水速度每小时多行驶8千米,在图中再设置D点,D 至C是8千米.也就是D至A顺水行驶时间是1小时.现在就一目了然了.D至B是5千米顺水行驶,与C至B逆水行驶3千米时间一样多.因此顺水速度∶逆水速度=5∶3.由于两者速度差是8千米.立即可得出A至B距离是12+3=15千米.答:A至B两地距离是15千米.例20从甲市到乙市有一条公路,它分成三段.在第一段上,汽车速度是每小时40千米,在第二段上,汽车速度是每小时90千米,在第三段上,汽车速度是每小时50千米.已知第一段公路的长恰好是第三段的2倍.现有两辆汽车分别从甲、乙两市同时出发,相向而行.1小时20分后,在第二段的解一:画出如下示意图:当从乙城出发的汽车走完第三段到C时,从甲城出发的汽车走完第一段的到达D处,这样,D把第一段分成两部分时20分相当于因此就知道,汽车在第一段需要第二段需要30×3=90分钟;甲、乙两市距离是答:甲、乙两市相距185千米.把每辆车从出发到相遇所走的行程都分成三段,而两车逐段所用时间都相应地一样.这样通过“所用时间”使各段之间建立了换算关系.这是一种典型的方法.例8、例13也是类似思路,仅仅是问题简单些.还可以用“比例分配”方法求出各段所用时间.第一段所用时间∶第三段所用时间=5∶2.时间一样.第一段所用时间∶第二段所用时间=5∶9.因此,三段路程所用时间的比是5∶9∶2.汽车走完全程所用时间是80×2=160分种.例21一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达.那么甲、乙两地相距多少千米解:设原速度是1.%后,所用时间缩短到原时间的这是具体地反映:距离固定,时间与速度成反比.用原速行驶需要同样道理,车速提高25%,所用时间缩短到原来的如果一开始就加速25%,可少时间现在只少了40分钟,72-40=32分钟.说明有一段路程未加速而没有少这个32分钟,它应是这段路程所用时间真巧,320-160=160分钟,原速的行程与加速的行程所用时间一样.因此全程长答:甲、乙两地相距270千米.十分有意思,按原速行驶120千米,这一条件只在最后用上.事实上,其他条件已完全确定了“原速”与“加速”两段行程的时间的比例关系,当然也确定了距离的比例关系.全程长还可以用下面比例式求出,设全程长为x,就有x∶120=72∶32.。
五年级数学中常见的应用题类型有哪些
五年级数学中常见的应用题类型有哪些在五年级的数学学习中,应用题是一个重要的组成部分。
通过解决应用题,同学们能够将所学的数学知识运用到实际生活中,提高解决问题的能力。
下面我们就来一起看看五年级数学中常见的应用题类型。
一、行程问题行程问题是五年级数学中经常出现的一类应用题。
它主要涉及速度、时间和路程之间的关系。
比如:小明骑自行车的速度是每小时15 千米,他骑了 3 个小时,那么他一共骑了多远?或者一辆汽车以每小时 60 千米的速度行驶,从 A 地到 B 地需要 5 小时,A 地到 B 地的距离是多少?在解决这类问题时,我们要记住一个重要的公式:路程=速度 ×时间。
如果已知其中两个量,就可以通过这个公式求出第三个量。
二、工程问题工程问题也是常见的应用题类型之一。
它通常与工作效率、工作时间和工作总量有关。
例如:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成,那么他们合作需要多少天完成?解决工程问题的关键是要理解工作效率的概念。
工作效率就是单位时间内完成的工作量。
在上述例子中,甲的工作效率就是 1/10(每天完成工程的 1/10),乙的工作效率就是 1/15。
然后可以通过“工作总量÷工作效率之和=合作时间”这个公式来解决问题。
三、利润问题在生活中,我们经常会遇到与买卖相关的数学问题,这就是利润问题。
比如:一件商品进价为 80 元,售价为 120 元,那么利润是多少?利润率是多少?利润=售价进价,利润率=(利润 ÷进价)× 100% 。
通过这些公式,我们就能轻松解决这类问题。
四、平均数问题平均数问题在考试中也经常出现。
比如:小明语文考了 90 分,数学考了 85 分,英语考了 95 分,那么他三科的平均分是多少?平均数=总分数 ÷科目数量。
在这个例子中,总分数就是 90 +85 + 95 = 270 分,科目数量是 3,所以平均分为 270 ÷ 3 = 90 分。
六年级下册数学-小升初行程问题应用题及答案6-人教版
-小升初行程问题应用题及答案-人教版一、解答题(题型注释)烧越灼,烧得大圣一身烟火,魂飞魄散,一时间不得起身.不得已,八戒借了悟空的筋斗云,便要去南方请菩萨搭救,红孩儿得知八戒南去,料他必向观音求助,便要赶在他前面,化身为「假观音菩萨」欺骗他.筋斗云时速200公里,红孩儿的火云时速250公里,八戒出发后15分钟红孩儿便出发追赶,问红孩儿要飞多久才能拦截到八戒?2.小红和小明从甲、乙两地同时相向而行,已知相遇时,小红比小明多走16千米,小红每小时比小明快四分之一,甲、乙两地相距多少千米?3.从甲地到乙地,上坡路占718,平坦路占49,下坡路占16,一辆汽车往返一趟,下坡路共走了20千米.甲乙两地之间的路程的多少千米?4.姐弟俩同时从学校步行回家,姐姐每分步行80米,弟弟每分步行65米,多少分钟后姐弟俩相距60米?5.一辆汽车从甲地开往乙地,每小时行60千米,3小时到达,若要2小时到达,每小时需行多少千米?6.船往返于相距180千米的两港之间,顺水而下需用10小时,逆水而上需用15小时。
由于暴雨后水速增加,该船顺水而行只需9小时,那么逆水而行需要几小时?7.填表。
8.一辆汽车行驶100千米需要2.5小时,照这样计算,行驶10千米需要几个小时?行驶1000千米呢?9.李老师开车从南京出发去上海开会,全长288千米,开了一段时间后还有114千米,李老师平均每小时行58千米,他已经开了几小时?10.王师傅从家里到工厂,如果每分钟行800米,则比预计时间早到4分钟,如果每分钟行700米,则比预计时间迟到2分钟。
王师傅从家到工厂全长多少米?11.一辆客车和一辆货车同时从甲市开往乙市,货车每小时行65千米,客车每小时行78千米,4小时后两车相距多少千米?12.甲、乙两人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。
两人几小时后相遇?13.张老师开车从宁都去赣州,去的时候每小时行56千米,用了3小时.原路返回时用了2小时,返回时平均每小时行多少千米?14.长途客车每小时行63千米,从甲城到乙城用了15小时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 甲、乙两辆车同时分别从两个城市 相对开出,经过3小时,两车距离 中点18千米处相遇,这时甲车与乙 车所行的路程之比是2:3.求甲乙 两车的速度各是多少?
• 两艘轮船同时从A、B两港相对开
出,客船每小时行64千米,货船的
速度是客船速度的
7 ,两艘轮船在 8
离A、B两港中点12千米处相遇,A、
B两港间的距离是多少
• 两地相距196千米,甲、乙两辆汽
7 车同时从两地相对开出, 3
小时相
遇,甲、乙的速度比是4:3,甲、
乙两车每小时各行多少千米?
• 甲、乙两地相距475千米,客车和 货车同时从两地相对开出,已知货 车每小时行45千米,货车与客车的 速度比是9:10,经过几小时两车 才能相遇?
• 一辆车从甲地到乙地,第一小时行 全程的20%,第二小时比第一小时 多行30千米,离乙地还有150千米, 甲乙两地相距多少千米?
• 甲、乙两车分别同时从A、B两成 相对开出,甲车从A城开往B城,每小 时行全程的10%,乙车从B城开往A 城,每小时行8千米,当甲车距A城 260千米时,乙车距B地320千米。 A、B两成之间的路程有多少千米?
• 甲车从A地开往B地,乙车同时从B 地开往A地,当甲车行到全程的 时, 乙车已行路程和剩下路程的比是3: 2,这时两车相距120千米。A、B 两地相距多少千米?
• 甲、乙两车同时从两地相对开出, 经过3小时相遇,相遇时甲车行了 4 全程的 ,甲车每小时比乙车少行 9 10千米。两地相距多少千米?
• 客车和货车同时从甲乙两地相对而
行,6小时后客车距乙地的路程是
1 全程的 8 ,货车超过中点54千米,
已知货车每小时比客车慢15千米。
求甲乙两地之间的距离。
分数应用题——行程问题
行程问题基本公式:
速度 × 时间 = 路程; 路程 ÷ 时间 = 速度和 × 相遇时间 = 路程和 • 路程和 ÷ 速度和 = 相遇时间 • 路程和 ÷ 相遇时间 = 速度和
追及问题的关系式
速度差 × 追及时间 = 路程差 路程差 ÷ 追及时间 = 速度差 路程差 ÷ 速度差 = 追及时间