高等代数 矩阵练习题参考答案

合集下载

北京大学高等代数基础习题答案八

北京大学高等代数基础习题答案八

第八章 λ-矩阵[自测题解答]§1 λ-矩阵一、填空1 、⎪⎪⎭⎫⎝⎛-------131313322λλλλλλλ;2、λλλλλλλλλλ21,211,122--, 2 ;3、λ. 二、解答题1.0112≠=+λλλλ, 所以矩阵⎪⎪⎭⎫ ⎝⎛+11λλλ的秩为2. 0100121232≠--=----λλλλλλ,所以矩阵⎪⎪⎪⎭⎫ ⎝⎛-+--222211λλλλλλλλλ的秩为3.2.因为141212--=--λλλλλ,所以⎪⎪⎭⎫ ⎝⎛--121λλλ不可逆. 110012121-=-----λλλλ,所以矩阵⎪⎪⎪⎭⎫⎝⎛-----=10012121)(λλλλλA 可逆. 3. 答:设)(λA 为n 级λ-矩阵,)(λA 可逆时一定满秩,因为这是)(λA 的行列式为非零常数,为非零多项式;满秩时不一定可逆,因为满秩只说明行列式不是零多项式,但不一定是零次多项式(非零常数).4.证明 因为A E -λ是一个n 次多项式,不是零次多项式.所以A E -λ不可逆.§2 λ-矩阵在初等变换下的标准形一、问答题1. 数字矩阵的初等变换是λ-矩阵的初等变换,但λ-矩阵的初等变换不一定是数字矩阵的初等变换. 2.初等λ-矩阵都是可逆的.3. 可逆的λ-矩阵标准型都是单位矩阵,因此等价,反之如果两个λ-矩阵等价,且其中一个可逆,那么另一个一定可逆.4. 一致.二、解答题1.(),(),()A D H λλλ是标准形,而2100()010001B λλλ⎛⎫ ⎪≅+ ⎪⎪-⎝⎭,100()00000C λλ⎛⎫ ⎪= ⎪ ⎪⎝⎭,20()00000G λλλ⎛⎫⎪≅ ⎪ ⎪⎝⎭.2.10010*******()0000000100010100100B λλλλλλλλ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=≅≅≅ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭ §3 不变因子解答一、填空1.都是1,都是1;2.1,λ,2λλ-;3. 1,λ,2λλ+;4.,r r ;5.无穷 二、解答题解⎪⎪⎭⎫ ⎝⎛++=1002)(λλλA 的行列式因子为1,(1)(2)λλ++,故不变因子为1,(1)(2)λλ++,所以标准形为100(1)(2)λλ⎛⎫⎪++⎝⎭;⎪⎪⎪⎪⎪⎭⎫⎝⎛=λλλλλ111)(B 的行列式因子44()D λλ=,而有一个三级子式等于1,故行列式因子321()1,()()1D D D λλλ===,所以不变因子为41,1,1,λ,所以标准形是4111λ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭ ⎪⎪⎪⎭⎫ ⎝⎛-+++=10030011)(λλλλλλC 的行列式因子为1,1,(1)(1)(3)λλλ-+-,故不变因子为1,1,(1)(1)(3)λλλ-+-,所以标准形为10001000(1)(1)(3)λλλ⎛⎫⎪ ⎪ ⎪-++⎝⎭.证明:因为)(1λ-n D 是1-n 次的,()n D λ是n 次的故不变因子.设A 为n 级数字矩阵,且A E -λ的第1-n 个行列式因子证明A E -λ的不变因子()n d λ是一次的,但12()()()()n n D d d d λλλλ=L ,并且1()|()i i d d λλ+,从而12(),(),,()n d d d λλλL 相等.3.证明 容易计算()()A f λλ=,而其中一个1n -级子式为101(1)11nλλλ--=---OO ,故行列式因子为1,1,,1()f ()n λL 个,,从而不变因子为)(,1,,1,1λf Λ.§4 矩阵相似的条件一、 填空1.n 个;2.相似;3.正确. 二判断题 1.(F );2.(T ). 二、 解答题1.证明 容易知道,,A B C 的不变因子为n1,1,,1-a)λL ,(,故,,A B C 相似.2.解 容易计算A 的不变因子为11,1,,1,()ni i a λ=-∏L ;B 的不变因子为1,1,,1,()n a λ-L ;C 的不变因子为E C λ-的不变因子为4321,1,1,2345λλλλ++++.3.证明:因为多项式的最大公因式不因数域的扩大而改变,所以B A ,在数域,K P 上的行列式因子相同,进而不变因子相同.故B A ,在P 上相似当且仅当在K 上相似.§5初等因子一、填空题1.21,1,1,(1)(1)λλλ-+;2.22,λλ.二、解答题1.⎪⎪⎪⎪⎭⎫ ⎝⎛--2121的初等因子为(1),(2),(1),(2);λλλλ--++不变因子为1,1,1,(1)(2)(1)(2);λλλλ--++.⎪⎪⎭⎫ ⎝⎛200120012的不变因子为31,1,(2)λ-,初等因子为3(2)λ-.容易计算⎪⎪⎭⎫ ⎝⎛---422633211的特征多项式为2(28)λλλ-+,故行列式因子23()(28)D λλλλ=-+,由于存在E A λ-的互素的二级子式1112,3324λλλ--+-,故二级行列式因子2()1D λ=,从而⎪⎪⎭⎫ ⎝⎛---422633211的不变因子为21,1,(28)λλλ-+,初等因子为,λλλ-+.3.解因为21110(1)010010010011(λλλλλλλ⎡⎤--⎛⎫⎢⎥-⎪⎢⎥- ⎪≅⎢⎥ ⎪-⎢⎥⎪⎢⎥+⎝⎭⎢⎥⎣⎦,所以该矩阵的初等因子为211(1),(),()22λλλ-+--+.4.证明:因为E A λ-的初等因子()n D λ等于A E -λ,而()n D λ等于全部不变因子之积,而全部不变因子之积 等于全部初等因子之积.5.证明:设1()()()m h o A h o o λλλ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭O , 1212()()()(),1,2,,,()ij i i ir kk k k i r j h p p p j m p λλλλλ==L L 为数域P 上的不可约因式.首先考虑1()p λ,若在λ-矩阵()A λ矩阵中相邻的1(),()i i h h λλ+中因式1()p λ的次数11,1i i k k +>,由北大教材的引理知道反复利用上述方法则λ-矩阵()A λ可化为等价的λ-矩阵其中112110m k k k '''≤≤≤L ,且是11211,,,m k k k L 的一个排列.然后用上述方法考虑()(2,,)i p i n λ=L ,则λ-矩阵()A λ可化为等价的λ-矩阵其中()ji k i p λ'是某一个()jik i p λ.并且当0ij k >时,他们是全部的初等因子.§5若当标准形的理论推导一、填空、1.2; 2.1000010001100000⎛⎫⎪- ⎪ ⎪-⎪⎝⎭; 3.2(1),1λλ--;4. 000000000000,000,100000010010⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;5.100100100100010,110,110,110011001011011-⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭6. 000100000100100,000,010,110010010011011⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 二、解答题1.解 容易计算矩阵1234501234001230001200001A ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭一、二、三阶行列式因子为1,四阶行列式因子为1,而五阶行列式因子是5(1)λ-,所以其初等因子为4(1)λ-,故若当标准形为1111111⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭ 2.证明 由于A 的约当标准形为12k J J J ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭O ,所以A 的最小多项式就是约当块12,,,k J J J L 的最小多项式的最小公倍式,而约当块的最小多项式是()(1,2,,)i d i k λ=L ,从而矩阵A 的最小多项式为()k d λ.3.因为A 的约当标准形是12k J J J J ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭O,01010iJ ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭O ,从而存在可逆的矩阵P ,使11A E P JP E J E -+=+=+=.4.证明 由于A 的特征值是m 此单位根,因此其约当标准形为12k J J J J ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭O,其中11i ii i J εεε⎛⎫⎪⎪= ⎪ ⎪⎝⎭O,则1J P AP -=,于是11()m m m J P AP P A P E --===,从而(1,2,,)mi J E i s ==L ,因此i J 都是1级的,即J 为对角矩阵.测试题[解答]1.解 (1)由于E A λ-是A 的特征多项式,所以不为0,故E A λ-的秩等于3.(2)行列式因子为2123()1,()1,()(1)D D D λλλλλ===-,不变因子为2123()1,()1,()(1)d d d λλλλλ===-,初等因子为2,(1)λλ-,E A λ-的标准形为211(1)λλ⎛⎫⎪⎪⎪-⎝⎭ (3)约当标准形为000010011⎛⎫⎪ ⎪ ⎪⎝⎭. 2.证明 由于最小多项式是最后一个不变因子,而特征多项式是所有不变因子的乘积,在利用不变因子的关系,直接得到()|()nf g λλ.3.解 因为矩阵A 的秩是1因此其若当标准型为1000000000000000⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭L L L L L L L L L,因此A 的不变因子与10000000000000λλλ-⎛⎫⎪ ⎪ ⎪⎪ ⎪⎪⎝⎭L L L L L L L L L的不变因此完全相同,显然其不变因子为1,,,,(1)λλλλ-L ,故21n n D λ--=.E A λ-的标准形为1(1)λλλλ⎛⎫⎪ ⎪ ⎪ ⎪⎪⎪-⎝⎭O4.证明:设A 的约当标准形为12k J J J J ⎛⎫⎪⎪= ⎪ ⎪⎝⎭O,其中11i i i i J λλλ⎛⎫⎪ ⎪ ⎪=⎪⎪ ⎪⎝⎭O O O O ,且1J P AP -=,于是11()m m m J P AP P A P --==,即m mA J :.但是21k m mm m J J J J ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭O,而i m i mi m i m J λλλ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭O ,即mJ 的特征值就是J 的特征值的m 次幂.但相似方阵具有相同的特征值,也即A 的特征值的m 次幂.5.证明 ,E A E B λλ--等价⇔,A B 相似⇔存在可逆矩阵P ,使1B P AP -=⇔,A PQ B QP ==数域上的同级方阵,求证的充分必要条件是,A B 有分解式:,,A PQ B QP ==其中1Q P A -=.。

(完整word)高等代数第四章矩阵练习题参考答案

(完整word)高等代数第四章矩阵练习题参考答案

第四章 矩阵习题参考答案一、 判断题1. 对于任意n 阶矩阵A ,B ,有A B A B +=+. 错.2. 如果20,A =则0A =. 错.如211,0,011A A A ⎛⎫==≠⎪--⎝⎭但.3. 如果2A A E +=,则A 为可逆矩阵.正确.2()A A E A E A E +=⇒+=,因此A 可逆,且1A A E -=+.4. 设,A B 都是n 阶非零矩阵,且0AB =,则,A B 的秩一个等于n ,一个小于n . 错.由0AB =可得()()r A r B n +≤.若一个秩等于n ,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾.只可能两个秩都小于n . 5.C B A ,,为n 阶方阵,若,AC AB = 则.C B = 错.如112132,,112132A B C ⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭,有,AC AB =但B C ≠.6.A 为n m ⨯矩阵,若,)(s A r =则存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使.000⎪⎪⎭⎫ ⎝⎛=sI PAQ 正确.右边为矩阵A 的等价标准形,矩阵A 等价于其标准形. 7.n 阶矩阵A 可逆,则*A 也可逆.正确.由A 可逆可得||0A ≠,又**||AA A A A E ==.因此*A 也可逆,且11(*)||A A A -=.8.设B A ,为n 阶可逆矩阵,则.**)*(A B AB = 正确.*()()||||||.AB AB AB E A B E ==又()(**)(*)*||*||*||||AB B A A BB A A B EA B AA A B E ====.因此()()*()(**)AB AB AB B A =.由B A ,为n 阶可逆矩阵可得AB 可逆,两边同时左乘式AB 的逆可得.**)*(A B AB = 二、 选择题1.设A 是n 阶对称矩阵,B 是n 阶反对称矩阵()TB B =-,则下列矩阵中为反对称矩阵的是(B ).(A) AB BA - (B) AB BA + (C) 2()AB (D) BAB(A)(D)为对称矩阵,(B )为反对称矩阵,(C )当,A B 可交换时为对称矩阵. 2. 设A 是任意一个n 阶矩阵,那么( A )是对称矩阵.(A) TA A (B) TA A - (C) 2A (D) TA A -3.以下结论不正确的是( C ).(A) 如果A 是上三角矩阵,则2A 也是上三角矩阵; (B) 如果A 是对称矩阵,则 2A 也是对称矩阵; (C) 如果A 是反对称矩阵,则2A 也是反对称矩阵; (D) 如果A 是对角阵,则2A 也是对角阵.4.A 是m k ⨯矩阵, B 是k t ⨯矩阵, 若B 的第j 列元素全为零,则下列结论正确的是(B )(A ) AB 的第j 行元素全等于零; (B )AB 的第j 列元素全等于零; (C ) BA 的第j 行元素全等于零; (D ) BA 的第j 列元素全等于零;5.设,A B 为n 阶方阵,E 为n 阶单位阵,则以下命题中正确的是(D ) (A) 222()2A B A AB B +=++ (B) 22()()A B A B A B -=+-(C) 222()AB A B = (D) 22()()A E A E A E -=+-6.下列命题正确的是(B ).(A) 若AB AC =,则B C =(B) 若AB AC =,且0A ≠,则B C = (C) 若AB AC =,且0A ≠,则B C = (D) 若AB AC =,且0,0B C ≠≠,则B C = 7. A 是m n ⨯矩阵,B 是n m ⨯矩阵,则( B ). (A) 当m n >时,必有行列式0AB ≠; (B) 当m n >时,必有行列式0AB = (C) 当n m >时,必有行列式0AB ≠; (D) 当n m >时,必有行列式0AB =.AB 为m 阶方阵,当m n >时,(),(),r A n r B n ≤≤因此()r AB n m ≤<,所以0AB =.8.以下结论正确的是( C )(A) 如果矩阵A 的行列式0A =,则0A =; (B) 如果矩阵A 满足20A =,则0A =;(C) n 阶数量阵与任何一个n 阶矩阵都是可交换的; (D) 对任意方阵,A B ,有22()()A B A B A B -+=-9.设1234,,,αααα是非零的四维列向量,1234(,,,),*A A αααα=为A 的伴随矩阵,已知0Ax =的基础解系为(1,0,2,0)T ,则方程组*0A x =的基础解系为( C ).(A )123,,ααα. (B )122331,,αααααα+++.(C )234,,ααα. (D )12233441,,,αααααααα++++.由0Ax =的基础解系为(1,0,2,0)T可得12341310(,,,)0,2020αααααα⎛⎫ ⎪ ⎪=+= ⎪ ⎪⎝⎭.因此(A ),(B )中向量组均为线性相关的,而(D )显然为线性相关的,因此答案为(C ).由12341234**(,,,)(*,*,*,*)A A A A A A A O αααααααα===可得12,,αα34,αα均为*0A x =的解.10.设A 是n 阶矩阵,A 适合下列条件( C )时,n I A -必是可逆矩阵(A) nA A = (B) A 是可逆矩阵 (C) 0nA = (B) A 主对角线上的元素全为零11.n 阶矩阵A 是可逆矩阵的充分必要条件是( D )(A) 1A = (B) 0A = (C) TA A = (D) 0A ≠ 12.,,ABC 均是n 阶矩阵,下列命题正确的是( A )(A) 若A 是可逆矩阵,则从AB AC =可推出BA CA = (B) 若A 是可逆矩阵,则必有AB BA = (C) 若0A ≠,则从AB AC =可推出B C = (D) 若B C ≠,则必有AB AC ≠13.,,A B C 均是n 阶矩阵,E 为n 阶单位矩阵,若ABC E =,则有(C ) (A) ACB E = (B )BAC E = (C )BCA E = (D) CBA E = 14.A 是n 阶方阵,*A 是其伴随矩阵,则下列结论错误的是( D )(A) 若A 是可逆矩阵,则*A 也是可逆矩阵; (B) 若A 是不可逆矩阵,则*A 也是不可逆矩阵;(C) 若*0A ≠,则A 是可逆矩阵; (D)*.AA A =*.nAA A E A ==15.设A 是5阶方阵,且0A ≠,则*A =( D )(A) A (B) 2A (C) 3A (D) 4A 16.设*A 是()ij n n A a ⨯=的伴随阵,则*A A 中位于(,)i j 的元素为(B )(A)1njkki k aA =∑ (B)1nkjki k aA =∑ (C) 1n jk ik k a A =∑ (D) 1nki kj k a A =∑应为A 的第i 列元素的代数余子式与A 的第j 列元素对应乘积和.17.设1111n n nn a a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 1111n n nn A A B A A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,其中ij A 是ij a 的代数余子式,则(C ) (A) A 是B 的伴随 (B)B 是A 的伴随 (C)B 是A '的伴随 (D)以上结论都不对18.设,A B 为方阵,分块对角阵00A C B ⎡⎤=⎢⎥⎣⎦,则*C = ( C ) (A) **00A C B ⎡⎤=⎢⎥⎣⎦ (B)**00A A CB B ⎡⎤=⎢⎥⎣⎦(C) **00B A C A B ⎡⎤=⎢⎥⎣⎦ (D) **0A B A C A B B ⎡⎤=⎢⎥⎣⎦利用*||CC C E =验证.19.已知46135,12246A B ⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦,下列运算可行的是( C ) (A) A B + (B)A B - (C)AB (D)AB BA -20.设,A B 是两个m n ⨯矩阵,C 是n 阶矩阵,那么( D )(A) ()C A B CA CB +=+ (B) ()TTTTA B C A C B C +=+ (C) ()TTTC A B C A C B +=+ (D) ()A B C AC BC +=+21.对任意一个n 阶矩阵A ,若n 阶矩阵B 能满足AB BA =,那么B 是一个( C )(A) 对称阵 (B)对角阵 (C)数量矩阵 (D)A 的逆矩阵 与任意一个n 阶矩阵均可交换的矩阵为数量矩阵.22.设A 是一个上三角阵,且0A =,那么A 的主对角线上的元素( C )(A) 全为零 (B )只有一个为零(C )至少有一个为零 (D )可能有零,也可能没有零23.设1320A ⎡⎤=⎢⎥⎣⎦,则1A -=( D ) (A) 1021136⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦ (B )1031136⎡⎤-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ (C )1031126⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦(D )1021136⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦24. 设111222333a b c A a b c a b c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,若111222333222a c b AP a c b a c b ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则P =( B ) (A) 100001020⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (B )100002010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (C )001020100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (D )200001010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦25.设(3)n n ≥阶矩阵1111a aa a a a A aa a aa a ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,若矩阵A 的秩为1,则a 必为(A )(A) 1 (B )-1 (C )11n - (D )11n -矩阵A 的任意两行成比例.26. 设,A B 为两个n 阶矩阵,现有四个命题: ①若,A B 为等价矩阵,则,A B 的行向量组等价;②若,A B 的行列式相等,即||||,A B =则,A B 为等价矩阵; ③若0Ax =与0Bx =均只有零解,则,A B 为等价矩阵; ④若,A B 为相似矩阵,则0Ax =与0Bx =解空间的维数相同. 以上命题中正确的是( D )(A) ①, ③. (B) ②, ④. (C) ②,③. (D)③,④.当AP P B 1-=时,,A B 为相似矩阵。

高等代数第四版习题答案

高等代数第四版习题答案

高等代数第四版习题答案【篇一:高等代数第四章矩阵练习题参考答案】xt>一、判断题1. 对于任意n阶矩阵a,b,有a?b?a?b.错.2. 如果a2?0,则a?0.错.如a11?2?,a?0,但a?0.1?1?23. 如果a?a?e,则a为可逆矩阵.正确.a?a2?e?a(e?a)?e,因此a可逆,且a?1?a?e.4. 设a,b都是n阶非零矩阵,且ab?0,则a,b的秩一个等于n,一个小于n. 错.由ab?0可得r(a)?r(b)?n.若一个秩等于n,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾.只可能两个秩都小于n.5.a,b,c为n阶方阵,若ab?ac, 则b?c.错.如a11??21??32?,b?,c,有ab?ac,但b?c.1?1?2?1?3?2?6.a为m?n矩阵,若r(a)?s,则存在m阶可逆矩阵p及n阶可逆矩阵q,使?ispaq0?0??. 0??正确.右边为矩阵a的等价标准形,矩阵a等价于其标准形.7.n阶矩阵a可逆,则a*也可逆.*?a*a?|a|e正确.由a可逆可得|a|?0,又aa.因此a*也可逆,且(a*)?1?1a. |a|8.设a,b为n阶可逆矩阵,则(ab)*?b*a*.正确.(ab)(ab)*?|ab|e?|a||b|e.又(ab)(b*a*)?a(bb*)a*?a|b|ea*?|b|aa*?|a||b|e.因此(ab)(ab)*?(ab)(b*a*).由a,b为n阶可逆矩阵可得ab可逆,两边同时左乘式ab的逆可得(ab)*?b*a*.二、选择题1.设a是n阶对称矩阵,b是n阶反对称矩阵(bt??b),则下列矩阵中为反对称矩阵的是(b ).(a) ab?ba (b) ab?ba(c) (ab)2 (d) bab(a)(d)为对称矩阵,(b)为反对称矩阵,(c)当a,b可交换时为对称矩阵.2. 设a是任意一个n阶矩阵,那么( a)是对称矩阵.(a) aa (b) a?a (c)a(d) a?a3.以下结论不正确的是( c ).(a) 如果a是上三角矩阵,则a也是上三角矩阵;(b) 如果a是对称矩阵,则 a也是对称矩阵;(c) 如果a是反对称矩阵,则a也是反对称矩阵;(d) 如果a是对角阵,则a也是对角阵.4.a是m?k矩阵, b是k?t矩阵, 若b的第j列元素全为零,则下列结论正确的是(b )(a) ab的第j行元素全等于零;(b)ab的第j列元素全等于零;(c) ba的第j行元素全等于零; (d) ba的第j列元素全等于零;2222tt2t5.设a,b为n阶方阵,e为n阶单位阵,则以下命题中正确的是(d )(a) (a?b)2?a2?2ab?b2(b) a2?b2?(a?b)(a?b)(c) (ab)2?a2b2 (d) a2?e2?(a?e)(a?e)6.下列命题正确的是(b ).(a) 若ab?ac,则b?c(b) 若ab?ac,且a?0,则b?c(c) 若ab?ac,且a?0,则b?c(d) 若ab?ac,且b?0,c?0,则b?c7. a是m?n矩阵,b是n?m矩阵,则( b).(a) 当m?n时,必有行列式ab?0;(b) 当m?n时,必有行列式ab?0(c) 当n?m时,必有行列式ab?0;(d) 当n?m时,必有行列式ab?0.ab为m阶方阵,当m?n时,r(a)?n,r(b)?n,因此r(ab)?n?m,所以ab?0.8.以下结论正确的是( c)(a) 如果矩阵a的行列式a?0,则a?0;(b) 如果矩阵a满足a?0,则a?0;(c) n阶数量阵与任何一个n阶矩阵都是可交换的;(d) 对任意方阵a,b,有(a?b)(a?b)?a?b9.设?1?,2?,3?,4是非零的四维列向量,a?(?1,?2,?3,?4),a*为a的伴随矩阵,222已知ax?0的基础解系为(1,0,2,0)t,则方程组a*x?0的基础解系为( c ).(a)?1,?2,?3.(b)?1??2,?2??3,?3??1.(c)?2,?3,?4.(d)?1??2,?2??3,?3??4,?4??1.10t由ax?0的基础解系为(1,0,2,0)可得(?1,?2,?3,?4)0,?1?2?3?0. ?2?0?因此(a),(b)中向量组均为线性相关的,而(d)显然为线性相关的,因此答案为(c).由a*a?a*(?1,?2,?3,?4)?(a*?1,a*?2,a*?3,a*?4)?o可得?1,?2,?3,?4均为a*x?0的解.10.设a是n阶矩阵,a适合下列条件( c )时,in?a必是可逆矩阵nn(a) a?a (b) a是可逆矩阵 (c) a?0(b) a主对角线上的元素全为零11.n阶矩阵a是可逆矩阵的充分必要条件是( d)(a) a?1 (b) a?0 (c) a?a (d)a?012.a,b,c均是n阶矩阵,下列命题正确的是( a)(a) 若a是可逆矩阵,则从ab?ac可推出ba?ca(b) 若a是可逆矩阵,则必有ab?ba(c) 若a?0,则从ab?ac可推出b?c(d) 若b?c,则必有ab?ac13.a,b,c均是n阶矩阵,e为n阶单位矩阵,若abc?e,则有(c ) (a) acb?e (b)bac?e(c)bca?e (d) cba?e14.a是n阶方阵,a是其伴随矩阵,则下列结论错误的是( d )(a) 若a是可逆矩阵,则a也是可逆矩阵;(b) 若a是不可逆矩阵,则a也是不可逆矩阵;***t**(c) 若a?0,则a是可逆矩阵;(D)aa?a.aa*?ae?a.*15.设a是5阶方阵,且a?0,则a?(D)234n(a) a (b) a (c) a(d) a16.设a是a?(aij)n?n的伴随阵,则aa中位于(i,j)的元素为(B) (a) **?ak?1njkaki (b) ?ak?1nkjaki (c) ?ajkaik (d) ?akiakj k?1k?1nn应为a的第i列元素的代数余子式与a的第j列元素对应乘积和.a11a1na11a1n17.设a, b,其中aij是aij的代数余子式,则(c ) an1?ann???an1?ann??(a) a是b的伴随 (b)b是a的伴随(c)b是a?的伴随(d)以上结论都不对18.设a,b为方阵,分块对角阵ca0?*,则c? ( C ) ??0b?0? *?bb?0?? abb*??a*(a) c0?aa*0?(b)c??*?b??0?ba*(c)c0?aba*0?? (d) c??ab*??0利用cc*?|c|e验证.19.已知a46??135?,下列运算可行的是( c ) ,b1?2??246?(a) a?b (b)a?b (c)ab(d)ab?ba【篇二:高等代数第4章习题解】题4.11、计算(1)(2,0,3,1)?3(0,1,2,4)?1(1,0,1,5) 2(2)5(0,1,2)?(1,1,0)?(1,1,1) 215517(1,0,1,5)?(,?3,?,?) 2222解:(1)(2,0,3,1)?3(0,1,2,4)?(2)5(0,1,2)?(1,19,0)?(1,1,1)?(0,,9) 222、验证向量加法满足交换律、结合律。

高等代数(北大版)第8章习题参考答案

高等代数(北大版)第8章习题参考答案

第八章 λ—矩阵1. 化下列矩阵成标准形 1)⎪⎪⎭⎫⎝⎛+-λλλλλλ3522232)⎪⎪⎪⎭⎫ ⎝⎛-+--222211λλλλλλλλλ 3)⎪⎪⎪⎭⎫ ⎝⎛++22)1(000λλλλ 4)⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000)1(0000002222λλλλλλ 5)⎪⎪⎪⎭⎫⎝⎛---+-+--+-+--+1244323534321232322222λλλλλλλλλλλλλλ6)⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----++00221330010102602206341032λλλλλλλλλλλλλλ解 1)对-λ矩阵作初等变换,有A =)(λ ⎪⎪⎭⎫ ⎝⎛+-λλλλλλ352223→ ⎪⎪⎭⎫ ⎝⎛-+λλλλλλ322253→ ⎪⎪⎭⎫⎝⎛+λλλλλλ3-10-053232 → ⎪⎪⎭⎫⎝⎛--λλλλ3100023= B )(λ, B )(λ即为所求。

2)对-λ矩阵作初等变换,有A =)(λ ⎪⎪⎪⎭⎫⎝⎛-+--222211λλλλλλλλλ→ ⎪⎪⎪⎭⎫⎝⎛--222101λλλλλλ→ ⎪⎪⎪⎭⎫⎝⎛+--)1(000001λλλλ→ ⎪⎪⎪⎭⎫ ⎝⎛+λλλ20000001= B )(λ, B )(λ即为所求。

3)因为⎪⎪⎪⎭⎫⎝⎛++22)1(000λλλλ的行列式因子为 D 1 =1, D 2 =)1(+λλ, D 3 = 32)1(+λλ, 所以d 1 = 1, d 2 =12D D = )1(+λλ, d 3 = 23D D = 2)1(+λλ, 从而A =)(λ⎪⎪⎪⎭⎫⎝⎛++22)1(00000λλλλ→ ⎪⎪⎪⎭⎫ ⎝⎛+λλ+λλ2)1(000)1(0001= B )(λ,B )(λ即为所求。

4)因为⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000)1(0000002222λλλλλλ的行列式因子为 D 1 =1, D 2 =)1(-λλ, D 3 = 22)1(-λλ, D 4 = 44)1(-λλ,所以d1= 1,d2=12D D = )1(-λλ,d 3=23D D = )1(-λλ,d 4=34D D = 22)1(-λλ,从而A =)(λ⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000)1(0000002222λλλλλλ→ ⎪⎪⎪⎪⎪⎭ ⎝λλλλ-λλ221)-(00001)-(0000)1(0= B )(λ, B )(λ即为所求。

高等代数矩阵练习题参考答案

高等代数矩阵练习题参考答案

高等代数矩阵练习题参考答案The document was prepared on January 2, 2021第四章 矩阵习题参考答案一、 判断题1. 对于任意n 阶矩阵A ,B ,有A B A B +=+. 错.2. 如果20,A =则0A =.错.如211,0,011A A A ⎛⎫==≠ ⎪--⎝⎭但.3. 如果2A A E +=,则A 为可逆矩阵.正确.2()A A E A E A E +=⇒+=,因此A 可逆,且1A A E -=+.4. 设,A B 都是n 阶非零矩阵,且0AB =,则,A B 的秩一个等于n ,一个小于n . 错.由0AB =可得()()r A r B n +≤.若一个秩等于n ,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾.只可能两个秩都小于n . 5.C B A ,,为n 阶方阵,若,AC AB = 则.C B =错.如112132,,112132A B C ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭,有,AC AB =但B C ≠.6.A 为n m ⨯矩阵,若,)(s A r =则存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使.000⎪⎪⎭⎫ ⎝⎛=sI PAQ 正确.右边为矩阵A 的等价标准形,矩阵A 等价于其标准形. 7.n 阶矩阵A 可逆,则*A 也可逆.正确.由A 可逆可得||0A ≠,又**||AA A A A E ==.因此*A 也可逆,且11(*)||A A A -=. 8.设B A ,为n 阶可逆矩阵,则.**)*(A B AB = 正确.*()()||||||.AB AB AB E A B E ==又()(**)(*)*||*||*||||AB B A A BB A A B EA B AA A B E ====.因此()()*()(**)AB AB AB B A =.由B A ,为n 阶可逆矩阵可得AB 可逆,两边同时左乘式AB 的逆可得.**)*(A B AB = 二、 选择题1.设A 是n 阶对称矩阵,B 是n 阶反对称矩阵()T B B =-,则下列矩阵中为反对称矩阵的是(B ).(A) AB BA - (B) AB BA + (C) 2()AB (D) BAB(A)(D)为对称矩阵,(B )为反对称矩阵,(C )当,A B 可交换时为对称矩阵. 2. 设A 是任意一个n 阶矩阵,那么( A )是对称矩阵.(A) T A A (B) T A A - (C) 2A (D) T A A - 3.以下结论不正确的是( C ).(A) 如果A 是上三角矩阵,则2A 也是上三角矩阵; (B) 如果A 是对称矩阵,则 2A 也是对称矩阵; (C) 如果A 是反对称矩阵,则2A 也是反对称矩阵; (D) 如果A 是对角阵,则2A 也是对角阵.4.A 是m k ⨯矩阵, B 是k t ⨯矩阵, 若B 的第j 列元素全为零,则下列结论正确的是(B )(A ) AB 的第j 行元素全等于零; (B )AB 的第j 列元素全等于零; (C ) BA 的第j 行元素全等于零; (D ) BA 的第j 列元素全等于零; 5.设,A B 为n 阶方阵,E 为n 阶单位阵,则以下命题中正确的是(D ) (A) 222()2A B A AB B +=++ (B) 22()()A B A B A B -=+- (C) 222()AB A B = (D) 22()()A E A E A E -=+-6.下列命题正确的是(B ). (A) 若AB AC =,则B C = (B) 若AB AC =,且0A ≠,则B C = (C) 若AB AC =,且0A ≠,则B C = (D) 若AB AC =,且0,0B C ≠≠,则B C = 7. A 是m n ⨯矩阵,B 是n m ⨯矩阵,则( B ). (A) 当m n >时,必有行列式0AB ≠; (B) 当m n >时,必有行列式0AB = (C) 当n m >时,必有行列式0AB ≠; (D) 当n m >时,必有行列式0AB =.AB 为m 阶方阵,当m n >时,(),(),r A n r B n ≤≤因此()r AB n m ≤<,所以0AB =. 8.以下结论正确的是( C )(A) 如果矩阵A 的行列式0A =,则0A =; (B) 如果矩阵A 满足20A =,则0A =;(C) n 阶数量阵与任何一个n 阶矩阵都是可交换的; (D) 对任意方阵,A B ,有22()()A B A B A B -+=-9.设1234,,,αααα是非零的四维列向量,1234(,,,),*A A αααα=为A 的伴随矩阵,已知0Ax =的基础解系为(1,0,2,0)T ,则方程组*0A x =的基础解系为( C ).(A )123,,ααα. (B )122331,,αααααα+++. (C )234,,ααα. (D )12233441,,,αααααααα++++.由0Ax =的基础解系为(1,0,2,0)T 可得12341310(,,,)0,2020αααααα⎛⎫ ⎪ ⎪=+= ⎪ ⎪⎝⎭.因此(A ),(B )中向量组均为线性相关的,而(D )显然为线性相关的,因此答案为(C ).由可得12,,αα34,αα均为*0A x =的解.10.设A 是n 阶矩阵,A 适合下列条件( C )时,n I A -必是可逆矩阵(A) n A A = (B) A 是可逆矩阵 (C) 0n A = (B) A 主对角线上的元素全为零11.n 阶矩阵A 是可逆矩阵的充分必要条件是( D )(A) 1A = (B) 0A = (C) T A A = (D) 0A ≠12.,,A B C 均是n 阶矩阵,下列命题正确的是( A )(A) 若A 是可逆矩阵,则从AB AC =可推出BA CA = (B) 若A 是可逆矩阵,则必有AB BA = (C) 若0A ≠,则从AB AC =可推出B C = (D) 若B C ≠,则必有AB AC ≠13.,,A B C 均是n 阶矩阵,E 为n 阶单位矩阵,若ABC E =,则有(C ) (A) ACB E = (B )BAC E = (C )BCA E = (D) CBA E = 14.A 是n 阶方阵,*A 是其伴随矩阵,则下列结论错误的是( D ) (A) 若A 是可逆矩阵,则*A 也是可逆矩阵; (B) 若A 是不可逆矩阵,则*A 也是不可逆矩阵; (C) 若*0A ≠,则A 是可逆矩阵; (D)*.AA A = 15.设A 是5阶方阵,且0A ≠,则*A =( D )(A) A (B) 2A (C) 3A (D) 4A16.设*A 是()ij n n A a ⨯=的伴随阵,则*A A 中位于(,)i j 的元素为(B )(A) 1n jk ki k a A =∑ (B) 1n kj ki k a A =∑ (C) 1n jk ik k a A =∑ (D) 1nki kj k a A =∑应为A 的第i 列元素的代数余子式与A 的第j 列元素对应乘积和.17.设1111n n nn a a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 1111n n nn A A B A A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,其中ij A 是ij a 的代数余子式,则(C )(A) A 是B 的伴随 (B)B 是A 的伴随 (C)B 是A '的伴随 (D)以上结论都不对18.设,A B 为方阵,分块对角阵00A C B ⎡⎤=⎢⎥⎣⎦,则*C = ( C ) (A) **00A CB ⎡⎤=⎢⎥⎣⎦ (B)**00A A CB B ⎡⎤=⎢⎥⎣⎦(C) **00B A C A B ⎡⎤=⎢⎥⎣⎦ (D) **0A B A C A B B ⎡⎤=⎢⎥⎣⎦ 利用*||CC C E =验证.19.已知46135,12246A B ⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦,下列运算可行的是( C ) (A) A B + (B)A B - (C)AB (D)AB BA -20.设,A B 是两个m n ⨯矩阵,C 是n 阶矩阵,那么( D )21.对任意一个n 阶矩阵A ,若n 阶矩阵B 能满足AB BA =,那么B 是一个( C )(A) 对称阵 (B)对角阵 (C)数量矩阵 (D)A 的逆矩阵 与任意一个n 阶矩阵均可交换的矩阵为数量矩阵.22.设A 是一个上三角阵,且0A =,那么A 的主对角线上的元素( C )(A) 全为零 (B )只有一个为零 (C )至少有一个为零 (D )可能有零,也可能没有零23.设1320A⎡⎤=⎢⎥⎣⎦,则1A-=(D)(A)121136⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦(B)131136⎡⎤-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(C)131126⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦(D)121136⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦24.设111222333a b cA a b ca b c⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,若111222333222a c bAP a c ba c b⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则P=( B)(A)100001020⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(B)100002010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(C)001020100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(D)200001010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦25.设(3)n n≥阶矩阵1111a a aa a aA a a aa a a⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,若矩阵A的秩为1,则a必为(A )(A)1 (B)-1 (C)11n-(D)11n-矩阵A的任意两行成比例.26.设,A B为两个n阶矩阵,现有四个命题:①若,A B为等价矩阵,则,A B的行向量组等价;②若,A B的行列式相等,即||||,A B=则,A B为等价矩阵;③若0Ax=与0Bx=均只有零解,则,A B为等价矩阵;④若,A B为相似矩阵,则0Ax=与0Bx=解空间的维数相同.以上命题中正确的是( D )(A) ①, ③. (B) ②, ④. (C) ②,③. (D)③,④.当APPB1-=时,,A B为相似矩阵。

矩阵练习题及答案

矩阵练习题及答案

矩阵练习题及答案矩阵是线性代数中的一个重要概念,也是在数学、物理、计算机科学等领域中广泛应用的工具。

通过解矩阵练习题,可以帮助我们加深对矩阵运算和性质的理解。

下面给出一些矩阵练习题及其答案,供大家参考。

1. 问题描述:已知矩阵 A = [4 2],求 A 的转置矩阵 A^T。

解答:矩阵的转置就是将矩阵的行和列互换得到的新矩阵。

因此,A 的转置矩阵为 A^T = [4; 2]。

2. 问题描述:已知矩阵 B = [1 -2; 3 4],求 B 的逆矩阵 B^-1。

解答:对于一个可逆矩阵 B,其逆矩阵 B^-1 满足 B * B^-1 = I,其中 I 是单位矩阵。

通过矩阵的求逆公式,可以得到 B 的逆矩阵 B^-1 = [4/11 2/11; -3/11 1/11]。

3. 问题描述:已知矩阵 C = [2 1; -3 2],求 C 的特征值和特征向量。

解答:矩阵的特征值和特征向量是矩阵在线性变换下的重要性质。

特征值λ 是方程 |C - λI| = 0 的根,其中 I 是单位矩阵。

解方程可得特征值λ1 = 1 和λ2 = 3。

特征向量 v1 对应于特征值λ1,满足矩阵C * v1 = λ1 *v1,解方程可得 v1 = [1; -1]。

特征向量 v2 对应于特征值λ2,满足矩阵C * v2 = λ2 * v2,解方程可得 v2 = [1; 3]。

4. 问题描述:已知矩阵 D = [1 2 -1; 3 2 4],求 D 的行列式和秩。

解答:矩阵的行列式表示线性变换后单位面积或单位体积的变化率。

计算 D 的行列式可得 det(D) = 1 * (2*4 - 4*(-1)) - 2 * (3*4 - 1*(-1)) + (-1) * (3*2 - 1*2) = 10。

矩阵的秩表示矩阵中独立的行或列的最大个数。

对矩阵 D 进行行变换得到矩阵的行最简形式为 [1 0 6; 0 1 -3],因此 D 的秩为 2。

高等代数(北大版)第4章习题参考答案

高等代数(北大版)第4章习题参考答案

第四章 矩阵1.设1)311212123A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,111210101B -⎛⎫ ⎪=- ⎪ ⎪⎝⎭2)111a b c A c b a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,111a c B b b c a ⎛⎫ ⎪= ⎪ ⎪⎝⎭计算AB ,AB BA -。

解 1)622610812AB -⎛⎫ ⎪= ⎪⎪-⎝⎭ ,400410434BA ⎛⎫ ⎪= ⎪ ⎪⎝⎭222200442AB BA -⎛⎫ ⎪-= ⎪ ⎪--⎝⎭ 2)22222222223a b c a b c ac b AB a b cac b a b c a b c a b c ⎛⎫+++++⎪=+++++ ⎪ ⎪++++⎝⎭222222a ac c b ab c c a BA a ac c b b c ab b a c b bc c c ac a ⎛⎫+++++ ⎪=+++++ ⎪ ⎪+++++⎝⎭33()ij AB BA a ⨯-=, 其中11a b ac =-, 22212a a b c b ab c =++---, 221322a b ac a c =+-- 21a c bc =-, 2222a ac b =-, 32223a a b c ab b c =++--- 23132a c a =--, 32a c bc =-, 33a b ab =-2.计算22111)310012⎛⎫ ⎪⎪ ⎪⎝⎭5322)42⎛⎫ ⎪--⎝⎭113)01n⎛⎫ ⎪⎝⎭ cos sin 4)sin cos nϕϕϕϕ-⎛⎫⎪⎝⎭()15)2,3,111⎛⎫ ⎪-- ⎪ ⎪-⎝⎭,()112,3,11⎛⎫ ⎪-- ⎪ ⎪-⎝⎭ ()1112132122313132336),,11a a a x x y a a a y a a a ⎛⎫⎛⎫ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭2111111117)11111111---⎛⎫ ⎪---⎪ ⎪--- ⎪ ⎪---⎝⎭,1111111111111111n---⎛⎫⎪--- ⎪ ⎪--- ⎪ ⎪---⎝⎭108)0100nλλλ⎛⎫ ⎪ ⎪ ⎪⎝⎭解 22117441)310943012334⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭。

矩阵习题带答案

矩阵习题带答案

矩阵习题带答案矩阵习题带答案矩阵是线性代数中的重要概念,广泛应用于各个领域。

掌握矩阵的运算和性质对于学习线性代数和解决实际问题都具有重要意义。

在这篇文章中,我们将提供一些矩阵习题,并附上详细的解答,帮助读者更好地理解和掌握矩阵的相关知识。

1. 习题一已知矩阵A = [1 2 3; 4 5 6; 7 8 9],求矩阵A的转置矩阵AT。

解答:矩阵A的转置矩阵AT即将A的行变为列,列变为行。

因此,矩阵A的转置矩阵为:AT = [1 4 7; 2 5 8; 3 6 9]2. 习题二已知矩阵B = [2 4; 1 3],求矩阵B的逆矩阵B-1。

解答:对于一个二阶矩阵B,如果其行列式不为零,即|B| ≠ 0,那么矩阵B存在逆矩阵B-1,且B-1 = (1/|B|) * [d -b; -c a],其中a、b、c、d分别为矩阵B的元素。

计算矩阵B的行列式:|B| = ad - bc = (2*3) - (4*1) = 6 - 4 = 2因此,矩阵B的逆矩阵为:B-1 = (1/2) * [3 -4; -1 2]3. 习题三已知矩阵C = [1 2 3; 4 5 6],求矩阵C的秩rank(C)。

解答:矩阵的秩是指矩阵中非零行的最大个数,也可以理解为矩阵的行向量或列向量的最大线性无关组的向量个数。

对于矩阵C,我们可以通过高斯消元法将其化为行简化阶梯形矩阵:[1 2 3; 0 -3 -6]可以看出,矩阵C中非零行的最大个数为1,因此矩阵C的秩为1。

4. 习题四已知矩阵D = [2 1; -1 3],求矩阵D的特征值和特征向量。

解答:对于一个n阶矩阵D,如果存在一个非零向量X,使得D*X = λ*X,其中λ为常数,则称λ为矩阵D的特征值,X为对应的特征向量。

首先,我们需要求解矩阵D的特征值,即求解方程|D - λI| = 0,其中I为n阶单位矩阵。

计算矩阵D - λI:[D - λI] = [2-λ 1; -1 3-λ]设置行列式等于零,得到特征值的方程式:(2-λ)(3-λ) - (1)(-1) = 0λ^2 - 5λ + 7 = 0解特征值的方程,得到两个特征值:λ1 = (5 + √(-11))/2λ2 = (5 - √(-11))/2由于特征值的计算涉及到虚数,这里不再继续计算特征向量。

《高等代数》 第一章矩阵 习题答案

《高等代数》 第一章矩阵 习题答案

第一章 矩阵习题一1.设有A 、B 、C 三类商品,它们去年和今年的价格如下表所示:单位:元试用矩阵表示上述表格. 解 所求的的矩阵为1002009050120150⎛⎫ ⎪ ⎪ ⎪⎝⎭2.写出下列线性方程组的系数矩阵与增广矩阵. (1) ⎩⎨⎧=-=-02132y x y x ;(2) ⎪⎪⎩⎪⎪⎨⎧=+=++=-52323203y x z y x z x.解 (1)系数矩阵为2312-⎛⎫ ⎪⎝⎭增广矩阵为231120-⎛⎫ ⎪⎝⎭(2)系数矩阵为103231320-⎛⎫ ⎪ ⎪ ⎪⎝⎭增广矩阵为103023123205-⎛⎫ ⎪ ⎪ ⎪⎝⎭3.写出矩阵()32)()1(⨯-+-=j i A j i 的完全形式. 解 234345A -⎛⎫=⎪--⎝⎭4.写出既是上三角形矩阵,又是下三角形矩阵的3阶矩阵的一般形式.解 所求的矩阵为000000a b c ⎛⎫ ⎪ ⎪ ⎪⎝⎭其中a,b,c 为任意数.习题二1.设矩阵,312010403,112112,012110321⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=C B A(1)计算C A 23-与3A;(2)验证()CB AB B C A +=+与 ()TAB TT=A B .解(1) 1233043230112010210213A C ⎛⎫⎛⎫ ⎪ ⎪-=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭369608033020630426⎛⎫⎛⎫ ⎪ ⎪=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭=369033256-⎛⎫⎪- ⎪ ⎪-⎝⎭323123123123011011011210210210A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭771123201011256210⎛⎫⎛⎫ ⎪⎪=--- ⎪⎪ ⎪⎪-⎝⎭⎝⎭9221445612141⎛⎫⎪=--- ⎪ ⎪⎝⎭(2) 12330421()(011010)1221021311A C B ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪+=-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭427210211240311⎛⎫⎛⎫ ⎪⎪=- ⎪⎪ ⎪⎪⎝⎭⎝⎭171513117⎛⎫⎪= ⎪ ⎪⎝⎭123213042101112010122101121311AB CB ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪⎪+=-+ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭7810701125463⎛⎫⎛⎫ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭171513117⎛⎫ ⎪= ⎪ ⎪⎝⎭故 ()CB AB B C A +=+1232178705()01112018142101154TTT AB ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪=-== ⎪ ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭211231022117051201121112181411210310T TT T B A ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭故 ()TAB TT=A B2.求下列矩阵方程中的矩阵X :⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛---+-⎪⎪⎭⎫⎝⎛--00000011311232021132X . 解 移项得31121132202311X ---⎛⎫⎛⎫=+ ⎪ ⎪--⎝⎭⎝⎭方程两边同乘以13得3112111(2)2023113X ---⎛⎫⎛⎫=+ ⎪ ⎪--⎝⎭⎝⎭411622211433113()4043111131133133⎛⎫- ⎪----⎛⎫⎛⎫⎛⎫⎪=+== ⎪ ⎪ ⎪--- ⎪⎝⎭⎝⎭⎝⎭-⎪⎝⎭3.已知两个线性变换⎪⎪⎩⎪⎪⎨⎧++=++-=+=31332123115423222yy y x y y y x y y x ,⎪⎪⎩⎪⎪⎨⎧+-=+=+-=323312211323z z y z z y zz y , 求从321,,z z z 到321,,x x x 的线性变换.解 用矩阵乘法分别表示这两个已知的线性变换为112233201232415x y x y x y ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,112233*********y z y z y z -⎛⎫⎛⎫⎛⎫⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭从而111222333201310201310232201232201415013415013x z z x z z x z z ⎛⎫⎛⎫--⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭123613124910116z z z -⎛⎫⎛⎫⎪⎪=- ⎪⎪ ⎪⎪--⎝⎭⎝⎭即 1123212331236312491016x z z z x z z z x z z z =-++=-+=--+4.计算下列矩阵乘积:(1) ;110217321134⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛- (2) ()⎪⎪⎪⎭⎫⎝⎛123321; (3) ()11312-⎪⎪⎪⎭⎫⎝⎛ ; (4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-0431103143110412; (5) ()⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x .解 (1)71431353201236211⎛⎫⎛⎫⎛⎫⎪= ⎪ ⎪ ⎪--⎝⎭⎝⎭ ⎪-⎝⎭ (2) ()31232101⎛⎫ ⎪= ⎪ ⎪⎝⎭(3) ()22111111333-⎛⎫⎛⎫ ⎪⎪-=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭(4) 132140016711341320540⎛⎫ ⎪--⎛⎫⎛⎫⎪= ⎪ ⎪ ⎪---⎝⎭⎝⎭⎪⎝⎭(5)()()111213111121311232122232123212223231323333132333a a a x a a a x x x x a a a x x x x a a a x a a a x a a a x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()1111212313121222323131********x a x a x a x a x a x a x a x a x a x x x ⎛⎫ ⎪=++++++ ⎪ ⎪⎝⎭222111222333122112133113233223()()()a x a x a x a a x x a a x x a a x x =++++++++5.设⎪⎪⎭⎫ ⎝⎛=101λA , 证明⎪⎪⎭⎫ ⎝⎛=101λk A k ,其中k 为正整数. 证明 对k 用数学归纳法显然1k =时,结论成立.设当k n =时结论成立,即有101n n A λ⎛⎫= ⎪⎝⎭我们考虑1k n =+时的情形.由归纳假设,我们有1111(1)010101n nn n AA A λλλ++⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭即1k n =+时的结论也是成立的.由归纳原理,⎪⎪⎭⎫ ⎝⎛=101λk A k对所有的正整数成立. 6.设⎪⎪⎭⎫⎝⎛-=θθθθcos sin sin cos A , 证明⎪⎪⎭⎫⎝⎛-=θθθθk k k k A k cos sin sin cos ,其中k 为正整数 .证明 对k 用数学归纳法.显然1k =时,结论成立. 设当k n =时结论成立,即有cos sin sin cos n n n A n n θθθθ-⎛⎫=⎪⎝⎭我们考虑1k n =+时的情形.由归纳假设,我们有1cos sin cos sin sin cos sin cos n n n n A A A n n θθθθθθθθ+--⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭cos cos sin sin cos sin sin cos cos(1)sin(1)sin cos cos sin sin sin cos cos sin(1)cos(1)n n n n n n n n n n n n θθθθθθθθθθθθθθθθθθθθ---+-+⎛⎫⎛⎫==⎪⎪+-+++⎝⎭⎝⎭即1k n =+时的结论也是成立的.由归纳原理,⎪⎪⎭⎫⎝⎛-=θθθθk k k k A k cos sin sin cos对所有的正整数成立.7.如果BA AB =矩阵B 就称为与A 可交换.设(1)⎪⎪⎭⎫⎝⎛=1011A ; (2)⎪⎪⎪⎭⎫ ⎝⎛=213210001A ;(3)⎪⎪⎪⎭⎫ ⎝⎛=000100010A . 求所有与A 可交换的矩阵.解 (1)设与A 可交换的矩阵为a b B c d ⎛⎫=⎪⎝⎭则 1101a b a b b d AB c d cd ++⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ 1101a b a a b BA c d c c d +⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭由BA AB =,故a b b d a a b c d c c d +++⎛⎫⎛⎫= ⎪ ⎪+⎝⎭⎝⎭根据矩阵相等的定义,得a c ab d a bc cd c d+=⎧⎪+=+⎪⎨=⎪⎪=+⎩ 解之得0,c a b ==所以,与A 可交换的矩阵0a b B a ⎛⎫= ⎪⎝⎭其中,a b 为任意数.(2)设与A 可交换的矩阵为xy z B uv w g s t ⎛⎫ ⎪= ⎪ ⎪⎝⎭则 100012222312323232x y z x y z AB uv w u g v s w t g st x u g y v s z w t ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪==+++ ⎪⎪ ⎪ ⎪⎪ ⎪++++++⎝⎭⎝⎭⎝⎭100322012322312322xy z x z y z y z BA uv w u w v w v w g st g t s t s t +++⎛⎫⎛⎫⎛⎫⎪⎪ ⎪==+++ ⎪⎪ ⎪ ⎪⎪ ⎪+++⎝⎭⎝⎭⎝⎭由BA AB =,故322222322323232322x y z x z y z y z u g v s w t u w v w v w x u g y v s z w t g t s t s t +++⎛⎫⎛⎫⎪ ⎪+++=+++ ⎪ ⎪ ⎪ ⎪+++++++++⎝⎭⎝⎭根据矩阵相等的定义,得322x x z y y z z y z =+⎧⎪=+⎨⎪=+⎩,232222u g u w v s v w w t v w +=+⎧⎪+=+⎨⎪+=+⎩,323323222x u g g ty v s s t z w t s t ++=+⎧⎪++=+⎨⎪++=+⎩解之得3110,,,,33222y z g w s w t v w u x v =====+=-+ 所以,与A可交换的矩阵为0033311222x B x vv w w w v w ⎛⎫⎪⎪=-+ ⎪ ⎪ ⎪+⎝⎭其中,,x v w 为任意的数.(3)设与A 可交换的矩阵为xy z B uv w g s t ⎛⎫ ⎪= ⎪ ⎪⎝⎭则 010*******0001000100000xy z uv w AB uv w gs t g s t x y z x y BA u v w u v g s t g s ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎪⎪ ⎪== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭由BA AB =,故000000u v w xy g s t u v g s ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭根据矩阵相等的定义,得0,,u g s v t x w y ======所以,与A可交换的矩阵为000x yz B xy x ⎛⎫⎪= ⎪ ⎪⎝⎭其中,,x y z 为任意的数.8.如果CA AC BA AB ==,,证明:A C B C B A )()(+=+;A BC BC A )()(=. 证明 因CA AC BA AB ==,,故()()A B C AB AC BA CA B C A +=+=+=+ ()()()()()()A BC AB C BA C B AC B CA BC A =====9.如果)(21E B A +=,证明:A A =2当且仅当E B =2. 证明 因为)(21E B A +=,故22211[()](2)24A B E B B E =+=++如果2A A =.即有211(2)()42B B E B E ++=+ 从而E B =2反之,如果E B =2,容易推出A A =2.10.证明:如果A 是实对称矩阵且0=2A ,那么0=A .证明 设111212122212n n n n nn a a a aa a A a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭那么由T A A =,得21111121112112212221222222112122100000n ii n n nn n iT i n n nn nnnn n ni i a a a a a a a aa a a a a aA AA a a a a a a a ===⎛⎫ ⎪ ⎪⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪==== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎪ ⎪⎝⎭∑∑∑根据矩阵相等的定义得222121110,0,,0n nni i ni i i i a a a ======∑∑∑但是A 为实对称矩阵,即所有的元素均为实数,所以120(1,2,,)i i in a a a i n ===== 从而0=A11.设A 、B 为n 阶矩阵,且A 为对称矩阵,证明AB B T也是对称矩阵. 证明 因为A 对称矩阵,故T A A =从而()()T T T T T T T B AB B A B B AB ==所以,AB B T也是对称矩阵.12.设A 、B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是BA AB =. 证明 因A 、B 都是n 阶对称矩阵,故T A A =,T B B =如果AB 是对称矩阵,那么()T T T AB AB B A BA ===反之,如果BA AB =,那么()()T T T T AB BA A B AB ===从而AB 是对称矩阵.13.设矩阵⎪⎪⎪⎭⎫ ⎝⎛--=567152431A , 试将A 表示为一个对称矩阵与一个反对称矩阵之和.解 511122157()5222117522T A A ⎛⎫ ⎪⎪ ⎪+=- ⎪⎪ ⎪-⎪⎝⎭为对称矩阵. 13022115()022235022TA A ⎛⎫- ⎪⎪ ⎪-=-⎪ ⎪ ⎪- ⎪⎝⎭为反对称矩阵.并且满足 51113102222571550222211735502222A ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=-+- ⎪ ⎪⎪ ⎪ ⎪ ⎪--⎪ ⎪⎝⎭⎝⎭14.用待定系数法判定下列矩阵是否可逆,并且在矩阵可逆时求它的逆矩阵: (1)⎪⎪⎭⎫⎝⎛3243 ; (2) ⎪⎪⎭⎫ ⎝⎛10452 . 解 (1)设有矩阵a b c d ⎛⎫ ⎪⎝⎭使得34102301a b c d ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭那么由矩阵的乘法与矩阵相等的定义可以得到下列线性方程组341340230231a cb d ac bd +=⎧⎪+=⎪⎨+=⎪⎪+=⎩ 这个线性方程组有唯一解3,4,2,3a b c d ==-=-=从而3423a b c d -⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭容易验证3434341023232301a b c d -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭所以矩阵⎪⎪⎭⎫⎝⎛3243是可逆矩阵,且134342323--⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭(2)设有矩阵a b c d ⎛⎫⎪⎝⎭使得251041001a b c d ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭那么由矩阵的乘法与矩阵相等的定义可以得到下列线性方程组25125041004101a cb d ac bd +=⎧⎪+=⎪⎨+=⎪⎪+=⎩ 这个线性方程组无解,所以矩阵⎪⎪⎭⎫⎝⎛10452是不可逆矩阵. 15.证明:如果0=kA (k 为正整数),那么121()k I A I A A A ---=++++.证明 因0=kA ,故212121()()k k k k k I A I A A A I A A A A A A A I A I ----++++=++++-----=-=同理可得21()()k I A A A I A I -++++-=根据矩阵可逆的定义,矩阵I A -是可逆矩阵,且121()k I A I A A A ---=++++16. A,B 两个工厂生产M ,N ,P ,其年产量(单位:件)分别为200,300,400;150,200,250. 这三种产品的出厂单价(单位:万元)分别为:3,2,1. 求A,B 两个工厂的年度总产值.解: 分别A 、B 两个工厂生产M 、N 、P 三种产品的年产量为列构成矩阵⎪⎪⎪⎭⎫ ⎝⎛250200150400300200 , 以这三种产品的出厂单价为行的矩阵为 ()123.那么以A,B 两个工厂的年度总产值为行的矩阵为()()11001600250200150400300200123=⎪⎪⎪⎭⎫ ⎝⎛所以A,B 两个工厂的年度总产值分别为1600万元与1100万元.17.设矩阵⎪⎪⎭⎫ ⎝⎛=2011A ,求nA ,(n 为正整数). 解:⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=21022022120112011A ⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛==321021023202221202212011AA A 一般地应有 ⎪⎪⎪⎭⎫⎝⎛=∑-=n 1n 0k k n 2021A 我们对n 用数学归纳法来证明该式. 显然n=1时结论成立. 假设n=l 时结论成立,即有⎪⎪⎪⎭⎫⎝⎛=∑-=n 1l 0k k l 2021A 现在我们考虑n=l+1时的情形.由归纳假设,我们有⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==∑=+l l0k k l 1l 20212011AA A ⎪⎪⎪⎭⎫ ⎝⎛=+-+=∑1l 1)1l (0k k 2021 , ⎪⎪⎪⎭⎫⎝⎛=∑-=n 1n 0k k n 2021A 对所有正整数都成立.18.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=100110011A ,求n A .解: ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=100C 10C 21100210121100110011100110011A 12222⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛==100C 10C 31100310331100210121100110011AA A 132323一般地应有 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100n 1021)-n(n n 1100C 10C n 1A 1n 2nn 我们对n 用数学归纳法来证明该式.显然n=2时结论成立. 假设n=k 时结论成立,即有⎪⎪⎪⎭⎫ ⎝⎛=100C 10C k 1A 1k 2k k .现在我们考虑n=k+1时的情形.由归纳假设,我们有⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛==+100C 10C k 1100110011AA A 1k 2k k 1k⎪⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎭⎫ ⎝⎛++=+++100C 10C 1k 1100C 10C C 1k 111k 21k 11k 1k 2k 即n=l+1时结论也成立,由归纳原理,⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100n 1021)-n(n n 1100C 10C n 1A 1n 2n n对所有大于1正整数都成立.19.设()m m m a a a f +++=- 110λλλ,A 是一个n n ⨯矩阵,定义 ()I a A a A a A f m m m +++=- 110.(1) ()12--=λλλf ,⎪⎪⎪⎭⎫ ⎝⎛-=011213112A ,(2) ()352+-=λλλf ,⎪⎪⎭⎫⎝⎛--=3312A . 试求()A f .解:(1) ()⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-=--=10001000101121311201121311222I A A A f⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=2123083151000100010112131121015211428 (2) ()⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛--=100133312533122A f⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛--=30031515510121557⎪⎪⎭⎫ ⎝⎛=0000. 习题三1. 计算下列矩阵的乘积:(1) ⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛010110005110230002; (2)⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解:(1) ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛OO =⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛100310001001011000511023000221A A其中()()10521=⨯=A ,⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=1031011111232A . (2) 把乘积中的两个矩阵分别分块成⎪⎪⎭⎫⎝⎛O =⎪⎪⎪⎪⎪⎭⎫⎝⎛=2213000120010100121A I A A , ⎪⎪⎭⎫⎝⎛O =⎪⎪⎪⎪⎪⎭⎫⎝⎛---=212300032001210131B B I B . 那么 ⎪⎪⎭⎫⎝⎛O +=⎪⎪⎭⎫ ⎝⎛O ⎪⎪⎭⎫ ⎝⎛O=223111212221B A B B A A B B I A I A AB .而 ⎪⎪⎭⎫⎝⎛--+⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=+30321217303212131021211B B A⎪⎪⎭⎫ ⎝⎛-=4225, ⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=90342032301222B A .从而 ⎪⎪⎪⎪⎪⎭⎫⎝⎛---=9000340042102521AB .2. 求下列矩阵的逆矩阵:(1)⎪⎪⎪⎪⎪⎭⎫⎝⎛1200250000430011; (2)⎪⎪⎪⎪⎪⎭⎫⎝⎛n a a a21,其中021≠n a a a . 解:(1) ⎪⎪⎭⎫⎝⎛O O =⎪⎪⎪⎪⎪⎭⎫⎝⎛=211200250000430011A A A .1A 为可逆矩阵,且⎪⎪⎭⎫ ⎝⎛--=-131411A ; 2A 为可逆矩阵,且⎪⎪⎭⎫ ⎝⎛--=-522112A . 从而A 为可逆矩阵,且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----52002100001300141A . 3. 设A 为n 阶矩阵,且满足:O =++I A A 2.求1-A .解:移项并整理得()I I A A =--及()I A I A =--,所以,A 为可逆矩阵,且 I A A--=-1.4. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=61318175********A ,求1-A . 解:⎪⎪⎭⎫⎝⎛O =⎪⎪⎪⎪⎪⎭⎫⎝⎛----=B C A A 16131817500230012, ⎪⎪⎭⎫ ⎝⎛=23121A 是可逆矩阵,且⎪⎪⎭⎫ ⎝⎛--=-231211A ; ⎪⎪⎭⎫ ⎝⎛--=6181B 是可逆矩阵,且⎪⎪⎭⎫ ⎝⎛--=212143B . 由例15 ⎪⎪⎭⎫⎝⎛-O =-----1111111B CA B A A . 经计算,得⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=---23123175212143111CA B ⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=2275231222911, 从而 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=-2121224375002300121A .5. 已知A 为m 阶可逆矩阵,C 为n 阶可逆矩阵.试证⎪⎪⎭⎫⎝⎛O O =C A X 是可逆矩阵,并求1-X.解:设有分块矩阵⎪⎪⎭⎫⎝⎛=22211211X XX X D ,其中D 的分法使以下的分块乘法有意义, 并使得 ⎪⎪⎭⎫⎝⎛OO =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛O O =n mI I CX CX AX AX X X X X C A XD 121122112221112. 比较等式两边,得⎪⎪⎩⎪⎪⎨⎧=O =O ==nm I CX CX AX I AX 12112221由第一,二式得 O ==-22121,X A X , 由第三,四式得 1111,-=O =C X X . 容易验证也有 ⎪⎪⎭⎫ ⎝⎛OO =n mI I DX . 所以 ⎪⎪⎭⎫ ⎝⎛O O =---111A C X.6. 设⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-0000000000000000121n n aa a a X ,其中()n i a i ,,2,10 =≠,求1-X .解:⎪⎪⎭⎫⎝⎛O O =⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-C A aa a a X n n 0000000000000000121, 由上题的结果,得 ⎪⎪⎭⎫⎝⎛O O =---111A C X但 ()11--=n a C ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=-----1112111000000n a a a A. 所以, ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=--------00000000000000000000001112121111n n n a a a a a X.。

线性代数 第一章矩阵 参考答案

线性代数 第一章矩阵 参考答案

0 A2
0 A1
0 I A11r1 , A21r2 I 0 I 0 0 I
0 A11
A2 1 0
P31 习题 1.4 1.按上课要求做,则此题中行阶梯形答案不唯一,行最简形和标准形答案唯一
1 1 1 (1) 0 2 1 0 0 0
法一
2 1 1 B ( A 2 I ) A ,求出 ( A 2 I ) 1 1 1 4 3 4 2 3 3 8 B 1 5 3 1 1 0 2 9 1 6 4 1 2 3 2 12
4.解: 4 X
4 0 0 4 8 (3) 2 14 2 (4) 3 11 5 11 5 4 10 1 1 0 1 7.解: AB ; BA 1 2 0 0 1 2
1 0 (2) 0 0 1 0 (3) 0 0 1 0 (4) 0 0
1 1 0 0 3 2 0 0 1 1 0 0
1 1 0 0 3 1 1 0 2 1 0 0
1 0 1 ,0 1 2 1 0 0 1 1 0 0 0 1 1 1 , 0 0 0 1 0 0 0 0 7 0 1 5 1 , 0 1 1 0 0 0 0 2 1 1 0 5 1 ,0 1 1 0 0 0 0 0 0 0
(法二)
A1 X1 X 2 的逆阵为 B ,则有 0 X 3 X4 A1 X 1 X 2 I 0 0 X X I 0 4 3
A21 。 0
I 0 r1 r2 A2 0 I 0 0 A21 1 所以 A 1 0 A1 A1 0

矩阵试题及答案

矩阵试题及答案

矩阵试题及答案一、选择题(每题4分,共20分)1. 矩阵的秩是指:A. 矩阵中非零元素的个数B. 矩阵中最大的线性无关行(列)向量组的个数C. 矩阵的行数D. 矩阵的列数答案:B2. 若矩阵A与矩阵B相等,则下列说法正确的是:A. A和B的行列式相等B. A和B的迹相等C. A和B的行列式和迹都相等D. A和B的行列式和迹都不相等答案:C3. 矩阵的转置是指:A. 将矩阵的行变成列B. 将矩阵的列变成行C. 将矩阵的行和列互换D. 将矩阵的元素取相反数答案:C4. 对于任意矩阵A,下列说法正确的是:A. A的行列式等于A的转置的行列式B. A的行列式等于A的逆矩阵的行列式C. A的行列式等于A的逆矩阵的转置的行列式D. 以上说法都不正确答案:A5. 若矩阵A是可逆矩阵,则下列说法正确的是:A. A的行列式不为0B. A的行列式为1C. A的行列式为-1D. A的行列式可以是任意非零值答案:A二、填空题(每题5分,共20分)1. 若矩阵A的行列式为-2,则矩阵A的逆矩阵的行列式为____。

答案:1/22. 设矩阵A为2x2矩阵,且A的行列式为3,则矩阵A的转置的行列式为____。

答案:33. 若矩阵A的秩为2,则矩阵A的行向量组的____。

答案:线性无关4. 设矩阵A为3x3矩阵,且A的行列式为0,则矩阵A是____。

答案:奇异矩阵三、解答题(每题10分,共30分)1. 已知矩阵A=\[\begin{bmatrix}1 & 2\\3 & 4\end{bmatrix}\],求矩阵A的行列式。

答案:\(\begin{vmatrix}1 & 2\\3 & 4\end{vmatrix} = (1)(4) - (2)(3) = 4 - 6 = -2\)2. 设矩阵B=\[\begin{bmatrix}2 & 0\\0 & 2\end{bmatrix}\],求矩阵B的逆矩阵。

《高等代数》第二章习题及答案

《高等代数》第二章习题及答案

习题2.11. 设m,n 是不同的正整数,A 是m ×n 矩阵,B 是n ×m 矩阵,下列运算式中有定义的有哪几个?A+B ,AB ,BA ,AB T ,A-B T 答 只有AB 和A-B T 有定义. 2. 计算①⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-322113075321134 ②⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-213075321134 ③()⎪⎪⎪⎭⎫ ⎝⎛213321 ④()321213⎪⎪⎪⎭⎫⎝⎛⑤()⎪⎪⎪⎭⎫ ⎝⎛-0713******** ⑥⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛c b a 321012100010501 ⑦()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x解①⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-322113075321134=⎪⎪⎪⎭⎫⎝⎛-922147117②⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-213075321134=⎪⎪⎪⎭⎫ ⎝⎛22717 ③()⎪⎪⎪⎭⎫⎝⎛213321=()11④()321213⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛642321963 ⑤()⎪⎪⎪⎭⎫⎝⎛-0713********=()111813⑥⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛c b a 321012100010501=⎪⎪⎪⎭⎫ ⎝⎛-+-c b a c b a 32155125 ⑦()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x=233323321331322322221221311321122111x a x x a x x a x x a x a x x a x x a x x a x a ++++++++3. 设A=⎪⎪⎭⎫⎝⎛3121,B=⎪⎪⎭⎫⎝⎛3101,计算: ① (A+B)(A-B) ② A 2-B 2③ (AB)T ④ A T B T解 ① (A+B)(A-B)= ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛4040002062223101312131013121 ② A 2-B 2=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛20829401114833101310131213121③ (AB)T=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛9643946331013121TT④ A T B T=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛112413011321131013121TT 4. 求所有的与A=⎪⎪⎭⎫⎝⎛1011可交换的矩阵. 解 设矩阵B 与A 可交换,则B 必是2×2矩阵,设B=⎪⎪⎭⎫⎝⎛d c b a ,令AB=BA ,即 ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛10111011d c b a d c b a 从而有 ⎪⎪⎭⎫⎝⎛++=⎪⎪⎭⎫⎝⎛++d c c b a a d cd b c a 由此得⎪⎪⎩⎪⎪⎨⎧+==+=+=+dc d c c b a d b ac a解得,c=0,a=d ,b 为任意数.即与A 可交换的矩阵B 可写成B=⎪⎪⎭⎫⎝⎛a b a 0. 5. 设A ,B 是n ×n 矩阵,并且A 是对称矩阵,证明:B T AB 也是对称矩阵.证 已知A 是对称矩阵,即A T =A ,从而 (B T AB)T =B T A T (B T ) T =B T AB ,所以B T AB 也是对称矩阵.6. 设A=⎪⎪⎭⎫ ⎝⎛b a b 0,求A 2,A 3,…,A k.解A 2=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛222000b ab b b a b b a bA 3=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛3232230020b ab b b a b b ab b …A k =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----k k k k k k b kabb b a b b ab k b 112100)1(0 7.设B 是2×2矩阵.由B 2=02×2能推出B=0吗?试举反例.(提示:参见上题.) 解 不能.例如令B=⎪⎪⎭⎫⎝⎛000a ,当a ≠0时,B ≠0,但B 2=02×2. 8. 设A ,B 是n ×n 矩阵,证明:(A+2B)(A-5B)=A 2-3AB-10B 2的充分必要条件是A 与B 可交换.证 充分性:若A 与B 可交换,即AB=BA ,则(A+2B)(A-5B)=A 2-5AB+2BA-10B 2= A 2-5AB+2AB-10B 2= A 2-3AB-10B 2 必要性:若(A+2B)(A-5B)=A 2-3AB-10B 2 即 A 2-5AB+2BA-10B 2= A 2-3AB-10B 2 比较两边相同的项得 -2AB+2BA=0 故 AB=BA9. 设A ,B 是n ×n 对称矩阵,证明:AB 是对称矩阵的充分必要条件是A 与B 可交换. 证 因A ,B 是n ×n 对称矩阵,即A T =A ,B T =B .必要性:若AB 是对称矩阵,则(AB)T =AB ,有因 (AB)T =B T A T =BA ,从而AB= BA ,即A 与B 可交换.充分性:若A 与B 可交换,由必要性证明过程反图推,知AB 是对称矩阵.习题2.21.设A ,B ,C 是矩阵,且满足AB=AC ,证明:如果A 是可逆的,则B=C .证 已知AB=AC ,两边左乘矩阵A -1,有A -1(AB)= A -1(AC),根据结合律得(A -1A)B=( A -1A)C ,从而有EB=EC ,故B=C .2.设P 是可逆矩阵,证明:线性方程组AX=β与线性方程组PAX=P β同解.证 设X (1)是AX=β的任一解解,即有AX (1)=β成立,两边左乘矩阵P ,得PAX (1)=P β,说明X (1)也是PAX=P β的解.反之,设X (2)是PAX=P β的任一解,即有PAX (2)=P β成立,两边左乘矩阵P -1,得P -1 (PAX (2))= P -1 (P β),根据结合律得(P -1 P)AX (2)=(P -1 P)β,从而有AX (2)=β,这说明X (2)也是AX=β的解.综合以上可知,线性方程组AX=β与线性方程组PAX=P β同解.3.设P 是n ×n 可逆矩阵,C 是n ×m 矩阵.证明:矩阵方程PX=C 有唯一解.证 令X *=P -1C ,代入PX=C 中验证知X *是矩阵方程的一个解.反之,设X (1)是矩阵方程PX=C的任一解,即有PX (1)=C 成立,两边左乘P -1得,X (1)=P -1C=X *,所以矩阵方程PX=C 有唯一解.4. 设A 是n ×n 可逆矩阵,且存在一个整数m 使得A m=0.证明:(E-A)是可逆的,并且(E-A)-1=E+A+…+A m-1.证 由于(E-A)(E+A+…+A m-1)=E+A+…+A m-1-A-A 2-…-A m =E-A m=E-0=E显然交换(E-A)和(E+A+…+A m-1)的次序后相乘结果仍成立,根据逆阵的定义知(E-A)-1=E+A+…+A m-1.5.设P ,A 都是n ×n 矩阵,其中P 是可逆的,m 是正整数.证明:(P -1AP)m =P -1A mP .证 (P -1AP)m =(P -1AP)(P -1AP)(P -1AP)…(P -1AP)=P -1A(PP -1)A(PP -1)…AP=P -1AEAE …AP=P -1A m P6. 设A ,B 都是n ×n 可逆矩阵,(A+B)一定是可逆的吗?如果(A+B)是可逆的,是否有(A+B)-1=A -1+B -1?若不是,试举出反例.解 如果A ,B 都是n ×n 可逆矩阵,(A+B)不一定是可逆的.例如A=⎪⎪⎭⎫ ⎝⎛1001,B=⎪⎪⎭⎫⎝⎛--1001都是可逆的,但A+B=⎪⎪⎭⎫⎝⎛0000是不可逆的. 如果(A+B)是可逆的,也不能说(A+B)-1=A -1+B -1.例如A=⎪⎪⎭⎫ ⎝⎛1001,B=⎪⎪⎭⎫⎝⎛1001,则A ,B 可逆,A+B=⎪⎪⎭⎫⎝⎛2002可逆,且(A+B)-1=⎪⎪⎭⎫ ⎝⎛2/1002/1,但A -1+B -1=⎪⎪⎭⎫ ⎝⎛1001+⎪⎪⎭⎫ ⎝⎛1001=⎪⎪⎭⎫ ⎝⎛2002.显然(A+B)-1≠A -1+B -1.7*.设A ,B 都是n ×n 矩阵,满足ABA=A ,β是n ×1矩阵.证明:当且仅当AB β=β时,线性方程组AX=β有解.证 当AB β=β时,记X *=B β,即X *是AX=β的一个解.反之,若线性方程组AX=β有解,设X (1)是它的一个解,即有AX (1)=β,两边左乘(AB)得(ABA)X (1)=AB β用已知条件ABA=A 代到上式左边得AX (1)=AB β 由于X (1)是AX=β的一个解,即AX (1)=β,所以AB β=β.习题2.31.用行和列的初等变换将矩阵A 化成⎪⎪⎭⎫⎝⎛000E 的形式: A=⎪⎪⎪⎪⎪⎭⎫⎝⎛----10030116030242201211解 ⎪⎪⎪⎪⎪⎭⎫⎝⎛----10030116030242201211→⎪⎪⎪⎪⎪⎭⎫⎝⎛---10030140300400001211→⎪⎪⎪⎪⎪⎭⎫⎝⎛---04000100301403001211→⎪⎪⎪⎪⎪⎭⎫⎝⎛--00000040001403001211→⎪⎪⎪⎪⎪⎭⎫⎝⎛00000040000003000001→⎪⎪⎪⎪⎪⎭⎫⎝⎛000000010000010000012.用初等变换判定下列矩阵是否可逆,如可逆,求出它们的逆矩阵:①⎪⎪⎪⎭⎫ ⎝⎛-----134112112 ②⎪⎪⎪⎭⎫⎝⎛----153132543 解 ①⎪⎪⎪⎭⎫ ⎝⎛-----100134010112001112→⎪⎪⎪⎭⎫ ⎝⎛---102110011200001112→→⎪⎪⎪⎭⎫ ⎝⎛---011200102110001112→⎪⎪⎪⎭⎫ ⎝⎛--02/12/110012/12/301002/12/1012→ →⎪⎪⎪⎭⎫ ⎝⎛-02/12/110012/12/3010112002→⎪⎪⎪⎭⎫ ⎝⎛-02/12/110012/12/30102/12/11001 所给矩阵可逆,其逆阵为⎪⎪⎪⎭⎫ ⎝⎛-02/12/112/12/32/12/11②⎪⎪⎪⎭⎫ ⎝⎛----100153010132001543→⎪⎪⎪⎭⎫⎝⎛-------101610013/23/73/10001543→⎪⎪⎪⎭⎫ ⎝⎛---131100032710001543→⎪⎪⎪⎭⎫ ⎝⎛------13110071850105154043 →⎪⎪⎪⎭⎫ ⎝⎛-----1311007185010338724003→⎪⎪⎪⎭⎫ ⎝⎛-----131100718501011298001 所给矩阵可逆,其逆阵为⎪⎪⎪⎭⎫⎝⎛-----1317185112982.解下列矩阵方程:①⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛-11111152X ②⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--101111201021121101X ③⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--234311*********X解 ①⎪⎪⎭⎫⎝⎛---11111152→⎪⎪⎭⎫ ⎝⎛---11521111→⎪⎪⎭⎫⎝⎛---33701111 →⎪⎪⎭⎫⎝⎛--7/37/3107/47/401 由此得⎪⎪⎭⎫ ⎝⎛--=7/37/37/47/4X ②⎪⎪⎪⎭⎫ ⎝⎛---101021111121201101→⎪⎪⎪⎭⎫ ⎝⎛---302120112220201101 →⎪⎪⎪⎭⎫ ⎝⎛----414300112220201101→⎪⎪⎪⎭⎫ ⎝⎛--3/43/13/41006/56/13/10103/23/13/1001 由此得⎪⎪⎪⎭⎫⎝⎛--=3/43/13/46/56/13/13/23/13/1X ③对等式两端分别转置得⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--233141*********T X 因为⎪⎪⎪⎭⎫ ⎝⎛---231013111141122→⎪⎪⎪⎭⎫ ⎝⎛---231014112231111→⎪⎪⎪⎭⎫ ⎝⎛---520102330031111 →⎪⎪⎪⎭⎫ ⎝⎛---233005201031111→⎪⎪⎪⎭⎫ ⎝⎛-3/21100520103/70011→⎪⎪⎪⎭⎫⎝⎛---3/21100520103/82001 所以⎪⎪⎪⎭⎫⎝⎛---=3/21523/82TX⎪⎪⎭⎫ ⎝⎛---=3/253/8122X4.设⎪⎪⎪⎭⎫ ⎝⎛=011110001A ,⎪⎪⎪⎭⎫⎝⎛-=110020102B ,又X 是可逆矩阵,并且满足矩阵方程AX 2B=XB ,求矩阵X .解 (B,E)=⎪⎪⎪⎭⎫ ⎝⎛-100110010020001102→⎪⎪⎪⎭⎫⎝⎛-10011002/10010001102→⎪⎪⎪⎭⎫ ⎝⎛-12/1010002/10010001102→⎪⎪⎪⎭⎫ ⎝⎛---12/1010002/1001012/11002 →⎪⎪⎪⎭⎫ ⎝⎛---12/1010002/100102/14/12/1001 从以上看出B 可逆,对AX 2B=XB 两边右乘B -1得AX 2=X .已知X 可逆,对AX 2=X 两边右乘B -1得AX=E .又(A,E)=⎪⎪⎪⎭⎫ ⎝⎛100011010110001001→⎪⎪⎪⎭⎫ ⎝⎛-101010010110001001→⎪⎪⎪⎭⎫ ⎝⎛--101010111100001001→⎪⎪⎪⎭⎫ ⎝⎛--111100101010001001 所以 X=⎪⎪⎪⎭⎫⎝⎛--1111010015.①证明:B 与A 行等价⇔存在可逆矩阵P ,使B=PA .②证明:B 与A 等价⇔存在可逆矩阵P 与Q ,使B=PAQ .证 若B 与A 行等价,即A 可经有限次初等行变换得到B ,而对矩阵A 每做一次初等行变换,相当于对它左乘一个初等方阵,假设对A 依次左乘初等方阵P 1,P 2,…,P K ,使P k …P 2P 1A=B令P=P k …P 2P 1,则P 是可逆矩阵,且B=PA .反之,若存在可逆矩阵P ,使B=PA ,因为可逆矩阵P 可以写成一系列初等方阵P 1,P 2, …,P k的乘积,即P=P 1P 2…P k ,从而有B=P 1P 2…P k A ,说明A 可经有限次初等行变换得到B ,即B 与A 行等价.② 若B 与A 等价,即对A 经过有限次初等变换得到B .而对矩阵A 每做一次初等行变换,相当于对它左乘一个初等方阵;对矩阵A 每做一次初等列变换,相当于对它右乘一个初等方阵.假设对A 左乘的初等方阵依次为P 1,P 2,…,P s ,对A 右乘的初等方阵依次为Q 1,Q 2,…,Q t ,使P s …P 2P 1AQ 1Q 2…Q t =B令P=P s …P 2P 1,Q=Q 1Q 2…Q t ,则P ,Q 都是可逆矩阵,且B=PAQ .反之,若存在可逆矩阵P 和Q ,使B=PAQ ,因为可逆矩阵P 和Q 均可以写成一系列初等方阵的乘积,设P=P 1P 2 …P s ,Q=Q 1Q 2…Q t ,这里P i ,Q i 都是初等方阵,从而有B=P 1P 2…P k A Q 1Q 2…Q t ,说明A 可经有限次初等行变换和初等列变换得到B ,即B 与A 等价. 6*.设A 是s ×n 矩阵,B 是s ×m 矩阵,B 的第i 列构成的s ×1矩阵是βj (j=1,2,…,m ).证明:矩阵方程AX=B 有解的充分必要条件是:AX=βj (j=1,2,…,m )都有解.证 先证必要性.如果矩阵方程AX=B 有解,设X *是它的解,则X *是n ×m 矩阵,记X *的第j 列为X *j ,根据矩阵先相乘的规则知,A 与X *j 相乘的结果是βj ,即X *j 是AX=βj 的解(j=1,2,…,m ).再证充分性.若AX=βj (j=1,2,…,m )都有解,设X *j 是AX=βj 的解,这里X *j 是n ×1矩阵,令X *=(X *1, X *2,…,X *m ),则X *是n ×m 矩阵,且X *是矩阵方程AX=B 的解. 7*.设A=(a ij )是n ×n 矩阵.①证明:如果P n (h(2))A=AP n (h(2)),则a hj =0,j=1,2,…,h-1,h+1,…,n ;并且a ih =0,i=1,2,…,h-1,h+1,…,n .②设B=diag(b 1, b 2,…, b n )是一个对角矩阵,设l ≠k .证明:如果P n (l,k)B=BP n (l,k),b l =b k .③证明:如果矩阵A 与所有的n ×n 矩阵都可交换,则A 是一个数量矩阵.证 ①如果P n (h(2))A=AP n (h(2)),则A 是n ×n 矩阵,等式左边的P n (h(2))A 表示将矩阵A 的第h 行每个元素乘以2得到的矩阵;等式右端的AP n (h(2))表示将A 的第h 列每个元素乘以2得到的矩阵.从等式可知2a hj = a hj (j=1,2,…,h-1,h+1,…,n ),a ih =2a ih (i=1,2,…,h-1,h+1,…,n ),从而得a hj =0,j=1,2,…,h-1,h+1,…,n ;并且a ih =0,i=1,2,…,h-1,h+1,…,n .②如果P n (l,k)B=BP n (l,k),则B 是n ×n 矩阵,等式左边的P n (l,k)B 表示将矩阵B 的第l 行和第k 行交换位置;等式右端的BP n (l,k) 表示将矩阵B 的第l 列和第k 列交换位置.由于B=diag(b 1, b 2,…, b n )是一个对角矩阵,且l ≠k ,不妨设l<k ,则有P n (l,k)B=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n l k b b b b 001=BP n (l,k)=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛n k lb b b b001比较对应元素,可知b l =b k .③如果矩阵A 与所有的n ×n 矩阵都可交换,在①中分别令h=1,2,…,n ,可知A 除对角线上元素以外其它元素都是零,即A 可写成diag(b 1, b 2,…, b n );在②可令l=1,分别令k=2,…,n ,可知A 的对角线上元素都相等.习题2.41.设A=⎪⎪⎭⎫ ⎝⎛421A A A ,其中A 1是s ×s 矩阵,A 2是s ×t 矩阵,A 4是t ×t 矩阵.求A 3. 解 A 2=⎪⎪⎭⎫ ⎝⎛421A A A ⎪⎪⎭⎫ ⎝⎛4210A A A =⎪⎪⎭⎫⎝⎛+244221210A A A A A A A 3=⎪⎪⎭⎫ ⎝⎛4210A A A ⎪⎪⎭⎫ ⎝⎛+244221210A A A A A A =⎪⎪⎭⎫ ⎝⎛++34242421221310A A A A A A A A A2.①设G=⎪⎪⎭⎫⎝⎛000rE 是m ×n 矩阵,证明:存在矩阵B ,使得GBG=G . ②设A 是m ×n 矩阵,证明:存在矩阵B ,使得ABA=A .证 ①构造n ×m 矩阵B 为B=⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r m r n rr n r m r rE ,则GBG=⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE ⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r m r n r r n r m r rE ⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE=⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE =G②设矩阵A 的秩为r ,则可经过有限次初等变换使A 变为⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE 的形式,即存在可逆的n ×n 矩阵P 和可逆的m ×m 矩阵Q 使PAQ=⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m r r m r n r r E =D ,即A=P -1DQ -1.定义n ×m 矩阵B 如下:B=QCP ,其中C=⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r m r n rr n r m r rE .则有ABA=(P -1DQ -1)(QCP)(P -1DQ -1)= P -1DCDQ -1=P -1⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m r r m r n r r E ⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r m r n r r n r m r rE ⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE Q -1= P -1⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE Q -1=A3*.设A=⎪⎪⎭⎫⎝⎛4210A A A ,其中A 1是s ×s 矩阵,A 2是s ×t 矩阵,A 4是t ×t 矩阵.证明:如果A 1,A 4都是可逆的,则A 也是可逆的,进一步,求A 的逆矩阵.证 如果A 1,A 4都是可逆的,令B=⎪⎪⎭⎫ ⎝⎛--142110A B A ,其中A 1-1,A 4-1分别是A 1,A 4的逆阵,B 2是s ×t 矩阵.令AB=E ,即有⎪⎪⎭⎫ ⎝⎛421A A A ⎪⎪⎭⎫ ⎝⎛--142110A B A =⎪⎪⎭⎫ ⎝⎛+-t s E A A B A E 014221=⎪⎪⎭⎫⎝⎛t s E E 00, 从而 A 1B 2+ A 2A 4-1=0,由此得B 2=-A 1-1A 2A 4-1.说明A 也是可逆的,且A -1=⎪⎪⎭⎫⎝⎛-----1414211110A A A A A。

高等代数矩阵练习题参考答案

高等代数矩阵练习题参考答案

第四章矩阵习题参考答案一、判断题1. 对于任意n阶矩阵A,B,有 A B A B .错.2. 如果A2 0, 则 A 0.11错. 如 A ,A20,但A 0.113. 如果 A A2E ,则 A 为可逆矩阵.正确. A A2 E A(E A) E,因此A可逆,且 A 1A E.4. 设A,B都是n阶非零矩阵,且AB 0,则A, B的秩一个等于n ,一个小于n.错.由AB 0可得r(A) r(B) n .若一个秩等于n ,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾. 只可能两个秩都小于n.5.A, B,C为n阶方阵,若AB AC, 则 B C.1 12 13 2错.如A1 1,B2 1,C3 2,有AB AC,但B C.1 12 13 26.A为m n矩阵,若r(A) s,则存在m阶可逆矩阵P及n阶可逆矩阵Q,使I s 0PAQ s.00正确. 右边为矩阵A的等价标准形,矩阵A等价于其标准形.7.n阶矩阵A可逆,则A* 也可逆.1 正确.由A可逆可得|A| 0,又AA* A*A |A |E .因此A*也可逆,且(A*) 1 1A.|A| 8.设A, B为n阶可逆矩阵,则(AB)* B* A*.正确. (AB )( AB)* | AB|E |A||B|E.又(AB)(B* A*) A(BB*) A* A|B|EA* |B|AA* |A||B|E .因此( AB)( AB)* ( AB)(B * A*) .由A, B为n阶可逆矩阵可得AB可逆,两边同时左乘式AB的逆选择题1.设A是n阶对称矩阵,B是n阶反对称矩阵(B T B) ,则下列矩阵中为反对称矩阵的是( B ) .(A) AB BA (B) AB BA (C) (AB)2(D) BAB(A) (D) 为对称矩阵,(B)为反对称矩阵, (C)当A, B可交换时为对称矩阵.2. 设A是任意一个n阶矩阵,那么( A )是对称矩阵.(A) A T A (B) A A T(C) A2(D) A T A3.以下结论不正确的是( C ).(A) 如果A是上三角矩阵,则A2也是上三角矩阵;(B) 如果A是对称矩阵,则A2也是对称矩阵;(C) 如果A是反对称矩阵,则A2也是反对称矩阵;(D) 如果A是对角阵,则A2也是对角阵.4.A是m k矩阵, B是k t矩阵, 若B的第j 列元素全为零,则下列结论正确的是 (B ) (A) AB 的第j 行元素全等于零;( B) AB 的第j列元素全等于零;( C) BA 的第j 行元素全等于零;( D) BA 的第j列元素全等于零;5 .设A,B为n阶方阵,E为n阶单位阵,则以下命题中正确的是( D )(A) (A B)2A2 2AB B2(B) A2B2 (A B)(A B)(C) (AB)2A2B2(D) A2 E2 (A E)(A E)6.下列命题正确的是( B ) .(A) 若AB AC ,则 B C(B) 若AB AC ,且 A 0 ,则 B C(C) 若AB AC,且 A 0,则 B C(D) 若AB AC,且 B 0,C 0 ,则 B C7. A 是 m n 矩阵, B 是 n m 矩阵,则( B ) (A) 当 m n时, 必有行列式 AB 0; (B) 当 m n时, 必有行列式AB 0 (C)当n m时, 必有行列式 AB 0;(D)当n m 时, 必有行列式 AB 0.AB 为m 阶方阵,当 m n 时, r(A) n,r(B) n,因此 r(AB) n m ,所以 AB 0. 8.以下结论正确的是( C )(A) 如果矩阵 A 的行列式 A 0,则 A 0; (B) 如果矩阵 A 满足 A 2 0 ,则 A 0;(C) n 阶数量阵与任何一个 n 阶矩阵都是可交换的; (D)对任意方阵 A,B ,有 (A B)(A B) A 2 B 2C ).由(B) A 主对角线上的元素全为零11 . n 阶矩阵 A 是可逆矩阵的充分必要条件是9.设1234是非零的四维列向量, A1234), A* 为 A 的伴随矩阵,已知Ax 0的基础解系为 (1,0, 2,0) T ,则方程组 A* x 0 的基础解系为( C ).A ) 123B )C )234D )44由 Ax 0的基础解系为 (1,0, 2,0) T 可得 (4) 10 2 00,230.因此( A ),( B )中向量组均为线性相关的,D ) 显然为线性相关的,因此答案为可得4均为 A* x 0的解 .10. 设 A 是 n 阶矩阵, A 适合下列条件( C 时,A 必是可逆矩阵(A) A nA (B)A 是可逆矩阵(C)A n 0(A) A 1 (B) A 0 (C) A A T(D) A 012 .A,B,C均是n阶矩阵,下列命题正确的是( A )(A) 若A是可逆矩阵,则从AB AC 可推出BA CA(B) 若 A 是可逆矩阵,则必有AB BA(C) 若 A 0 ,则从AB AC 可推出 B C(D) 若 B C ,则必有AB AC13.A,B,C均是n阶矩阵,E为n阶单位矩阵,若ABC E,则有( C )(A) ACB E ( B) BAC E (C) BCA E (D) CBA E14.A是n阶方阵,A*是其伴随矩阵,则下列结论错误的是( D )(A) 若A是可逆矩阵,则A*也是可逆矩阵;(B) 若A是不可逆矩阵,则A*也是不可逆矩阵;(C) 若A*0,则A是可逆矩阵; (D) AA*A.15.设A是5 阶方阵,且 A 0,则A*( D )(A) A (B) A 2(C) A3(D) A416.设A*是 A (a ij )n n的伴随阵,则A*A中位于(i,j)的元素为(B ) n n n n(A)a jk A ki (B)a kj A ki (C)a jk A ik D a ki A kjk 1 k 1 k 1 k 1(A) A是B的伴随(B) B是A的伴随(C) B是A 的伴随应为A的第i列元素的代数余子式与A的第j 列元素对应乘积和a11L a1n A11L A1n17.设 A L L L, B L L L , 其中A ij 是a ij 的代数余子式,则( C )a n1L a nn A n1L A nnD 以上结论都不对A018.设A,B为方阵,分块对角阵 C 0A B0,则C*( C)利用 CC* |C | E 验证.19.已知 A4 6 ,B1 3 5 ,下列运算可行的是( C )1 2 2 4 6(A ) A B (B ) A B (C ) AB (D ) AB BA20.设 A, B 是两个 m n 矩阵, C 是n 阶矩阵,那么( D )21.对任意一个 n 阶矩阵 A ,若 n 阶矩阵 B 能满足 AB BA ,那么 B 是一个( C )(A ) 对称阵 (B ) 对角阵 (C ) 数量矩阵 (D ) A 的逆矩阵与任意一个 n 阶矩阵均可交换的矩阵为数量矩阵 .22.设 A 是一个上三角阵,且 A 0 ,那么 A 的主对角线上的元素(C )(A ) 全为零( B )只有一个为零(C ) 至少有一个为零( D )可能有零,也可能没有零1323.设 A 1 3,则 A 1 ( D )2011 11(A)2(B )3(C )3(D )2 11 1 1 11 1136362636a 1b 1c 1a 1 c 1 2b 124. 设 A a 2b2c 2,若 AP a2c 22b 2 ,则 P ( B )a 3b 3c 3a 3 c 32b 3100100012 0 0(A)001 ( B ) 0 0 2(C )020 (D ) 0 0 1020011000 1 0(A)B *(B)(C)BAAB(D)A B A *B B *0 * A B B *A 与单位矩阵等价 A 可以表示为一系列初等矩阵的乘积1 a a L aa 1 a L a25.设 n(n 3) 阶矩阵 A a a1 L a ,若矩阵 A 的秩为 1,则a 必为( A )L L L L Laa a L1(A) 1(B )-1(C ) 11( D ) 21 nn1矩阵 A 的任意两行成比例26. 设 A,B 为两个 n 阶矩阵 ,现有四个命题 :①若 A, B 为等价矩阵 , 则 A,B 的行向量组等价 ; ②若 A, B 的行列式相等 ,即|A| |B|,则 A, B 为等价矩阵 ; ③若 Ax 0与Bx 0均只有零解 ,则A, B 为等价矩阵 ;④若 A, B 为相似矩阵 ,则 Ax 0与 Bx 0解空间的维数相同 . 以上命题中正确的是 ( D )(A) ①, ③.(B)②, ④. (C) ②, ③. (D) ③, ④.当B P 1AP 时, A, B 为相似矩阵。

矩阵考试题及答案详解

矩阵考试题及答案详解

矩阵考试题及答案详解一、单项选择题(每题2分,共10分)1. 矩阵的行列式为零,意味着什么?A. 矩阵是奇异的B. 矩阵是偶数阶的C. 矩阵是对称的D. 矩阵是单位矩阵答案:A2. 矩阵A和矩阵B可以相乘的条件是?A. A的列数等于B的行数B. A的行数等于B的列数C. A和B的行数相同D. A和B的列数相同答案:A3. 矩阵的转置操作会改变矩阵的什么?A. 行列数B. 元素位置C. 行列式值D. 秩答案:B4. 矩阵的逆矩阵存在的条件是?A. 矩阵是方阵B. 矩阵是满秩的C. 矩阵的行列式非零D. 所有以上条件答案:D5. 矩阵的秩是指?A. 矩阵中非零行的最大数量B. 矩阵中非零列的最大数量C. 矩阵中最大线性无关行或列的数量D. 矩阵的行数和列数之和答案:C二、填空题(每题3分,共15分)1. 如果矩阵A的行列式为1,则称矩阵A为________矩阵。

答案:单位2. 矩阵的________是指矩阵中任意两行(或两列)的元素对应相乘后求和的结果。

答案:元素3. 矩阵的________是指矩阵中所有元素的平方和的平方根。

答案:范数4. 矩阵A和矩阵B相乘得到单位矩阵,称矩阵B为矩阵A的________。

答案:逆矩阵5. 如果矩阵A和矩阵B的秩相等,则称矩阵A和矩阵B是________的。

答案:等价三、解答题(每题10分,共20分)1. 给定矩阵A和矩阵B,求它们的乘积AB,并说明结果矩阵的行列式。

答案:首先计算矩阵A和矩阵B的乘积AB,然后根据行列式的性质,结果矩阵AB的行列式等于矩阵A的行列式乘以矩阵B的行列式。

2. 证明矩阵的秩等于其行秩和列秩。

答案:矩阵的秩是指矩阵中最大线性无关行或列的数量。

由于矩阵的行和列可以相互转换(通过转置操作),因此矩阵的行秩和列秩实际上是相等的,即矩阵的秩等于其行秩和列秩。

四、证明题(每题15分,共30分)1. 证明矩阵的行列式等于其转置矩阵的行列式。

答案:设矩阵A的行列式为det(A),矩阵A的转置为A^T。

高等代数第四章矩阵练习试题参考包括答案.docx

高等代数第四章矩阵练习试题参考包括答案.docx

第四章矩阵习题参考答案一、判断题1.对于任意 n 阶矩阵A,B,有A B A B .错.2.如果 A20, 则A0 .错 . 如A 110, 但A 0 . 1, A213.如果 A A2 E ,则 A 为可逆矩阵.正确 . A A2E A( E A) E ,因此A可逆,且A1 A E .4.设 A, B 都是 n 阶非零矩阵,且AB 0 ,则A, B的秩一个等于n,一个小于n.错 . 由AB0 可得r ( A)r (B)n .若一个秩等于 n ,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾. 只可能两个秩都小于n .5.A, B, C为n阶方阵,若AB AC ,则 B C.错 . 如A 112132,有 AB AC ,但B C. 1, B2, C32116.A为m n矩阵,若r ( A)s, 则存在 m 阶可逆矩阵P及 n 阶可逆矩阵 Q ,使I s0PAQ.00正确 . 右边为矩阵A的等价标准形,矩阵 A 等价于其标准形.7.n阶矩阵A可逆,则A *也可逆 .正确 . 由A可逆可得| A |0 ,又 AA* A* A| A | E .因此 A *也可逆,且( A*) 11A . | A |8.设A, B为n阶可逆矩阵,则( AB)* B * A* .正确 . ( AB)( AB)*| AB | E| A || B | E. 又( AB)( B * A*) A( BB*) A* A | B | EA* | B | AA* | A || B | E .因此 ( AB)( AB)* ( AB)( B * A*) .由 A, B 为 n 阶可逆矩阵可得AB 可逆,两边同时左乘式 AB 的逆可得( AB)* B * A * .二、选择题1.设A是n阶对称矩阵,B是n阶反对称矩阵(B T B ),则下列矩阵中为反对称矩阵的是( B ).(A) AB BA (B)AB BA (C)( AB)2(D)BAB(A)(D) 为对称矩阵,( B)为反对称矩阵,( C)当A, B可交换时为对称矩阵.2.设 A 是任意一个n阶矩阵,那么(A)是对称矩阵.(A)A T A(B) A A T(C)A2(D)A T A3.以下结论不正确的是(C).(A)如果 A 是上三角矩阵,则 A2也是上三角矩阵;(B)如果 A 是对称矩阵,则 A2也是对称矩阵;(C)如果 A 是反对称矩阵,则 A2也是反对称矩阵;(D)如果 A 是对角阵,则 A2也是对角阵.4.A是m k 矩阵, B 是 k t 矩阵,若 B 的第 j 列元素全为零,则下列结论正确的是( B )( A)AB 的第 j 行元素全等于零;( B) AB的第j列元素全等于零;( C)BA 的第 j 行元素全等于零;( D)BA 的第 j 列元素全等于零;5 .设 A, B 为 n 阶方阵,E 为 n 阶单位阵,则以下命题中正确的是(D )(A)( A B)2 A 2 2 ABB 2 (B) A 2 B 2( A B)( A B)(C) ( AB) 2A 2B 2 (D) A 2E 2( A E)( A E)6.下列命题正确的是( B ) .(A) 若 AB AC ,则 B C(B) 若 AB AC ,且 A0 ,则 B C(C) 若 AB AC ,且 A 0 ,则 BC(D)若 ABAC ,且 B 0, C 0 ,则 B C7.A 是 m n 矩阵,B 是 n m 矩阵,则( B ) .(A) 当 m n 时,必有行列式 AB 0 ; (B) 当 m n 时,必有行列式 AB 0 (C) 当 nm 时,必有行列式 AB0 ;(D) 当 n m 时,必有行列式 AB 0 .AB 为 m 阶方阵,当 m n 时, r ( A) n, r ( B) n, 因此 r ( AB) n m ,所以AB 0 .8.以下结论正确的是( C )(A) 如果矩阵 A 的行列式 A 0 , 则 A 0 ; (B) 如果矩阵A 满足 A 2 0 ,则A 0;(C) n 阶数量阵与任何一个 n 阶矩阵都是可交换的;(D) 对任意方阵 A, B ,有 ( A B)( A B) A 2 B 29.设 1 , 2 , 3 ,4 是非零的四维列向量, A ( 1 ,2 ,3 ,4 ), A * 为 A 的伴随矩阵,已知 Ax0 的基础解系为 (1,0, 2,0) T ,则方程组 A * x0 的基础解系为( C ) .( A ) 1 , 2,3 .( B ) 12 ,23 ,31 .( C)2,3,4 .( D)1 2 ,2 3 , 3 4 , 4 1 .1由 Ax 0 的基础解系为(1,0, 2,0)T可得 ( 1 , 2 , 3 , 4 )00, 1 2 30 .2D)显然为线性相关的,因此答案因此( A),(B)中向量组均为线性相关的,而(为( C) . 由A* A A*( 1 , 2 ,3, 4 )( A *1, A* 2 , A* 3 , A * 4 )O 可得 1 , 2 , 3 , 4 均为A* x0 的解.10.设 A 是n阶矩阵, A 适合下列条件(C)时,I n A 必是可逆矩阵(A)A n A(B) A 是可逆矩阵(C)A n0(B) A 主对角线上的元素全为零11. n 阶矩阵A是可逆矩阵的充分必要条件是(D)(A) A 1 (B)A 0 (C) A A T(D)A012. A, B, C 均是 n 阶矩阵,下列命题正确的是(A)(A)若 A 是可逆矩阵,则从 AB AC 可推出 BA CA(B)若 A 是可逆矩阵,则必有 AB BA(C) 若A0 ,则从 AB AC 可推出 B C(D) 若B C ,则必有 AB AC13.A, B,C均是n阶矩阵,E为 n 阶单位矩阵,若ABC E ,则有(C)(A) ACB E (B) BAC E (C) BCA E (D)CBA E14.A是n阶方阵,A*是其伴随矩阵,则下列结论错误的是(D)(A)若 A 是可逆矩阵,则 A*也是可逆矩阵;(B) 若A是不可逆矩阵,则A*也是不可逆矩阵;(C) 若 A *0 ,则 A 是可逆矩阵;(D) AA *A .AA *A E nA .15.设 A 是 5 阶方阵,且A0 ,则 A * ( D)(A)A(B)A23 (D)4(C)AA16.设 A * 是 A(a ij )n n 的伴随阵,则 A * A 中位于 (i , j) 的元素为(B )nnnn(A)ajkA ki (B)a kjAki(C)a jkAik(D)a kiAkjk 1k 1k 1k 1应为 A 的第 i 列元素的代数余子式与 A 的第 j 列元素对应乘积和 .a11L a 1nA11L A1n17. 设 ALL L, BLL L, 其中 A ij 是 a ij 的代数余子式, 则( C )an1LannAn1LAnn(A)A 是B 的伴随 (B)B 是 A 的伴随 (C) B 是 A 的伴随(D) 以上结论都不对18.设 A, B 为方阵,分块对角阵CA 0*( C )0 , 则 CB(A)A *(B)A A *C0 B *CB B *(C)CB A *0 (D)A B A *A B *CA B B *利用 CC*| C | E 验证 .46 1 3 5 19.已知 A, B4 ,下列运算可行的是(C)122 6(A)A B (B)A B(C)AB (D) AB BA20.设A, B是两个m n 矩阵,C是 n 阶矩阵,那么(D)(A) C ( A B) CA CB(B)( A T B T )C A T C B T C(C) C T( A B) C T A C T B(D)( A B)C AC BC21.对任意一个n阶矩阵A,若n阶矩阵B能满足AB BA ,那么 B 是一个(C)(A)对称阵(B) 对角阵(C)数量矩阵(D) A 的逆矩阵与任意一个 n 阶矩阵均可交换的矩阵为数量矩阵.22.设A是一个上三角阵,且A0,那么 A 的主对角线上的元素(C)(A)全为零( B)只有一个为零( C)至少有一个为零( D)可能有零,也可能没有零23.设A 13D2,则 A 1()1111 2332(A)( B)( C)( D)1111111136362636a1b1 24.设A a2b2a3b31 00(A)0 0 10 2 0c1a1c12b1c2,若 AP a2c22b2,则 P( B)c3a3c32b3100001200( B)002( C)020(D)001 0101000101 a a L aa 1a L a25.设 n(n3) 阶矩阵 Aa a1 L a ,若矩阵 A 的秩为 1,则 a 必为( A )L L LL La aa L1(A) 1( B ) -1(C ) 1(D )1 nn 11矩阵 A 的任意两行成比例 .26. 设 A, B 为两个 n 阶矩阵 , 现有四个命题 :①若 A, B 为等价矩阵 , 则 A, B 的行向量组等价 ;②若 A, B 的行列式相等 , 即 | A | | B |, 则 A, B 为等价矩阵 ; ③若 Ax 0 与 Bx 0 均只有零解 , 则 A, B 为等价矩阵 ; ④若 A, B 为相似矩阵 , 则 Ax 0 与 Bx 0 解空间的维数相同 .以上命题中正确的是 ( D )(A) ① , ③. (B) ② , ④. (C) ② , ③ .(D)③ , ④ .当 BP 1 AP 时, A, B 为相似矩阵。

(完整版)矩阵练习(带答案详解)

(完整版)矩阵练习(带答案详解)

(完整版)矩阵练习(带答案详解)一、填空题:1.若A ,B 为同阶方阵,则22))((B A B A B A -=-+的充分必要条件是BAAB =。

2. 若n 阶方阵A ,B ,C 满足I ABC =,I 为n 阶单位矩阵,则1 -C=AB。

3. 设A ,B 都是n 阶可逆矩阵,若=00A B C ,则1-C =--0011B A 。

4. 设A =?--1112,则1-A =2111。

5. 设???? ??--=111111A ,--=432211B .则=+B A 2--731733。

6.设=300020001A ,则1-A =310002100017.设矩阵 1 -1 3 2 0,2 0 10 1A B == ? ?,T A 为A 的转置,则B A T=-160222.8.=110213021A ,B 为秩等于2的三阶方阵,则AB 的秩等于 2 .二、判断题(每小题2分,共12分)1. 设B A 、均为n 阶方阵,则 kk k B A AB =)((k 为正整数)。

……………(× )2. 设,,A B C 为n 阶方阵,若ABC I =,则111CB A ---=。

……………………………(× )3. 设B A 、为n 阶方阵,若AB 不可逆,则,A B 都不可逆。

……………………… ( × )4. 设B A 、为n 阶方阵,且0AB =,其中0A ≠,则0B =。

……………………… (× )5. 设C B A 、、都是n 阶矩阵,且I CA I AB ==,,则C B=。

……………………(√ )6. 若A 是n 阶对角矩阵,B 为n 阶矩阵,且AC AB =,则B 也是n 阶对角矩阵。

…(× )7. 两个矩阵A 与B ,如果秩(A )等于秩(B ),那么A 与B 等价。

…………(× )8. 矩阵 A 的秩与它的转置矩阵T A 的秩相等。

《高代与解几》第五章矩阵 专题练习-参考答案

《高代与解几》第五章矩阵 专题练习-参考答案

第五章 专题练习—矩阵的秩与矩阵的运算---参考答案一、选择题1-5、BCBBB 5-10、DAACB 11-15、DDBDA二、填空题1、⎥⎦⎤⎢⎣⎡--3033 2、⎪⎪⎭⎫⎝⎛--01223、00==B A 或4、B A n)1(-; ⎥⎦⎤⎢⎣⎡--0011A B5、⎪⎪⎪⎭⎫⎝⎛00000213141 6、 ⎪⎪⎪⎭⎫ ⎝⎛----611859131320001 7、⎥⎦⎤⎢⎣⎡-80232 8、C A 1- 9、 E 10、 1/2__ 11、31; 9 ; 81 12、 1613、I 2 14、 3 15、__2__三、计算题1、求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-----7931181332111511的秩. 解 2131413115111511123027431810274139704148r r r r r r -------⎛⎫⎛⎫ ⎪ ⎪--⎪⎪−−−→ ⎪⎪-- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭32422115102740000000r r r r ----⎛⎫⎪-⎪−−−→ ⎪ ⎪ ⎪⎝⎭, 所以矩阵的轶为2.2、利用初等变换求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛------1111111111111111的逆矩阵: 解()111110001111010011110010111101A E ⎛⎫ ⎪--⎪= ⎪-- ⎪ ⎪--⎝⎭ 213141111110000022110002021010022011r r r r r r ---⎛⎫ ⎪---⎪−−−→ ⎪--- ⎪ ⎪---⎝⎭43234311111000020210100022110000041111r r r r r r -↔-⎛⎫ ⎪--- ⎪−−−→ ⎪--- ⎪ ⎪--⎝⎭4331412121111100001011201200011121200000114141414r r r --⎛⎫⎪- ⎪−−−→⎪- ⎪ ⎪--⎝⎭342414111034141414010014141414001014141414000114141414r r r r r r ---⎛-⎫ ⎪--⎪−−−→ ⎪-- ⎪ ⎪--⎝⎭12310001414141401001414141400101414141400114141414r r r --⎛⎫⎪-- ⎪−−−→⎪-- ⎪ ⎪--⎝⎭因此 1111111*********111A -⎛⎫ ⎪-- ⎪=⎪-- ⎪--⎝⎭3、用分块法求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛140520000120013的逆矩阵: 解 12310031002100210000250025041041A O A O A ⎛⎫⎛⎫⎪ ⎪⎛⎫⎪ ⎪=== ⎪ ⎪ ⎪⎝⎭⎪ ⎪⎝⎭⎝⎭, 因111112311125151,,2123414218A A ------⎛⎫⎛⎫⎛⎫⎛⎫====-⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭则 1110023000011851802919A--⎛⎫⎪- ⎪= ⎪- ⎪-⎝⎭.4、求解矩阵方程:(1)⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛63354321X 解 记矩阵方程为A X B =,其中1253,3436A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭, 由于122034A ==-≠,所以A 可逆,故1X A B -=.构造()211223(12)12531070343601632r r r r r A B -+⨯-⎛⎫⎛-⎫=−−−−→⎪ ⎪⎝⎭⎝⎭, 所以 170632X A B --⎛⎫==⎪-⎝⎭.(2)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解 11010100001021102341100001010--⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=2014310125、已知三阶方阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=10110111A , 且O E AB A =--2, 求矩阵B . 解: 由O E AB A =--2, 得: E B A A =-)(, 又由1||=A , 得A 可逆, 所以:1-=-A B A , 1--=A A B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=101010110001111]|[E A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--1010010*********~ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--1001110010211001~ 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-101102111A , 故⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=000200320100110211100110111B .6、设矩阵,A B 满足关系式2AB B A =+,且301110014A ⎛⎫⎪= ⎪ ⎪⎝⎭,求矩阵B . 解 由关系式2AB B A =+,整理得2AB B A -=,再由矩阵的分配律得(2)A E B A -=,即 ()12B A E A -=-,又由301110014A ⎛⎫⎪= ⎪ ⎪⎝⎭,则有1012110012A E ⎛⎫ ⎪-=- ⎪ ⎪⎝⎭,求其逆矩阵得 ()111012112110221012111A E ----⎛⎫⎛⎫⎪ ⎪-=-=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭, 故矩阵()12113015222221110432111014223B A E A -----⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-=--=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭7、设,解矩阵方程.解:由,得,且从而所以,X ==8.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=10110111A , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200020102B , 已知B A B A AX AXB +-+=22, 求矩阵X . 解: 11)(---+=E B B A A X ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=30330613.9. 已知矩阵B A 、满足O I BX BXAB=---1, 其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=001020100A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=011220111B , 求矩阵X .解: 由O I BX BXAB =---1得: I I AB BX =--)(1, 容易验证: I AB B --1,均可逆,故有: 111)(----=I AB B X 111)(])[(----=-=B A B I AB⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-0210100101012000111.10、设A 为三阶矩阵,12A =,求1*(2)5A A --.解: 【思路分析】先化简1*(2)5A A --,再计算行列式. 方法一: 1*1111(2)5522A A AA AA-----=-=-,所以1*131(2)52(2)16A A AA---=-=-⋅=-.方法二: *1*1***11(2)555422A A A AA A A A---=-=⋅-=-,所以311**3*3(2)54(4)(4)16A A A A A---=-=-=-⋅=-.四、解方程组1、当λ取何值时,线性方程组⎪⎩⎪⎨⎧=++=++=++03303202321321321x x x x x x x x x λ有非0解?并求一般解.解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2001101213511012113132121λλλA所以当2-=λ时,线性方程组有无穷多解,取3x 为自由未知数, 原方程组等价于⎩⎨⎧=--=++00232321x x x x x 即:⎩⎨⎧-==3231x x x x故原方程组的一般解为:⎩⎨⎧-==3231x x x x 3x 为自由未知数2、 当b a ,取何值时,线性方程组⎪⎪⎩⎪⎪⎨⎧=++-=+-+=--=+-+bx x x x a x x x x x x x x x x x 43214321432432153112224、当b a ,取何值时,线性方程组⎪⎪⎩⎪⎪⎨⎧=-+++=+++=++++=-+++bx x x x x x x x x x x x x x a x x x x x 5432154325432154321334536221323无解.有唯一解.有无穷多解?有解时,求其解.解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=b a b a b A 13345362210311231111111334536221011111131123),( ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------→56221362210362210111111b a ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------→2000000362210111111a b aa 可见,当0≠a 或2≠b 时,该方程组无解。

大学高等代数试题及答案

大学高等代数试题及答案

大学高等代数试题及答案一、单项选择题(每题2分,共10分)1. 设矩阵A为3阶方阵,且|A|=1,则矩阵A的逆矩阵的行列式是()。

A. 0B. 1C. -1D. 32. 若线性方程组有唯一解,则该方程组的系数矩阵的秩与增广矩阵的秩()。

A. 不相等B. 相等C. 相差1D. 相差23. 以下哪个矩阵是正交矩阵?()A. \[\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}\]B. \[\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\]C. \[\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}\]D. \[\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\]4. 矩阵A的特征值是λ,那么矩阵A的转置的特征值是()。

A. λB. -λC. 0D. 不确定5. 设A是n阶方阵,且A^2=I(I是单位矩阵),则A的行列式是()。

A. 1B. -1C. 0D. 不确定二、填空题(每题3分,共15分)6. 若矩阵A的秩为2,则A的行最简形矩阵中非零行的个数为_________。

7. 设A是3×3矩阵,且A的迹等于3,则A的对角线元素之和为_________。

8. 若线性方程组的系数矩阵A和增广矩阵B的秩相等,则该方程组有_________解。

9. 设矩阵A的特征多项式为f(λ)=λ^2-5λ+6,则A的特征值为_________。

10. 若矩阵A与B相似,则A与B有相同的_________。

三、解答题(每题10分,共20分)11. 给定矩阵\[A=\begin{pmatrix} 2 & 1 \\ 1 & 2\end{pmatrix}\],求矩阵A的特征值和特征向量。

《高等代数》第十章习题及答案

《高等代数》第十章习题及答案

习题10.1解答1.设λ矩阵A(λ)=diag(d 1(λ), d 2(λ),..., d 5(λ)).如果d j (λ)|d j+1(λ),j=1,2,3,4,求λ的前三项行列式因子.解A(λ)的1阶行列式因子显然为d 1(λ), 2阶行列式因子显然为d 1(λ)d 2(λ), 3阶行列式因子显然为d 1(λ)d 2(λ)d 3(λ), 4阶行列式因子显然为d 1(λ)d 2(λ)d 3(λ)d 4(λ), 5阶行列式因子显然为d 1(λ)d 2(λ)d 3(λ)d 4(λ)d 5(λ).2.设λ矩阵A(λ)=⎪⎪⎪⎭⎫ ⎝⎛-+--+-+--+-+--3231232534234342122222λλλλλλλλλλλλλλ把A(λ)写成A 2λ2+A 1λ+A 0的形式,其中A 2 ,A 1,A 0都是数字矩阵,又将(A(λ))2也写成上述形式.解A(λ)= ⎪⎪⎪⎭⎫ ⎝⎛22222304000λλλλλ+⎪⎪⎪⎭⎫ ⎝⎛λλλλλλλλλ222333+⎪⎪⎪⎭⎫⎝⎛---------313524421=2301401100λ⎪⎪⎪⎭⎫ ⎝⎛+λ⎪⎪⎪⎭⎫ ⎝⎛222333111+⎪⎪⎪⎭⎫⎝⎛---------313524421 (A(λ)) 2=(A 2λ2+A 1λ+A 0)2=201001220110232112422)()()(A A A A A A A A A A A A A A A A ++++++++λλλλ=410031304301λ⎪⎪⎪⎭⎫ ⎝⎛+323711339151024λ⎪⎪⎪⎭⎫⎝⎛+21772251221853λ⎪⎪⎪⎭⎫ ⎝⎛------+λ⎪⎪⎪⎭⎫⎝⎛---------362228563544272023+⎪⎪⎪⎭⎫⎝⎛2611164117272610213.求Jordan 块J(0,n)的平方的特征矩阵的各阶行列式因子. 解(J(0,n))2=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛001000000000000010000001000000000000 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=-λλλλλλ0100000000000010000010000000000)),0((2n J E n 阶行列式因子为λn .有一个n-2阶子式等于(-1)n-2,所以n-2阶行列式因子为1.阶数小于n-2的行列式因子均为1.n-1阶行列式因子一定整除n 阶行列式因子,且因为只有n-2个-1,要使n-1阶子式不为零,必须有λ,但多一个λ,就会少一个-1.可以从第2行开始,偶数行取λ,奇数行取-1相乘,当n 为奇数时,乘的结果取正号时为λ(n-1)/2;当n 为偶数时,乘的结果取正号时为λn/2.所以当n 为奇数时,A 的n-1阶行列式因子为λ(n-1)/2;当n 为偶数时,A 的n-1阶行列式因子为λn/2.10.2习题解答1.求A 的特征矩阵的不变因子组:①A=⎪⎪⎪⎭⎫ ⎝⎛---502613803 ②⎪⎪⎪⎭⎫ ⎝⎛---7137341024解 ① λE-A=⎪⎪⎪⎭⎫ ⎝⎛+-+---502613803λλλ→⎪⎪⎪⎭⎫⎝⎛-+--+++8)5)(3(2/1002/32/310502λλλλλ⎪⎪⎪⎭⎫ ⎝⎛++-+16)5)(3(00010001λλλ→⎪⎪⎪⎭⎫ ⎝⎛++2)1(00010001λλ A 的不变因子组为{1,λ+1,(λ+1)2}.② λE-A=⎪⎪⎪⎭⎫ ⎝⎛------+7137341024λλλ→⎪⎪⎪⎭⎫⎝⎛--+----7133/73/43/50103/23/10λλλλ →⎪⎪⎪⎭⎫ ⎝⎛--+--103/23/103/73/43/50001λλλ→⎪⎪⎪⎭⎫⎝⎛--+--302074530001λλλ →⎪⎪⎪⎭⎫ ⎝⎛-3)2(00010001λ A 的不变因子组为{1,1,(λ-1)3}.2.求A(λ)的标准形:① A(λ)=⎪⎪⎪⎭⎫ ⎝⎛+---+-+-1133111700222λλλλλλλ② A(λ)=⎪⎪⎪⎭⎫⎝⎛+-------+-11222223232423λλλλλλλλλλλλ ③A(λ)=⎪⎪⎪⎭⎫⎝⎛---222)1(00010λλλλλ 解① A(λ)=⎪⎪⎪⎭⎫ ⎝⎛+---+-+-1133111700222λλλλλλλ→⎪⎪⎪⎭⎫ ⎝⎛λ00010001② A(λ)=⎪⎪⎪⎭⎫ ⎝⎛+-------+-11222223232423λλλλλλλλλλλλ→⎪⎪⎪⎭⎫ ⎝⎛-)1(0000001λλλ③A(λ)=⎪⎪⎪⎭⎫⎝⎛---222)1(0001000λλλλλ→⎪⎪⎪⎭⎫ ⎝⎛----2222)1(00011λλλλλλ→⎪⎪⎪⎭⎫ ⎝⎛--+--+-2222)1(00011011λλλλλλ→⎪⎪⎪⎭⎫⎝⎛-+--+-232)1(000011λλλλλλ→⎪⎪⎪⎭⎫⎝⎛-+-+-23)1(0000001λλλλλ→⎪⎪⎪⎭⎫⎝⎛-+-+-+-233)1(0001λλλλλλλ →⎪⎪⎪⎭⎫⎝⎛-+-+-+-223)1(0022001λλλλλλλ→⎪⎪⎪⎭⎫⎝⎛-+-+-+-0)1(0220001232λλλλλλλ→⎪⎪⎪⎭⎫⎝⎛-+--+--222)1)(1(2/1)1(0022001λλλλλλλλ→⎪⎪⎪⎭⎫⎝⎛-+--2)1)(1(000)1(0001λλλλλλ习题10.5解答1. 如果矩阵A 的不变因子组如下,求矩阵A 的若当标准形.①{1,1,(λ-1),(λ-1) 3} ②{1,1,1,(λ-1)(λ-1) 3}③{1,1,1,1,1,(λ+1) 2,(λ+1) 2,(λ+2) 2(λ-3)2}解 ①A 的初等因子组为{(λ-1),(λ-1) 3},A 的若当标准形为J=⎪⎪⎪⎪⎪⎭⎫⎝⎛1100011000100001 ②A 的初等因子组为{(λ-1) 4},A 的若当标准形为J=⎪⎪⎪⎪⎪⎭⎫⎝⎛1100011000110001 ③ A 的初等因子组为{(λ+1) 2,(λ+1) 2,(λ+2) 2,(λ-3)2},A 的若当标准形为J=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛------3100000003000000002100000002000000002100000002000000002100000002 2.求下述矩阵的若当标准形.①⎪⎪⎪⎭⎫ ⎝⎛---502613803 ②⎪⎪⎪⎭⎫ ⎝⎛---7137341024 ③⎪⎪⎪⎭⎫ ⎝⎛---10142681330 ④⎪⎪⎪⎭⎫ ⎝⎛----244352341 ⑤⎪⎪⎪⎪⎪⎭⎫⎝⎛-----01617121700140013 解 ① λE-A=⎪⎪⎪⎭⎫ ⎝⎛+-+---502613803λλλ→⎪⎪⎪⎭⎫ ⎝⎛++2)1(00010001λλ A 的初等因子为{(λ+1),( λ+1)2},A 的若当标准形为J=⎪⎪⎪⎭⎫ ⎝⎛---110010001 ② λE-A=⎪⎪⎪⎭⎫ ⎝⎛------+7137341024λλλ→⎪⎪⎪⎭⎫ ⎝⎛--+----1024734713λλλ →⎪⎪⎪⎭⎫ ⎝⎛-+-+--1042743731λλλ→⎪⎪⎪⎭⎫ ⎝⎛+--+---422014105307312λλλλλλ →⎪⎪⎪⎭⎫ ⎝⎛+--+--422014105300012λλλλλ→⎪⎪⎪⎭⎫ ⎝⎛+--+-422024100012λλλλ→⎪⎪⎪⎭⎫ ⎝⎛-3)2(00010001λ A 的初等因子为{(λ-2)3},A 的若当标准形为J=⎪⎪⎪⎭⎫⎝⎛210021002 ③ λE-A=⎪⎪⎪⎭⎫ ⎝⎛+-----1014268133λλλ→⎪⎪⎪⎭⎫ ⎝⎛+2)1(0000001λλ A 的初等因子为{λ,(λ+1)2},A 的若当标准形为J=⎪⎪⎪⎭⎫ ⎝⎛--110010000 ④ λE-A=⎪⎪⎪⎭⎫ ⎝⎛+-----+244352341λλλ→⎪⎪⎪⎭⎫ ⎝⎛+---+--244341352λλλ →⎪⎪⎪⎭⎫ ⎝⎛--++----4620)1(2/3)34(2/103522λλλλλλ→⎪⎪⎪⎭⎫ ⎝⎛--+-+-4620)1()34(00012λλλλλ →⎪⎪⎪⎭⎫ ⎝⎛-----462053200012λλλλ→⎪⎪⎪⎭⎫ ⎝⎛-----624032500012λλλλ →⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+-----)2153)(2153)(3(0032500012i i λλλλλ →⎪⎪⎪⎪⎪⎭⎫⎝⎛--+--)2153)(2153)(3(00010001i i λλλ ⑤ λE-A=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----+--λλλλ1617121700140013→⎪⎪⎪⎪⎪⎭⎫⎝⎛--22)1(00)1(000010001λλ A 的初等因子为{(λ-1)2,(λ-1)2},A 的若当标准形为J=⎪⎪⎪⎪⎪⎭⎫⎝⎛1100010000110001 3.设A ∈Mat n ×n (C).证明A 的不变因子组中的最后一个不变因子恰是A 的最小多项式.证 设A 的初等因子组为{(λ-λ1)n1,(λ-λ2)n2,... ,(λ-λs )ns },则A 的特征多项式为 f(λ)= (λ-λ1)n1(λ-λ2)n2...(λ-λs )ns其中λ1,λ2,...,λs 中有些是相同的,当λi 和λj 相同,则去掉(λ-λi )ni ,(λ-λj )nj ,中指数较小的一个,不妨设λ1,λ2,...,λt 中互不相同,且在{(λ-λ1)n1,(λ-λ2)n2,... ,(λ-λs )ns }对应最大指数,令m(x)= (x-λ1)n1(x-λ2)n2...(x-λt )nt设A的若当标准形为J,则存在可逆矩阵C使A=C-1JC,显然m(A)=C-1m(J)C =C-10C=0假设A的最小多项式为m1(x),则m1(x)|m(x),根据初等因子与若当块的对应关系知,假若m1(x)= (x-λ1)p1(x-λ2)p2...(x-λt)pt的次数比m(x)小不妨设p1<n1,则m1(J)= (J-λ1E)p1(J-λ2E)p2...(J-λt E)pt,右边各项中第一个若当块对应的分块对角阵都不为零,从而m1(J)不为零,所以m1(A)不为零,矛盾.故m(x)是A的最小多项式.4.求(J(0,n))2的若当标准形.解在习题10.1的第3题中得(J(0,n))2的n阶行列式因子为λn;n-2阶行列式因子为1.阶数小于n-2的行列式因子均为1.当n为奇数时,(J(0,n))2的n-1阶行列式因子为λ(n-1)/2;当n为偶数时,(J(0,n))2的n-1阶行列式因子为λn/2.所以当n为奇数时,(J(0,n))2的初等因子组为{λ(n-1)/2,λ(n+1)/2},对应的若当标准形为diag(J(0,(n-1)/2),J(0,(n+1)/2));当n为偶数时,(J(0,n))2的初等因子组为{λn/2,λn/2},对应的若当标准形为diag(J(0,n/2),J(0,n/2)).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 矩阵习题参考答案一、 判断题1. 对于任意n 阶矩阵A ,B ,有A B A B +=+.错.2. 如果20,A =则0A =.错.如211,0,011A A A ⎛⎫==≠ ⎪--⎝⎭但.3. 如果2A A E +=,则A 为可逆矩阵.正确.2()A A E A E A E +=⇒+=,因此A 可逆,且1A A E -=+.4. 设,A B 都是n 阶非零矩阵,且0AB =,则,A B 的秩一个等于n ,一个小于n .错.由0AB =可得()()r A r B n +≤.若一个秩等于n ,则该矩阵可逆,另一个秩为零,与两个都是非零矩阵矛盾.只可能两个秩都小于n .5.C B A ,,为n 阶方阵,若,AC AB = 则.C B =错.如112132,,112132A B C ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭,有,AC AB =但B C ≠.6.A 为n m ⨯矩阵,若,)(s A r =则存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使.000⎪⎪⎭⎫ ⎝⎛=sI PAQ正确.右边为矩阵A 的等价标准形,矩阵A 等价于其标准形.7.n 阶矩阵A 可逆,则*A 也可逆.正确.由A 可逆可得||0A ≠,又**||AA A A A E ==.因此*A 也可逆,且11(*)||A A A -=. 8.设B A ,为n 阶可逆矩阵,则.**)*(A B AB =正确.*()()||||||.AB AB AB E A B E ==又()(**)(*)*||*||*||||AB B A A BB A A B EA B AA A B E ====.因此()()*()(**)AB AB AB B A =.由B A ,为n 阶可逆矩阵可得AB 可逆,两边同时左乘式AB 的逆可得.**)*(A B AB =二、 选择题1.设A 是n 阶对称矩阵,B 是n 阶反对称矩阵()T B B =-,则下列矩阵中为反对称矩阵的是(B ).(A) AB BA - (B) AB BA + (C) 2()AB (D) BAB(A)(D)为对称矩阵,(B )为反对称矩阵,(C )当,A B 可交换时为对称矩阵.2. 设A 是任意一个n 阶矩阵,那么( A )是对称矩阵.(A) T A A (B) T A A - (C) 2A (D) T A A -3.以下结论不正确的是( C ).(A) 如果A 是上三角矩阵,则2A 也是上三角矩阵;(B) 如果A 是对称矩阵,则 2A 也是对称矩阵;(C) 如果A 是反对称矩阵,则2A 也是反对称矩阵;(D) 如果A 是对角阵,则2A 也是对角阵.4.A 是m k ⨯矩阵, B 是k t ⨯矩阵, 若B 的第j 列元素全为零,则下列结论正确的是(B )(A ) AB 的第j 行元素全等于零; (B )AB 的第j 列元素全等于零;(C ) BA 的第j 行元素全等于零; (D ) BA 的第j 列元素全等于零;5.设,A B 为n 阶方阵,E 为n 阶单位阵,则以下命题中正确的是(D )(A) 222()2A B A AB B +=++ (B) 22()()A B A B A B -=+-(C) 222()AB A B = (D) 22()()A E A E A E -=+-6.下列命题正确的是(B ).(A) 若AB AC =,则B C =(B) 若AB AC =,且0A ≠,则B C =(C) 若AB AC =,且0A ≠,则B C =(D) 若AB AC =,且0,0B C ≠≠,则B C =7. A 是m n ⨯矩阵,B 是n m ⨯矩阵,则( B ).(A) 当m n >时,必有行列式0AB ≠;(B) 当m n >时,必有行列式0AB =(C) 当n m >时,必有行列式0AB ≠;(D) 当n m >时,必有行列式0AB =.AB 为m 阶方阵,当m n >时,(),(),r A n r B n ≤≤因此()r AB n m ≤<,所以0AB =.8.以下结论正确的是( C )(A) 如果矩阵A 的行列式0A =,则0A =;(B) 如果矩阵A 满足20A =,则0A =;(C) n 阶数量阵与任何一个n 阶矩阵都是可交换的;(D) 对任意方阵,A B ,有22()()A B A B A B -+=-9.设1234,,,αααα是非零的四维列向量,1234(,,,),*A A αααα=为A 的伴随矩阵,已知0Ax =的基础解系为(1,0,2,0)T ,则方程组*0A x =的基础解系为( C ).(A )123,,ααα. (B )122331,,αααααα+++. (C )234,,ααα. (D )12233441,,,αααααααα++++.由0Ax =的基础解系为(1,0,2,0)T 可得12341310(,,,)0,2020αααααα⎛⎫ ⎪ ⎪=+= ⎪ ⎪⎝⎭. 因此(A ),(B )中向量组均为线性相关的,而(D )显然为线性相关的,因此答案为(C ).由可得12,,αα34,αα均为*0A x =的解.10.设A 是n 阶矩阵,A 适合下列条件( C )时,n I A -必是可逆矩阵(A) n A A = (B) A 是可逆矩阵 (C) 0n A =(B) A 主对角线上的元素全为零11.n 阶矩阵A 是可逆矩阵的充分必要条件是( D )(A)1A = (B) 0A = (C) T A A = (D) 0A ≠12.,,A B C 均是n 阶矩阵,下列命题正确的是( A )(A)若A 是可逆矩阵,则从AB AC =可推出BA CA =(B)若A 是可逆矩阵,则必有AB BA =(C)若0A ≠,则从AB AC =可推出B C =(D)若B C ≠,则必有AB AC ≠13.,,A B C 均是n 阶矩阵,E 为n 阶单位矩阵,若ABC E =,则有(C )(A)ACB E = (B )BAC E = (C )BCA E = (D) CBA E =14.A 是n 阶方阵,*A 是其伴随矩阵,则下列结论错误的是( D )(A)若A 是可逆矩阵,则*A 也是可逆矩阵;(B)若A 是不可逆矩阵,则*A 也是不可逆矩阵; (C)若*0A ≠,则A 是可逆矩阵; (D)*.AA A =15.设A 是5阶方阵,且0A ≠,则*A =( D )(A)A (B) 2A (C) 3A (D) 4A16.设*A 是()ij n n A a ⨯=的伴随阵,则*A A 中位于(,)i j 的元素为(B )(A) 1n jk ki k a A =∑ (B) 1n kj ki k a A =∑ (C) 1n jk ik k a A =∑ (D) 1nki kj k a A =∑应为A 的第i 列元素的代数余子式与A 的第j 列元素对应乘积和.17.设1111n n nn a a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 1111n n nn A A B A A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,其中ij A 是ij a 的代数余子式,则(C )(A) A 是B 的伴随 (B)B 是A 的伴随 (C)B 是A '的伴随(D)以上结论都不对18.设,A B 为方阵,分块对角阵00A C B ⎡⎤=⎢⎥⎣⎦,则*C = ( C )(A)**ACB⎡⎤=⎢⎥⎣⎦(B)**A ACB B⎡⎤=⎢⎥⎣⎦(C)**B ACA B⎡⎤=⎢⎥⎣⎦(D)**A B ACA B B⎡⎤=⎢⎥⎣⎦利用*||CC C E=验证.19.已知46135,12246A B⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦,下列运算可行的是( C )(A)A B+ (B)A B- (C)AB (D)AB BA-20.设,A B是两个m n⨯矩阵,C是n阶矩阵,那么( D )21.对任意一个n阶矩阵A,若n阶矩阵B能满足AB BA=,那么B是一个(C)(A)对称阵 (B)对角阵 (C)数量矩阵 (D)A的逆矩阵与任意一个n阶矩阵均可交换的矩阵为数量矩阵.22.设A是一个上三角阵,且0A=,那么A的主对角线上的元素(C)(A)全为零(B)只有一个为零(C)至少有一个为零(D)可能有零,也可能没有零23.设1320A⎡⎤=⎢⎥⎣⎦,则1A-=( D )(A)121136⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦(B)131136⎡⎤-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(C)131126⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦(D)121136⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦24.设111222333a b cA a b ca b c⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,若111222333222a c bAP a c ba c b⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则P=( B )(A)100001020⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(B)100002010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(C)001020100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(D)200001010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦25.设(3)n n≥阶矩阵1111a a aa a aA a a aa a a⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,若矩阵A的秩为1,则a必为(A )(A)1 (B)-1 (C)11n-(D)11n-矩阵A的任意两行成比例.26. 设,A B为两个n阶矩阵,现有四个命题:①若,A B为等价矩阵,则,A B的行向量组等价;②若,A B的行列式相等,即||||,A B=则,A B为等价矩阵;③若0Ax=与0Bx=均只有零解,则,A B为等价矩阵;④若,A B为相似矩阵,则0Ax=与0Bx=解空间的维数相同.以上命题中正确的是( D )(A) ①, ③. (B) ②, ④. (C) ②,③. (D)③,④.当AP P B 1-=时,,A B 为相似矩阵。

相似矩阵的秩相等。

齐次线性方程组基础解系所含解的个数即为其解空间的维数。

三、填空题1.设A 为三阶方阵,*A 为A 的伴随矩阵,有2A =,则11()2*3A A --=11*||2A A A A --==,111()33A A --=,因此11111311()2*34(1)32A A A A A A ------=-=-=-=-. 2.设,AB 为4阶方阵,且3A =,则1(3)A --= 1/27 , 21BA B -= 9 。

3.设A 是一个m n ⨯矩阵,B 是一个n s ⨯矩阵,那么是()'AB 一个s m ⨯阶矩阵,它的第i 行第j 列元素为1njk ki k a b =∑.4.n 阶矩阵A 可逆A 非退化 ||0A ≠⇔ A 与单位矩阵等价 ⇔ A 可以表示为一系列初等矩阵的乘积 .4.三阶对角矩阵000000a A b c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则A 的伴随矩阵*A = 000000bc ac ab ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦. 5.设123023003A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则*1()A -=16A .6.设0,1,2,i a i n ≠=,矩阵12100000000000n na a a a -⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦的逆矩阵为 111121100000000000n n a a a a -----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 7.设,A B 都是可逆矩阵,矩阵00A C B ⎡⎤=⎢⎥⎣⎦的逆矩阵为1100B A --⎡⎤⎢⎥⎣⎦. 8.设121331,,342424A B C ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,则(2)B A C -=( ). 9.A 既是对称矩阵,又是反对称矩阵,则A 为 零 矩阵.10.设方阵111222333b x c A b x c b x c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,111222333b y c B b y c b y c ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,且2,3A B =-=则行列式A B += 4 .11.设A 为m 阶方阵,B 为n 阶方阵,已知,A a B b ==,则行列式00A B=ab mn )1(-.将A 的各列依次与B 的各列交换,共需要交换mn 次,化为0A B12.设A 为n 阶方阵,且0A ≠,则 在A 等价关系下的标准形为 n 阶 单位矩阵 .13. 设12221311A a-⎛⎫⎪=-⎪⎪⎝⎭(a为某常数),B为43⨯的非零矩阵,且0BA=,则矩阵B的秩为1 .由0BA=可得A的各列为齐次线性方程组0Bx=的解,A的前两列线性无关,因此0Bx=的基础解系至少有两个解,因此()1r B≤.又B为非零矩阵,因此()1r B≥.即() 1.r B=四、解答下列各题1.求解矩阵方程(1)25461321X-⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭; (2)211113210432111X-⎛⎫-⎛⎫⎪=⎪⎪⎝⎭⎪-⎝⎭;(3)142031 121101X⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭;(4)010100143 100001201 001010120X-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭解:(1)1254635462231321122108 X-----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)12111132212104328/352/3111X--⎛⎫--⎛⎫⎛⎫⎪==⎪ ⎪⎪--⎝⎭⎝⎭⎪-⎝⎭2.设033110123A⎛⎫⎪= ⎪⎪-⎝⎭,2AB A B=+ ,求B解:(2)A E B A -=.0332002332110020110123002121A E -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭.22A E -=,因此2A E -可逆.3..设1P AP -=Λ,其中1411P --⎛⎫= ⎪⎝⎭,1002-⎛⎫Λ= ⎪⎝⎭ ,求11A . 解:1,A P P -=Λ4.设3级方阵,A B 满足124A B B E -=-,证明:2A E -可逆,并求其逆. 证明:124A B B E -=-两边同左乘以A 得到24B AB A =-.因此有 (2)4A E B A -=.由A 可逆可得2A E -,且111(2).4A E BA ---= 5.设A 是一个n 级方阵,且()R A r =,证明:存在一个n 级可逆矩阵P 使1PAP -的后n r -行全为零.证明:()R A r =,因此矩阵A 可以经过一系列行初等变换化为后n r -行全为零.也即存在初等矩阵11,,,m P P P ,使得21m P P P A 后n r -行全为零. 21m P P P P =,则PA 的后n r -行全为零.由矩阵乘法运算可得1PAP -的后n r -行全为零.6.设矩阵,m n n m A B ⨯⨯,且,m n AB E <=,证明:A 的行向量组线性无关. 证明:由,m n AB E <=可得()()m r AB r A m =≤≤,因此()r A m =.因此A 的行向量组线性无关.7.如果,2A A =称A 为幂等矩阵.设B A ,为n 阶幂等矩阵,证明:B A +是幂等矩阵的充要条件是0.AB BA +=证明:当B A +时幂等阵时,因此0.AB BA +=反之,当0.AB BA +=时有B A +是幂等矩阵.。

相关文档
最新文档