高二期中统考试卷
2023-2024学年河北省部分高中高二(上)期中数学试卷【答案版】
2023-2024学年河北省部分高中高二(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线l :2x +√3y −1=0的斜率为( ) A .−2√33B .−√32C .2√33D .√322.若方程x 2+y 2+4x +2y ﹣m =0表示一个圆,则m 的取值范围是( ) A .(﹣∞,﹣5)B .(﹣5,+∞)C .(﹣∞,5)D .(5,+∞)3.已知F 1,F 2分别是椭圆E :x 29+y 25=1的左、右焦点,P 是椭圆E 上一点,若|PF 1|=2,则|PF 2|=( )A .1B .2C .3D .44.如图,在三棱锥P ﹣ABC 中,P A ⊥平面ABC ,AB ⊥AC ,且PD →=3DC →,则BD →在AC →方向上的投影向量为( )A .34AC →B .−23AC →C .−34AC →D .23AC →5.若圆O 1:x 2+y 2=25与圆O 2:(x ﹣7)2+y 2=r 2(r >0)相交,则r 的取值范围为( ) A .[2,10]B .(2,10)C .[2,12]D .(2,12)6.若A (2,2,1),B (0,0,1),C (2,0,0),则点A 到直线BC 的距离为( ) A .2√305B .√305C .2√55D .√557.已知双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的右焦点为F ,过F 作双曲线C 的其中一条渐近线l 的垂线,垂足为A (第一象限),并与双曲线C 交于点B ,若FB →=BA →,则l 的斜率为( ) A .2B .1C .12D .−748.已知实数x ,y 满足2x ﹣y +2=0,则√(x −9)2+y 2+√x 2+y 2−4x −4y +8的最小值为( ) A .3√13B .10+√13C .108D .117二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,E ,F 分别是AB ,BC 的中点,则( )A .BC →−A 1A →=AD 1→B .BC →−A 1A →=2AD 1→C .EF →=12A 1C 1→D .EF →=A 1C 1→10.在同一直角坐标系中,直线l :y =mx +1与曲线C :x 2+my 2=1的位置可能是( )A .B .C .D .11.已知F 1,F 2分别是椭圆E :x 2a2+y 2b 2=1(a >b >0)的左、右焦点,P 是椭圆E 上一点,且|PF 1|=43|PF 2|,cos ∠PF 2F 1=35,则下列结论正确的有( ) A .椭圆E 的离心率为57B .椭圆E 的离心率为45C .PF 1⊥PF 2D .若△PF 1F 2内切圆的半径为2,则椭圆E 的焦距为1012.苏州博物馆(图一)是地方历史艺术性博物馆,建筑物的顶端可抽象为如图二所示的上、下两层等高的几何体,其中上层EFGH ﹣NPQM 是正四棱柱,下层底面ABCD 是边长为4的正方形,E ,F ,G ,H 在底面ABCD 的投影分别为AD ,AB ,BC ,CD 的中点,若AF =√5,则下列结论正确的有( )A .该几何体的表面积为32+8√2+4√6B .将该几何体放置在一个球体内,则该球体体积的最小值为36πC .直线CP 与平面ABF 所成角的正弦值为√63D .点M 到平面BFG 的距离为√63三、填空题:本题共4小题,每小题5分,共20分.13.已知点N 是点M (3,3,4)在坐标平面Oxz 内的射影,则|ON →|= . 14.若双曲线C :x 2m+1+y 2m 2−m−2=1的实轴长与虚轴长相等,则m = .15.过点M(√3,0)作圆C :x 2+(y ﹣1)2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 .16.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,AM =2MB ,N 为DD 1的中点,记平面CMN 与平面ADD 1A 1的交线为l ,则直线l 与直线AC 1所成角的余弦值为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知直线l 1:x +ay ﹣a +2=0与l 2:2ax +(a +3)y +a ﹣5=0. (1)当a =1时,求直线l 1与l 2的交点坐标; (2)若l 1∥l 2,求a 的值.18.(12分)如图,在正四棱锥P ﹣ABCD 中,E ,F 分别为P A ,PC 的中点,DG →=2GP →. (1)证明:B ,E ,G ,F 四点共面.(2)记四棱锥P ﹣BEGF 的体积为V 1,四棱锥P ﹣ABCD 的体积为V 2,求V 1V 2的值.19.(12分)已知P 是圆C :x 2+y 2=12上一动点,过P 作x 轴的垂线,垂足为Q ,点M 满足PQ →=2PM →,记点M 的轨迹为E . (1)求E 的方程;(2)若A ,B 是E 上两点,且线段AB 的中点坐标为(−85,25),求|AB |的值.20.(12分)如图,这是某圆弧形山体隧道的示意图,其中底面AB 的长为16米,最大高度CD 的长为4米,以C 为坐标原点,AB 所在的直线为x 轴建立直角坐标系. (1)求该圆弧所在圆的方程;(2)若某种汽车的宽约为2.5米,高约为1.6米,车辆行驶时两车的间距要求不小于0.5米以保证安全,同时车顶不能与隧道有剐蹭,则该隧道最多可以并排通过多少辆该种汽车?(将汽车看作长方体)21.(12分)如图,在斜三棱柱ABC ﹣A 1B 1C 1中,△ABC 是边长为2的等边三角形,M ,Q 分别为AC ,A 1B 1的中点,且MQ ⊥AB . (1)证明:MC 1⊥AB .(2)若BB 1=4,MQ =√15,求平面MB 1C 1与平面MC 1Q 夹角的余弦值.22.(12分)如图,已知F 1(−√10,0),F 2(√10,0)分别是双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P(−2√103,√63)是E 上一点. (1)求E 的方程.(2)过直线l :x =1上任意一点T 作直线l 1,l 1与E 的左、右两支相交于A ,B 两点.直线l 1关于直线l 对称的直线为l 2(与l 1不重合),l 2与E 的左、右两支相交于C ,D 两点.证明:∠ABD =∠ACD .2023-2024学年河北省部分高中高二(上)期中数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线l :2x +√3y −1=0的斜率为( ) A .−2√33B .−√32C .2√33D .√32解:将l 的方程转化为y =−2√33x +√33,则l 的斜率为−2√33. 故选:A .2.若方程x 2+y 2+4x +2y ﹣m =0表示一个圆,则m 的取值范围是( ) A .(﹣∞,﹣5)B .(﹣5,+∞)C .(﹣∞,5)D .(5,+∞)解:因为方程x 2+y 2+4x +2y ﹣m =0表示一个圆,所以42+22+4m >0,解得m >﹣5. 故选:B .3.已知F 1,F 2分别是椭圆E :x 29+y 25=1的左、右焦点,P 是椭圆E 上一点,若|PF 1|=2,则|PF 2|=( )A .1B .2C .3D .4解:椭圆E :x 29+y 25=1,可知a =3,因为P 是椭圆E 上一点,所以|PF 1|+|PF 2|=2a =6,所以|PF 2|=6﹣|PF 1|=4. 故选:D .4.如图,在三棱锥P ﹣ABC 中,P A ⊥平面ABC ,AB ⊥AC ,且PD →=3DC →,则BD →在AC →方向上的投影向量为( )A .34AC →B .−23AC →C .−34AC →D .23AC →解:因为P A ⊥平面ABC ,AB ⊥AC ,所以P A ⊥AB ,P A ⊥AC ,故以A 为坐标原点,AB ,AC ,P A 所在直线分别为x ,y ,z 轴建立空间直角坐标系,令AB =a ,AC =b ,P A =c ,则A (0,0,0),B (a ,0,0),C (0,b ,0),D(0,34b ,14c), 则AC →=(0,b ,0),BD →=(−a ,34b ,14c),所以BD →在AC →方向上的投影向量为AC →⋅BD →|AC →|⋅AC →|AC →|=34b 2|b|⋅AC →|b|=34AC →.故选:A .5.若圆O 1:x 2+y 2=25与圆O 2:(x ﹣7)2+y 2=r 2(r >0)相交,则r 的取值范围为( ) A .[2,10]B .(2,10)C .[2,12]D .(2,12)解:∵O 1与O 2相交, ∴|r ﹣5|<|O 1O 2|<|r +5|, 又|O 1O 2|=7,∴|r ﹣5|<7<|r +5|,解得2<r <12. 故选:D .6.若A (2,2,1),B (0,0,1),C (2,0,0),则点A 到直线BC 的距离为( ) A .2√305B .√305C .2√55D .√55解:由题意得,BA →=(2,2,0),BC →=(2,0,−1),则BA →在BC →上的投影向量的模为|BA →⋅BC →||BC →|=√5,则点A 到直线BC 的距离为√|BA →|2−(|BA →⋅BC →||BC →|)2=√(√8)2−(4√5)2=2√305. 故选:A .7.已知双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的右焦点为F ,过F 作双曲线C 的其中一条渐近线l 的垂线,垂足为A (第一象限),并与双曲线C 交于点B ,若FB →=BA →,则l 的斜率为( )A .2B .1C .12D .−74解:由已知直线l 的方程为y =b ax ,即bx ﹣ay =0,点F (c ,0),则|FA|=|bc|√b +(−a)2=b ,因为FB →=BA →,所以B 为线段AF 的中点,则|BF|=b2, 设双曲线C 的左焦点为F 1,则|BF 1|=2a +b2, 在△BFF 1中,由余弦定理可得:cos ∠BFF 1=|BF|2+|FF 1|2−|BF 1|22|BF||FF 1|=b 24+4c 2−(2a+b 2)22×b2×2c=2b−ac, 又cos ∠BFF 1=bc ,所以a =b ,故l 的斜率为1, 故选:B .8.已知实数x ,y 满足2x ﹣y +2=0,则√(x −9)2+y 2+√x 2+y 2−4x −4y +8的最小值为( ) A .3√13B .10+√13C .108D .117解:√(x −9)2+y 2+√x 2+y 2−4x −4y +8=√(x −9)2+y 2+√(x −2)2+(y −2)2, 该式表示直线l :2x ﹣y +2=0上一点到P (9,0),Q (2,2)两点距离之和的最小值. 而P ,Q 两点在l 的同一侧,设点P 关于l 对称的点P ′(x 0,y 0),则{y 0−0x 0−9=−122×x 0+92−y 0+02+2=0,解得{x 0=−7y 0=8,∴P ′(﹣7,8),故√(x −9)2+y 2+√x 2+y 2−4x −4y +8≥|P′Q|=√(−7−2)+(8−2)2=3√13. 故选:A .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,E ,F 分别是AB ,BC 的中点,则( )A .BC →−A 1A →=AD 1→B .BC →−A 1A →=2AD 1→C .EF →=12A 1C 1→D .EF →=A 1C 1→解:BC →−A 1A →=AD →+AA 1→=AD 1→,A 正确,B 不正确,又因为EF →=12A 1C 1→,故C 正确,D 不正确. 故选:AC .10.在同一直角坐标系中,直线l :y =mx +1与曲线C :x 2+my 2=1的位置可能是( )A .B .C .D .解:A .取m =1,则直线l :y =x +1与曲线C :x 2+y 2=1满足图中的位置关系,因此A 正确; B .联立{y =mx +1x 2+my 2=1,化为(1+m 3)x 2+2m 2x +m ﹣1=0,若直线l :y =mx +1与曲线C :x 2+my 2=1有交点,则Δ=4m 4﹣4(1+m 3)(m ﹣1)=m 3﹣m +1>0. 由曲线C :x 2+my 2=1结合图形,则0<1m <1,∴m >1,满足Δ>0,因此B 正确;C .由曲线C :x 2+my 2=1结合图形,则0<1m <1,∴m >1,直线l 与椭圆应该有交点,因此C 不正确;D .由图可知:直线l 经过点(1,0),则m =﹣1,联立{y =−x +1x 2−y 2=1,化为x =1,y =0,即直线l 与双曲线的交点为(1,0),因此D 正确. 故选:ABD .11.已知F 1,F 2分别是椭圆E :x 2a2+y 2b 2=1(a >b >0)的左、右焦点,P 是椭圆E 上一点,且|PF 1|=43|PF 2|,cos ∠PF 2F 1=35,则下列结论正确的有( ) A .椭圆E 的离心率为57B .椭圆E 的离心率为45C .PF 1⊥PF 2D .若△PF 1F 2内切圆的半径为2,则椭圆E 的焦距为10解:A 、B 选项,由椭圆的定义得,|PF 1|+|PF 2|=2a ,已知|PF 1|=43|PF 2|,解得|PF 1|=87a ,|PF 2|=67a ,由cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2−|PF 1|22|PF 2||F 1F 2|=4c 2−47a 2247ac=35, 整理得5a 2+18ac ﹣35c 2=0,即(a +5c )(5a ﹣7c )=0,则a =﹣5c (舍去)或a =75c ,即c a=57,故椭圆E 的离心率为57,故A 正确,B 不正确;C 选项,由a =75c ,得|F 1F 2|=2c =107a ,则|PF 1|2+|PF 2|2=|F 1F 2|2,故PF 1⊥PF 2,故C 正确; D 选项,由PF 1⊥PF 2,△PF 1F 2内切圆的半径为2,得2c =2a ﹣4,因为a =75c ,所以c =5,即椭圆E 的焦距为10,故D 正确. 故选:ACD .12.苏州博物馆(图一)是地方历史艺术性博物馆,建筑物的顶端可抽象为如图二所示的上、下两层等高的几何体,其中上层EFGH ﹣NPQM 是正四棱柱,下层底面ABCD 是边长为4的正方形,E ,F ,G ,H 在底面ABCD 的投影分别为AD ,AB ,BC ,CD 的中点,若AF =√5,则下列结论正确的有( )A .该几何体的表面积为32+8√2+4√6B .将该几何体放置在一个球体内,则该球体体积的最小值为36πC .直线CP 与平面ABF 所成角的正弦值为√63D .点M 到平面BFG 的距离为√63解:设F ,G 在平面ABCD 的投影分别为AB ,BC 的中点R ,S ,由于AF =√5,AB =4,所以F 到平面ABCD 的距离为FR =√AF 2−(12AB)2=1, 由于上、下两层等高,所以P 到平面ABCD 的距离为2,又FG =RS =12AC =2√2,由于GS =FR =1,BS =RB =12×4=2 所以BG =GC =√GS 2+BS 2=√5=BF =AF ,所以△AFB ≌△BGC ,同理可得△CDH ≌△ADE ≌△AFB ≌△BGC ,△BFG ≌△CHG ≌△DEH ≌△AEF , 则点B 到FG 的距离为√BF 2−(12FG)2=√(√5)2−(√2)2=√3,则△ABF 的面积为12AB ⋅FR =12×4×1=2,△BFG 的面积为12×2√2×√3=√6,故该几何体的表面积4×2+4×√6+4×4+2√2×2√2+2√2×4=32+8√2+4√6,故A 正确; 将该几何体放置在一个球体内,要使该球体体积最小,则球心在该几何体上下底面中心所连直线上, 且A 、B 、C 、D ,N 、P 、Q 、M 均在球面上,设球心到下底面ABCD 的距离为x , 由于四边形MNPQ 为边长为2√2的正方形,四边形ABCD 为边长为4的正方形, 则其对角线长度分别为4,4√2,则(2√2)2+x 2=22+(2−x)2,解得x =0,则该球体的半径为2√2,体积为4π3×(2√2)3=64√2π3,故B 错误;以A 为坐标原点建立如图所示的空间直角坐标系,则C (4,4,0),P (2,0,2),B (4,0,0),F (2,0,1),G (4,2,1),M (2,4,2),CP →=(−2,−4,2),BF →=(﹣2,0,1),BG →=(0,2,1),BM →=(﹣2,4,2), 平面ABF 的一个法向量为m →=(0,1,0),则cos <CP →,m →>=−42√6=−√63,设直线CP 与平面ABF 所成角为θ,则sinθ=|cos <CP →,m →>|=√63,故直线CP 与平面ABF 所成角的正弦值为√63,故C 正确; 设平面BFG 的法向量为n →=(x 1,y 1,z 1),则{n →⋅BF →=−2x 1+z 1=0n →⋅BG →=2y 1+z 1=0,令x 1=1,得n →=(1,﹣1,2), 则点M 到平面BFG 的距离为|n →⋅BM →||n →|=222=√63,故D 正确. 故选:ACD .三、填空题:本题共4小题,每小题5分,共20分.13.已知点N 是点M (3,3,4)在坐标平面Oxz 内的射影,则|ON →|= 5 . 解:由题可知,N (3,0,4),则ON →=(3,0,4),∴|ON →|=√32+42=5. 故答案为:5.14.若双曲线C :x 2m+1+y 2m 2−m−2=1的实轴长与虚轴长相等,则m = 1 .解:由题可知(m +1)+(m 2﹣m ﹣2)=0,解得m =1或m =﹣1(舍去),∴m =1. 故答案为:1.15.过点M(√3,0)作圆C :x 2+(y ﹣1)2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为 √3x −y =0 .解:圆C :x 2+(y ﹣1)2=1①,则圆心C (0,1), 以C (0,1),M (√3,0)为直径的圆的方程为:(x −√32)2+(y −12)2=1②,①﹣②可得,√3x −y =0,故直线AB 的方程为√3x −y =0. 故答案为:√3x −y =0.16.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,AM =2MB ,N 为DD 1的中点,记平面CMN 与平面ADD 1A 1的交线为l ,则直线l 与直线AC 1所成角的余弦值为7√111111.解:设I ∩AA 1=P ,连接NP ,MP ,直线NP 即为直线l .易证得MP ∥CN ,由AM =2MB ,N 为DD 1的中点,得AP =13AA 1,以D 为坐标原点,DA .DC ,DD 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,设AB =6,则得:N (0,0,3),P (6,0,2),A (6,0,0),C 1(0,6,6), NP →=(6,0,﹣1),AC 1→=(﹣6,6,6), 所以得:|cos <NP →,AC 1→>|=|NP →⋅AC 1→||NP →|⋅|AC 1→|=37×63=7√111111,故直线与直线 AC 1 所成角的余弦值为7√111111.故答案为:7√111111. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知直线l 1:x +ay ﹣a +2=0与l 2:2ax +(a +3)y +a ﹣5=0. (1)当a =1时,求直线l 1与l 2的交点坐标; (2)若l 1∥l 2,求a 的值. 解:(1)因为a =1,所以l 1:x +y +1=0,l 2:2x +4y ﹣4=0,即x +2y ﹣2=0, 联立{x +y +1=0x +2y −2=0解得{x =−4y =3,故直线l 1与l 2的交点坐标为(﹣4,3).(2)因为l 1∥l 2,所以2a 2﹣a ﹣3=0,解得a =﹣1或a =32, 当a =﹣1时,l 1与l 2重合,不符合题意. 当a =32时,l 1与l 2不重合,符合题意. 故a =32.18.(12分)如图,在正四棱锥P ﹣ABCD 中,E ,F 分别为P A ,PC 的中点,DG →=2GP →. (1)证明:B ,E ,G ,F 四点共面.(2)记四棱锥P ﹣BEGF 的体积为V 1,四棱锥P ﹣ABCD 的体积为V 2,求V 1V 2的值.解:(1)证明:因为E ,F 分别为P A ,PC 的中点, 所以BE →=12BA →+12BP →,BF →=12BC →+12BP →, 所以BG →=BD →+DG →=BD →+23DP →=BD →+23(BP →−BD →)=13BD →+23BP →=13BA →+13BC →+23BP →=23(12BA →+12BP →)+23(12BC →+12BP →)=23BE →+23BF →, 故B ,E ,G ,F 四点共面;(2)由正四棱锥的对称性知,V 1=2V E ﹣PBG ,V 2=2V A ﹣PBD , 设点E 到平面PBG 的距离为d 1,点A 到平面PBD 的距离为d 2,由E 是P A 的中点得d 2=2d 1, 由DG →=2GP →得S △PBD =3S △PBG ,所以V 1V 2=V E−PBG V A−PBD=13S △PBG ⋅d 113S △PBD ⋅d 2=16.19.(12分)已知P 是圆C :x 2+y 2=12上一动点,过P 作x 轴的垂线,垂足为Q ,点M 满足PQ →=2PM →,记点M 的轨迹为E . (1)求E 的方程;(2)若A ,B 是E 上两点,且线段AB 的中点坐标为(−85,25),求|AB |的值. 解:(1)设M (x ,y ),则Q (x ,0), 因为PQ →=2PM →,则P (x ,2y ), 因为P 在圆C 上,所以x 2+(2y )2=12, 故E 的方程为x 212+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),若A ,B 是E 上两点,则{x 1212+y 123=1x 2212+y 223=1, 两式相减得x 12−x 2212+y 12−y 223=0,即y 1−y 2x 1−x 2=−x 1+x 24(y 1+y 2).因为线段AB 的中点坐标为(−85,25),所以y 1−y 2x 1−x 2=−x 1+x 24(y 1+y 2)=1,所以k AB =1,则直线AB 的方程为y =x +2.联立方程组{y =x +2x 212+y 23=1,整理得5x 2+16x +4=0,其中Δ>0, 则x 1+x 2=−165,x 1x 2=45, |AB|=√1+12√(x 1+x 2)2−4x 1x 2=4√225. 20.(12分)如图,这是某圆弧形山体隧道的示意图,其中底面AB 的长为16米,最大高度CD 的长为4米,以C 为坐标原点,AB 所在的直线为x 轴建立直角坐标系. (1)求该圆弧所在圆的方程;(2)若某种汽车的宽约为2.5米,高约为1.6米,车辆行驶时两车的间距要求不小于0.5米以保证安全,同时车顶不能与隧道有剐蹭,则该隧道最多可以并排通过多少辆该种汽车?(将汽车看作长方体)解:(1)由圆的对称性可知,该圆弧所在圆的圆心在y轴上,由图形可得A(﹣8,0),B(8,0),D(0,4),设该圆的半径为r米,则r2=82+(r﹣4)2,解得r=10,圆心为(0,﹣6),故该圆弧所在圆的方程为x2+(y+6)2=100.(2)设与该种汽车等高且能通过该隧道的最大宽度为d米,则(d2)2+(6+1.6)2=102,解得d=2√42.24.若并排通过4辆该种汽车,则安全通行的宽度为4×2.5+3×0.5=11.5<2√42.24.隧道能并排通过4辆该种汽车;若并排通过5辆该种汽车,则安全通行的宽度为5×2.5+4×0.5=14.5>2√42.24,故该隧道不能并排通过5辆该种汽车.综上所述,该隧道最多可以并排通过4辆该种汽车.21.(12分)如图,在斜三棱柱ABC﹣A1B1C1中,△ABC是边长为2的等边三角形,M,Q分别为AC,A1B1的中点,且MQ⊥AB.(1)证明:MC1⊥AB.(2)若BB1=4,MQ=√15,求平面MB1C1与平面MC1Q夹角的余弦值.(1)证明:因为△A1B1C1是等边三角形,Q为A1B1的中点,所以C1Q⊥A1B1,又AB∥A1B1,所以C1Q⊥AB,因为MQ⊥AB,C1Q∩MQ=Q,所以AB⊥平面MC1Q,又MC1⊂平面C1MQ,所以MC1⊥AB;(2)解:取AB靠近点A的四等分点N,连接MN,NQ,易证得MN∥C1Q,则MN⊥AB,且MN=√32,由BB 1=4,得QN =3√72,因为MQ =√15,所以MQ 2+MN 2=QN 2, 即MQ ⊥MN ,又MQ ⊥AB ,从而MQ ⊥平面ABC ,以M 为坐标原点,MN 所在直线为x 轴,MQ 所在直线为z 轴,建立如图所示的空间直角坐标系,则M (0,0,0),B 1(0,1,√15),C 1(−√3,0,√15), 则MB 1→=(0,1,√15),MC 1→=(−√3,0,√15), 设平面MB 1C 1的法向量为m →=(x ,y ,z ),则有{m →⋅MB 1→=y +√15z =0m →⋅MC 1→=−√3x +√15z =0,令z =1,得m →=(√5,−√15,1),由图可知,n →=(0,1,0)是平面MC 1Q 的一个法向量,设平面MB 1C 1与平面MC 1Q 的夹角为θ,则cosθ=|m →⋅n →||m →||n →|=√1521=√357.22.(12分)如图,已知F 1(−√10,0),F 2(√10,0)分别是双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P(−2√103,√63)是E 上一点. (1)求E 的方程.(2)过直线l :x =1上任意一点T 作直线l 1,l 1与E 的左、右两支相交于A ,B 两点.直线l 1关于直线l 对称的直线为l 2(与l 1不重合),l 2与E 的左、右两支相交于C ,D 两点.证明:∠ABD =∠ACD .解:(1)∵F 1(−√10,0),F 2(√10,0)分别是双曲线E :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P(−2√103,√63)是E 上一点,∴{a 2+b 2=10409a2−69b2=1,解得a 2=4,b 2=6,∴E 的方程为x 24−y 26=1.(2)证明:设T (1,m ),由题意得直线l 1的斜率存在且不等于0, 设直线l 的方程为y ﹣m =k (x ﹣1),则直线l 2的方程为y ﹣m =﹣k (x ﹣1), 设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4), 联立方程组{y −m =k(x −1)x 24−y 26=1,整理得(3﹣2k 2)x 2+(4k 2﹣4km )x ﹣2k 2+4km ﹣2m 2﹣12=0,Δ=(4k 2﹣4km )2﹣(12﹣8k 2)(﹣2k 2+4km ﹣2m 2﹣12)=﹣72k 2﹣48km +24m 2+144>0, 则x 1+x 2=4k 2−4km 2k 2−3,x 1x 2=2k 2−4km+2m 2+122k 2−3,|AT |=√1+k 2|x 1−1|,|BT |=√1+k 2|x 2﹣1|,|CT |=√1+k 2|x 3﹣1|,|DT |=√1+k 2|x 4﹣1|, ∴|AT ||BT |=(1+k 2)|(x 1﹣1)(x 2﹣1)|=(1+k 2)|x 1x 2﹣(x 1+x 2)+1| =(1+k 2)|2k 2−4km+2m 2+122k 2−3−4k 2−4km 2k 2−3+1|=(1+k 2)|2m 2+92k 2−3|,同理,|CT ||DT |=(1+k 2)|2m 2+92k 2−3,∴|AT||DT|=|CT||BT|,∴△ACT ∽△DBT ,∴∠ABD =∠ACD .。
2025届江苏省东海高级中学化学高二第一学期期中统考试题含解析
2025届江苏省东海高级中学化学高二第一学期期中统考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题只有一个选项符合题意)1、在25 ℃时,密闭容器中X、Y、Z三种气体的初始浓度和平衡浓度如下表:物质X Y Z初始浓度/(mol·L-1) 0.1 0.2 0平衡浓度/(mol·L-1) 0.05 0.05 0.1下列说法错误的是()A.增大压强使平衡向生成Z的方向移动,平衡常数增大B.反应可表示为X+3Y2Z,其平衡常数为1600C.反应达平衡时,X的转化率为50%D.改变温度可以改变此反应的平衡常数2、硼氢化钠(NaBH4)和H2O2作原料的燃料电池,负极材料采用Pt/C,正极材料采用MnO2,其工作原理如图所示。
下列说法正确的是A.电极a为正极,b为负极、B.放电时,Na+从b极区移向a极区C.电极b上发生的电极反应为:H2O2+2e-=2OH-D.每生成1mol BO2-转移6mol电子3、下列说法正确的是( )A.CH4能使酸性KMnO4溶液褪色B.CH3CH2CH2CH3与CH3CH(CH3)2互为同分异构体C.乙酸有强烈的刺激性气味,其水溶液称为冰醋酸D.金属Na能与C2H5OH中的甲基反应生成H24、已知室温下10.1mol L -⋅碳酸氢钠溶液的pH 为8.4,则下列说法正确的是( )A .加入少量NaOH 固体,钠离子和碳酸根离子浓度均增大B .将该溶液加水稀释,()()+-3c Na c HCO 的比值保持不变C .()()()()()++-2--33c Na+c H =c HCO +c CO +c OH D .()()()()+-2-3323c Na =c HCO +2c CO +c H CO 5、N A 表示阿伏加德罗常数,下列说法正确的是A .NO 的摩尔质量是30 gB .标准状况下,1 mol H 2O 的体积是22.4 LC .17 g NH 3含有的原子总数为4N AD .100 mL 0.1 mol/L Na 2CO 3溶液中,Na +的物质的量为 0.1 mol6、一定条件下,向一带活塞的密闭容器中充入1 mol N 2和3 mol H 2,发生下列反应:N 2(g)+3H 2(g)2NH 3(g),反应达到平衡后,改变下述条件,NH 3平衡浓度不改变的是A .保持温度和容器压强不变,充入1 mol NH 3(g)B .保持温度和容器体积不变,充入1 mol NH 3(g)C .保持温度和容器压强不变,充入1 mol N 2(g)D .保持温度和容器体积不变,充入1 mol H 2(g)7、把2.5molA 和2.5molB 通入容积为2L 的密闭容器里,发生如下反应:3A(g)+B(g)xC(g)+2D(g),经5s 反应达平衡,在此5s 内C 的平均反应速率为0.2mol/(L·s),同时生成1molD 。
高二数学期中考试试卷
高二数学期中考试试卷一、选择题(每题3分,共30分)1. 若函数f(x)=x^2-4x+3,则f(1)的值为:A. 0B. 1C. 2D. 32. 已知向量a=(3,-1),向量b=(2,1),则向量a与向量b的点积为:A. 4B. 3C. 2D. 13. 若方程x^2-6x+8=0的两个根为x1和x2,则x1+x2的值为:A. 4B. 6C. 8D. 104. 函数y=2^x的反函数为:A. y=log2xB. y=2^(1/x)C. y=1/(2^x)D. y=2^(-x)5. 已知三角形ABC的三边长分别为a、b、c,且a^2+b^2=c^2,该三角形为:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形6. 若函数f(x)=x^3-3x+1,则f'(x)的值为:A. 3x^2-3B. x^2-3xC. 3x^2-3x+1D. x^3-3x^2+17. 已知集合A={1,2,3},B={2,3,4},则A∩B的元素个数为:A. 1B. 2C. 3D. 48. 若直线l的方程为y=2x+1,则该直线的斜率为:A. 1B. 2C. 3D. 49. 函数y=sin(x)的周期为:A. πB. 2πC. 3πD. 4π10. 已知等比数列{an}的首项a1=2,公比q=3,则a3的值为:A. 6B. 18C. 54D. 162二、填空题(每题4分,共20分)11. 已知数列{an}的通项公式为an=2n-1,则a5的值为______。
12. 若函数f(x)=x^2-6x+8,则f(x)的最小值为______。
13. 已知向量a=(1,2),向量b=(3,-1),则向量a与向量b的叉积为______。
14. 函数y=x^2+2x+1的顶点坐标为______。
15. 已知双曲线x^2/a^2-y^2/b^2=1的焦点在x轴上,则a和b的关系为______。
三、解答题(每题10分,共50分)16. 已知函数f(x)=x^3-3x^2+2,求f(x)的导数f'(x),并求出f'(x)=0的解。
2024-2025学年湖北省“金太阳联考”高二(上)期中考试数学试题(含答案)
2024-2025学年湖北省“金太阳联考”高二(上)期中考试数学试题一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.(8+i)(1−i)=( )A. 7−9iB. 9−9iC. 7−7iD. 9−7i2.已知角α的终边不在坐标轴上,且2sin 2α=sin α,则cos 2α=( )A. −78B. 78C. −78或1D. −15163.一艘轮船北偏西65∘方向上有一灯塔,此时二者之间的距离为16海里,该轮船以20海里/时的速度沿南偏西55∘的方向直线航行,行驶半小时后,轮船与灯塔之间的距离为( )A. 18海里B. 16海里C. 14海里D. 12海里4.已知某圆台的上、下底面半径分别为2和5,母线长为5,则该圆台的体积为( )A. 63πB. 39πC. 52πD. 42π5.设函数f(x)={ax−2,x⩽1ln x,x >1.若f(x)在R 上单调递增,则a 的取值范围为( )A. (0,+∞)B. (0,2]C. (−∞,2]D. (0,3]6.已知点P(2,1),Q(1,0),H 在直线x−y +1=0上,则|HP|+|HQ|的最小值为( )A. 2 3B. 11C. 10D. 37.金秋十月,某校举行运动会,甲、乙两名同学均从跳高、跳远、100米跑和200米跑这四个项目中选择两个项目参加.设事件A =“甲、乙两人所选项目恰有一个相同”,事件B =“甲、乙两人所选项目完全不同”,事件C =“甲、乙两人所选项目完全相同”,事件D =“甲、乙两人均未选择100米跑项目”,则( )A. A 与C 是对立事件B. C 与D 相互独立C. A 与D 相互独立D. B 与D 不互斥8.已知A(2,0),B(10,0),若直线tx−4y +2=0上存在点P ,使得PA ⋅PB =0,则t 的取值范围为( )A. [−3,215]B. [−215.3]C. (−∞,−215]∪[3,+∞) D. (−∞,−7]∪[95,+∞)二、多选题:本题共3小题,共18分。
2023-2024学年山东省普高联考高二(上)期中数学试卷【答案版】
2023-2024学年山东省普高联考高二(上)期中数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知点A (3,2,3),B (1,1,4),则A 、B 的中点的坐标为( ) A .(1,12,−12)B .(2,32,72)C .(4,3,7)D .(−1,−12,12)2.已知直线l 1:2x +2y ﹣5=0,l 2:4x +ny +1=0,若l 1∥l 2,则n 的值为( ) A .﹣6B .6C .4D .﹣43.过点A (1,1)的直线l 与圆M :x 2+y 2﹣6x =0相交的所有弦中,弦长最短为( ) A .5B .2C .√5D .44.已知空间四边形OABC ,其对角线是OB ,AC ,M ,N 分别是对边OA ,BC 的中点,点G 在线段MN 上,且MG =3GN ,用基底向量OA →,OB →,OC →表示向量OG →应是( ) A .OG →=18OA →+38OB →+38OC →B .OG →=18OA →−38OB →+38OC →C .OG →=16OA →+13OB →+13OC →D .OG →=16OA →−13OB →+13OC →5.已知实数x ,y 满足方程x 2+y 2﹣2x =0,则y+1x+1的最大值是( )A .34B .43C .0D .126.战国时期成书《经说》记载:“景:日之光,反蚀人,则景在日与人之间”.这是中国古代人民首次对平面镜反射的研究,体现了传统文化中的数学智慧.在平面直角坐标系xOy 中,一条光线从点(2,3)射出,经y 轴反射后与圆x 2﹣6x +y 2+4y +12=0相切,则反射光线所在直线的斜率为( ) A .−43或−34B .17C .57D .567.已知中心在原点,半焦距为4的椭圆x 2m 2+y 2n 2=1(m >0,n >0,m ≠n)被直线方程2x ﹣y +9=0截得的弦的中点横坐标为﹣4,则椭圆的标准方程为( ) A .x 28+y 24=1 B .x 232+y 216=1C .x 28+y 24=1或y 28+x 24=1D .x 232+y 216=1或y 232+x 216=18.苏州有很多圆拱的悬索拱桥(如寒山桥),经测得某圆拱索桥(如图)的跨度AB =100米,拱高OP =10米,在建造圆拱桥时每隔5米需用一根支柱支撑,则与OP 相距30米的支柱MN 的高度是( )米.(注意:√10取3.162)A .6.48B .4.48C .2.48D .以上都不对二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.空间直角坐标系中,已知O (0,0,0),OA →=(−1,2,1),OB →=(−1,2,−1),OC →=(2,3,−1),则( ) A .|AB →|=2B .△ABC 是直角三角形C .与OA →平行的单位向量的坐标为(√66,−√63,−√66)D .{OA →,OB →,OC →}可以作为空间的一组基底10.在如图所示的三棱锥O ﹣ABC 中,OA =OC =OB =1,OA ⊥面OBC ,∠BOC =π3,下列结论正确的为( )A .直线AB 与平面OBC 所成的角为45° B .二面角O ﹣BC ﹣A 的正切值为√33C .O 到面ABC 的距离为√217D .异面直线OC ⊥AB11.已知直线l :kx ﹣y +2k =0(k ∈R )和圆O :x 2+y 2=8,则( ) A .直线l 恒过定点(2,0)B .存在k 使得直线l 与直线l 0:x ﹣2y +2=0垂直C .直线l 与圆O 相交D .若k =1,则圆O 上到直线l 的距离为√2的点有四个12.已知抛物线y 2=4x ,焦点F ,过点P (1,1)作斜率互为相反数的两条直线分别交抛物线于A ,B 及C ,D 两点.则下列说法正确的是( ) A .抛物线的准线方程为x =﹣1 B .若|AF |=5,则直线AP 的斜率为1 C .若PA →=3BP →,则直线AB 的方程为y =xD .∠CAP =∠BDP三、填空题:本题共4小题,每小题5分,共20分.13.过P (﹣1,a )、Q (a +1,4)两点的直线的倾斜角为45°,那么实数a = .14.a →=(1,−1,2),b →=(−2,1,0),c →=(−3,1,k),若a →,b →,c →共面,则实数k = . 15.古希腊数学家阿波罗尼斯在《圆锥曲线论》中记载了用平面截圆锥得到圆锥曲线的方法.如图,将两个完全相同的圆锥对顶放置(两圆锥的顶点和轴都重合),已知两个圆锥的底面直径均为4,侧面积均为2√5π.记过两个圆锥轴的截面为平面α,平面α与两个圆锥侧面的交线为AC ,BD .已知平面β平行于平面α,平面β与两个圆锥侧面的交线为双曲线C 的一部分,且C 的两条渐近线分别平行于AC ,BD ,则该双曲线C 的离心率为 .16.如图,已知菱形ABCD 中,AB =2,∠BAD =120°,E 为边BC 的中点,将△ABE 沿AE 翻折成△AB 1E (点B 1位于平面ABCD 上方),连接B 1C 和B 1D ,F 为B 1D 的中点,则在翻折过程中,AE 与B 1C 的夹角为 ,点F 的轨迹的长度为 .四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知点A (1,2,﹣1),B (2,k ,﹣3),C (0,5,1),向量a →=(−3,4,5). (1)若AB →⊥a →,求实数k 的值;(2)求向量AC →在向量a →方向上的投影向量.18.(12分)已知△ABC 的顶点A (5,1),B (1,3),C (4,4). (1)求AB 边上的高所在直线的方程; (2)求△ABC 的外接圆的方程.19.(12分)如图,在长方体ABCD ﹣A 1B 1C 1D 1中,M 为BB 1上一点,已知BM =2,CD =3,AD =4,AA 1=5.(1)求直线A 1C 和平面ABCD 的夹角; (2)求点A 到平面A 1MC 的距离.20.(12分)已知定点A (1,﹣2),点B 为圆(x +1)2+(y +4)2=4上的动点. (1)求AB 的中点C 的轨迹方程;(2)若过定点P(12,−2)的直线l 与C 的轨迹交于M ,N 两点,且|MN|=√3,求直线l 的方程.21.(12分)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成.C ,E ,D ,G 在同一平面内,且CG=DG .(1)证明:平面BFD ⊥平面BCG ;(2)若直线GC 与平面ABG 所成角的正弦值为√105,求平面BFD 与平面ABG 所成角的余弦值.22.(12分)“工艺折纸”是一种把纸张折成各种不同形状物品的艺术活动,在我国源远流长,某些折纸活动蕴含丰富的数学知识,例如:用一张圆形纸片,按如下步骤折纸(如图):步骤1:设圆心是E,在圆内异于圆心处取一定点,记为F;步骤2:把纸片折叠,使圆周正好通过点F(即折叠后图中的点A与点F重合);步骤3:把纸片展开,并留下一道折痕,记折痕与AE的交点为P;步骤4:不停重复步骤2和3,就能得到越来越多的折痕.现取半径为4的圆形纸片,设点F到圆心E的距离为2√3,按上述方法折纸.以线段EF的中点为原点,线段EF所在直线为x轴建立平面直角坐标系xOy,记动点P的轨迹为曲线C.(1)求C的方程;(2)设轨迹C与x轴从左到右的交点为点A,B,点P为轨迹C上异于A,B,的动点,设PB交直线x=4于点T,连结AT交轨迹C于点Q.直线AP、AQ的斜率分别为k AP、k AQ.(ⅰ)求证:k AP•k AQ为定值;(ⅱ)证明直线PQ经过x轴上的定点,并求出该定点的坐标.2023-2024学年山东省普高联考高二(上)期中数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知点A (3,2,3),B (1,1,4),则A 、B 的中点的坐标为( ) A .(1,12,−12)B .(2,32,72)C .(4,3,7)D .(−1,−12,12)解:因为A (3,2,3),B (1,1,4),所以中点M(3+12,2+12,3+42)=(2,32,72). 故选:B .2.已知直线l 1:2x +2y ﹣5=0,l 2:4x +ny +1=0,若l 1∥l 2,则n 的值为( ) A .﹣6B .6C .4D .﹣4解:因为l 1∥l 2,所以42=n 2≠1−5⇒n =4.故选:C .3.过点A (1,1)的直线l 与圆M :x 2+y 2﹣6x =0相交的所有弦中,弦长最短为( ) A .5B .2C .√5D .4解:将A (1,1)代入x 2+y 2﹣6x ,得到12+12﹣6×1<0,所以点A 在圆内, 再根据x 2+y 2﹣6x =0可得圆心坐标M (3,0),可知当l 与AM 垂直时,弦长最小, 因为AM =√5,即最短弦长为的一半为√32−(√5)2=2,所以最短弦长为2×2=4. 故选:D .4.已知空间四边形OABC ,其对角线是OB ,AC ,M ,N 分别是对边OA ,BC 的中点,点G 在线段MN 上,且MG =3GN ,用基底向量OA →,OB →,OC →表示向量OG →应是( )A .OG →=18OA →+38OB →+38OC →B .OG →=18OA →−38OB →+38OC →C .OG →=16OA →+13OB →+13OC →D .OG →=16OA →−13OB →+13OC →解:∵OG →=OM →+MG →=OM →+34MN →=OM →+34(MO →+OC →+CN →)=OM →+34MO →+34OC →+34×12CB →=14OM →+34OC →+38(OB →−OC →)=18OA →+38OB →+38OC → 故选:A .5.已知实数x ,y 满足方程x 2+y 2﹣2x =0,则y+1x+1的最大值是( )A .34B .43C .0D .12解:C 的方程x 2+y 2﹣2x =0可化为(x ﹣1)2+y 2=1, 它表示圆心(1,0),半径为1的圆,y+1x+1表示圆上的点与点P (﹣1,﹣1)的连线的斜率k , 设过圆上点与点P (﹣1,﹣1)的直线方程为y +1=k (x +1), 则圆心(1,0)到直线y +1=k (x +1)的距离d =|2k−1|√k +1≤1,可得0≤k ≤43,即最大值为43,故选:B .6.战国时期成书《经说》记载:“景:日之光,反蚀人,则景在日与人之间”.这是中国古代人民首次对平面镜反射的研究,体现了传统文化中的数学智慧.在平面直角坐标系xOy 中,一条光线从点(2,3)射出,经y 轴反射后与圆x 2﹣6x +y 2+4y +12=0相切,则反射光线所在直线的斜率为( ) A .−43或−34B .17C .57D .56解:根据题意,设B 与点(2,3)关于y 轴的对称,则B 的坐标为(﹣2,3), 则反射光线经过点B ,且与圆x 2﹣6x +y 2+4y +12=0相切,设反射光线所在直线的方程为:y﹣3=k(x+2),即kx﹣y+2k+3=0,圆x2﹣6x+y2+4y+12=0的标准方程为(x﹣3)2+(y+2)2=1,则圆心为(3,﹣2),半径r=1,由圆心(3,﹣2)到反射光线的距离等于半径可得:√1+k2=1,即12k2+25k+12=0,解得k=−43或k=−34.故选:A.7.已知中心在原点,半焦距为4的椭圆x2m2+y2n2=1(m>0,n>0,m≠n)被直线方程2x﹣y+9=0截得的弦的中点横坐标为﹣4,则椭圆的标准方程为()A.x28+y24=1B.x232+y216=1C.x28+y24=1或y28+x24=1D.x232+y216=1或y232+x216=1解:设直线2x﹣y+9=0与椭圆相交于A(x1,y1),B(x2,y2)两点,由{x12m2+y12n2=1x22 m2+y22n2=1,得(x1+x2)(x1−x2)m2+(y1+y2)(y1−y2)n2=0,得k=y1−y2x1−x2=−n2m2×x1+x2y1+y2=2,弦的中点坐标是M(﹣4,1),直线AB的斜率k=2,所以n2m2=12,m2=2n2,又m2﹣n2=16,所以m2=32,n2=16,椭圆的标准方程为x232+y216=1.故选:B.8.苏州有很多圆拱的悬索拱桥(如寒山桥),经测得某圆拱索桥(如图)的跨度AB=100米,拱高OP=10米,在建造圆拱桥时每隔5米需用一根支柱支撑,则与OP相距30米的支柱MN的高度是()米.(注意:√10取3.162)A.6.48B.4.48C.2.48D.以上都不对解:以O为原点,以AB所在直线为x轴,以OP所在直线为y轴建立平面直角坐标系,设圆心坐标(0,a),P(0,10),A(﹣50,0),则圆拱所在圆的方程为x 2+(y ﹣a )2=r 2, ∴{(10−a)2=r 2(−50)2+a 2=r 2,解得a =﹣120,r 2=16900, ∴圆的方程为x 2+(y +120)2=16900.将x =﹣30代入圆方程,得:900+(y +120)2=16900, ∵y >0,∴y =40√10−120≈40×3.162﹣120=6.48. 故选:A .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.空间直角坐标系中,已知O (0,0,0),OA →=(−1,2,1),OB →=(−1,2,−1),OC →=(2,3,−1),则( ) A .|AB →|=2B .△ABC 是直角三角形C .与OA →平行的单位向量的坐标为(√66,−√63,−√66)D .{OA →,OB →,OC →}可以作为空间的一组基底 解:因为OA →=(−1,2,1),OB →=(−1,2,−1),所以AB →=OB →−OA →=(0,0,−2),所以|AB →|=2,选项A 正确; 又因为OC →=(2,3,−1),所以BC →=OC →−OB →=(3,1,0), 所以AB →⋅BC →=0,所以△ABC 是直角三角形,选项B 正确; 因为|OA →|=√1+4+1=√6, 所以与OA →平行的单位向量的坐标为:±OA →|OA →|=±(√66,−√63,−√66),选项C 错误; 假设OA →,OB →,OC →共面,则存在唯一的有序数对(x ,y )使OA →=xOB →+yOC →,即(﹣1,2,1)=x (﹣1,2,﹣1)+y (2,3,﹣1)=(﹣x +2y ,2x +3y ,﹣x ﹣y ), 所以{−1=−x +2y 2=2x +3y 1=−x −y ,此方程组无解,故OA →,OB →,OC →不共面,故可作为空间一组基底,选项D 正确. 故选:ABD .10.在如图所示的三棱锥O ﹣ABC 中,OA =OC =OB =1,OA ⊥面OBC ,∠BOC =π3,下列结论正确的为( )A .直线AB 与平面OBC 所成的角为45° B .二面角O ﹣BC ﹣A 的正切值为√33C .O 到面ABC 的距离为√217D .异面直线OC ⊥AB解:选项A ,因为OA ⊥面OBC ,故∠ABO 为直线AB 与平面OBC 所成的角, 又OA =OC =OB =1,所以tan ∠ABO =1,故直线AB 与平面OBC 所成的角是45°,故A 正确; 选项B ,取BC 中点为D ,连接OD ,AD ,因为OA =OB =OC =1,OA ⊥平面OBC ,∠BOC =π3,所以AB =AC =√2,BC =1,OD ⊥BC ,AD ⊥BC , 因为OD ∩AD =D ,所以BC ⊥平面AOD ,故∠ODA 为二面角O ﹣BC ﹣A 的平面角,则tan ∠ODA =OA OD =2√33, 故二面角O ﹣BC ﹣A 的正切值为2√33,故B 错误;选项C ,因为AB =AC =√2,BC =1,所以AD =√72,设O 到面ABC 的距离为h ,则由V A ﹣OBC =V O ﹣ABC ,可得:13×√34×1=13×12×√72×ℎ,解得ℎ=√217,故C 正确;选项D ,若OC ⊥AB ,又OC ⊥OA ,且AB ∩OA =A ,则OC ⊥面OAB , 则有OC ⊥OB ,与∠BOC =π3矛盾,故D 错误.故选:AC .11.已知直线l :kx ﹣y +2k =0(k ∈R )和圆O :x 2+y 2=8,则( ) A .直线l 恒过定点(2,0)B .存在k 使得直线l 与直线l 0:x ﹣2y +2=0垂直C .直线l 与圆O 相交D .若k =1,则圆O 上到直线l 的距离为√2的点有四个解:由直线l :kx ﹣y +2k =0,整理成k (x +2)﹣y =0,则直线恒过定点(﹣2,0),故A 错误; 若直线l :kx ﹣y +2k =0与直线l 0:x ﹣2y +2=0垂直, 则k +2=0,解得k =﹣2,故B 正确;因为(﹣2)2+0=4<8,所以定点(﹣2,0)在圆O :x 2+y 2=8内部, 所以直线l 与圆O 相交,故C 正确; 当k =1时,直线l 化为x ﹣y +2=0, 圆心O 到直线的距离d =|2|√2=√2,圆O 半径2√2, 因为d <r 且d =12r ,所以圆O 到直线l 距离为√2的点有三个,故D 错误.故选:BC .12.已知抛物线y 2=4x ,焦点F ,过点P (1,1)作斜率互为相反数的两条直线分别交抛物线于A ,B 及C ,D 两点.则下列说法正确的是( ) A .抛物线的准线方程为x =﹣1 B .若|AF |=5,则直线AP 的斜率为1 C .若PA →=3BP →,则直线AB 的方程为y =xD .∠CAP =∠BDP解:对于选项A :因为抛物线方程为y 2=4x ,可得该抛物线的准线方程为x =﹣1,故选项A 正确; 对于选项B :不妨设A (x 0,y 0),因为|AF |=5,所以x 0+p2=x 0+1=5,x 0=4,解得y 0=±4, 又P (1,1),则直线AP 的斜率为4−14−1=1或−4−14−1=−53,故选项B 错误; 对于选项C :不妨设A (x 1,y 1),B (x 2,y 2),因为P (1,1),所以BP →=(1−x 2,1−y 2),PA →=(x 1−1,y 1−1), 因为PA →=3BP →,所以{3(1−x 2)=x 1−13(1−y 2)=y 1−1,得{x 1=4−3x 2y 1=4−3y 2.因为y 12=4x 1,所以(4−3y 2)2=4(4−3x 2),即3y 22−8y 2=−4x 2, 因为y 22=4x 2,所以4y 22−8y 2=0,y 2=0或y 2=2,当y 2=0时,x 2=0,解得x 1=4,y 1=4; 当y 2=2时,x 2=1,解得x 1=1,y 1=﹣2,此时直线AB 的斜率不存在,直线CD 的斜率为0,不符合题意;则A (4,4),B (0,0),此时直线AB 的方程为y =x ,故选项C 正确. 对于选项D :易知直线AB ,CD 的斜率存在,不妨设直线AB :y =k (x ﹣1)+1, 则直线CD :y =﹣k (x ﹣1)+1,A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4), 联立{y =k(x −1)+1y 2=4x ,即{x =1k (y −1)+1y 2=4x,消去x 并整理得y 2−4k y +4k −4=0,因为P (1,1)在抛物线内部,所以Δ>0, 由韦达定理得y 1+y 2=4k ,y 1y 2=4k−4,因为|AP|=√1+1k 2|y 1−1|,|BP|=√1+1k2|y 2−1|, 所以|AP|⋅|BP|=(1+1k 2)|(y 1−1)(y 2−1)|=(1+1k2)|y 1y 2−(y 1+y 2)+1| =(1+1k 2)|4k −4−4k +1|=3(1+1k2), 同理得|CP|⋅|DP|=3[1+1(−k)2]=3(1+1k 2),所以|AP |•|BP |=|CP |•|DP |,即|AP||DP|=|CP||BP|,又∠CP A =∠BPD ,所以△APC ∽△BPD ,则∠CAP =∠BDP ,故选项D 正确. 故选:ACD .三、填空题:本题共4小题,每小题5分,共20分.13.过P (﹣1,a )、Q (a +1,4)两点的直线的倾斜角为45°,那么实数a = 1 . 解:过P (﹣1,a )、Q (a +1,4)两点的直线的倾斜角为45°, 则k PQ =tan45°=1,又k PQ =4−aa+2=1⇒a =1. 故答案为:1.14.a →=(1,−1,2),b →=(−2,1,0),c →=(−3,1,k),若a →,b →,c →共面,则实数k = 2 . 解:因为a →,b →,c →共面,所以存在x ,y ∈R ,使得c →=xa →+yb →, 又因为a →=(1,−1,2),b →=(−2,1,0),c →=(−3,1,k), 所以(﹣3,1,k )=x (1,﹣1,2)+y (﹣2,1,0), 所以{−3=x −2y1=−x +y k =2x ,解得x =1,y =2,k =2.故答案为:2.15.古希腊数学家阿波罗尼斯在《圆锥曲线论》中记载了用平面截圆锥得到圆锥曲线的方法.如图,将两个完全相同的圆锥对顶放置(两圆锥的顶点和轴都重合),已知两个圆锥的底面直径均为4,侧面积均为2√5π.记过两个圆锥轴的截面为平面α,平面α与两个圆锥侧面的交线为AC ,BD .已知平面β平行于平面α,平面β与两个圆锥侧面的交线为双曲线C 的一部分,且C 的两条渐近线分别平行于AC ,BD ,则该双曲线C 的离心率为 √5 .解:以AC ,BD 的交点在平面β内的射影为坐标原点,两圆锥的轴在平面β内的射影为y 轴,在平面β内与x轴垂直的直线为x轴,建立平面直角坐标系.根据题意可设双曲线C的方程为x2a2−y2b2=1(a>0,b>0).∵两个圆锥的底面直径均为4,则底面半径为2,又侧面积均为2√5π,∴一个圆锥的母线长为√5.则双曲线C的渐近线方程为y=±2x,即ba=2.∴双曲线的离心率为e=ca=√c2a2=√a2+b2a2=√1+(ba)2=√5.故答案为:√5.16.如图,已知菱形ABCD中,AB=2,∠BAD=120°,E为边BC的中点,将△ABE沿AE翻折成△AB1E (点B1位于平面ABCD上方),连接B1C和B1D,F为B1D的中点,则在翻折过程中,AE与B1C的夹角为90°,点F的轨迹的长度为π2.解:在菱形ABCD中,∠BAD=120°,E为边BC的中点,所以AE⊥BC,在翻折过程中,有AE⊥B1E,AE⊥CE,因为B1E∩CE=E,B1E、CE⊂平面B1CE,所以AE⊥平面B1CE,又B1C⊂平面B1CE,所以AE⊥B1C,即AE与B1C的夹角为90°;分别取AB ,AB 1的中点M 和N ,连接EM ,EN ,FN ,因为N ,F 分别为AB 1和B 1D 的中点, 所以FN =12AD ,FN ∥AD ,又E 为BC 的中点,所以CE =12BC =12AD ,CE ∥AD ,所以FN =CE ,FN ∥CE ,所以点F 的轨迹与点N 的轨迹相同,即从点M 到点N 的轨迹,因为AE ⊥平面B 1CE ,所以点B 1的轨迹是以E 为圆心,BE 为半径的圆, 所以点N 的轨迹是以AE 的中点为圆心,BE 2为半径的圆, 所以点N 的轨迹长度为12×2π×BE2=π×12=π2,即点F 的轨迹长度为π2.故答案为:90°,π2.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知点A (1,2,﹣1),B (2,k ,﹣3),C (0,5,1),向量a →=(−3,4,5). (1)若AB →⊥a →,求实数k 的值;(2)求向量AC →在向量a →方向上的投影向量.解:(1)由题意,AB →=(1,k −2,−2),a →=(−3,4,5), 因为AB →⊥a →,所以AB →⋅a →=0,即﹣3+4k ﹣8﹣10=0,得k =214. (2)由题意,AC →=(−1,3,2),a →=(−3,4,5),所以向量AC →在向量上a →上的投影向量为:(AC →⋅a →|a →|)a →|a →|=3+12+10√9+16+253√210,2√25,√22)=(−32,2,52).18.(12分)已知△ABC 的顶点A (5,1),B (1,3),C (4,4). (1)求AB 边上的高所在直线的方程;(2)求△ABC 的外接圆的方程. 解:(1)∵A (5,1),B (1,3), ∴直线AB 的斜率k AB =1−35−1=−12, ∴AB 边上的高所在直线的斜率为2, ∵AB 边上的高所在直线过点C (4,4),∴AB 边上的高所在直线的方程为y ﹣4=2(x ﹣4),即2x ﹣y ﹣4=0. (2)∵CA →=(1,−3),CB →=(−3,−1), ∴CA →⋅CB →=0,即△ABC 为以角C 为直角的直角三角形, 故△ABC 的外接圆以AB 中点(3,2)为圆心,|AB|2=12√(1−5)2+(3−1)2=√5为半径,∴△ABC 的外接圆的方程为(x ﹣3)2+(y ﹣2)2=5.19.(12分)如图,在长方体ABCD ﹣A 1B 1C 1D 1中,M 为BB 1上一点,已知BM =2,CD =3,AD =4,AA 1=5.(1)求直线A 1C 和平面ABCD 的夹角; (2)求点A 到平面A 1MC 的距离.解:(1)依题意:AA 1⊥平面ABCD ,连接AC ,则A 1C 与平面ABCD 所成夹角为∠A 1CA ,∵AA 1=5,AC =√32+42=5, ∴△A 1CA 为等腰三角形, ∴∠A 1CA =π4,∴直线A 1C 和平面ABCD 的夹角为π4,(2)(空间向量),如图建立坐标系,则A (0,0,0),C (3,4,0),A 1(0,0,5),M (3,0,2), ∴AC →=(3,4,0),A 1C →=(3,4,﹣5),MC →=(0,4.﹣2), 设平面A 1MC 的法向量n →=(x ,y ,z ),由{n →⋅A 1C →=3x +4y −5z =0n →⋅MC →=4y −2z =0,可得n →=(2,1,2), ∴点A 到平面A 1MC 的距离d =|AC →⋅n →||n →|=3×2+4×1√2+1+2=103.20.(12分)已知定点A (1,﹣2),点B 为圆(x +1)2+(y +4)2=4上的动点. (1)求AB 的中点C 的轨迹方程;(2)若过定点P(12,−2)的直线l 与C 的轨迹交于M ,N 两点,且|MN|=√3,求直线l 的方程.解:定点A (1,﹣2),点B 为圆(x +1)2+(y +4)2=4上的动点. (1)设点C 的坐标为(x ,y ),则点B 的坐标为(2x ﹣1,2y +2), ∵点B 为圆(x +1)2+(y +2)2=4上的动点,∴(2x ﹣1+1)2+(2y +2+4)2=4,即x 2+(y +3)2=1, ∴AB 的中点C 的轨迹方程为x 2+(y +3)2=1;(2)当直线l的斜率存在时,设直线l的方程为y+2=k(x−12 ),∵圆的半径r=1且|MN|=√3,∴圆心到直线的距离d=1 2,∴d=|1−k2|√1+k=12,解得k=34,∴直线l的方程为y+2=34(x−12),即6x﹣8y﹣19=0;当直线l的斜率不存在时,直线l的方程为x=1 2,此时|MN|=√3,满足条件;综上,直线l的方程为x=12或6x﹣8y﹣19=0.21.(12分)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成.C,E,D,G在同一平面内,且CG=DG.(1)证明:平面BFD⊥平面BCG;(2)若直线GC与平面ABG所成角的正弦值为√105,求平面BFD与平面ABG所成角的余弦值.解:(1)证明:如图,连接CE,DG,因为该几何体是由等高的半个圆柱和14个圆柱拼接而成,CG=DG,所以∠ECD=∠DCG=45°,所以∠ECG=90°,所以CE⊥CG,因为BC∥EF,BC=EF,所以四边形BCEF 为平行四边形, 所以BF ∥CE , 所以BF ⊥CG ,因为BC ⊥平面ABF ,BF ⊂平面ABF , 所以BC ⊥BF ,因为BC ,CG ⊂平面BCG ,BC ∩CG =C , 所以BF ⊥平面BCG , 因为BF ⊂平面BFD , 所以平面BFD ⊥平面BCG .(2)如图,以A 为坐标原点建立空间直角坐标系,设AF =2,AD =t ,则A (0,0,0),B (0,2,0),F (2,0,0),D (0,0,t ),G (﹣1,1,t ),C (0,2,t ),则AB →=(0,2,0),AG →=(−1,1,t),GC →=(1,1,0), 设平面ABG 的一个法向量为m →=(x ,y ,z), 则{m →⋅AB →=0,m →⋅AG →=0,所以{m →⋅AB →=(x ,y ,z)⋅(0,2,0)=2y =0m →⋅AG →=(x ,y ,z)⋅(−1,1,t)=−x +y +tz =0,令z =1,y =0,x =t ,所以m →=(t ,0,1),记直线GC 与平面ABG 所成的角为θ,则sinθ=|cos〈GC →,m →〉|=|GC →⋅m →||GC →||m →|=|t|√2×√t +1=√105,解得t =2(负值舍去),即AD =2,设平面BFD 的一个法向量为n →=(x′,y′,z′),FB →=(−2,2,0),FD →=(−2,0,2),则{n →⋅FB →=0n →⋅FD →=0即{−2x ′+2y ′=0−2x′+2z′=0,令x ′=1,则n →=(1,1,1), 所以cos <m →,n →>=m →⋅n →|m →||n →|=√2+1⋅√1+1+1=35×3=√155,所以平面BFD 与平面ABG 所成角的余弦值为√155. 22.(12分)“工艺折纸”是一种把纸张折成各种不同形状物品的艺术活动,在我国源远流长,某些折纸活动蕴含丰富的数学知识,例如:用一张圆形纸片,按如下步骤折纸(如图): 步骤1:设圆心是E ,在圆内异于圆心处取一定点,记为F ;步骤2:把纸片折叠,使圆周正好通过点F (即折叠后图中的点A 与点F 重合); 步骤3:把纸片展开,并留下一道折痕,记折痕与AE 的交点为P ; 步骤4:不停重复步骤2和3,就能得到越来越多的折痕.现取半径为4的圆形纸片,设点F 到圆心E 的距离为2√3,按上述方法折纸.以线段EF 的中点为原点,线段EF 所在直线为x 轴建立平面直角坐标系xOy ,记动点P 的轨迹为曲线C . (1)求C 的方程;(2)设轨迹C 与x 轴从左到右的交点为点A ,B ,点P 为轨迹C 上异于A ,B ,的动点,设PB 交直线x =4于点T ,连结AT 交轨迹C 于点Q .直线AP 、AQ 的斜率分别为k AP 、k AQ . (ⅰ)求证:k AP •k AQ 为定值;(ⅱ)证明直线PQ 经过x 轴上的定点,并求出该定点的坐标.解:(1)因为|PE|+|PF|=|PA|+|PE|=4>|EF|=2√3, 所以点P 的轨迹是以E ,F 为焦点,且长轴长2a =4的椭圆, 焦距2c =|EF|=2√3, 此时b 2=a 2﹣c 2=1, 则轨迹C 方程为x 24+y 2=1;(2)证明:(i )不妨设P (x 1,y 1),Q (x 2,y 2),T (4,m ), 由题可知A (﹣2,0),B (2,0),第21页(共21页) 则k AP =y 1x 1+2,k AQ =k AT =m−04−(−2)=m 6, 因为k BP =k BT =y 1x 1−2=m 2, 所以m =2y 1x 1−2, 所以k AP ⋅k AQ =y 1x 1+2⋅m 6=y 1x 1+2⋅y 13(x 1−2)=y 123(x 12−4),① 因为点P 在椭圆上,所以x 124+y 12=1,② 联立①②,解得k AP •k AQ =−112, 故k AP •k AQ 为定值;(ii )证明:不妨设直线PQ 的方程为x =ty +n ,P (x 1,y 1),Q (x 2,y 2),联立{x =ty +nx 24+y 2=1,消去x 并整理得(t 2+4)y 2+2tny +n 2﹣4=0, 由韦达定理得{y 1+y 2=−2tn t 2+4y 1y 2=n 2−4t 2+4, 由(i )知k AP ⋅k AQ =−112, 即y 1x 1+2⋅y 2x 2+2=y 1y 2(ty 1+n+2)(ty 2+n+2)=−112, 整理得n 2−44n 2+16n+16=−112, 解得n =1或n =﹣2(舍去),所以直线PQ 的方程为x =ty +1,故直线PQ 经过定点(1,0).。
北京市海淀区十一学校2025届高二化学第一学期期中统考试题含解析
北京市海淀区十一学校2025届高二化学第一学期期中统考试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(共包括22个小题。
每小题均只有一个符合题意的选项)1、常温下,能证明乙酸是弱酸的实验事实是A.0.1mol/L CH3COONa溶液的pH大于7B.CH3COOH溶液的导电能力弱C.0.1 mol/L CH3COOH溶液可使紫色石蕊变红D.CH3COOH溶液与Na2CO3反应生成CO22、在密闭容器中发生反应:xA(g)+yB(g)zC(g),平衡时测得A的浓度为0.50mol/L,保持温度不变,将容器的容积扩大到原来的两倍,再达平衡时,测得A的浓度0.30mol/L。
下列有关判断正确的是()A.x+y<zB.平衡向正反应方向移动C.A的转化率降低D.C的体积分数增大3、据报道,在300 ℃、70 MPa下由二氧化碳和氢气合成乙醇已成为现实,其反应的化学方程式为2CO2(g)+6H2(g)CH3CH2OH(g)+3H2O(g)。
下列叙述正确的是A.相同条件下,2 mol氢原子所具有的能量小于1 mol氢分子所具有的能量B.当v(CO2)=2v(CH3CH2OH)时,反应一定达到平衡状态C.移去水蒸气,可增大正反应速率D.增大压强,可提高CO2和H2的转化率4、丁腈橡胶具有优良的耐油、耐高温性,合成丁腈橡胶的原料是( )①CH2=CH—CH=CH2;②CH3—C≡CCH3;③CH2=CH—CN;④CH3—CH=CH—CN;⑤CH3—CH=CH2;⑥CH3—CH=CH—CH3。
A.③⑥B.①②C.①③D.④⑤5、工业生产氨气的适宜条件中不包括A.用浓硫酸吸收产物B.用铁触媒作催化剂C.温度为400~500 ℃D.压强为10~30 MPa6、下列物质中,不属于电解质的是A .NaOHB .蔗糖C .H 2SO 4D .NaCl7、常温下用aLpH=3的HX 溶液与bLpH=11的氢氧钠溶液相混合,下列叙述正确的( ) A .若两者恰好中和,则一定是a=b B .若混合液显碱性,则一定是b≥a C .若混合液显中性,则一定是a≤b D .若混合液显酸性,则一定是a≥b 8、漂白粉的有效成分是( ) A .2Ca(ClO)B .2CaClC .2Ca(OH)D .3CaCO9、甲酸的下列性质中,可以证明它是弱电解质的是 A ..0.1mol/L 甲酸溶液的 c(H +) = 10−3mol/L B .甲酸以任意比与水互溶C .10mL1mol/L 甲酸恰好与 10mL1mol/LNaOH 溶液完全反应D .甲酸溶液的导电性比一元强酸溶液的弱10、用阳极X 和阴极Y 电解Z 的水溶液,电解一段时间后,再加入W ,能使溶液恢复到电解前的状态,符合题意的一组是( )A .AB .BC .CD .D11、根据下图实验装置判断,下列说法正确的是A .该装置能将电能转化为化学能B .活性炭为正极,其电极反应式为: 2H ++2e -=H 2↑C.电子从铝箔流出,经电流表、活性炭、滤纸回到铝箔D.装置内总反应方程式为:4Al+3O2 +6H2O = 4Al(OH)312、下列分别是利用不同能源发电的实例,其中不属于新能源开发利用的是()A.风力发电B.太阳能发电C.火力发电D.潮汐能发电13、在溶液中能大量共存的离子组是A.Na+、OH-、HCO3-B.Ba2+、OH-、C1-C.H+、K+、CO32-D.NH4+、NO3-、OH-14、芳香族化合物A的分子式为C7H6O2,将它与NaHCO3溶液混合加热,有酸性气体产生。
2023-2024学年湖南省长沙二中高二(上)期中数学试卷【答案版】
2023-2024学年湖南省长沙二中高二(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求. 1.已知集合M ={x |(x ﹣2)(x ﹣6)<0},N ={x |1<x <5},则M ∩N =( ) A .{x |2<x <5}B .{x |1<x <5}C .{x |2<x <6}D .{x |1<x <6}2.已知复数z 满足(1+i )z =3+5i ,则|z |=( ) A .2B .3C .4D .√173.国家射击运动员甲在某次训练中10次射击成绩(单位:环):7,6,9,7,4,8,9,10,7,5,则这组数据第70百分位数为( ) A .7B .8C .8.5D .94.过点(4,0)的直线l 与圆x 2+y 2﹣4x ﹣8y +16=0相切,则直线l 的方程为( ) A .3x +4y ﹣12=0或y =0 B .3x +4y ﹣12=0或x =4C .4x +3y ﹣12=0或y =0D .4x +3y ﹣12=0或x =45.我国古代数学名著《九章算术》中,将底面为矩形且一侧棱垂直于底面的四棱锥称为阳马.如图,四棱锥P ﹣ABCD 是阳马,P A ⊥平面ABCD ,且PM →=2MC →,若AB →=a →,AD →=b →,AP →=c →,则BM →=( )A .13a →+23b →−13c → B .23a →+23b →−12c →C .−13a →+23b →−12c →D .−13a →+23b →+13c →6.已知圆锥的侧面积是16π,其侧面展开图是顶角为π2的扇形,则该圆锥的体积为( ) A .2√15π3B .4√15π3C .8√15π3D .16√15π37.已知F 1,F 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A 是椭圆C 的左顶点,点P 在过A 且斜率为√34的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则椭圆C 的离心率为( ) A .14B .13C .12D .238.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,O 是AC 中点,点P 在线段A 1C 1上,若直线OP 与平面A 1BC 1所成的角为θ,则sin θ的取值范围是( )A .[√23,√33]B .[13,12]C .[√34,√33]D .[14,13]二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求. 9.已知函数f(x)=sin(2x +2π3),则( ) A .f (x )的最小正周期为π B .f (x )的图象关于直线x =7π12对称 C .f(x +π3)是偶函数D .f (x )的单调递减区间为[kπ−π12,kπ+5π12](k ∈Z)10.已知三条直线2x ﹣3y +1=0,4x +3y +5=0,mx ﹣y ﹣1=0能构成三角形,则实数m 的取值可能为( ) A .2B .−43C .−23D .4311.如图,两条异面直线a ,b 所成的角为60°,在直线a ,b 上分别取点A ,O 和点C ,B ,使AO ⊥OC ,OC ⊥CB .已知AO =4,CB =3,AB =7,则线段OC 的长为( )A .6B .8C .2√3D .√312.已知双曲线C :x 28−y 24=1的左、右顶点分别为A ,B ,P 是C 上任意一点,则下列说法正确的是( ) A .C 的渐近线方程为y =±√22xB .若直线y =kx 与双曲线C 有交点,则|k|≥√22C .点P 到C 的两条渐近线的距离之积为83D .当点P 与A ,B 两点不重合时,直线P A ,PB 的斜率之积为2 三、填空题:本题共4小题,每小题5分,共20分.13.已知点A (1,2),B (3,4),则线段AB 的垂直平分线的方程是 . 14.已知cos(π4−α)=√210,α∈(π2,π),则cos α= .15.如图,棱长为1的正方体A 1A 2A 3A 4﹣A 5A 6A 7A 8的八个顶点分别为A 1,A 2,⋯,A 8,记正方体12条棱的中点分别为A 9,A 10,⋯,A 20,6个面的中心为A 21,A 22,⋯,A 26,正方体的中心为A 27.记m j =A 1A →7⋅A 1A →j ,j ∈{1,2,…,27},其中A 1A 7是正方体的体对角线.则m 1+m 2+…+m 27= .16.已知椭圆C :x 24+y 23=1的左、右焦点分别为F 1,F 2,M 为C 上任意一点,N 为圆E :(x ﹣5)2+(y﹣4)2=1上任意一点,则|MN |﹣|MF 1|的最小值为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)为配合创建全国文明城市,某市交警支队全面启动路口秩序综合治理,重点整治机动车不礼让行人的行为.经过一段时间的治理,从市交警队数据库中调取了10个路口的车辆违章数据,根据这10个路口的违章车次的数量绘制如图所示的频率分布直方图,统计数据中凡违章车次超过30次的路口设为“重点路口”.(1)根据直方图估计这10个路口的违章车次的中位数;(2)现从“重点路口”中随机抽取两个路口安排交警去执勤,求抽出来的路口中有且仅有一个违章车次在(40,50]的概率.18.(12分)已知函数F(x)=log a (1−x 2)(a >0,且a ≠1). (1)判断函数F (x )的奇偶性,并说明理由; (2)若F(m +1)>F(12−2m),求m 的取值范围.19.(12分)已知圆C :(x +1)2+(y ﹣2)2=25,直线l :(2+a )x +(1+a )y +a =0. (1)求证:直线l 恒过定点;(2)直线l 被圆C 截得的弦长何时最长、何时最短?并求截得的弦长最短时a 的值以及最短弦长. 20.(12分)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且3acosC +√3csinA =3b . (1)求A ;(2)若a =2,且△ABC 为锐角三角形,求△ABC 周长的取值范围.21.(12分)如图,在正三棱柱ABC ﹣A 1B 1C 1中,AA 1=2,AB =1.点D ,E ,F 分别在棱AA 1,BB 1,CC 1上,A 1D =CF =23,BE =1.M 为AC 中点,连接BM . (1)证明:BM ∥平面DEF ;(2)点P 在棱BB 1上,当二面角P ﹣DF ﹣E 为30°时,求EP 的长.22.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点A (2,0),且右焦点为F (√3,0).(1)求C 的标准方程;(2)过点(1,0)且斜率不为0的直线l 与C 交于M ,N 两点,直线x =4分别交直线AM ,AN 于点 E ,F ,以EF 为直径的圆是否过定点?若是,求出定点坐标;若不是,请说明理由.2023-2024学年湖南省长沙二中高二(上)期中数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求. 1.已知集合M ={x |(x ﹣2)(x ﹣6)<0},N ={x |1<x <5},则M ∩N =( ) A .{x |2<x <5}B .{x |1<x <5}C .{x |2<x <6}D .{x |1<x <6}解:因为M ={x |(x ﹣2)(x ﹣6)<0}={x |2<x <6},N ={x |1<x <5}, 所以M ∩N ={x |2<x <5}. 故选:A .2.已知复数z 满足(1+i )z =3+5i ,则|z |=( ) A .2B .3C .4D .√17解:复数z =3+5i1+i =(3+5i)(1−i)(1+i)(1−i)=8+2i2=4+i ,有|z|=√17. 故选:D .3.国家射击运动员甲在某次训练中10次射击成绩(单位:环):7,6,9,7,4,8,9,10,7,5,则这组数据第70百分位数为( ) A .7B .8C .8.5D .9解:将10次射击成绩按照从小到大顺序排序为:4,5,6,7,7,7,8,9,9,10, 因为10×70%=7,所以第70百分位数为8+92=8.5,故选:C .4.过点(4,0)的直线l 与圆x 2+y 2﹣4x ﹣8y +16=0相切,则直线l 的方程为( ) A .3x +4y ﹣12=0或y =0 B .3x +4y ﹣12=0或x =4C .4x +3y ﹣12=0或y =0D .4x +3y ﹣12=0或x =4解:圆x 2+y 2﹣4x ﹣8y +16=0化为标准方程为(x ﹣2)2+(y ﹣4)2=4,得圆心(2,4),半径为2, 当直线l 的斜率不存在时,直线l :x =4,此时直线l 与圆x 2+y 2﹣4x ﹣8y +16=0相切,符合题意;当直线l 的斜率存在时,设直线l 的方程为y =k (x ﹣4),即kx ﹣y ﹣4k =0, 圆心(2,4)到直线l 的距离为d =√k +1=√k +1,由相切得d =r =2, 所以√k 2+1=2,平方化简得k =−34,求得直线方程为3x +4y ﹣12=0,综上,直线l 的方程为3x +4y ﹣12=0或x =4. 故选:B .5.我国古代数学名著《九章算术》中,将底面为矩形且一侧棱垂直于底面的四棱锥称为阳马.如图,四棱锥P ﹣ABCD 是阳马,P A ⊥平面ABCD ,且PM →=2MC →,若AB →=a →,AD →=b →,AP →=c →,则BM →=( )A .13a →+23b →−13c → B .23a →+23b →−12c →C .−13a →+23b →−12c →D .−13a →+23b →+13c →解:PM →=2MC →,则PM →=23PC →, 若AB →=a →,AD →=b →,AP →=c →,则BM →=BP →+PM →=BP →+23PC →=AP →−AB →+23(AC →−AP →)=13AP →+23AC →−AB → =13AP →+23(AB →+AD →)−AB →=13AP →−13AB →+23AD → =−13a →+23b →+13c →.故选:D .6.已知圆锥的侧面积是16π,其侧面展开图是顶角为π2的扇形,则该圆锥的体积为( )A .2√15π3B .4√15π3C .8√15π3D .16√15π3解:设圆锥母线长为a ,底面半径为r ,侧面积是16π,则π•r •a =16π,有ar =16, 侧面展开图顶角为π2=2πr a,有a =4r ,解得r =2,a =8,则圆锥的高ℎ=√a 2−r 2=√82−22=2√15, 故V =13Sℎ=13πr 2ℎ=13⋅π⋅22⋅2√15=8√15π3. 故选:C .7.已知F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是椭圆C 的左顶点,点P 在过A 且斜率为√34的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则椭圆C 的离心率为( ) A .14B .13C .12D .23解:由题意可知:A (﹣a ,0),F 1(﹣c ,0),F 2(c ,0), 直线AP 的方程为:y =√34(x +a ),由∠F 1F 2P =120°,|PF 2|=|F 1F 2|=2c ,则P (2c ,√3c ), 代入直线AP :√3c =√34(2c +a ),整理得:a =2c , ∴离心率e =ca =12. 故选:C .8.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,O 是AC 中点,点P 在线段A 1C 1上,若直线OP 与平面A 1BC 1所成的角为θ,则sin θ的取值范围是( )A .[√23,√33]B .[13,12]C .[√34,√33]D .[14,13]解:设正方体棱长为1,A 1PA 1C 1=λ(0≤λ≤1).以D 为原点,分别以DA ,DC ,DD 1为坐标轴建立空间直角坐标系, 则O (12,12,0),P (1﹣λ,λ,1),∴OP →=(12−λ,λ−12,1),∵易证DB 1⊥平面A 1BC 1,∴DB 1→=(1,1,1)是平面A 1BC 1的一个法向量. ∴sin θ=|cos <OP →,DB 1→>|=1√3√2(λ−12)2+1,当λ=12时sin θ取得最大值√33,当λ=0或1时,sin θ取得最小值√23. 故选:A .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求. 9.已知函数f(x)=sin(2x +2π3),则( ) A .f (x )的最小正周期为π B .f (x )的图象关于直线x =7π12对称 C .f(x +π3)是偶函数D .f (x )的单调递减区间为[kπ−π12,kπ+5π12](k ∈Z)解:对于A ,由三角函数的性质,可得f (x )的最小正周期为T =2π2=π,所以A 正确; 对于B ,当x =7π12时,可得f(7π12)=sin(2×7π12+2π3)=sin 11π6≠±1, 所以f (x )的图象不关于直线x =7π12对称,所以B 错误; 对于C ,由f(x +π3)=sin[2(x +π3)+2π3]=sin(2x +4π3),此时函数f(x +π3)为非奇非偶函数,所以C 错误; 对于D ,令π2+2kπ≤2x +2π3≤3π2+2kπ,k ∈Z ,解得kπ−π12≤x ≤kπ+5π12,k ∈Z ,即函数的递减区间为[kπ−π12,kπ+5π12],k ∈Z ,所以D 正确. 故选:AD .10.已知三条直线2x ﹣3y +1=0,4x +3y +5=0,mx ﹣y ﹣1=0能构成三角形,则实数m 的取值可能为( ) A .2B .−43C .−23D .43解:因为三条直线2x ﹣3y +1=0,4x +3y +5=0,mx ﹣y ﹣1=0能构成三角形, 所以直线mx ﹣y ﹣1=0与2x ﹣3y +1=0,4x +3y +5=0都不平行, 且直线mx ﹣y ﹣1=0不过2x ﹣3y +1=0与4x +3y +5=0的交点,直线mx ﹣y ﹣1=0与2x ﹣3y +1=0,4x +3y +5=0都不平行时,m ≠23,且m ≠−43, 联立{2x −3y +1=04x +3y +5=0,解得{x =−1y =−13, 即直线2x ﹣3y +1=0与4x +3y +5=0的交点坐标为(−1,−13), 代入直线mx ﹣y ﹣1=0中,得m =−23,结合题意可知m ≠−23, 对照各个选项,可知实数m 的取值可以为2或43,故选:AD .11.如图,两条异面直线a ,b 所成的角为60°,在直线a ,b 上分别取点A ,O 和点C ,B ,使AO ⊥OC ,OC ⊥CB .已知AO =4,CB =3,AB =7,则线段OC 的长为( )A .6B .8C .2√3D .√3解:因为AB →=AO →+OC →+CB →,平方得AB →2=(AO →+OC →+CB →)2=AO →2+OC →2+CB →2+2AO →⋅OC →+2OC →⋅CB →+2CB →⋅AO →. 因为a ,b 所成的角为60°,所以〈CB →,AO →〉=60°或〈CB →,AO →〉=120°.当〈CB →,AO →〉=60°时,AO →⊥OC →,OC →⊥CB →, 代入数据可得:72=42+OC →2+32+2×4×3×12, 所以OC →2=12,所以|OC →|=2√3;当〈CB →,AO →〉=120°时,AO →⊥OC →,OC →⊥CB →, 代入数据可得:72=42+OC →2+32−2×4×3×12, 所以OC →2=36,所以|OC →|=6.综上所述,|OC →|=2√3或|OC →|=6,即OC 的长为6或2√3. 故选:AC .12.已知双曲线C :x 28−y 24=1的左、右顶点分别为A ,B ,P 是C 上任意一点,则下列说法正确的是( )A .C 的渐近线方程为y =±√22xB .若直线y =kx 与双曲线C 有交点,则|k|≥√22C .点P 到C 的两条渐近线的距离之积为83D .当点P 与A ,B 两点不重合时,直线P A ,PB 的斜率之积为2 解:双曲线C :x 28−y 24=1,则a =2√2,b =2, 对于A ,C 的渐近线方程为y =±b a x =±√22x ,A 正确; 对于B ,由双曲线的渐近线方程为y =±√22x 可知, 若直线y =kx 与双曲线C 有交点,则|k|<√22,B 错误; 对于C ,设点P (x ,y ),则x 28−y 24=1⇒x 2−2y 2=8,点P 到C 的两条渐近线的距离之积为√2y|√12+(√2)2√2y|√12+(√2)2=|x 2−2y 2|3=83,C 正确;对于D ,易得A(−2√2,0),B(2√2,0),设P (x ,y ),则y 2=4(x 28−1)(x ≠±2√2), 所以直线P A ,PB 的斜率之积为x+2√2×x−2√2=y 2x 2−8=4(x 28−1)x 2−8=12,D 错误.故选:AC .三、填空题:本题共4小题,每小题5分,共20分.13.已知点A (1,2),B (3,4),则线段AB 的垂直平分线的方程是 x +y ﹣5=0 . 解:因为A (1,2),B (3,4),所以线段AB 的中点为(2,3),垂直平分线的斜率k =1−k AB =−1,所以线段AB 的垂直平分线的方程为y ﹣3=﹣(x ﹣2),即x +y ﹣5=0. 故答案为:x +y ﹣5=0.14.已知cos(π4−α)=√210,α∈(π2,π),则cos α= −35 . 解:因为cos(π4−α)=√210,又α∈(π2,π), 所以π4−α∈(−3π4,−π4),所以sin(π4−α)=−√1−cos(π4−α)2=√1−150=−7√210, cosα=cos[π4−(π4−α)]=cos π4cos(π4−α)+sin π4sin(π4−α) =√22×√210+√22×(−7√210)=−35. 故答案为:−35.15.如图,棱长为1的正方体A 1A 2A 3A 4﹣A 5A 6A 7A 8的八个顶点分别为A 1,A 2,⋯,A 8,记正方体12条棱的中点分别为A 9,A 10,⋯,A 20,6个面的中心为A 21,A 22,⋯,A 26,正方体的中心为A 27.记m j =A 1A →7⋅A 1A →j ,j ∈{1,2,…,27},其中A 1A 7是正方体的体对角线.则m 1+m 2+…+m 27=812.解:建立如图所示的空间直角坐标系,则A 1(0,0,0),A 2(1,0,0),A 3(1,1,0),A 4(0,1,0),A 5(0,0,1),A 6(1,0,1),A 7(1,1,1),A 8(0,1,1), 设向量A 1A j →=(x ,y ,z),而A 1A 7→=(1,1,1), 故m j =A 1A j →⋅A 1A 7→=x +y +z ,故m 1+m 2+…+m 27表示各点的坐标和的和,现各点的横坐标之和为X ,纵坐标之和为Y ,竖坐标之和为Z , 根据对称性可得X =Y =Z =1×9+12×9+0×9=272, 故m 1+m 2+⋯+m 27=3×272=812, 故答案为:812.16.已知椭圆C :x 24+y 23=1的左、右焦点分别为F 1,F 2,M 为C 上任意一点,N 为圆E :(x ﹣5)2+(y﹣4)2=1上任意一点,则|MN |﹣|MF 1|的最小值为 4√2−5 . 解:如图,M 为椭圆C 上任意一点,N 为圆E :(x ﹣5)2+(y ﹣4)2=1上任意一点, 则|MF 1|+|MF 2|=4,|MN |≥|ME |﹣1(当且仅当M 、N 、E 共线时取等号), ∴|MN |﹣|MF 1|=|MN |﹣(4﹣|MF 2|)=|MN |+|MF 2|﹣4≥|ME |+|MF 2|﹣5≥|EF 2|﹣5, ∵F 2(1,0),E (5,4),则|EF 2|=√(5−1)2+(4−0)2=4√2, ∴|MN |﹣|MF 1|的最小值为:4√2−5. 故答案为:4√2−5.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)为配合创建全国文明城市,某市交警支队全面启动路口秩序综合治理,重点整治机动车不礼让行人的行为.经过一段时间的治理,从市交警队数据库中调取了10个路口的车辆违章数据,根据这10个路口的违章车次的数量绘制如图所示的频率分布直方图,统计数据中凡违章车次超过30次的路口设为“重点路口”.(1)根据直方图估计这10个路口的违章车次的中位数;(2)现从“重点路口”中随机抽取两个路口安排交警去执勤,求抽出来的路口中有且仅有一个违章车次在(40,50]的概率.解:(1)由频率分布直方图可知,该中位数为30+0.10.4×(40−30)=32.5;(2)由频率分布直方图可知,违章车次在(30,40]的路口有10×0.04×10=4个,设为a,b,c,d,违章车次在(40,50]的路口有10×0.02×10=2个,A,B,现从“重点路口”中随机抽取两个路口安排交警去执勤,共有ab,ac,ad,bc,bd,cd,aA,bA,cA,dA,aB,bB,cB,dB,AB,共15个,其中抽出来的路口中有且仅有一个违章车次在(40,50]的事件为:aA,bA,cA,dA,aB,bB,cB,dB,共8个,故抽出来的路口中有且仅有一个违章车次在(40,50]的概率为:815.18.(12分)已知函数F(x)=log a(1−x2)(a>0,且a≠1).(1)判断函数F(x)的奇偶性,并说明理由;(2)若F(m+1)>F(12−2m),求m的取值范围.解:(1)F(x)为偶函数,理由如下:由1﹣x2>0得﹣1<x<1,即函数F(x)的定义域为(﹣1,1),可知F(x)的定义域关于原点中心对称.又F(−x)=log a(1−x2)=F(x),故F(x)为偶函数;(2)因为F(x)为偶函数,所以不等式F(m+1)>F(12−2m)即F(|m+1|)>F(|12−2m|),由复合函数的单调性可知,当a>1时,y=log a t在(0,+∞)上单调递增,而t=1﹣x2在(0,1)上单调递减,故F(x)在(0,1)内单调递减,则F(x)在(﹣1,0)内单调递增;当0<a <1时,y =log a t 在(0,+∞)上单调递减,而t =1﹣x 2在(0,1)上单调递减,故F (x )在(0,1)内单调递增,则F (x )在(﹣1,0)内单调递减;(i )当a >1时,由已知有{−1<m +1<1−1<12−2m <1|m +1|<|12−2m|,解得−14<m <−16;(ii )当0<a <1时,由已知有{ −1<m +1<1−1<12−2m <1|m +1|>|12−2m|,解得−16<m <0,故当a >1时,m 的取值范围为(−14,−16);当0<a <1时,m 的取值范围为(−16,0). 19.(12分)已知圆C :(x +1)2+(y ﹣2)2=25,直线l :(2+a )x +(1+a )y +a =0. (1)求证:直线l 恒过定点;(2)直线l 被圆C 截得的弦长何时最长、何时最短?并求截得的弦长最短时a 的值以及最短弦长. 解:(1)直线l :(2+a )x +(1+a )y +a =0,即a (x +y +1)+(2x +y )=0, 联立{x +y +1=02x +y =0,解得{x =1y =−2,所以不论a 取何值,直线l 必过定点P (1,﹣2);(2)由C :(x +1)2+(y ﹣2)2=25,知圆心C (﹣1,2),半径为5.当直线l 过圆心C 时,直线被圆截得的弦长最长, 当直线l ⊥CP 时,直线被圆截得的弦长最短. 直线l 的斜率为k =−2+a1+a ,k CP =−2−21−(−1)=−2, 有−2+a1+a ⋅(−2)=−1,解得a =−53. 此时直线l 的方程是x ﹣2y ﹣5=0.圆心C(﹣1,2)到直线x﹣2y﹣5=0的距离为d=|−1−4−5|5=2√5,所以最短弦长是2√r2−d2=2√25−20=2√5.20.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,且3acosC+√3csinA=3b.(1)求A;(2)若a=2,且△ABC为锐角三角形,求△ABC周长的取值范围.解:(1)由已知和正弦定理得3sinAcosC+√3sinCsinA=3sinB,又sin B=sin(A+C)=sin A cos C+sin C cos A,∴√3sinCsinA=3sinCcosA,又sin C≠0,∴√3sinA=3cosA,有tanA=√3,又A∈(0,π),∴A=π3;(2)∵a=2,且A=π3,∴由正弦定理有bsinB =csinC=2sinπ3=4√33,从而b=4√33sinB,c=4√33sinC,∵sinC=sin(A+B)=sin(π3+B),∴b+c=4√33[sinB+sin(π3+B)]=4√33(32sinB+√32cosB)=4sin(B+π6),又△ABC为锐角三角形,有B∈(0,π2),且A+B=π3+B∈(π2,π),∴B∈(π6,π2),∴B+π6∈(π3,2π3),有sin(B+π6)∈(√32,1],故b+c∈(2√3,4],从而△ABC周长的取值范围为(2+2√3,6].21.(12分)如图,在正三棱柱ABC﹣A1B1C1中,AA1=2,AB=1.点D,E,F分别在棱AA1,BB1,CC1上,A1D=CF=23,BE=1.M为AC中点,连接BM.(1)证明:BM∥平面DEF;(2)点P 在棱BB 1上,当二面角P ﹣DF ﹣E 为30°时,求EP 的长.(1)证明:取DF 中点N ,连接EN ,MN , 又M 为AC 中点,所以MN 为梯形ADFC 的中位线, 所以MN ∥AD ,MN =AD+CF2=1, 又BE ∥AD ,故MN ∥BE ,且MN =BE , 故四边形BMNE 为平行四边形,则BM ∥NE , 因为NE ⊂平面DEF ,BM ⊄平面DEF , 故BM ∥平面DEF ;(2)解:以M 为坐标原点,BM 所在直线为x 轴,AC 所在直线为y 轴,MN 所在直线为z 轴, 建立空间直角坐标系M ﹣xyz ,如图所示:则D(0,−12,43),E(√32,0,1),F(0,12,23),设P(√32,0,a), 可得DE →=(√32,12,−13),DF →=(0,1,−23),DP →=(√32,12,a −43), 设平面DEF的法向量为n 1→=(x 1,y 1,z 1),则n 1→⊥DE →,n 1→⊥DF →,则有{n 1→⋅DE →=0n 1→⋅DF →=0,即{√32x 1+12y 1−13z 1=0y 1−23z 1=0, 取z 1=3,则y 1=2,x 1=0,得n 1→=(0,2,3), 设平面PDF的法向量为n 2→=(x 2,y 2,z 2),由n 2→⊥DP →,n 2→⊥DF →,则有{n 2→⋅DP →=0n 2→⋅DF →=0,即{√32x 2+12y 2+(a −43)z 2=0y 2−23z 2=0, 取z 2=3,则y 2=2,x 2=2√3−2√3a ,得n 2→=(2√3−2√3a ,2,3),由二面角P ﹣DF ﹣E 为30°,得|n 1→⋅n 2→||n 1→|⋅|n 2→|=√32, 即√13⋅√12a 2−24a+25=√32,解得a =1±√136, 故|EP|=√136.22.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点A (2,0),且右焦点为F (√3,0).(1)求C 的标准方程;(2)过点(1,0)且斜率不为0的直线l 与C 交于M ,N 两点,直线x =4分别交直线AM ,AN 于点 E ,F ,以EF 为直径的圆是否过定点?若是,求出定点坐标;若不是,请说明理由. 解:(1)由题意知,a =2,c =√3, 所以b 2=a 2﹣c 2=4﹣3=1, 所以C 的标准方程为x 24+y 2=1.(2)设直线l 的方程为x =ty +1,M (x 1,y 1),N (x 2,y 2), 联立{x =ty +1x 24+y 2=1,得(t 2+4)y 2+2ty ﹣3=0, 所以y 1+y 2=−2t t 2+4,y 1y 2=−3t 2+4, 因为A (2,0),所以直线AM 的方程为y =y1x 1−2(x ﹣2),令x =4,则y E =2y 1x 1−2,即E (4,2y 1x 1−2),同理可得,F (4,2y 2x 2−2),由对称性知,若定点存在,则定点在x 轴上,设为P (x 0,0),则PE →⋅PF →=0, 所以(4﹣x 0,2y 1x 1−2)•(4﹣x 0,2y 2x 2−2)=0,即(4﹣x 0)2+2y 1x 1−2•2y 2x 2−2=0, 因为(x 1﹣2)(x 2﹣2)=(ty 1﹣1)(ty 2﹣1)=t 2y 1y 2﹣t (y 1+y 2)+1=t 2•(−3t 2+4)﹣t (−2t t 2+4)+1=4t 2+4, 所以(4﹣x 0)2+4⋅(−3t 2+4)4t 2+4=0,即(4﹣x 0)2=3,所以x0=4±√3,故以EF为直径的圆过定点,定点坐标为(4−√3,0)或(4+√3,0).。
河北衡水中学2025届化学高二上期中统考试题含解析
河北衡水中学2025届化学高二上期中统考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共包括22个小题。
每小题均只有一个符合题意的选项)1、固体A的化学式为NH5,它的所有原子的最外层都符合相应稀有气体原子的最外电子层结构,则下列有关说法,不正确的是()A.NH5中既有离子键又有共价键B.NH5的熔沸点高于NH3C.1mol NH5中含有5mol N—H键D.NH5固体投入少量水中,可产生两种气体2、关于如图叙述不正确的是A.该种堆积方式为A3型最密堆积B.该种堆积方式称为A1型最密堆积C.该种堆积方式可用符号“…ABCABC…”表示D.金属Cu就属于此种最密堆积型式3、感冒发烧造成身体不适,可选用的解热镇痛药为( )A.阿司匹林B.青霉素C.碳酸氢钠D.维生素C4、下列试剂的保存方法不正确的是A.NaOH溶液保存在配有玻璃塞的细口瓶中B.金属钠通常密封保存在煤油中C.浓硝酸通常保存在棕色细口瓶并置于阴凉处D.在盛液溴的试剂瓶中加水,形成“水封”,以减少溴挥发5、已知某溶液中存在H+、Ba2+、Fe3+三种阳离子,则其中可能大量存在的阴离子是A.SO42-B.CO32-C.NO3-D.OH-6、一定温度下,在2L的密闭容器中,X、Y、Z三种气体的物质的量随时间变化的曲线如下图所示。
下列叙述正确的是A.反应开始到10 s末时,用Z表示的反应速率为0.158 mol·L-1·s-1B.反应开始到10 s末时,X的物质的量浓度减少了0.79 mol·L-1C.反应开始到10 s时,Y的转化率为79.0%D.反应的化学方程式为X(g)+Y(g)Z(g)7、下列有关金属腐蚀与防护的说法正确的是()A.纯银器表面在空气中因电化学腐蚀渐渐变暗B.当镀锡铁制品的镀层破损时,镀层仍能对铁制品起保护作用C.可将地下输油钢管与外加直流电源的正极相连以保护它不受腐蚀D.“辽宁号”外壳连接锌块保护外壳不受腐蚀是采用了牺牲阳极的阴极保护法8、反应4CO+2NO2N2+4CO2在不同条件下的化学反应速率如下,其中表示反应速率最快的是A.v(CO)=1.5 mol·L-1·min-1B.v(NO2)=0.7 mol·L-1·min-1C.v(N2)=0.4 mol·L-1·min-1D.v(CO2)=1.1 mol·L-1·min-19、下列解释实验事实的离子方程式正确的是A.用氢氧化钠溶液吸收氯气:Cl2+2OH﹣=ClO﹣+Cl﹣+H2OB.用大理石与稀盐酸制备二氧化碳:CO32﹣+2H+=CO2↑+H2OC.稀硫酸与氢氧化钡溶液混合产生沉淀:Ba2++SO42﹣=BaSO4↓D.铜片放入稀硝酸中产生气体:Cu+4H++2NO3﹣=Cu2++2NO2↑+2H2O10、已知物质的量浓度相同的三种盐溶液NaX、NaY、NaZ,它们的pH依次为:8、9、10,则这三种盐相对应的酸的酸性递减的顺序正确的是()A.HX>HY>HZ B.HZ>HY>HXC.HY>HX>HZ D.HY>HZ>HX11、下列物质分离提纯的方法不正确的是()A.提纯工业乙醇(含甲醇、水等杂质)的装置:③B.提纯粗苯甲酸选择装置:②①C.提纯粗苯甲酸三个步骤:加热溶解、趁热过滤、冷却结晶D.苯中混有少量苯酚选择装置:④12、下列离子中外层d轨道达半充满状态的是()A.24Cr3+B.26Fe3+C.27Co3+D.29Cu+13、为了解决东部地区的能源紧张问题,我国从新疆开发天然气,并修建了贯穿东西引气至上海的“西气东输”工程,天然气的主要成分是()A.CH4B.CO2C.CO D.H214、下列气体可用NaOH干燥的是A.CO2B.H2C.SO2D.NO215、一定温度下,把2.5 mol A 和2.5 mol B混合盛入容积为2 L的密闭容器里,发生如下反应:3A(g)+B(g) x C(g) + 2D(g),经5 s反应达平衡,在此5 s 内C的平均反应速率为0.2 mol·L-1·s-1,同时生成1 mol D,下列叙述中不正确的是A.x=4B.达到平衡状态时A 的物质的量浓度为c(A)=1.0 mol·L-1C.5s 内B的反应速率v(B)=0.05 mol·(L·s)-1D.达到平衡状态时容器内气体的压强与起始时压强比为6:516、下列各组物质中全属于烃的是()A.CH4、C2H5OH、C6H12O6(果糖)、(C6H10O5)n(淀粉)B.CH4、C2H4、H2CO3、CH3ClC.C2H2、H2O2、CCl4、C6H6D.CH4、C2H6、C2H2、C6H617、在密闭容器中进行如下反应:X2(g)+Y 2(g)⇌2Z(g) ,已知X 2、Y2、Z 的起始浓度分别为0.1mol/L 、0.3mol/L 、0.2mol/L ,在一定条件下,当反应达到平衡时,各物质的浓度有可能是( )A.Z 为0.3mol/L B.Y2为0.4mol/L C.X2为0.2mol/L D.Z 为0.4mol/L18、微信热传的“苯宝宝表情包”是一系列苯的衍生物配以相应文字形成的(如图所示)。
福建省福州市2023-2024学年高二下学期期中联考试题 数学含答案
2023-2024学年第二学期期中质量检测高二数学试卷(答案在最后)(满分:150分;考试时间:120分钟)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:选择性必修第二册第五章、选择性必修第三册第六章、第七章第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.计算52752+C A 的值是()A.62B.102C.152D.5402.下列导数运算正确的是()A.cos sin x x x '⎛⎫=- ⎪⎝⎭B.()21log ln 2x x '=C.()22xx'= D.()32e 3exxx x '=3.若9290129(2)x a a x a x a x -=++++L ,则129a a a +++ 的值为()A.1- B.1 C.511- D.5124.若2()f x x bx c =++的图象的顶点在第二象限,则函数()f x '的图象是()A. B.C. D.5.曲线()(22e 21xf x x x =--+-在0x =处的切线的倾斜角是()A.2π3B.5π6C.3π4 D.π46.现有完全相同的甲,乙两个箱子(如图),其中甲箱装有2个黑球和4个白球,乙箱装有2个黑球和3个白球,这些球除颜色外完全相同.某人先从两个箱子中任取一个箱子,再从中随机摸出一球,则摸出的球是黑球的概率是()A.1115B.1130C.115D.2157.有7种不同的颜色给下图中的4个格子涂色,每个格子涂一种颜色,且相邻的两个格子颜色不能相同,若最多使用3种颜色,则不同的涂色方法种数为()A.462B.630C.672D.8828.已知函数()e 2xx k f x =-,若0x ∃∈R ,()00f x ≤,则实数k 的最大值是().A.1eB.2eC.12eD.e e二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知1)nx+*(N )n ∈展开式中常数项是2C n ,则n 的值为().A.3B.4C.5D.610.高中学生要从必选科目(物理和历史)中选一门,再在化学、生物、政治、地理这4个科目中,依照个人兴趣、未来职业规划等要素,任选2个科目构成“1+2选考科目组合”参加高考.已知某班48名学生关于选考科目的结果统计如下:选考科目名称物理化学生物历史地理政治选考该科人数36392412a b下面给出关于该班学生选考科目的四个结论中,正确的是()A.33a b +=B.选考科目组合为“历史+地理+政治”的学生可能超过9人C.在选考化学的所有学生中,最多出现6种不同的选考科目组合D.选考科目组合为“历史+生物+地理”的学生人数一定是所有选考科目组合中人数最少的11.若不等式e ln 0x ax a -<在[)2,x ∞∈+时恒成立,则实数a 的值可以为()A.3eB.2eC.eD.2第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.某气象台统计,该地区下雨的概率为415,刮四级以上风的概率为215,既刮四级以上的风又下雨的概率为110,设A 为下雨,B 为刮四级以上的风,则()P B A =___________.13.某校一次高三数学统计,经过抽样分析,成绩X 近似服从正态分布()2110,N σ,且P (90110)X ≤≤0.3=,该校有1000人参加此次统考,估计该校数学成绩不低于130分的人数为________.14.将4名志愿者分配到3个不同的北京冬奥场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为________.(用数字作答)四、解答题(本大题共5题,共77分,解答时应写出文字说明,证明过程或演算步骤)15.已知函数3()ln (R)f x x ax a =+∈,且(1)4f '=.(1)求a 的值;(2)设()()ln g x f x x x =--,求()y gx =过点(1,0)的切线方程.16.已知n⎛⎝在的展开式中,第6项为常数项.(1)求n ;(2)求含2x 的项的系数;(3)求展开式中所有的有理项.17.如图,有三个外形相同的箱子,分别编号为1,2,3,其中1号箱装有1个黑球和3个白球,2号箱装有2个黑球和2个白球,3号箱装有3个黑球,这些球除颜色外完全相同.小明先从三个箱子中任取一箱,再从取出的箱中任意摸出一球,记事件i A (123i =,,)表示“球取自第i 号箱”,事件B 表示“取得黑球”.(1)求()P B 的值:(2)若小明取出的球是黑球,判断该黑球来自几号箱的概率最大?请说明理由.18.为普及空间站相关知识,某部门组织了空间站模拟编程闯关活动,它是由太空发射、自定义漫游、全尺寸太阳能、空间运输等10个相互独立的程序题目组成.规则是:编写程序能够正常运行即为程序正确.每位参赛者从10个不同的题目中随机选择3个进行编程,全部结束后提交评委测试,若其中2个及以上程序正确即为闯关成功.现已知10个程序中,甲只能正确完成其中6个,乙正确完成每个程序的概率为0.6,每位选手每次编程都互不影响.(1)求乙闯关成功的概率;(2)求甲编写程序正确的个数X 的分布列和期望,并判断甲和乙谁闯关成功的可能性更大.19.已知曲线()31:3C y f x x ax ==-.(1)求函数()313f x x ax =-()0a ≠的单调递增区间;(2)若曲线C 在点()()3,3f 处的切线与两坐标轴围成的三角形的面积大于18,求实数a 的取值范围.2023-2024学年第二学期期中质量检测高二数学试卷(满分:150分;考试时间:120分钟)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:选择性必修第二册第五章、选择性必修第三册第六章、第七章第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.计算52752+C A 的值是()A.62 B.102C.152D.540【答案】A 【解析】【分析】利用组合和排列数公式计算【详解】5275762254622C A =+´+创=故选:A2.下列导数运算正确的是()A.cos sin x x x '⎛⎫=- ⎪⎝⎭B.()21log ln 2x x '=C.()22xx'= D.()32e 3exxx x '=【答案】B 【解析】【分析】利用常见函数的导数可以判断B 、C 的真假,利用积的导数的运算法则判断D 的真假,利用商的导数的运算法则判断A 的真假.【详解】∵()22cos cos cos sin cos x x x x x x x x x x x ''⋅-⋅--⎛⎫== ⎪⎝'⎭,故A 错误;∵()21log ln 2x x '=,故B 正确;∵()22ln 2x x '=,故C 错误;∵()()()33323e e e 3e e x x x x x x x x x x ⋅'''=⋅+=+,故D 错误.故选:B.3.若9290129(2)x a a x a x a x -=++++L ,则129a a a +++ 的值为()A.1- B.1 C.511- D.512【答案】C 【解析】【分析】根据题意,分别令1x =与0x =代入计算,即可得到结果.【详解】当1x =时,20911a a a a ++++=L ;当0x =时,0512a =所以,1211511a a a +++=-L 故选:C4.若2()f x x bx c =++的图象的顶点在第二象限,则函数()f x '的图象是()A.B.C.D.【答案】C 【解析】【分析】求导后得到斜率为2,再由极值点是导数为零的点小于零,综合直线的特征可得正确答案.【详解】因为()2f x x b '=+,所以函数()f x '的图象是直线,斜率20k =>;又因为函数()f x 的顶点在第二象限,所以极值点小于零,所以()f x '的零点小于零,结合直线的特征可得C 符合.故选:C5.曲线()(22e 21xf x x x =--+-在0x =处的切线的倾斜角是()A.2π3B.5π6C.3π4 D.π4【答案】A 【解析】【分析】利用导数的几何意义求得切线斜率,即可求得切线的倾斜角.【详解】()()2e 22,0xf x x f =--∴'-'= ,设切线的倾斜角为[),0,πθθ∈,则tan θ=,即2π3θ=,故选:A .6.现有完全相同的甲,乙两个箱子(如图),其中甲箱装有2个黑球和4个白球,乙箱装有2个黑球和3个白球,这些球除颜色外完全相同.某人先从两个箱子中任取一个箱子,再从中随机摸出一球,则摸出的球是黑球的概率是()A.1115B.1130C.115D.215【答案】B 【解析】【分析】根据条件概率的定义,结合全概率公式,可得答案.【详解】记事件A 表示“球取自甲箱”,事件A 表示“球取自乙箱”,事件B 表示“取得黑球”,则()()()()1212,,2635P A P A P B A P B A =====,由全概率公式得()()()()111211232530P A P B A P A P B A +=⨯+⨯=.故选:B .7.有7种不同的颜色给下图中的4个格子涂色,每个格子涂一种颜色,且相邻的两个格子颜色不能相同,若最多使用3种颜色,则不同的涂色方法种数为()A.462B.630C.672D.882【答案】C 【解析】【分析】根据题意,按使用颜色的数目分两种情况讨论,由加法原理计算可得答案.【详解】根据题意,分两种情况讨论:若用两种颜色涂色,有27C 242⨯=种涂色方法;若用三种颜色涂色,有()37C 3221630⨯⨯⨯+=种涂色方法;所以有42630672+=种不同的涂色方法.故选:C.8.已知函数()e 2xx k f x =-,若0x ∃∈R ,()00f x ≤,则实数k 的最大值是().A.1eB.2eC.12eD.e e【答案】B 【解析】【分析】将问题转化为002e x x k ≤在0x ∈R 上能成立,利用导数求2()exxg x =的最大值,求k 的范围,即知参数的最大值.【详解】由题设,0x ∃∈R 使02e x x k ≤成立,令2()exxg x =,则()21e x g x x ⋅-'=,∴当1x <时()0g x '>,则()g x 递增;当1x >时()0g x '<,则()g x 递减;∴2()(1)e g x g ≤=,故2e k ≤即可,所以k 的最大值为2e.故选:B.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知1)nx+*(N )n ∈展开式中常数项是2C n ,则n 的值为().A.3B.4C.5D.6【答案】AD 【解析】【分析】根据二项式展开式得到321C n r r r nT x-+=,再令302n r-=,则得到123C C n n n =,解出即可.【详解】展开式的通项为131221C ()()C n r r n rr rr nnT x x x---+==,若要其表示常数项,须有302n r-=,即13r n =,又由题设知123C C n n =,123n \=或123n n -=,6n ∴=或3n =.故选:A D .10.高中学生要从必选科目(物理和历史)中选一门,再在化学、生物、政治、地理这4个科目中,依照个人兴趣、未来职业规划等要素,任选2个科目构成“1+2选考科目组合”参加高考.已知某班48名学生关于选考科目的结果统计如下:选考科目名称物理化学生物历史地理政治选考该科人数36392412ab下面给出关于该班学生选考科目的四个结论中,正确的是()A.33a b +=B.选考科目组合为“历史+地理+政治”的学生可能超过9人C.在选考化学的所有学生中,最多出现6种不同的选考科目组合D.选考科目组合为“历史+生物+地理”的学生人数一定是所有选考科目组合中人数最少的【答案】AC 【解析】【分析】结合统计结果对选项逐一分析即可得.【详解】对A :由3924482a b +++=⨯,则33a b +=,故A 正确;对B :由选择化学的有39人,选择物理的有36人,故至少有三人选择化学并选择了历史,故选考科目组合为“历史+地理+政治”的学生最多有9人,故B 错误;对C :确定选择化学后,还需在物理、历史中二选一,在生物、地理、政治中三选一,故共有236⨯=种不同的选考科目组合,故C 正确;对D :由于地理与政治选考该科人数不确定,故该说法不正确,故D 错误.故选:AC.11.若不等式e ln 0x ax a -<在[)2,x ∞∈+时恒成立,则实数a 的值可以为()A.3eB.2eC.eD.2【答案】BCD 【解析】【分析】构造函数()ex xf x =,将e ln 0x ax a -<恒成立问题转化为()()ln f x f a <恒成立问题,求导,研究()e xxf x =单调性,画出其图象,根据图象逐一验证选项即可.【详解】由e ln 0x ax a -<得ln ln ln e ex a x a aa <=,设()e x x f x =,则()1ex xf x ='-,当1x <时,()0f x '>,()f x 单调递增,当1x >时,()0f x '<,()f x 单调递减,又()00f =,()11e f =,当0x >时,()0ex xf x =>恒成立,所以()ex xf x =的图象如下:,ln ln e ex a x a<,即()()ln f x f a <,2x ≥,对于A :当3e a =时,ln ln 31>2a =+,根据图象可得()()ln f x f a <不恒成立,A 错误;对于B :当2e a =时,()ln ln 211,2a =+∈,根据图象可得()()ln f x f a <恒成立,B 正确;对于C :当e a =时,ln 1a =,根据图象可得()()ln f x f a <恒成立,C 正确;对于D :当2a =时,ln ln 2a =,又()()ln 22ln 212ln 2ln 2,2e 2ef f ===,因为221263ln 23ln 2e e ⨯-⨯=,且2e,e 6>>,即26ln 1,1e ><,所以221263ln 23ln 02e e⨯-⨯=->,即()()ln 22f f >,根据图象可得()()ln f x f a <恒成立,D 正确;故选:BCD.【点睛】关键点点睛:本题的关键将条件变形为ln ln e e x ax a <,通过整体结构相同从而构造函数()e x x f x =来解决问题.第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.某气象台统计,该地区下雨的概率为415,刮四级以上风的概率为215,既刮四级以上的风又下雨的概率为110,设A 为下雨,B 为刮四级以上的风,则()P B A =___________.【答案】38【解析】【分析】利用条件概率的概率公式()()()P AB P B A P A =即可求解.【详解】由题意可得:()415P A =,()215P B =,()110P AB =,由条件概率公式可得()()()13104815P AB P B A P A ===,故答案为:38.13.某校一次高三数学统计,经过抽样分析,成绩X 近似服从正态分布()2110,N σ,且P (90110)X ≤≤0.3=,该校有1000人参加此次统考,估计该校数学成绩不低于130分的人数为________.【答案】200【解析】【分析】根据X 近似服从正态分布()2110,N σ,且P (90110)X ≤≤0.3=,求得(130)p X ≥即可.【详解】因为X 近似服从正态分布()2110,N σ,且P (90110)X ≤≤0.3=,所以()()113012901300.22P X P X ⎡⎤≥=-≤≤=⎣⎦,又该校有1000人参加此次统考,估计该校数学成绩不低于130分的人数为10000.2200⨯=人.故答案为:200.14.将4名志愿者分配到3个不同的北京冬奥场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为________.(用数字作答)【答案】36【解析】【分析】先将4人分成2、1、1三组,再安排给3个不同的场馆,由分步乘法计数原理可得.【详解】将4人分到3个不同的体育场馆,要求每个场馆至少分配1人,则必须且只能有1个场馆分得2人,其余的2个场馆各1人,可先将4人分为2、1、1的三组,有211421226C C C A =种分组方法,再将分好的3组对应3个场馆,有336A =种方法,则共有6636⨯=种分配方案.故答案为:36四、解答题(本大题共5题,共77分,解答时应写出文字说明,证明过程或演算步骤)15.已知函数3()ln (R)f x x ax a =+∈,且(1)4f '=.(1)求a 的值;(2)设()()ln g x f x x x =--,求()y g x =过点(1,0)的切线方程.【答案】(1)1(2)22y x =-【解析】【分析】(1)利用导数求解参数即可.(2)先设切点,利用导数表示斜率,建立方程求出参数,再写切线方程即可.【小问1详解】定义域为,()0x ∈+∞,21()3f x ax x'=+,而(1)13f a '=+,而已知(1)4f '=,可得134a +=,解得1a =,故a 的值为1,【小问2详解】3()()ln g x f x x x x x =--=-,设切点为0003(,)x x x -,设切线斜率为k ,而2()31g x x '=-,故切线方程为300200()(31)()y x x x x x --=--,将(1,0)代入方程中,可得3200000()(31)(1)x x x x --=--,解得01x =(负根舍去),故切线方程为22y x =-,16.已知n ⎛ ⎝在的展开式中,第6项为常数项.(1)求n ;(2)求含2x 的项的系数;(3)求展开式中所有的有理项.【答案】(1)10n =;(2)454;(3)2454x ,638-,245256x.【解析】【分析】(1)求出n⎛ ⎝的展开式的通项为1r T +,当=5r 时,指数为零,可得n ;(2)将10n =代入通项公式,令指数为2,可得含2x 的项的系数;(3)根据通项公式与题意得1023010r Zr r Z -⎧∈⎪⎪≤≤⎨⎪∈⎪⎩,求出r 的值,代入通项公式并化简,可得展开式中所有的有理项.【详解】(1)n ⎛ ⎝的展开式的通项为233311122r rn r r n r r r r n n T C x x C x ----+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,因为第6项为常数项,所以=5r 时,有203n r -=,解得10n =.(2)令223n r -=,得()()116106222r n =-=⨯-=,所以含2x 的项的系数为221014524C ⎛⎫-= ⎪⎝⎭.(3)根据通项公式与题意得1023010r Zr r Z -⎧∈⎪⎪≤≤⎨⎪∈⎪⎩,令()1023r k k Z -=∈,则1023r k -=,即352r k =-.r Z ∈,∴k 应为偶数.又010r ≤≤,∴k 可取2,0,-2,即r 可取2,5,8.所以第3项,第6项与第9项为有理项,它们分别为2221012C x ⎛⎫- ⎪⎝⎭,551012C ⎛⎫- ⎪⎝⎭,8821012C x -⎛⎫- ⎪⎝⎭,即2454x ,638-,245256x .【点睛】关键点点睛:本题考查二项式展开式的应用,考查二项式展开式的通项公式以及某些特定的项,解决本题的关键点是求解展开式的有理项时,令()1023r k k Z -=∈,由r Z ∈以及010r ≤≤,求出k 的值,进而得出r 的值,代入通项公式化简可得有理项,考查了学生计算能力,属于中档题.17.如图,有三个外形相同的箱子,分别编号为1,2,3,其中1号箱装有1个黑球和3个白球,2号箱装有2个黑球和2个白球,3号箱装有3个黑球,这些球除颜色外完全相同.小明先从三个箱子中任取一箱,再从取出的箱中任意摸出一球,记事件i A (123i =,,)表示“球取自第i 号箱”,事件B 表示“取得黑球”.(1)求()P B 的值:(2)若小明取出的球是黑球,判断该黑球来自几号箱的概率最大?请说明理由.【答案】(1)712(2)可判断该黑球来自3号箱的概率最大.【解析】【分析】(1)因先从三个箱子中任取一箱,再从取出的箱中任意摸出一球为黑球,其中有三种可能,即黑球取自于1号,2号或者3号箱,故事件B 属于全概率事件,分别计算出()i P A 和(|),1,2,3i P B A i =,代入全概率公式即得;(2)由“小明取出的球是黑球,判断该黑球来自几号箱”是求条件概率(|),1,2,3i P A B i =,根据条件概率公式分别计算再比较即得.【小问1详解】由已知得:1231()()()3P A P A P A ===,12311(|),(|),(|)1,42P B A P B A P B A ===而111111()(|)(),4312P BA P B A P A =⋅=⨯=222111()(|)(),236P BA P B A P A =⋅=⨯=33311()(|)()1.33P BA P B A P A =⋅=⨯=由全概率公式可得:1231117()()()().126312P B P BA P BA P BA =++=++=【小问2详解】因“小明取出的球是黑球,该黑球来自1号箱”可表示为:1A B ,其概率为111()112(|)7()712P A B P A B P B ===,“小明取出的球是黑球,该黑球来自2号箱”可表示为:2A B ,其概率为221()26(|)7()712P A B P A B P B ===,“小明取出的球是黑球,该黑球来自3号箱”可表示为:3A B ,其概率为331()43(|)7()712P A B P A B P B ===.综上,3(|)P A B 最大,即若小明取出的球是黑球,可判断该黑球来自3号箱的概率最大.18.为普及空间站相关知识,某部门组织了空间站模拟编程闯关活动,它是由太空发射、自定义漫游、全尺寸太阳能、空间运输等10个相互独立的程序题目组成.规则是:编写程序能够正常运行即为程序正确.每位参赛者从10个不同的题目中随机选择3个进行编程,全部结束后提交评委测试,若其中2个及以上程序正确即为闯关成功.现已知10个程序中,甲只能正确完成其中6个,乙正确完成每个程序的概率为0.6,每位选手每次编程都互不影响.(1)求乙闯关成功的概率;(2)求甲编写程序正确的个数X 的分布列和期望,并判断甲和乙谁闯关成功的可能性更大.【答案】(1)0.648(2)分布列见解析,期望为95,甲比乙闯关成功的概率要大.【解析】【分析】(1)根据题意,直接列出式子,代入计算即可得到结果;(2)根据题意,由条件可得X 的可能取值为0,1,2,3,然后分别计算其对应概率,即可得到分布列,然后计算甲闯关成功的概率比较大小即可.【小问1详解】记事件A 为“乙闯关成功”,乙正确完成每个程序的概率为0.6,则()()2233C 0.610.6(0.6)0.648;P A =⨯⨯-+=【小问2详解】甲编写程序正确的个数X 的可能取值为0,1,2,3,()()()()211233464664333310101010C C C C C C 13110,1,2,3C 30C 10C 2C 6P X P X P X P X ============,故X 的分布列为:X0123P 1303101216故()1311901233010265E X =⨯+⨯+⨯+⨯=,甲闯关成功的概率1120.648263P =+=>,故甲比乙闯关成功的概率要大.19.已知曲线()31:3C y f x x ax ==-.(1)求函数()313f x x ax =-()0a ≠的单调递增区间;(2)若曲线C 在点()()3,3f 处的切线与两坐标轴围成的三角形的面积大于18,求实数a 的取值范围.【答案】(1)答案见解析(2)()()0,99,18U 【解析】【分析】(1)求出函数的导函数,分0a >、a<0两种情况讨论,分别求出函数的单调递增区间;(2)利用导数的几何意义求出切线方程,再令0x =、0y =求出在坐标轴上的截距,再由面积公式得到不等式,解得即可.【小问1详解】∵()313f x x ax =-定义域为R ,且()2f x x a '=-,①当a<0时,()20f x x a '=->恒成立,∴()f x 在R 上单调递增;②当0a >时,令()20f x x a '=->,解得x <x >,∴()f x 在(,∞-,)∞+上单调递增,综上:当a<0时,()f x 的单调递增区间为(),-∞+∞;当0a >时,()f x 的单调递增区间为(,∞-,)∞+.【小问2详解】由(1)得()2339f a a =-=-',又∵()393f a =-,∴切线方程为()()()9393y a a x --=--,依题意90a -≠,令0x =,得18y =-;令0y =,得189x a=-,切线与坐标轴所围成的三角形的面积11816218299S a a =⨯⨯=--,依题意162189a >-,即919a>-,解得09a <<或918<<a ,即实数a 的取值范围为()()0,99,18⋃.。
2023-2024学年湖北省部分省级示范高中高二(上)期中数学试卷【答案版】
2023-2024学年湖北省部分省级示范高中高二(上)期中数学试卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点A (2,0),B (0,4),若过P (﹣6,﹣8)的直线l 与线段AB 相交,则实数k 的取值范围为( ) A .k ≤1B .k ≥2C .k ≥2或k ≤1D .1≤k ≤22.圆 C 1:(x +2)2+(y ﹣2)2=4和圆C 2:(x ﹣2)2+(y ﹣5)2=16的位置关系是( ) A .外离B .相交C .内切D .外切3.若圆C 经过点A (2,5),B (4,3),且圆心在直线l :3x ﹣y ﹣3=0 上,则圆C 的方程为( ) A .(x ﹣2)2+(y ﹣3)2=4 B .(x ﹣2)2+(y ﹣3)2=8 C .(x ﹣3)2+(y ﹣6)2=2D .(x ﹣3)2+(y ﹣6)2=104.已知直线ax +3y +2a =0和2x +(a +1)y ﹣2=0平行,则实数a 的值等于( ) A .a =2或a =﹣3B .a =2C .a =﹣3D .a =﹣2或a =35.如图,在平行六面体ABCD ﹣A 1B 1C 1D 1中,M 为A 1C 1,B 1D 1的交点.若AB →=a →,AD →=b →,AA 1→=c →,则向量BM →=( )A .−12a →+12b →+c →B .12a →+12b →+c →C .−12a →−12b →+c →D .12a →−12b →+c →6.若椭圆x 29+y 24=1的弦AB 被点P (1,1)平分,则AB 所在直线的方程为( )A .4x +9y ﹣13=0B .9x +4y ﹣13=0C .x +2y ﹣3=0D .x +3y ﹣4=07.若直线l :kx ﹣y ﹣2=0与曲线C :√1−(y −1)2=x ﹣1有两个不同的交点,则实数k 的取值范围是( ) A .k >43B .43<k ≤2C .43<k ≤2或−2≤k <−43D .43<k ≤48.吹奏乐器“埙”(如图1)在古代通常是用陶土烧制的,一种埙的外轮廓的上部是半椭圆,下部是半圆.半椭圆y 2a 2+x 2b 2=1(y ≥0,a >b >0且为常数)和半圆x 2+y 2=b 2(y <0)组成的曲线C 如图2所示,曲线C 交x 轴的负半轴于点A ,交y 轴的正半轴于点G ,点M 是半圆上任意一点,当点M 的坐标为(√22,−12)时,△AGM 的面积最大,则半椭圆的方程是( )A .4x 23+y 22=1(y ≥0)B .16x 29+y 23=1(y ≥0)C .2x 23+4y 23=1(y ≥0)D .4x 23+2y 23=1(y ≥0)二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有2个或2个以上选项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.) 9.下面结论正确的是( )A .若事件A 与B 是互斥事件,则A 与B 也是互斥事件 B .若事件A 与B 是相互独立事件,则A 与B 也是相互独立事件C .若P (A )=0.6,P (B )=0.2,A 与B 相互独立,那么P (A +B )=0.8D .若P (A )=0.8,P (B )=0.7,A 与B 相互独立,那么P(AB)=0.2410.已知直线l :kx ﹣y ﹣k =0,圆M :x 2+y 2+Dx +Ey +1=0的圆心坐标为(2,1),则下列说法正确的是( ) A .直线l 恒过点(0,1)B .D =﹣4,E =﹣2C .直线l 被圆M 截得的最短弦长为2√2D .当k =1时,圆M 上存在无数对点关于直线l 对称 11.设椭圆x 29+y 23=1的右焦点为F ,直线y =m(0<m <√3)与椭圆交于A ,B 两点,则( ) A .|AF |+|BF |=6B .△ABF 的周长的取值范围是[6,12]C .当m =1时,△ABF 的面积为√6D .当m =√32时,△ABF 为直角三角形12.已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,点P 为平面ABCD 内一动点,则下列说法正确的是( ) A .若点P 在棱AD 上运动,则A 1P +PC 的最小值为2+2√2B .若点P 是棱AD 的中点,则平面PBC 1截正方体所得截面的周长为2√5+3√2C .若点P 满足PD 1⊥DC 1,则动点P 的轨迹是一条直线 D .若点P 在直线AC 上运动,则P 到棱BC 1的最小距离为2√33三、填空题(本大题共4小题,每小题5分,共20分.把答案填写在答题卡上相应位置的横线上.) 13.若以连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆x 2+y 2=16内的概率是 .14.已知两点A (﹣3,﹣4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值等于 . 15.古希腊著名数学家阿波罗尼斯发现了平面内到两个定点A ,B 的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系中,已知A (1,0),B (4,0),若动点P 满足|PA||PB|=12,设点P 的轨迹为C ,过点(1,2)作直线l ,C 上恰有三个点到直线l 的距离为1,则满足条件的一条直线l 的方程为 . 16.已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别是椭圆的左、右焦点,A 是椭圆的下顶点,直线AF 2交椭圆于另一点P ,若|PF 1|=|P A |,则椭圆的离心率为 .四、解答题(本大题共6小题,第17小题10分,其余各小题每题12分,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(10分)甲、乙两名魔方爱好者在30秒内复原魔方的概率分别是0.8和0.6.如果在30秒内将魔方复原称为“复原成功”,且每次复原成功与否相互之间没有影响,求:(1)甲复原三次,第三次才成功的概率;(2)甲、乙两人在第一次复原中至少有一人成功的概率. 18.(12分)已知△ABC 中,A (﹣2,1),B (4,3).(1)若C (3,﹣2),求BC 边上的高AD 所在直线的一般式方程; (2)若点M (3,1)为边AC 的中点,求BC 边所在直线的一般式方程.19.(12分)如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB =3,AD =AA 1=2,点E 在AB 上,且AE =1. (1)求直线A 1E 与BC 1所成角的余弦值; (2)求点B 到平面A 1EC 的距离.20.(12分)已知点A (1,2),圆C :x 2+y 2+2mx +2y +2=0. (1)若过点A 可以作两条圆的切线,求m 的取值范围;(2)当m =﹣2时,过直线2x ﹣y +3=0上一点P 作圆的两条切线PM 、PN ,求四边形PMCN 面积的最小值.21.(12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F(√3,0),长半轴长与短半轴长的比值为2.(1)求椭圆C 的方程;(2)设经过点A (1,0)的直线l 与椭圆C 相交于不同的两点M ,N .若点B (0,1)在以线段MN 为直径的圆上,求直线l 的方程.22.(12分)如图1,已知ABFE 是直角梯形,EF ∥AB ,∠ABF =90°,∠BAE =60°,C 、D 分别为BF 、AE 的中点,AB =5,EF =1,将直角梯形ABFE 沿CD 翻折,使得二面角F ﹣DC ﹣B 的大小为60°,如图2所示,设N 为BC 的中点.(1)证明:FN ⊥AD ;(2)若M 为AE 上一点,且AMAE =λ,则当λ为何值时,直线BM 与平面ADE 所成角的正弦值为5√714.2023-2024学年湖北省部分省级示范高中高二(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点A (2,0),B (0,4),若过P (﹣6,﹣8)的直线l 与线段AB 相交,则实数k 的取值范围为( ) A .k ≤1B .k ≥2C .k ≥2或k ≤1D .1≤k ≤2解:过P (﹣6,﹣8)的直线l 与线段AB 相交,如图所示:可得k AP ≤k ≤k PB , 即0−(−8)2−(−6)≤k ≤4−(−8)0−(−6),即k ∈[1,2].故选:D .2.圆 C 1:(x +2)2+(y ﹣2)2=4和圆C 2:(x ﹣2)2+(y ﹣5)2=16的位置关系是( ) A .外离B .相交C .内切D .外切解:两个圆的圆心分别为 C 1(﹣2,2)、C 2:(2,5),半径分别为2、4,两圆的圆心距 C 1C 2=√(2+2)2+(5−2)2=5,大于半径之差而小于半径之和,故两个圆相交, 故选:B .3.若圆C 经过点A (2,5),B (4,3),且圆心在直线l :3x ﹣y ﹣3=0 上,则圆C 的方程为( ) A .(x ﹣2)2+(y ﹣3)2=4 B .(x ﹣2)2+(y ﹣3)2=8 C .(x ﹣3)2+(y ﹣6)2=2D .(x ﹣3)2+(y ﹣6)2=10解:圆C 经过点A (2,5),B (4,3),可得线段AB 的中点为(3,4),又 k AB =5−32−4=−1,所以线段AB 的中垂线的方程为y ﹣4=x ﹣3,即x ﹣y +1=0. 由{x −y +1=03x −y −3=0,解得{x =2y =3,即C (2,3),圆C 的半径 r =√(2−2)2+(5−3)2=2, 所以圆C 的方程为 (x ﹣2)2+(y ﹣3)2=4. 故选:A .4.已知直线ax +3y +2a =0和2x +(a +1)y ﹣2=0平行,则实数a 的值等于( ) A .a =2或a =﹣3B .a =2C .a =﹣3D .a =﹣2或a =3解:由直线ax +3y +2a =0和2x +(a +1)y ﹣2=0平行, 可得{a(a +1)=2×33×(−2)≠2a(a +1),解得a =2或a =﹣3.故选:A .5.如图,在平行六面体ABCD ﹣A 1B 1C 1D 1中,M 为A 1C 1,B 1D 1的交点.若AB →=a →,AD →=b →,AA 1→=c →,则向量BM →=( )A .−12a →+12b →+c →B .12a →+12b →+c →C .−12a →−12b →+c →D .12a →−12b →+c →解:∵在平行六面体ABCD ﹣A 1B 1C 1D 1中,M 为A 1C 1,B 1D 1的交点. AB →=a →,AD →=b →,AA 1→=c →,∴向量BM →=BB 1→+12B 1D 1→=BB 1→+12(BA →+AD →) =−12a →+12b →+c →.故选:A . 6.若椭圆x 29+y 24=1的弦AB 被点P (1,1)平分,则AB 所在直线的方程为( )A .4x +9y ﹣13=0B .9x +4y ﹣13=0C .x +2y ﹣3=0D .x +3y ﹣4=0解:设A (x 1,y 1),B (x 2,y 2),则{x 129+y 124=1x 229+y 224=1,所以x 12−x 229+y 12−y 224=0,整理得y 1−y 2x 1−x 2=−4(x 1+x 2)9(y 1+y 2),因为P (1,1)为弦AB 的中点,所以x 1+x 2=2,y 1+y 2=2, 所以k AB =y 1−y2x 1−x 2=−4(x 1+x 2)9(y 1+y 2)=−49,所以弦AB 所在直线的方程为y −1=−49(x −1),即4x +9y ﹣13=0. 故选:A .7.若直线l :kx ﹣y ﹣2=0与曲线C :√1−(y −1)2=x ﹣1有两个不同的交点,则实数k 的取值范围是( ) A .k >43B .43<k ≤2C .43<k ≤2或−2≤k <−43D .43<k ≤4解:直线l :kx ﹣y ﹣2=0恒过定点(0,﹣2),∵√1−(y −1)2=x −1,得到(x ﹣1)2+(y ﹣1)2=1(x ≥1),∴曲线C 表示以点(1,1)为圆心,半径为1,且位于直线x =1右侧的半圆(包括点(1,2),(1,0)),如下图所示:当直线l 经过点(1,0)时,l 与曲线C 有两个不同的交点,此时k =2; 当l 与半圆相切时,则由题可得√k 2+1=1,解得k =43,由图可知,当43<k ≤2时,l 与曲线C 有两个不同的交点. 故选:D .8.吹奏乐器“埙”(如图1)在古代通常是用陶土烧制的,一种埙的外轮廓的上部是半椭圆,下部是半圆.半椭圆y 2a 2+x 2b 2=1(y ≥0,a >b >0且为常数)和半圆x 2+y 2=b 2(y <0)组成的曲线C 如图2所示,曲线C 交x 轴的负半轴于点A ,交y 轴的正半轴于点G ,点M 是半圆上任意一点,当点M 的坐标为(√22,−12)时,△AGM 的面积最大,则半椭圆的方程是( )A .4x 23+y 22=1(y ≥0)B .16x 29+y 23=1(y ≥0)C .2x 23+4y 23=1(y ≥0)D .4x 23+2y 23=1(y ≥0)解:由点M(√22,−12)在半圆上,所以b =√32,G (0,a ),A (﹣b ,0), 要使△AGM 的面积最大,可平行移动AG ,当AG 与半圆相切于M(√22,−12)时,M 到直线AG 的距离最大, 此时OM ⊥AG ,即k OM •k AG =﹣1; 又k OM =−12√22=−√22,k AG =a b ,∴−√22⋅a b =−1,∴a =√2b =√62,所以半椭圆的方程为4x 23+2y 23=1(y ≥0).故选:D .二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有2个或2个以上选项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.) 9.下面结论正确的是( )A .若事件A 与B 是互斥事件,则A 与B 也是互斥事件 B .若事件A 与B 是相互独立事件,则A 与B 也是相互独立事件C .若P (A )=0.6,P (B )=0.2,A 与B 相互独立,那么P (A +B )=0.8D .若P (A )=0.8,P (B )=0.7,A 与B 相互独立,那么P(AB)=0.24解:A 中,由互斥事件的定义可知,事件A 、B 互斥,则A 与B 也是互斥事件不成立, 比如事件A 、B 是对立事件,则A 与B 是同一事件,显然不互斥,故A 错误; B 中,若A 与B 相互独立,则A 与B ,B 与A ,A 与B 都是相互独立事件,故B 正确;C 中,如果A 与B 相互独立,则P (A +B )=P (A )+P (B )﹣P (AB )=0.8﹣0.12=0.68,故C 错误;D 中,如果A 与B 相互独立,则P(AB)=P(A)P(B)=P(A)(1−P(B))=0.8×(1−0.7)=0.24,故D 正确. 故选:BD .10.已知直线l :kx ﹣y ﹣k =0,圆M :x 2+y 2+Dx +Ey +1=0的圆心坐标为(2,1),则下列说法正确的是( ) A .直线l 恒过点(0,1) B .D =﹣4,E =﹣2C .直线l 被圆M 截得的最短弦长为2√2D .当k =1时,圆M 上存在无数对点关于直线l 对称解:对于A ,直线l :kx ﹣y ﹣k =0⇒k (x ﹣1)﹣y =0,恒过点(1,0),所以A 不正确;对于B ,圆M :x 2+y 2+Dx +Ey +1=0的圆心坐标为(−D2,−E2),所以D =﹣4,E =﹣2,所以B 正确; 对于C ,圆M :x 2+y 2﹣4x ﹣2y +1=0⇒(x ﹣2)2+(y ﹣1)2=4的圆心坐标为(2,1),圆的半径为2. 直线l :kx ﹣y ﹣k =0,恒过点(1,0),圆的圆心到定点的距离为:√12+12=√2<2,直线与圆相交, 直线l 被圆M 截得的最短弦长为2√4−2=2√2,所以C 正确;对于D ,当k =1时,直线方程为:x ﹣y ﹣1=0,经过圆的圆心,所以圆M 上存在无数对点关于直线l 对称,所以D 正确. 故选:BCD . 11.设椭圆x 29+y 23=1的右焦点为F ,直线y =m(0<m <√3)与椭圆交于A ,B 两点,则( ) A .|AF |+|BF |=6B .△ABF 的周长的取值范围是[6,12]C .当m =1时,△ABF 的面积为√6D .当m =√32时,△ABF 为直角三角形解:∵椭圆方程为x 29+y 23=1,∴a =3,b =√3,c =√6,设椭圆的左焦点为F ',则|AF '|=|BF |,∴|AF |+|BF |=|AF |+|AF '|=2a =6,∴A 选项正确; ∵△ABF 的周长为|AB |+|AF |+|BF |,又|AF |+|BF |=6,易知|AB |的范围是(0,6), ∴△ABF 的周长的范围是(6,12),∴B 选项错误;将y =1与椭圆方程联立,解得A(−√6,1),B(√6,1),∴S △ABF =12×2√6×1=√6,∴C 选项正确;将y =√32与椭圆方程联立,可解得A(−3√32,√32),B(3√32,√32),又易知F(√6,0), ∴AF →⋅BF →=(√6+3√32)(√6−3√32)+(√32)2=0,∴△ABF 为直角三角形,∴D 选项正确. 故选:ACD .12.已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为2,点P 为平面ABCD 内一动点,则下列说法正确的是( ) A .若点P 在棱AD 上运动,则A 1P +PC 的最小值为2+2√2B .若点P 是棱AD 的中点,则平面PBC 1截正方体所得截面的周长为2√5+3√2C .若点P 满足PD 1⊥DC 1,则动点P 的轨迹是一条直线D .若点P 在直线AC 上运动,则P 到棱BC 1的最小距离为2√33解:对于A :如图将平面ABCD 展开与平面ADD 1A 1处于一个平面,连接A 1C 与AD 交于点P , 此时A 1P +PC 取得最小值,即(A 1P +PC)min =√22+42=2√5,故A 错误;对于B :如图取DD 1的中点E ,连接BP 、PE 、C 1E 、AD 1, 因为点P 是棱AD 的中点,所以PE ∥AD 1且PE =12AD 1,又AB ∥C 1D 1且AB =C 1D 1,所以四边形ABC 1D 1为平行四边形,所以AD 1∥BC 1, 所以PE ∥BC 1,所以四边形EPBC 1即为平面PBC 1截正方体所得截面, 又BC 1=2√2,PE =12AD 1=√2,BP =EC 1=√12+22=√5, 所以截面周长为3√2+2√5,故B 正确;对于C :如图,DC 1⊥D 1C ,BC ⊥平面DCC 1D 1,DC 1⊂平面DCC 1D 1, 所以DC 1⊥BC ,又D 1C ∩BC =C ,D 1C ,BC ⊂平面BCD 1A 1, 所以DC 1⊥平面BCD 1A 1,因为平面ABCD ∩平面BCD 1A 1=BC , D 1∈平面BCD 1A 1,P ∈平面ABCD ,又PD 1⊥DC 1,所以P 在直线BC 上,即动点P 的轨迹是一条直线,故C 正确;对于D :如图建立空间直角坐标系,则B (2,2,0),C 1(0,2,2),设P (a ,2﹣a ,0)(a ∈[0,2]), 所以BC 1→=(−2,0,2),BP →=(a −2,−a ,0), 所以P 到棱BC 1的距离d =√|BP →|2−(BC 1→⋅BP →|BC 1→|)2=√32a 2−2a +2=√32(a −23)2+43,所以当a =23时d min =√43=2√33,故D 正确.故选:BCD .三、填空题(本大题共4小题,每小题5分,共20分.把答案填写在答题卡上相应位置的横线上.) 13.若以连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆x 2+y 2=16内的概率是29.解:由题意知,本题是一个古典概型,试验发生包含的事件是连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标,共有6×6=36种结果, 而满足条件的事件是点P 落在圆x 2+y 2=16内,列举出落在圆内的情况:(1,1)(1,2)(1,3) (2,1)(2,2)(2,3)(3,1)(3,2),共有8种结果, 根据古典概型概率公式得到P =836=29, 故答案为:2914.已知两点A (﹣3,﹣4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值等于 −79或−13. 解:∵两点A (﹣3,﹣4),B (6,3)到直线l :ax +y +1=0的距离相等, ∴√a 2+1=√a 2+1,化为|3a +3|=|6a +4|.∴6a +4=±(3a +3),解得a =−79或−13. 故答案为:a =−79或−13.15.古希腊著名数学家阿波罗尼斯发现了平面内到两个定点A ,B 的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系中,已知A (1,0),B (4,0),若动点P 满足|PA||PB|=12,设点P 的轨迹为C ,过点(1,2)作直线l ,C 上恰有三个点到直线l 的距离为1,则满足条件的一条直线l 的方程为 x =1或3x ﹣4y +5=0(写出一条即可) . 解:因为A (1,0),B (4,0),点P 满足|PA||PB|=12,设P (x ,y ),则2222=12,化简得x 2+y 2=4,因为圆C 上恰有三个点到直线l 的距离为1,所以圆心到直线的距离为1. 若直线l 的斜率不存在,直线l 的方程为x =1;若直线l 的斜率存在,设直线l 的方程为y ﹣2=k (x ﹣1),即kx ﹣y ﹣k +2=0, d =|−k+2|√k +1=1,解得k =34,直线l 的方程为:3x ﹣4y +5=0.故答案为:x =1或3x ﹣4y +5=0(写出一条即可).16.已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别是椭圆的左、右焦点,A 是椭圆的下顶点,直线AF 2交椭圆于另一点P ,若|PF 1|=|P A |,则椭圆的离心率为 √33解:如图所示,∵点P 在椭圆上,∴|PF 1|+|PF 2|=2a , ∵点A 是椭圆的下顶点,∴|AF 1|=|AF 2|=a ,又∵|PF 1|=|P A |=|PF 2|+|AF 2|=|PF 2|+a =2a ﹣|PF 1|+a =3a ﹣|PF 1|, ∴|PF 1|=3a 2,|PF 2|=12a , 在△PF 1A 中,|PF 1|=3a 2,|P A |=3a2,|AF 1|=a , 由余弦定理可得:cos ∠F 1AP =|AF 1|2+|PA|2−|PF 1|22|AF 1||AP|=13,∴sin 2∠F 1AO =1−cos∠F 1AP 2=13, ∴sin ∠F 1AO =√33,又∵sin ∠F 1AO =ca , ∴离心率e =ca =√33, 故答案为:√33.四、解答题(本大题共6小题,第17小题10分,其余各小题每题12分,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(10分)甲、乙两名魔方爱好者在30秒内复原魔方的概率分别是0.8和0.6.如果在30秒内将魔方复原称为“复原成功”,且每次复原成功与否相互之间没有影响,求:(1)甲复原三次,第三次才成功的概率;(2)甲、乙两人在第一次复原中至少有一人成功的概率.解:记“甲第i 次复原成功”为事件A i ,“乙第i 次复原成功”为事件B i , 依题意,P (A i )=0.8,P (B i )=0.6.(1)“甲第三次才成功”为事件A 1A 2A 3,且三次复原过程相互独立, 所以,P(A 1A 2A 3)=P(A 1)P(A 2)P(A 3)=0.2×0.2×0.8=0.032. (2)“甲、乙两人在第一次复原中至少有一人成功”为事件C . 所以P(C)=1−P(A 1⋅B 1)=1−P(A 1)⋅P(B 1)=1−0.2×0.4=0.92. 18.(12分)已知△ABC 中,A (﹣2,1),B (4,3).(1)若C (3,﹣2),求BC 边上的高AD 所在直线的一般式方程; (2)若点M (3,1)为边AC 的中点,求BC 边所在直线的一般式方程.解:(1)因为B (4,3),C (3,﹣2), 所以k BC =−2−33−4=5, 因为AD 是BC 边上的高, 所以k AD ⋅k BC =−1⇒k AD =−15,所以高AD 所在直线的方程为y −1=−15(x +2)⇒x +5y −3=0; (2)因为点M (3,1)为边AC 的中点,所以{3=−2+C x21=1+C y 2⇒C(8,1),因此BC 边所在直线的方程为y−33−1=x−44−8⇒x +2y −10=0.19.(12分)如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB =3,AD =AA 1=2,点E 在AB 上,且AE =1. (1)求直线A 1E 与BC 1所成角的余弦值; (2)求点B 到平面A 1EC 的距离.解:(1)由题意,建立如图所示空间直角坐标系,A 1(2,0,2),E(2,1,0),A 1E →=(0,1,−2),B(2,3,0),C 1(0,3,2),BC 1→=(−2,0,2), 设直线A 1E 与直线BC 1所成角为α,则cosα=|A 1E →⋅BC 1→|A 1E →|⋅|BC 1→||=5×22=√105.(2)由题意C(0,3,0),EC →=(−2,2,0), 设平面A 1EC 的法向量为n →=(x ,y ,z),则{n →⋅A 1E →=y −2z =0n →⋅EC →=−2x +2y =0,取n →=(2,2,1),又BE →=(0,−2,0),所以B 到平面A 1EC 的距离为|n →⋅BE →|n →||=|−43|=43.20.(12分)已知点A (1,2),圆C :x 2+y 2+2mx +2y +2=0. (1)若过点A 可以作两条圆的切线,求m 的取值范围;(2)当m =﹣2时,过直线2x ﹣y +3=0上一点P 作圆的两条切线PM 、PN ,求四边形PMCN 面积的最小值.解:(1)由题意得A (1,2)在圆外, 则1+4+2m +6>0,即m >−112, 又4m 2+4﹣8>0,即m >1或m <﹣1, 所以−112<m <−1或m >1;故m 的取值范围为(−112,﹣1)∪(1,+∞); (2)m =﹣2时,圆方程为(x ﹣2)2+(y +1)2=3, 则圆的半径r =√3,圆心C (2,﹣1),∴S 四边形PMCN =|PM|⋅r =√3|PM|=√3⋅√|PC|2−r 2=√3⋅√|PC|2−3. 直线方程为2x ﹣y +3=0,设圆心(2,﹣1)到直线2x ﹣y +3=0的距离为d ,∴|PC|min =d =|2×2−(−1)+3|5=85,∴(S 四边形PMCN )min =√3√645−3=√3√495=75√15. 21.(12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F(√3,0),长半轴长与短半轴长的比值为2.(1)求椭圆C 的方程;(2)设经过点A (1,0)的直线l 与椭圆C 相交于不同的两点M ,N .若点B (0,1)在以线段MN 为直径的圆上,求直线l 的方程.解:(1)由题可知c =√3,ab =2,a 2=b 2+c 2,∴a =2,b =1.∴椭圆C 的方程为x 24+y 2=1.(2)易知当直线l 的斜率为0或直线l 的斜率不存在时,不合题意.当直线l 的斜率存在且不为0时,设直线l 的方程为x =my +1,M (x 1,y 1),N (x 2,y 2). 联立{x =my +1x 2+4y 2=4,消去x ,可得(4+m 2)y 2+2my ﹣3=0. Δ=16m 2+48>0,y 1+y 2=−2m 4+m 2,y 1y 2=−34+m 2. ∵点B 在以MN 为直径的圆上,∴BM →⋅BN →=0.∵BM →⋅BN →=(my 1+1,y 1−1)⋅(my 2+1,y 2−1)=(m 2+1)y 1y 2+(m ﹣1)(y 1+y 2)+2=0, ∴(m 2+1)⋅−34+m 2+(m −1)⋅−2m4+m 2+2=0, 整理,得3m 2﹣2m ﹣5=0, 解得m =﹣1或m =53.∴直线l 的方程为x +y ﹣1=0或3x ﹣5y ﹣3=0.22.(12分)如图1,已知ABFE 是直角梯形,EF ∥AB ,∠ABF =90°,∠BAE =60°,C 、D 分别为BF 、AE 的中点,AB =5,EF =1,将直角梯形ABFE 沿CD 翻折,使得二面角F ﹣DC ﹣B 的大小为60°,如图2所示,设N 为BC 的中点.(1)证明:FN ⊥AD ;(2)若M 为AE 上一点,且AM AE=λ,则当λ为何值时,直线BM 与平面ADE 所成角的正弦值为5√714. 解:(1)证明:如图1,已知ABFE 是直角梯形,EF ∥AB ,∠ABF =90°,∠BAE =60°,C 、D 分别为BF 、AE 的中点,AB =5,EF =1,将直角梯形ABFE 沿CD 翻折,使得二面角F ﹣DC ﹣B 的大小为60°,如图2所示,设N 为BC 的中点.∵由图1得:DC ⊥CF ,DC ⊥CB ,且CF ∩CB =C ,∴在图2中DC ⊥平面BCF ,∠BCF 是二面角F ﹣DC ﹣B 的平面角,则∠BCF =60°, ∴△BCF 是正三角形,且N 是BC 的中点,FN ⊥BC , 又DC ⊥平面BCF ,FN ⊂平面BCF ,可得FN ⊥CD , ∵BC ∩CD =C ,BC ,CD ⊂平面ABCD . ∴FN ⊥平面ABCD ,∵AD ⊂平面ABCD ,∴FN ⊥AD .(2)∵FN ⊥平面ABCD ,过点N 做AB 平行线NP ,∴以点N 为原点,NP ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N ﹣xyz ,如图,则A(5,√3,0),B(0,√3,0),D(3,−√3,0),E (1,0,3), 设M (x 0,y 0,z 0)则AM →=(x 0−5,y 0−√3,z 0),AE →=(−4,−√3,3), AD →=(−2,−2√3,0),DE →=(−2,√3,3).∵AM →=λAE →,∴{x 0−5=−4λy 0=√3−√3λz 0=3λ⇒{x 0=5−4λy 0=√3−√3λz 0=3λ.∴M(5−4λ,√3−√3λ,3λ),∴BM →=(5−4λ,−√3λ,3λ), 设平面ADE 的法向量为n →=(x ,y ,z)则{n →⋅AD →=0n →⋅DE →=0⇒{−2x −2√3y =0−2x +√3y +3z =0,取x =√3,得n →=(√3,−1,√3), 设直线BM 与平面ADE 所成角为θ, ∴sinθ=|cos〈n →,BM →〉|=|n →⋅BM →||n →|⋅|BM →|=5√3√3+1+3⋅√28λ−40λ+25=5√714,∴28λ2﹣40λ+13=0,解得λ=12或λ=1314. 故当λ为12或1314时,直线BM 与平面ADE 所成角的正弦值为5√714.。
湖南省长沙市2024-2025学年高二上学期期中考试语文试卷含答案
湖南2024—2025学年度高二第一学期期中考试语文(答案在最后)时量:150分钟满分:150分得分:一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1~5题。
①对于“过去之事、眼前之事、将来之事”,新闻和文学都有自己不同的表现方式。
然而,在当今商业化的趋势下,各类叙事成了大众文化的重要内容,新闻报道也进入了叙事的时代——一个让人眼花缭乱的“新闻故事化”时代。
虽然“新闻故事化”未必不好,但新闻叙事和文学叙事有着本质的区别。
②有人曾戏言:文学是“人学”,新闻是“事学”。
就文本而言,新闻与文学是两个不同类别的人文学科。
新闻反映的是客观事实,而文学表达的是主观情感。
从叙事内容来看,文学叙事的基础是“母题”,新闻叙事的基础是“事实”。
韦斯坦因认为文学叙事的母题数量和结构相对稳定,主要可以归结为生与死、爱与恨、美与丑三项二元组合结构,由此对应的基本题材就是战争、爱情与世俗生活,绝大部分文学作品的叙事主题都是由此产生的变体。
③文学叙事主题大多以情感发展为主线,通过性格、感情冲突塑造人物形象。
文学叙事的母题不论生与死、爱与恨还是美与丑,都带有强烈的感情判断色彩。
文学作品在安排情节时需要理性地建立大家的常识性认识,但感性是文学打动人的核心因素,文学叙事的成功与否在很大程度上取决于这种感性叙事能否充分激发读者的代入感和感情共鸣。
文学叙事作品中的“事”一般而言是虚构的,亚里士多德说:“诗人的职责不在于描述已发生的事,而在于描述可能发生的事,即按照可然律或必然律可能发生的事。
”而新闻作品所叙之事,依据新闻的本质,则是已经发生和正在发生的事,即事实。
因此,新闻叙事应具有客观真实的特点。
新闻叙事要求叙事者从理性的态度出发,诉诸受众的内容以信息为主,用客观事实表现社会或人物状态。
当然,新闻报道中也会有感性的描写、刻画,但其目的是让新闻叙事更生动、真实,具有更强的感染力。
④再者,文学叙事主题通常具有较强的个人化特征,即叙事者对叙事文本传达或是否需要传达某个内容给读者并不在意,更多是叙事者个人意识和情感的宣泄。
2023-2024学年河南省南阳市高二(上)期中数学试卷【答案版】
2023-2024学年河南省南阳市高二(上)期中数学试卷一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线l 过点(2,3),且倾斜角为90°,则直线l 的方程为( ) A .﹣x +y =1B .x +y ﹣5=0C .y =3D .x =22.二次函数y =ax 2(a ≠0)的图像为抛物线,其准线方程为( ) A .x =−14aB .x =−a 4C .y =−14aD .y =−a 43.已知三条直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,倾斜角分别为α,β,γ.若α<β<γ,则下列关系不可能成立的是( ) A .k 3<k 1<k 2B .k 1<k 2<k 3C .k 2<k 3<k 1D .k 3<k 2<k 14.国家体育场(鸟巢),是2008年北京奥运会的主体育场.在《通用技术》课上,王老师带领同学们一起制作了一个近似鸟巢的金属模型,其俯视图可近似看成是两个大小不同,扁平程度相同的椭圆,已知大椭圆的长轴长为40cm ,短轴长为20cm ,小椭圆的短轴长为10cm ,则小椭圆的长轴长为( )cm .A .30B .20C .10√3D .105.直线y =kx +1与椭圆x 24+y 2m=1总有公共点,则m 的取值范围是( )A .(0,1)∪(1,+∞)B .[1,4)∪(4,+∞)C .(0,1)∪(1,4)D .(1,+∞)6.已知△ABC 的顶点在抛物线y 2=4x 上,若抛物线的焦点F 恰好是△ABC 的重心,则|F A |+|FB |+|FC |的值为( ) A .3B .4C .5D .67.已知实数x 、y 满足x 2+y 2=1,则|2x +y ﹣5|的最小值是( ) A .√5−1B .√5+1C .5−√5D .5+√58.如图,加斯帕尔•蒙日是18~19世纪法国著名的几何学家,他在研究圆锥曲线时发现:椭圆(或双曲线)上两条相互垂直的切线的交点P 的轨迹方程为圆,该圆称为外准圆,也叫蒙日圆.双曲线C :x 24−y 2=1的蒙日圆的面积为( )A .3πB .4πC .5πD .6π二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.已知直线l 1:ax +2y ﹣1=0和直线l 2:x +(a +1)y ﹣1=0,下列说法不正确的是( ) A .当a =﹣2或1时,l 1∥l 2 B .当a =−23时,l 1⊥l 2C .直线l 1过定点(0,1),直线l 2过定点(1,0)D .当l 1,l 2平行时,两直线的距离为√2 10.已知方程x 27−t +y 23+t=1表示的曲线为C ,则下列四个结论中正确的是( )A .当﹣3<t <7时,曲线C 是椭圆B .当t >7或t <﹣3时,曲线C 是双曲线 C .若曲线C 是焦点在x 轴上的椭圆,则﹣3<t <2D .若曲线C 是焦点在y 轴上的双曲线,则t >7 11.P 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)上的一点,O 为坐标原点,则下列说法正确的是( )A .c ≤|OP |≤aB .若∠F 1PF 2=60°,则S △F 1PF 2=√3b 2C .若存在点P ,使∠F 1PF 2=90°,则椭圆C 的离心率e ∈[√22,1)D .若PF 1的中点在y 轴上,则|PF 2|=b2a12.已知F 是抛物线C :y 2=2px 的焦点,直线AB 经过点F 交抛物线于A 、B 两点,则下列说法正确的是( )A .以AB 为直径的圆与抛物线的准线相切 B .若AF →=2FB →,则直线AB 的斜率k =3C .弦AB 的中点M 的轨迹为一条抛物线,其方程为y 2=2px ﹣p 2D .若p =4,则|AF |+4|BF |的最小值为18三、填空题(本大题共4小题,每小题5分,共20分.)13.请写出一个焦点在y 轴上,焦距为2的椭圆的标准方程 .14.P 、Q 分别是圆E :(x +9)2+(y +4)2=1与圆F :(x ﹣1)2+(y ﹣3)2=1上的动点,A 为直线y =x 上的动点,则|AP |+|AQ |的最小值为 . 15.已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的焦点与椭圆x 281+y 272=1的焦点重合,离心率互为倒数,设F 1、F 2分别为双曲线C 的左、右焦点,P 为右支上任意一点,则双曲线C 的离心率为 ;|PF 1|2|PF 2|的最小值为 .16.参加数学兴趣小组的小何同学在打篮球时,发现当篮球放在地面上时,篮球的斜上方灯泡照过来的光线使得篮球在地面上留下的影子有点像数学课堂上学过的椭圆,但他自己还是不太确定这个想法,于是回到家里翻阅了很多参考资料,终于明白自己的猜想是没有问题的,而且通过学习,他还确定地面和篮球的接触点(切点)就是影子椭圆的焦点.他在家里做了个探究实验:如图所示,桌面上有一个篮球,若篮球的半径为1个单位长度,在球的右上方有一个灯泡P (当成质点),灯泡与桌面的距离为4个单位长度,灯泡垂直照射在平面的点为A ,影子椭圆的右顶点到A 点的距离为3个单位长度,则这个影子椭圆的离心率e = .四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)在平行四边形ABCD 中,A (﹣2,1),B (1,7),D (1,﹣2),点E 是线段CD 的中点. (1)求直线CD 的方程;(2)求过点E 且与直线BC 垂直的直线方程.18.(12分)已知焦点在y 轴上的双曲线的离心率为32,焦点到其中一条渐近线的距离为√5.(1)求双曲线的标准方程;(2)过双曲线的上焦点F 1的直线l 交双曲线的上支于M 、N 两点.在y 轴上是否存在定点T ,使得∠F 1TM =∠F 1TN 恒成立?若存在,求出点T 的坐标;若不存在,请说明理由. 19.(12分)已知圆C :x 2+3λx +y 2﹣λy ﹣10﹣10λ=0. (1)证明:圆C 过定点.(2)当λ=1时,是否存在斜率为1的直线l 交圆C 于A 、B 两点,使得以AB 为直径的圆恰好经过原点?若存在,求出l 的方程;若不存在,说明理由.20.(12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,过点F 2且垂直于x 轴的弦长为3,且_____.(从以下三个条件中任选一个,将其序号写在答题卡的横线上并作答.) ①椭圆C 的长轴长为4;②椭圆C 与椭圆x 213+y 212=1有相同的焦点;③F 1,F 2与椭圆C 短轴的一个端点组成的三角形为等边三角形. (1)求椭圆C 的标准方程;(2)若直线l 经过F 2,且与椭圆交于M ,N 两点,求△F 1MN 面积的最大值.21.(12分)已知动圆M 经过点A (2,0),且与直线x =﹣2相切.设圆心M 的轨迹为C . (1)求曲线C 的方程;(2)设P 为直线x =﹣2上任意一点,过P 作曲线C 的两条切线,切点分别为E 、F ,求证:PE ⊥PF . 22.(12分)已知两定点A (﹣3,0),B (3,0),过动点P 的两直线P A 和PB 的斜率之积为−89.设动点P 的轨迹为C . (1)求曲线C 的方程;(2)设F 1(﹣1,0),过F 1的直线l 交曲线C 于M 、N 两点(不与A 、B 重合).设直线AM 与BN 的斜率分别为k 1,k 2,证明k 1k 2为定值.2023-2024学年河南省南阳市高二(上)期中数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线l过点(2,3),且倾斜角为90°,则直线l的方程为()A.﹣x+y=1B.x+y﹣5=0C.y=3D.x=2解:∵直线l过点(2,3),且倾斜角为90°,∴直线l的方程为x=2.故选:D.2.二次函数y=ax2(a≠0)的图像为抛物线,其准线方程为()A.x=−14aB.x=−a4C.y=−14a D.y=−a4解:将二次函数y=ax2(a≠0)化为抛物线标准式得x2=1ay,所以准线方程为y=−14a.故选:C.3.已知三条直线l1,l2,l3的斜率分别为k1,k2,k3,倾斜角分别为α,β,γ.若α<β<γ,则下列关系不可能成立的是()A.k3<k1<k2B.k1<k2<k3C.k2<k3<k1D.k3<k2<k1解:若γ>90°>β>α,则tanβ>tanα>0>tanγ,A成立,若α<β<γ<90°,则tanα<tanβ<tanγ,B成立,若α<90°<β<γ,则tanα>0>tanγ>tanβ,C成立,故选:D.4.国家体育场(鸟巢),是2008年北京奥运会的主体育场.在《通用技术》课上,王老师带领同学们一起制作了一个近似鸟巢的金属模型,其俯视图可近似看成是两个大小不同,扁平程度相同的椭圆,已知大椭圆的长轴长为40cm,短轴长为20cm,小椭圆的短轴长为10cm,则小椭圆的长轴长为()cm.A.30B.20C.10√3D.10解:扁平程度相同的椭圆,即离心率相等,大椭圆a1=20,b1=10,c1=√202−102=10√3,离心率为e1=√32,小椭圆b 2=5,离心率e 2=e 1=√32=√a 22−25a 2,解得a 2=10,故长轴长为20.故选:B .5.直线y =kx +1与椭圆x 24+y 2m=1总有公共点,则m 的取值范围是( )A .(0,1)∪(1,+∞)B .[1,4)∪(4,+∞)C .(0,1)∪(1,4)D .(1,+∞)解:直线y =kx +1恒过点(0,1),只需该点落在椭圆内或椭圆上, 即024+12m≤1,解得m ≥1,又m ≠4,则m 的取值范围是[1,4)∪(4,+∞).故选:B .6.已知△ABC 的顶点在抛物线y 2=4x 上,若抛物线的焦点F 恰好是△ABC 的重心,则|F A |+|FB |+|FC |的值为( ) A .3B .4C .5D .6解:设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),抛物线y 2=4x ,则F (1,0), 因为焦点F 恰好是△ABC 的重心,所以x 1+x 2+x 3=3×1=3, 故|F A |+|FB |+|FC |=x 1+1+x 2+1+x 3+1=6. 故选:D .7.已知实数x 、y 满足x 2+y 2=1,则|2x +y ﹣5|的最小值是( ) A .√5−1B .√5+1C .5−√5D .5+√5解:x 2+y 2=1,则圆心C (0,0),半径r =1, |2x +y ﹣5|=√5|2x+y−5|√2+1,√22+12表示圆上的点到直线2x +y ﹣5=0的距离,该距离的最小值为√22+12−r =√5−1,故|2x +y ﹣5|的最小值是:√5×(√5−1)=5−√5. 故选:C .8.如图,加斯帕尔•蒙日是18~19世纪法国著名的几何学家,他在研究圆锥曲线时发现:椭圆(或双曲线)上两条相互垂直的切线的交点P 的轨迹方程为圆,该圆称为外准圆,也叫蒙日圆.双曲线C :x 24−y 2=1的蒙日圆的面积为( )A .3πB .4πC .5πD .6π解:不妨设P (x 0,y 0),则过点P 的切线方程为y ﹣y 0=k (x ﹣x 0),联立{x 2a 2−y 2b 2=1y −y 0=k(x −x 0),消去y 并整理得(b 2﹣a 2k 2)x 2﹣2a 2k (y 0﹣kx 0)x −a 2[(y 0−kx 0)2+b 2],因为过点P 的切线方程与双曲线只有一个交点,所以Δ=0,解得(x 02−a 2)k 2−2x 0y 0k +y 02+b 2=0,易知k AP ,k BP 为关于k 的方程(x 02−a 2)k 2−2x 0y 0k +y 02+b 2=0的两个根,且k AP •k BP =﹣1,所以y 02+b 2x 02−a 2=−1,整理得x 02+y 02=a 2−b 2,所以点P 的轨迹方程为x 02+y 02=a 2−b 2(a >b ),可得双曲线C :x 24−y 2=1的蒙日圆的轨迹方程为x 2+y 2=3, 所以r =√3,则该蒙日圆的面积S =πr 2=3π. 故选:A .二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.已知直线l 1:ax +2y ﹣1=0和直线l 2:x +(a +1)y ﹣1=0,下列说法不正确的是( ) A .当a =﹣2或1时,l 1∥l 2 B .当a =−23时,l 1⊥l 2C .直线l 1过定点(0,1),直线l 2过定点(1,0)D .当l 1,l 2平行时,两直线的距离为√2解:A 中,两条直线平行时,则a (a +1)=2×1,且a ×(﹣1)≠﹣1×1,解得a =﹣2,所以A 不正确;B 中,a =−23时,a •1+2•(a +1)=−23+23=0,即两条直线垂直,所以B 正确; C 中,直线l 1:ax +2y ﹣1=0可得恒过定点(0,12),直线l 2:x +(a +1)y ﹣1=0整理可得ay +x +y ﹣1=0,恒过定点(1,0),所以C 不正确;D 中,由A 可知,两条直线平行时a =﹣2,此时直线l 1:﹣2x +2y ﹣1=0,即x ﹣y +12=0, 直线l 2:x ﹣y ﹣1=0,所以两条直线的距离d =|12−1|√1+(−1)=√24,所以D 不正确.故选:ACD . 10.已知方程x 27−t+y 23+t=1表示的曲线为C ,则下列四个结论中正确的是( )A .当﹣3<t <7时,曲线C 是椭圆B .当t >7或t <﹣3时,曲线C 是双曲线 C .若曲线C 是焦点在x 轴上的椭圆,则﹣3<t <2D .若曲线C 是焦点在y 轴上的双曲线,则t >7 解:当方程x 27−t+y 23+t=1是椭圆时,则{7−t >03+t >07−t ≠3+t,解得﹣3<t <2或2<t <7,∴A 错误,当方程x 27−t+y 23+t =1是双曲线时,则(7﹣t )(t +3)<0,解得t <﹣3或t >7,∴B 正确;若方程x 27−t +y 23+t =1是焦点在x 轴上的椭圆,则{7−t >3+t 3+t >0,解得﹣3<t <2,∴C 正确; 若方程x 27−t+y 23+t=1是焦点在y 轴上的双曲线,则 {3+t >07−t <0,解得t >7,∴D 正确.故选:BCD . 11.P 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)上的一点,O 为坐标原点,则下列说法正确的是( )A .c ≤|OP |≤aB .若∠F 1PF 2=60°,则S △F 1PF 2=√3b 2C .若存在点P ,使∠F 1PF 2=90°,则椭圆C 的离心率e ∈[√22,1)D .若PF 1的中点在y 轴上,则|PF 2|=b2a解:对于A ,易知|OP |∈[b ,a ],故A 错误; 对于B ,设|PF 1|=m ,|PF 2|=n ,则m +n =2a ,根据余弦定理,(2c )2=m 2+n 2﹣2mn cos60°,解得mn =4a 2−4c 23=4b23,所以S △F 1PF 2=12mnsin60°=√3b 23,故B 错误;对于C ,若存在点P ,使∠F 1PF 2=90°, 则c ⩾b ,所以c 2⩾a 2﹣c 2,即c 2a 2⩾12,所以e ∈[√22,1),故C 正确;对于D ,若PF 1的中点在y 轴上,则PF 2⊥x 轴,所以|PF 2|=b2a,故D 正确.故选:CD .12.已知F 是抛物线C :y 2=2px 的焦点,直线AB 经过点F 交抛物线于A 、B 两点,则下列说法正确的是( )A .以AB 为直径的圆与抛物线的准线相切 B .若AF →=2FB →,则直线AB 的斜率k =3C .弦AB 的中点M 的轨迹为一条抛物线,其方程为y 2=2px ﹣p 2D .若p =4,则|AF |+4|BF |的最小值为18解:A .由抛物线的方程可得焦点F (p2,0),准线方程为:x =−p2,设A (x 1,y 1),B (x 2,y 2),则AB 的中点M (x 1+x 22,y 1+y 22),利用焦点弦的性质可得|AB |=x 1+x 2+p ,而AB 的中点M 到准线的距离d =x 1+x 22−(−p 2)=12(1+x 2+p )=12|AB |,∴以AB 为直径的圆与该抛物线的准线相切,因此A 正确;B .设直线AB 的方程为x =my +p 2,k =1m >0,联立{x =my +p2y 2=2px , 整理可得:y 2﹣2mpy ﹣p 2=0, 可得y 1+y 2=2mp ,y 1y 2=﹣p 2, ∵AF →=2FB →,∴y 1=﹣2y 2, 解得y 2=﹣2mp ,y 1=4mp , ∴﹣8m 2p 2=﹣p 2,解得m 2=18, ∴k =√1m 2=2√2,因此B 不正确; C .设M (x ,y ),结合A ,B 可得:y =y 1+y 22=mp ,x =x 1+x 22=m(y 1+y 2)2+p 2=m 2p +p 2,消去m 可得:2y 2=2px ﹣p 2,因此C 不正确; D .若p =4,则抛物线C :y 2=8x ,不妨设x 1>x 2>0,x 1x 2=(y 1y 2)264=4,∴|AF |+4|BF |=x 1+4x 2+10=4x 2+4x 2+10≥4×2√1x 2⋅x 2+10=18,当且仅当x 2=1,x 1=4时取等号,因此D 正确. 故选:AD .三、填空题(本大题共4小题,每小题5分,共20分.) 13.请写出一个焦点在y 轴上,焦距为2的椭圆的标准方程 y 22+x 21=1(答案不唯一,只要焦点在y轴上且a 2﹣b 2=1) . 解:y 22+x 21=1(答案不唯一,只要焦点在y 轴上且a 2﹣b 2=1). 故答案为:y 22+x 21=1(答案不唯一,只要焦点在y 轴上且a 2﹣b 2=1).14.P 、Q 分别是圆E :(x +9)2+(y +4)2=1与圆F :(x ﹣1)2+(y ﹣3)2=1上的动点,A 为直线y =x 上的动点,则|AP |+|AQ |的最小值为 11 . 解:由题意知E (﹣9,﹣4),F (1,3),如图,设圆E 关于y =x 的对称圆为圆G ,点Q 与点Q '关于y =x 轴对称,则圆G 的方程为(x +4)2+(y +9)2=1,G (﹣4,﹣9),所以(|AP |+|AQ |)min =(|AP |+|AQ ′|)min ≥|PQ ′|,当且仅当P ,A ,Q ′三点共线时取得最小值, 此时|PQ ′|=|FG |﹣1﹣1=√(−4−1)2+(−9−3)2−1﹣1=11,所以AP |+|AQ |的最小值为11. 故答案为:11. 15.已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的焦点与椭圆x 281+y 272=1的焦点重合,离心率互为倒数,设F 1、F 2分别为双曲线C 的左、右焦点,P 为右支上任意一点,则双曲线C 的离心率为 3 ; |PF 1|2|PF 2|的最小值为 8 . 解:已知椭圆x 281+y 272=1的离心率e 1=√1−7281=13,而c =√81−72=3, 因为双曲线C 与椭圆x 281+y 272=1的离心率互为倒数,所以双曲线C 的离心率e 2=3,① 因为双曲线C 的焦点与椭圆x 281+y 272=1的焦点重合,所以双曲线C 的半焦距c =3,② 又a 2+b 2=c 2,③联立①②③,解得a =1,b =2√2,则双曲线C 的方程为x 2−y 28=1,若F 1、F 2分别为双曲线C 的左、右焦点,P 为右支上任意一点, 可得|PF 1|﹣|PF 2|=2a =2, 即|PF 1|=2+|PF 2|, 所以|PF 1|2|PF 2|=(2+|PF 2|)2|PF 2|=4+4|PF 2|+|PF 2|2|PF 2|=4|PF 2|+|PF 2|+4,因为|PF 2|≥c ﹣a =1, 所以4|PF 2|+|PF 2|+4≥2√4|PF 2|⋅|PF 2|+4=8, 当且仅当4|PF 2|=|PF 2|,即|PF 2|=2时,等号成立,则|PF 1|2|PF 2|的最小值为8.故答案为:3;8.16.参加数学兴趣小组的小何同学在打篮球时,发现当篮球放在地面上时,篮球的斜上方灯泡照过来的光线使得篮球在地面上留下的影子有点像数学课堂上学过的椭圆,但他自己还是不太确定这个想法,于是回到家里翻阅了很多参考资料,终于明白自己的猜想是没有问题的,而且通过学习,他还确定地面和篮球的接触点(切点)就是影子椭圆的焦点.他在家里做了个探究实验:如图所示,桌面上有一个篮球,若篮球的半径为1个单位长度,在球的右上方有一个灯泡P (当成质点),灯泡与桌面的距离为4个单位长度,灯泡垂直照射在平面的点为A ,影子椭圆的右顶点到A 点的距离为3个单位长度,则这个影子椭圆的离心率e =79.解:以A 为坐标原点建立平面直角坐标系,由题意可知,|NQ |=a +c ,|QR |=a ﹣c 由题意可得P (0,4),R (﹣3,0),则PR :4x ﹣3y +12=0,k PR =43, 设M (n ,1),Q (n ,0), 则M 到PR 的距离d =|4n−3+12|√4+3=1,解得n =﹣1(舍去).n =−72,则|QR |=72−3=12=a ﹣c , 又设PN :kx ﹣y +4=0,由d =|−72k−1+4|√1+k =1,得45k 2﹣84k +32=0.∴k PR •k PN =3245,则k PN =815,得x N =−152, ∴2a =152−3=92,a =94,解得c =74. ∴椭圆的离心率e =ca =79. 故答案为:79.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)在平行四边形ABCD 中,A (﹣2,1),B (1,7),D (1,﹣2),点E 是线段CD 的中点.(1)求直线CD 的方程;(2)求过点E 且与直线BC 垂直的直线方程. 解:(1)由题意可得k AB =7−11−(−2)=2,由平行四边形可得CD ∥AB ,所以直线CD 的斜率为2,所以直线CD 的方程为y ﹣(﹣2)=2(x ﹣1),即2x ﹣y ﹣4=0; (2)设所求直线为l .设点C 的坐标为(m ,n ),则DC →=(m −1,n +2), 由题意AB →=DC →,又AB →=(3,6),故{m −1=3n +2=6,解得m =4,n =4,即C (4,4), 点E 是线段CD 的中点,则E(52,1), 直线BC 的斜率为k BC =7−41−4=−1,由于直线BC 与l 垂直,故直线l 的斜率为1, 所以直线l 的方程为y −1=x −52, 即2x ﹣2y ﹣3=0.18.(12分)已知焦点在y 轴上的双曲线的离心率为32,焦点到其中一条渐近线的距离为√5.(1)求双曲线的标准方程;(2)过双曲线的上焦点F 1的直线l 交双曲线的上支于M 、N 两点.在y 轴上是否存在定点T ,使得∠F 1TM =∠F 1TN 恒成立?若存在,求出点T 的坐标;若不存在,请说明理由. 解:(1)因为焦点在y 轴上的双曲线的离心率为32,所以e =√1+b 2a2=32,①因为焦点到其中一条渐近线的距离为√5, 所以d =√a 2+b=b =√5,②联立①②,解得a =2, 则双曲线的标准方程为y 24−x 25=1;(2)易知直线l 的斜率存在,不妨设直线l 的方程为y =kx +3,M (x 1,y 1),N (x 2,y 2), 联立{y =kx +3y 24−x 25=1,消去y 并整理得(5k 2﹣4)x 2+30kx +25=0,由韦达定理得x 1+x 2=−30k 5k 2−4,x 1x 2=255k 2−4,假设在y 轴上存在定点T ,使得∠F 1TM =∠F 1TN 恒成立, 不妨设点T (0,t ),此时k TM +k TN =0, 即y 1−t x 1+y 2−t x 2=x 2(y 1−t)+x 1(y 2−t)x 1x 2=x 2(kx 1+3−t)+x 1(kx 2+3−t)x 1x 2=2k +(3−t)(x 1+x 2)x 1x 2=2k +(3−t)−30k 5k 2−4255k 2−4=0,解得t =43,则点T 的坐标为(0,43).综上,y 轴上存在点T(0,43),使∠F 1TM =∠F 1TN 恒成立. 19.(12分)已知圆C :x 2+3λx +y 2﹣λy ﹣10﹣10λ=0. (1)证明:圆C 过定点.(2)当λ=1时,是否存在斜率为1的直线l 交圆C 于A 、B 两点,使得以AB 为直径的圆恰好经过原点?若存在,求出l 的方程;若不存在,说明理由.解:(1)证明:圆C :x 2+3λx +y 2﹣λy ﹣10﹣10λ=0,即x 2+y 2﹣10+λ(3x ﹣y ﹣10)=0, 令{3x −y −10=0x 2+y 2−10=0,解得{x =3y =−1, 把(3,﹣1)代入圆C :x 2+3λx +y 2﹣λy ﹣10﹣10λ=0成立, 所以圆过定点(3,﹣1).(2)当λ=1时,圆C 的方程为:x 2+y 2+3x ﹣y ﹣20=0. 假设存在直线l 符合题意,直线l 的斜率为1,设直线l 的方程为y =x +m ,与圆C 联立{y =x +mx 2+y 2+3x −y −20=0,化简整理可得,2x 2+2(m +1)x +m 2﹣m ﹣20=0,Δ=4(m +1)2﹣4×2×(m 2﹣m ﹣20)>0①, 设A (x 1,y 1),B (x 2,y 2) x 1+x 2=﹣(m +1),x 1x 2=m 2−m−202, 若以AB 为直径的圆经过原点,则OA ⊥OB ,OA →⋅OB →=0,即x 1x 2+y 1y 2=x 1x 2+(x 1+m)(x 2+m)=2x 1x 2+m(x 1+x 2)+m 2=m m 2﹣m ﹣20﹣m (m +1)+m 2=m 2﹣2m ﹣20=0,解得m =1±√21,均满足①,故直线l 的方程为y =x +1−√21或y =x +1+√21. 20.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,过点F 2且垂直于x 轴的弦长为3,且_____.(从以下三个条件中任选一个,将其序号写在答题卡的横线上并作答.) ①椭圆C 的长轴长为4;②椭圆C 与椭圆x 213+y 212=1有相同的焦点;③F 1,F 2与椭圆C 短轴的一个端点组成的三角形为等边三角形. (1)求椭圆C 的标准方程;(2)若直线l 经过F 2,且与椭圆交于M ,N 两点,求△F 1MN 面积的最大值. 解:(1)选①:由题意得{2a =42b 2a =3,解得{a =2b =√3.所以椭圆C 的方程为x 24+y 23=1.选②:椭圆x 213+y 212=1的焦点坐标为(±1,0),则c =1,又2a =4,得a =2,由a 2=b 2+c 2得,b 2=4﹣1=3, 所以椭圆C 的方程为x 24+y 23=1.选③:由题意得2b 2a=3,因为F 1,F 2与椭圆C 短轴的一个端点组成等边三角形, 所以b =√3c ,又a 2=b 2+c 2,得a =2,b =√3, 所以椭圆C 的方程为x 24+y 23=1.(2)【解法一】:由题知F 2(1,0), 设直线l 的方程为x =my +1,联立{x =my +1x 24+y 23=1,得(3m 2+4)y 2+6my ﹣9=0,设点M (x 1,y 1),N (x 2,y 2), 所以y 1+y 2=−6m 3m 2+4,y 1y 2=−93m 2+4. 所以S △F 1MN =S △MF 1F 2+S △NF 1F 2=12⋅2c|y 1−y 2|=|y 1−y 2|=√(y 1+y 2)2−4y 1y 2=√(−6m 3m 2+4)2−−363m 2+4=12√m 2+13m 2+4, 设t =√m 2+1≥1,则S △F 1MN =12t 3t 2+1=123t+1t,因为函数y =3t +1t在t ∈[1,+∞)上单调递增, 所以函数y =123t+1t在t ∈[1,+∞)上单调递减, 所以当t =1时,y max =123×1+1=3(此时m =0,直线为x =1), 所以△F 1MN 面积的最大值为3. 【解法二】:由题知F 2(1,0),当直线l 的斜率不存在时,直线l 的方程为x =1,此时M (1,32),N (1,−32)或M (1,−32),N (1,32),所以|MN |=3,所以△F 1MN 的面积为12|F 1F 2|⋅|MN|=3,当直线l 的斜率存在时,设直线l 的方程为y =k (x ﹣1), 联立{y =k(x −1)x 24+y 23=1,得(3+4k 2)x 2﹣8k 2x +4k 2﹣12=0,设点M (x 1,y 1),N (x 2,y 2), 所以x 1+x 2=8k23+4k 2,x 1x 2=4k 2−123+4k 2,所以y 1+y 2=−6k3+4k 2,y 1y 2=−9k23+4k2,所以S △F 1MN =S △MF 1F 2+S △NF 1F 2=12⋅2c|y 1−y 2|=|y 1−y 2|=√(y 1+y 2)2−4y 1y 2=√(−6k 3+4k2−4⋅−9k23+4k2)=12√k 2(k 2+1)3+4k 2,设t =3+4k 2>3,则k 2=t−34,所以S =12√(t−34)2−t−34t 2=3√1−2t −3t2(其中0<1t <13),所以当1t→0时,S →3,综上所述:△F 1MN 面积的最大值为3.21.(12分)已知动圆M 经过点A (2,0),且与直线x =﹣2相切.设圆心M 的轨迹为C . (1)求曲线C 的方程;(2)设P 为直线x =﹣2上任意一点,过P 作曲线C 的两条切线,切点分别为E 、F ,求证:PE ⊥PF . 解:(1)因为动圆M 经过点A (2,0),且与直线x =﹣2相切, 所以|MA |=|x +2|,即点M 到点A (2,0)的距离与到直线x =﹣2的距离相等,由抛物线定义知圆心M 的轨迹C 为抛物线,且焦点为(2,0),准线方程为x =﹣2, 所以曲线C 的方程为y 2=8x ;(2)证明:易知过点P 的切线斜率存在,且不为0; 因为P 为直线x =﹣2上任意一点,不妨设P (﹣2,t ),切线方程为x +2=m (y ﹣t ),联立{x +2=m(y −1)y 2=8x ,消去x 并整理得y 2﹣8my +8mt +16=0,此时Δ=64m 2﹣4(8tm +16)=64m 2﹣32tm ﹣64=0, 因为过点P 存在两条切线,所以关于m 的方程有两个不相等的实数根m 1,m 2, 由韦达定理得m 1m 2=﹣1,不妨设切线PE 、PF 的斜率分别为k 1,k 2, 此时k 1k 2=1m 1⋅1m 2=−1,故PE ⊥PF .22.(12分)已知两定点A (﹣3,0),B (3,0),过动点P 的两直线P A 和PB 的斜率之积为−89.设动点P 的轨迹为C . (1)求曲线C 的方程;(2)设F 1(﹣1,0),过F 1的直线l 交曲线C 于M 、N 两点(不与A 、B 重合).设直线AM 与BN 的斜率分别为k 1,k 2,证明k 1k 2为定值.解:(1)不妨设点P (x ,y ),因为过动点P 的两直线P A 和PB 的斜率之积为−89, 所以k PA ⋅k PB =yx+3⋅yx−3=−89, 整理得x 29+y 28=1(x ≠±3);(2)证明:不妨设直线l 的方程为x =my ﹣1,M (x 1,y 1),N (x 2,y 2), 联立{x =my −1x 29+y 28=1,消去x 并整理得(8m 2+9)y 2﹣16my ﹣64=0,由韦达定理得y 1+y 2=16m 8m 2+9,y 1y 2=−648m 2+9, 则k 1k 2=y 1x 1+3⋅x 2−3y 2=x 2y 1−3y 1x 1y 2+3y 2=(my 2−1)y 1−3y 1(my 1−1)y 2+3y 2=my 1y 2−4y 1my 1y 2+2y 2=−64m8m 2+9−4y 1−64m 8m 2+9+2(16m8m 2+9−y 1)=−64m8m 2+9−4y 1−32m8m 2+9+2y 1=2.综上,k 1k 2为定值2.。
2023-2024学年湖北省部分重点中学高二(上)期中数学试卷【答案版】
2023-2024学年湖北省部分重点中学高二(上)期中数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.两条不同直线l 1,l 2的方向向量分别为m →=(1,1,−2),n →=(2,−2,1),则这两条直线( ) A .相交或异面 B .相交C .异面D .平行2.已知椭圆C :x 2m+1+y 2m=1的离心率为12,则m =( )A .13B .1C .3D .43.一束光线从点A(−√3,3)射出,沿倾斜角为150°的直线射到x 轴上,经x 轴反射后,反射光线所在的直线方程为( ) A .y =√3x −2B .y =−√3x +2C .y =−√33x +2D .y =√33x −24.实数x ,y 满足x 2﹣4x +y 2﹣6y +9=0,则y−1x+1的取值范围是( ) A .[512,+∞)B .[125,+∞)C .[0,125]D .[0,512]5.已知△ABC 的顶点A (﹣2,1),AC 边上的高BE 所在直线方程为x +y ﹣5=0,AC 边上中线BD 所在的直线方程为3x ﹣5y +1=0,则高BE 的长度为( ) A .√22B .√2C .2√2D .3√26.在四面体ABCD 中,已知△ABD 为等边三角形,△ABC 为等腰直角三角形,斜边AB =4,CD =2√7,则二面角C ﹣AB ﹣D 的大小为( ) A .π6B .π3C .2π3D .5π67.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (c ,0)(b >c ),上顶点为B ,直线l :3√3x ﹣4y ﹣21=0交椭圆于P ,Q 两点,若F 恰好为△BPQ 的重心,则椭圆的离心率为( ) A .√55B .12C .√22D .√328.已知中心在原点O ,焦点在y 轴上,且离心率为√23的椭圆与经过点C (﹣2,0)的直线l 交于A ,B 两点,若点C 在椭圆内,△OAB 的面积被x 轴分成两部分,且△OAC 与△OBC 的面积之比为3:1,则△OAB 面积的最大值为( ) A .8√73B .4√73C .24√77D .12√77二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知椭圆C :x 24+y 23=1,F 1,F 2分别是椭圆的左,右焦点,P 为椭圆上任意一点.下列说法中正确的是( ) A .椭圆离心率为√32B .|PF 1|的最小值为1C .|PF 1|+|PF 2|=2D .0≤∠F 1PF 2≤π310.下列说法正确的是( )A .已知点A (2,1),B(−1,2√3),若过P (1,0)的直线l 与线段AB 相交,则直线l 的倾斜角范围为[π4,2π3]B .“a =1”是“直线ax ﹣y +1=0与直线x ﹣ay ﹣2=0互相平行”的充要条件C .曲线C 1:x 2+y 2+2x =0与C 2:x 2+y 2﹣4x ﹣8y +m =0恰有四条公切线,则m 的取值范围为4<m <20D .圆x 2+y 2=2上有且仅有2个点到直线l :x ﹣y +1=0的距离都等于√2211.如图,在多面体ABCDEP 中,P A ⊥平面ABCD ,四边形ABCD 是正方形,且DE ∥P A ,P A =AB =2DE =2,M ,N 分别是线段BC ,PB 的中点,Q 是线段DC 上的一个动点(不含端点D ,C ),则下列说法正确的是( )A .存在点Q ,使得NQ ⊥PBB .不存在点Q ,使得异面直线NQ 与PE 所成的角为30°C .三棱锥Q ﹣AMN 体积的取值范围为(13,23)D .当点Q 运动到DC 中点时,DC 与平面QMN 所成的余弦值为√6612.椭圆有如下的光学性质,从椭圆的一个焦点出发的光线射到椭圆镜面后反射,反射光线经过另一个焦点.现椭圆C 的焦点在x 轴上,中心在坐标原点,左、右焦点分别为F 1、F 2.一束光线从F 1射出,经椭圆镜面反射至F 2,若两段光线总长度为6,且椭圆的离心率为√53,左顶点和上顶点分别为A ,B .则下列说法正确的是( ) A .椭圆的标准方程为x 29+y 24=1B .若点P 在椭圆上,则sin ∠F 1PF 2的最大值为19C .若点P 在椭圆上,|BP |的最大值为9√55D .过直线y =x +2上一点M 分别作椭圆的切线,交椭圆于P ,Q 两点,则直线PQ 恒过定点(−92,2) 三、填空题:本大题共4题,每小题5分,共计20分.13.圆C 1:x 2+y 2=1与圆C 2:(x ﹣1)2+(y +2)2=4的公共弦所在的直线方程为 .14.所有棱长都为1的平行六面体ABCD ﹣A 1B 1C 1D 1中,若M 为A 1C 1与B 1D 1的交点,∠BAD =60°,∠DAA 1=∠BAA 1=30°,则|BM →|的值为 . 15.已知椭圆C :x 2a 2+y 2a 2−1=1(a >1)的左,右焦点分别为F 1,F 2,过点F 1且垂直于x 轴的直线与椭圆交于A 、B 两点,AF 2、BF 2分别交y 轴于P 、Q 两点,△PQF 2的周长为4.过F 2作∠F 2AF 1外角平分线的垂线与直线BA 交于点N ,则|ON |= .16.已知直线l 与圆O :x 2+y 2=4交于A (x 1,y 1),B (x 2,y 2)两点,且|AB|=2√3,则|3x 1+4y 1﹣10|+|3x 2+4y 2﹣10|的最大值为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在平面直角坐标系中,已知射线OA :x ﹣y =0(x ≥0),OB :x +2y =0(x ≥0).过点P (3,0)作直线分别交射线OA ,OB 于点A ,B . (1)已知点B (6,﹣3),求点A 的坐标;(2)当线段AB 的中点为P 时,求直线AB 的方程.18.(12分)如图,ABCD 和ABEF 是不在同一平面上的两个矩形,DM →=13DB →,AN →=13AE →,记AB →=a →,AD →=b →,AF →=c →.请用基底{a →,b →,c →},表示下列向量: (1)FC →; (2)MN →.19.(12分)已知圆C ,圆C 1:(x +3)2+y 2=9,圆C 2:(x −1)2+y 2=9,这三个圆有一条公共弦. (1)当圆C 的面积最小时,求圆C 的标准方程; (2)在(1)的条件下,直线l 同时满足以下三个条件:(i )与直线√19x +y −3=0垂直; (ii )与圆C 相切;(iii )在y 轴上的截距大于0,若直线l 与圆C 2交于D ,E 两点,求|DE |.20.(12分)如图,在四棱锥P ﹣ABCD 中,底面是边长为2的菱形,∠ABC =π3,H 为BC 的中点,P A =PB =PH =√2.E 为PD 上的一点,已知PD =4PE . (1)证明:平面P AB ⊥平面ABCD ; (2)求平面EAC 与平面P AB 夹角的余弦值.21.(12分)已知A(−√3,1),B ,M 是椭圆C 上的三点,其中A 、B 两点关于原点O 对称,直线MA 和MB 的斜率满足k MA •k MB =−13. (1)求椭圆C 的标准方程;(2)点Q 是椭圆C 长轴上的不同于左右顶点的任意一点,过点Q 作斜率不为0的直线l ,l 与椭圆的两个交点分别为P 、N ,若1|PQ|+1|QN|为定值,则称点Q 为“稳定点”,问:是否存在这样的稳定点?若有,试求出所有的“稳定点”,并说明理由;若没有,也请说明理由. 22.(12分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的焦距为4√3,且点P(2,√3)在椭圆E 上.(1)求椭圆E 的方程;(2)若A 、B 、Q 是椭圆E 上的三点,且直线AB 与x 轴不垂直,点O 为坐标原点,OQ →=λOA →+μOB →,则当△AOB 的面积最大时,求λ2+μ2的值.2023-2024学年湖北省部分重点中学高二(上)期中数学试卷参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.两条不同直线l 1,l 2的方向向量分别为m →=(1,1,−2),n →=(2,−2,1),则这两条直线( ) A .相交或异面 B .相交C .异面D .平行解:令m →=λn →,即(1,1,﹣2)=λ(2,﹣2,1),则{1=2λ1=−2λ−2=λ,此方程组无解,则直线l 1,l 2不平行,即相交或异面.故选:A . 2.已知椭圆C :x 2m+1+y 2m=1的离心率为12,则m =( )A .13B .1C .3D .4解:椭圆C :x 2m+1+y 2m=1,可得a 2=m +1,b 2=m , 所以该椭圆的离心率e =c a =√1−b 2a2=√1−m m+1=12,则m =3.故选:C .3.一束光线从点A(−√3,3)射出,沿倾斜角为150°的直线射到x 轴上,经x 轴反射后,反射光线所在的直线方程为( ) A .y =√3x −2B .y =−√3x +2C .y =−√33x +2 D .y =√33x −2解:由题意知,入射光线所在直线的斜率为tan150°=−√33, 所以入射光线为y ﹣3=−√33(x +√3),整理得y =−√33x +2,令y =0,得x =2√3,所以入射光线与x 轴的交点为(2√3,0), 由对称性知,反射光线的斜率为√33, 所以反射光线的方程为y ﹣0=√33(x ﹣2√3),即y =√33x ﹣2.故选:D .4.实数x ,y 满足x 2﹣4x +y 2﹣6y +9=0,则y−1x+1的取值范围是( ) A .[512,+∞) B .[125,+∞) C .[0,125] D .[0,512] 解:方程x 2﹣4x +y 2﹣6y +9=0,即(x ﹣2)2+(y ﹣3)2=4,所以(x ,y )是以(2,3)为圆心,半径为2的圆上的点,y−1x+1表示点(x ,y )与点(﹣1,1)连线的斜率,设直线y ﹣1=k (x +1),kx ﹣y +1+k =0与圆(x ﹣2)2+(y ﹣3)2=4相切, (2,3)到直线kx ﹣y +1+k =0的距离√k 2+1=√k 2+1=2,解得k =0或k =125,所以y−1x+1的取值范围是[0,125]. 故选:C .5.已知△ABC 的顶点A (﹣2,1),AC 边上的高BE 所在直线方程为x +y ﹣5=0,AC 边上中线BD 所在的直线方程为3x ﹣5y +1=0,则高BE 的长度为( ) A .√22B .√2C .2√2D .3√2解:根据题意,由{x +y −5=03x −5y +1=0,解得{x =3y =2,可知B (3,2).由直线BE 的方程为x +y ﹣5=0,且AC 、BE 相互垂直,可知k AC =−1kBE=1,结合点A (﹣2,1),得直线AC 的方程为y ﹣1=x +2,即x ﹣y +3=0, 因为点B 到直线AC 的距离d =|3−2+3|1+1=2√2,所以AC 边上的高BE 的长度等于2√2.故选:C .6.在四面体ABCD 中,已知△ABD 为等边三角形,△ABC 为等腰直角三角形,斜边AB =4,CD =2√7,则二面角C ﹣AB ﹣D 的大小为( ) A .π6B .π3C .2π3D .5π6解:如图,取AB 中点M ,连接CM ,DM ,因为△ABD 为等边三角形,△ABC 为等腰直角三角形,所以CM ⊥AB ,DM ⊥AB , 故∠CMD 即为二面角C ﹣AB ﹣D 的平面角. 因为AB =4,所以CM =2,DM =2√3,所以cos ∠CMD =CM 2+DM 2−CD 22⋅CM⋅DM =4+12−282×2×2√3=−√32,所以∠CMD =5π6,即二面角C ﹣AB ﹣D 的大小为5π6.故选:D .7.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (c ,0)(b >c ),上顶点为B ,直线l :3√3x ﹣4y ﹣21=0交椭圆于P ,Q 两点,若F 恰好为△BPQ 的重心,则椭圆的离心率为( ) A .√55B .12C .√22D .√32解:不妨设P (x 1,y 1),Q (x 2,y 2),线段PQ 的中点M (x 0,y 0),因为点F 是△BPQ 的重心,所以BF →=2FM →,即(c ,﹣b )=2(x 0﹣c ,y 0),所以x 0=3c 2,y 0=−b2, 此时x 1+x 2=2x 0=3c ,y 1+y 2=2y 0=﹣b , 因为点M 在直线l 上,所以3√3•3c 2−4•(−b2)﹣21=0,即9√3c +4b ﹣42=0,①因为P ,Q 两点均在椭圆上,所以{ x 12a 2+y 12b 2=1x 22a 2+y 22b 2=1,两式作差得(x 1+x 2)(x 1−x 2)a 2+(y 1+y 2)(y 1−y 2)b 2=0,则直线l 的斜率k =y 2−y 1x 2−x 1=−b 2(x 1+x 2)a 2(y 1+y 2)=−b 2⋅3c a 2⋅(−b)=3√34,即√3a 2=4bc ,②又a 2=b 2+c 2,b >c ③联立①②③,解得a =2c ,b =√3c ,则椭圆的离心率e =c a =12. 故选:B .8.已知中心在原点O ,焦点在y 轴上,且离心率为√23的椭圆与经过点C (﹣2,0)的直线l 交于A ,B 两点,若点C 在椭圆内,△OAB 的面积被x 轴分成两部分,且△OAC 与△OBC 的面积之比为3:1,则△OAB 面积的最大值为( ) A .8√73B .4√73 C .24√77D .12√77解:设椭圆的方程为y 2a 2+x 2b 2=1(a >b >0),设直线l 的方程为x =my ﹣2,A (x 1,y 1),B (x 2,y 2),联立{y 2a 2+x 2b 2=1x =my −2,整理得:(b 2+a 2m 2)y 2﹣4ma 2y +4a 2﹣a 2b 2=0,由椭圆的离心率e =c a =√1−b 2a2=√23,得b 2=79a 2,代入上式并整理得:(7+9m 2)y 2﹣36my +36﹣7a 2=0, 则y 1+y 2=36m 7+9m 2,y 1y 2=36−7a 27+9m 2, 由△OAC 与△OBC 的面积之比为3:1,则y 1=﹣3y 2,则y 2=−18m7+9m 2, 所以△OAB 的面积为S △OAC +S △OBC =12×|OC |×|y 1|+12|OC |×|y 2|=|y 1﹣y 2|=4|y 2| =4×18|m|7+9m 2≤4×18|m|2√7×9m 2=4×18|m|6√7|m|=12√77,当且仅当9m 2=7,即m =±√73时,等号成立, 故△OAB 面积的最大值为12√77.故选:D .二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知椭圆C :x 24+y 23=1,F 1,F 2分别是椭圆的左,右焦点,P 为椭圆上任意一点.下列说法中正确的是( ) A .椭圆离心率为√32B .|PF 1|的最小值为1C .|PF 1|+|PF 2|=2D .0≤∠F 1PF 2≤π3解:因为椭圆C :x 24+y 23=1,F 1,F 2分别是椭圆的左,右焦点,P 为椭圆上任意一点,故a =2,b =√3,c =√4−3=1,故椭圆离心率为ca=12,A 不对;|PF 1|的最小值为:a ﹣c =1,B 对; |PF 1|+|PF 2|=2a =4,C 不对;当P 与A 重合,即为短轴端点时,∠F 1PF 2取最大值,此时|AF 1|=|AF 2|=a =|F 2F 1|,故∠F 1PF 2=π3,所以0≤∠F 1PF 2≤π3,故D 正确. 故选:BD .10.下列说法正确的是( )A .已知点A (2,1),B(−1,2√3),若过P (1,0)的直线l 与线段AB 相交,则直线l 的倾斜角范围为[π4,2π3] B .“a =1”是“直线ax ﹣y +1=0与直线x ﹣ay ﹣2=0互相平行”的充要条件C .曲线C 1:x 2+y 2+2x =0与C 2:x 2+y 2﹣4x ﹣8y +m =0恰有四条公切线,则m 的取值范围为4<m <20D .圆x 2+y 2=2上有且仅有2个点到直线l :x ﹣y +1=0的距离都等于√22解:A 选项,k P A =1−02−1=1,所以直线P A 的倾斜角为π4, k PB =2√3−0−1−1=−√3,所以直线PB 的倾斜角为2π3, 所以直线l 的倾斜角范围为[π4,2π3],A 选项正确.B 选项,由a ×(﹣a )=(﹣1)×1,解得a =±1, 当a =1时,两直线为x ﹣y +1=0,x ﹣y ﹣2=0,两直线平行;当a =﹣1时,两直线为﹣x ﹣y +1=0.x +y ﹣2=0,即x +y ﹣1=0,x +y ﹣2=0,两直线平行, 所以a =1是直线ax ﹣y +1=0与直线x ﹣ay ﹣2=0互相平行的充分不必要条件,所以B 选项错误. C .选项,C 1:x 2+y 2+2x =0即(x +1)2+y 2=1,是圆心为C 1(﹣1,0),半径r 1=1, 圆x 2+y 2﹣4x ﹣8y +m =0,即(x ﹣2)2+(y ﹣4)2=20﹣m 要表示圆,则20﹣m >0即m <20, 此时圆心为C 2(2,4),半径为√20−m ,两圆有四条公切线,所以两圆外离,所以5>1+√20−m ,解得4<m <20,C 选项正确. D 选项,圆x 2+y 2=2的圆心为(0,0),半径为√2,圆心到直线x ﹣y +1=0的距离为√2=√22, 所以圆 x 2+y 2=2上有且仅有3个点到直线l :x ﹣y +1=0的距离都等于√22,所以D 选项错误. 故选:AC .11.如图,在多面体ABCDEP 中,P A ⊥平面ABCD ,四边形ABCD 是正方形,且DE ∥P A ,P A =AB =2DE =2,M ,N 分别是线段BC ,PB 的中点,Q 是线段DC 上的一个动点(不含端点D ,C ),则下列说法正确的是( )A .存在点Q ,使得NQ ⊥PBB .不存在点Q ,使得异面直线NQ 与PE 所成的角为30°C .三棱锥Q ﹣AMN 体积的取值范围为(13,23)D .当点Q 运动到DC 中点时,DC 与平面QMN 所成的余弦值为√66解:以A 为坐标原点,分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),E (0,2,1),P (0,0,2),N (1,0,1),M (2,1,0),对于A ,假设存在点Q (m ,2,0)(0<m <2),使得NQ ⊥PB , ∵NQ →=(m ﹣1,2,﹣1),PB →=(2,0,﹣2),∴NQ →⋅PB →=2(m ﹣1)+2=0,解得m =0,不合题意,故A 错误;对于B ,假设存在点Q (m ,2,0)(0<m <2),使得异面直线NQ 与PE 所成的角为30°, ∵NQ →=(m ﹣1,2,﹣1),PE →=(0,2,﹣1), ∴|cos <NQ →,PE →>|=|NQ →⋅PE →||NQ →|⋅|PE →|=5√(m−1)+5⋅√5=cos30°=√32,解得m =1±√153,不符合0<m <2, ∴不存在点Q ,使得异面直线NQ 与PE 所成角为30°,故B 正确; 对于C ,连接AQ ,AM ,AN ,DQ =m ,(0<m <2),CQ =2﹣m ,∵S △AMQ =S ABCD ﹣S △ABM ﹣S △QCM ﹣S △ADQ =4﹣1−12(2−m)−m =2−m2, 点N 到平面AMQ 的距离为d =12PA =1, ∴V Q ﹣AMN =V N ﹣AMQ =13(2−m 2)=23−m 6, ∵0<m <2,∴V Q ﹣AMN ∈(13,23),故C 正确; 对于D ,当点Q 运动到DC 中点时,Q (1,2,0), ∵N (1,0,1),M (2,1,0),∴NQ →=(0,2,﹣1),NM →=(1,1,﹣1), 设n →=(x ,y ,z )是平面QMN 的法向量,则{n →⋅NQ →=2y −z =0n →⋅NM →=x +y −z =0,令y =1,则n →=(1,1,2),∵DC →=(2,0,0),设直线DC 与平面QMN 所成的角为θ,∴sin θ=|cos <DC →,n →>|=|DC →⋅n →||DC →|⋅|n →|=22×6=√66,故D 错误. 故选:BC .12.椭圆有如下的光学性质,从椭圆的一个焦点出发的光线射到椭圆镜面后反射,反射光线经过另一个焦点.现椭圆C 的焦点在x 轴上,中心在坐标原点,左、右焦点分别为F 1、F 2.一束光线从F 1射出,经椭圆镜面反射至F 2,若两段光线总长度为6,且椭圆的离心率为√53,左顶点和上顶点分别为A ,B .则下列说法正确的是( ) A .椭圆的标准方程为x 29+y 24=1B .若点P 在椭圆上,则sin ∠F 1PF 2的最大值为19C .若点P 在椭圆上,|BP |的最大值为9√55D .过直线y =x +2上一点M 分别作椭圆的切线,交椭圆于P ,Q 两点,则直线PQ 恒过定点(−92,2) 解:选项A ,设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),焦距为2c ,由题意知,2a =6,离心率e =c a =√53, 所以a =3,c =√5,b =√a 2−c 2=2, 所以椭圆的方程为x 29+y 24=1,即选项A 正确;选项B ,当点P 位于椭圆的上或下顶点时,OP 平分∠F 1PF 2,且sin ∠OPF 2=ca =√53,cos ∠OPF 2=ba =23,所以sin ∠F 1PF 2=sin2∠OPF 2=2sin ∠OPF 2•cos ∠OPF 2=2×√53×23=4√59>19,即选项B 错误; 选项C ,设点P (x 0,y 0),其中y 0∈[﹣2,2],则x 029+y 024=1,即x 02=9(1−14y 02),而B (0,2),所以|BP |2=x 02+(y 0−2)2=9(1−14y 02)+y 02−4y 0+4=−54y 02−4y 0+13=−54(y 0+85)2+815,在[﹣2,−85]上单调递增,在[−85,2]上单调递减, 所以当y 0=−85时,|BP |2取得最大值815,此时|BP |max =√815=9√55,即选项C 正确;选项D ,设点M (x 1,y 1),则y 1=x 1+2①, 过点M 作椭圆的切线,切点弦所在的直线方程为x 1x 9+y 1y 4=1,即直线PQ 的方程为x 1x 9+y 1y 4=1②,联立①②,消去y 1可得,4x 1x +9x 1y +18y ﹣36=0,整理得,(4x +9y )x 1+18y ﹣36=0,令{18y −36=04x +9y =0,解得{x =−92y =2, 所以直线PQ 恒过定点(−92,2),即选项D 正确. 故选:ACD .三、填空题:本大题共4题,每小题5分,共计20分.13.圆C 1:x 2+y 2=1与圆C 2:(x ﹣1)2+(y +2)2=4的公共弦所在的直线方程为 x ﹣2y ﹣1=0 . 解:圆C 1:x 2+y 2=1与圆C 2:(x ﹣1)2+(y +2)2=4,两圆方程相减可得x 2+y 2﹣[(x ﹣1)2+(y +2)2]=1﹣4,即x ﹣2y ﹣1=0, 则两圆的公共弦所在直线方程为x ﹣2y ﹣1=0. 故答案为:x ﹣2y ﹣1=0.14.所有棱长都为1的平行六面体ABCD ﹣A 1B 1C 1D 1中,若M 为A 1C 1与B 1D 1的交点,∠BAD =60°,∠DAA 1=∠BAA 1=30°,则|BM →|的值为√52. 解:因为BM →=BB 1→+B 1M →=BB 1→+12(B 1A 1→+B 1C 1→)=−12AB →+12AD →+AA 1→,所以BM →2=(−12AB →+12AD →+AA 1→)2=14AB →2+14AD →2+AA 1→2−12AB →⋅AD →−AA 1→⋅AB →+AD →⋅AA 1→=14×1+14×1+1−12×1×1×cos60°−1×1×cos30°+1×1×cos30°=54, 所以|BM →|=√52. 故答案为:√52. 15.已知椭圆C :x 2a 2+y 2a 2−1=1(a >1)的左,右焦点分别为F 1,F 2,过点F 1且垂直于x 轴的直线与椭圆交于A 、B 两点,AF 2、BF 2分别交y 轴于P 、Q 两点,△PQF 2的周长为4.过F 2作∠F 2AF 1外角平分线的垂线与直线BA 交于点N ,则|ON |= √17 . 解:如图,∵PQ ∥AB ,∴|PQ||AB|=|PF 2||AF 2|=|QF 2||BF 2|=12,∵△PQF 2的周长为4,∴△ABF 2的周长|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =8 ∴a =2,∴椭圆方程为x 24+y 23=1,c 2=4﹣3=1,F 1(﹣1,0),直线AB 垂直x 轴,设A (﹣1,y 0),不妨设y 0>0, 则14+y 023=1,解得y 0=32,即A(−1,32),∴|AF 2|2=|AF 1|2+|F 1F 2|2=94+4=254,即|AF 2|=52, ∵∠F 2AF 1外角平分线AT 的垂线与直线BA 交于点N , ∴|AF 2|=|AN|=52,又|AF 1|=32, ∴|NF 1|=52+32=4,则|ON|2=|NF 1|2+|F 1O|2=42+1=17, ∴|ON|=√17, 故答案为:√17.16.已知直线l 与圆O :x 2+y 2=4交于A (x 1,y 1),B (x 2,y 2)两点,且|AB|=2√3,则|3x 1+4y 1﹣10|+|3x 2+4y 2﹣10|的最大值为 30 . 解:|3x 1+4y 1−10|5+|3x 2+4y 2−10|5的几何意义为点A ,B 到直线3x +4y ﹣10=0的距离之和,根据梯形中位线知其最大值是AB 的中点M 到直线3x +4y ﹣10=0的距离的2倍, 由题可知,圆O :x 2+y 2=4的圆心O (0,0),半径为2,|AB|=2√3, 则|OM|=√22−(232)2=1,所以AB 的中点M 的轨迹是以原点O 为圆心,1为半径的圆, 故点M 到直线3x +4y ﹣10=0的最大距离√32+42+1=3,所以|3x 1+4y 1−10|5+|3x 2+4y 2−10|5的最大值为2×3=6,则|3x 1+4y 1﹣10|+|3x 2+4y 2﹣10|的最大值为30. 故答案为:30.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在平面直角坐标系中,已知射线OA :x ﹣y =0(x ≥0),OB :x +2y =0(x ≥0).过点P (3,0)作直线分别交射线OA ,OB 于点A ,B . (1)已知点B (6,﹣3),求点A 的坐标;(2)当线段AB 的中点为P 时,求直线AB 的方程. 解:(1)由题意知,k BP =0−(−3)3−6=−1, 因为P (3,0),所以直线BP 的方程为y =﹣(x ﹣3),即x +y ﹣3=0, 联立{x +y −3=0x −y =0(x ≥0),解得{x =32y =32,即A(32,32).(2)不妨设A (a ,a ),B (﹣2b ,b ),a >0,b <0, 则线段AB 的中点为(a−2b 2,a+b2), 因为线段AB 的中点为P ,所以{a−2b2=3a+b 2=0,解得{a =2b =−2, 所以A (2,2),B (4,﹣2),所以直线AB 的斜率为2−(−2)2−4=−2,因为直线AB 经过点P (3,0),所以直线AB 的方程为y =﹣2(x ﹣3),即2x +y ﹣6=0, 故直线AB 的方程为2x +y ﹣6=0.18.(12分)如图,ABCD 和ABEF 是不在同一平面上的两个矩形,DM →=13DB →,AN →=13AE →,记AB →=a →,AD →=b →,AF →=c →.请用基底{a →,b →,c →},表示下列向量: (1)FC →; (2)MN →.解:(1)FC →=FA →+AB →+BC →=−AF →+AB →+AD →=a →+b →−c →.(2)MN →=AN →−AM →=AN →−(AD →+DM →)=13AE →−(AD →+13DB →)=13(AB →+AF →)﹣[AD →+13(AB →−AD →)] =13(a →+c →)﹣[b →+13(a →−b →)] =(13−1)b →+13c →=−23b →+13c →. 19.(12分)已知圆C ,圆C 1:(x +3)2+y 2=9,圆C 2:(x −1)2+y 2=9,这三个圆有一条公共弦. (1)当圆C 的面积最小时,求圆C 的标准方程; (2)在(1)的条件下,直线l 同时满足以下三个条件: (i )与直线√19x +y −3=0垂直; (ii )与圆C 相切;(iii )在y 轴上的截距大于0,若直线l 与圆C 2交于D ,E 两点,求|DE |. 解:(1)依题意,由{(x +3)2+y 2=9(x −1)2+y 2=9,解得{x =−1y =−√5或{x =−1y =√5, 因此圆C 1与圆C 2的公共弦的两个端点坐标分别为M(−1,−√5),N(−1,√5), 当圆C 的面积最小时,MN 是圆C 的直径,则圆C 的圆心为(﹣1,0),半径为√5, 所以圆C 的标准方程是(x +1)2+y 2=5;(2)因为直线l 与直线√19x +y −3=0垂直,则设直线l 的方程为x −√19y +m =0, 而直线l 与圆C 相切,则有d =|−1+0+m|2√5=√5,解得m =1或m =﹣9,又因为l 在y 轴上的截距大于0,即√190,所以m =11,即直线l 的方程为x −√19y +11=0,而圆C 2的圆心C 2(1,0),半径r 2=3, 点C 2到直线l :x −√19y +11=0 的距离为d 2=|1+0+11|25=6√55,于是得|DE|=2√r 22−d 22=2√9−(655)2=6√55.20.(12分)如图,在四棱锥P﹣ABCD中,底面是边长为2的菱形,∠ABC=π3,H为BC的中点,P A=PB=PH=√2.E为PD上的一点,已知PD=4PE.(1)证明:平面P AB⊥平面ABCD;(2)求平面EAC与平面P AB夹角的余弦值.(1)证明:取AB中点O,连接PO,HO,∵P A=PB,O为AB中点,∴PO⊥AB,∵PA=√2,OA=12AB=1,∴PO=√PA2−OA2=1,∵四边形ABCD为菱形,∠ABC=π3,∴△ABC为等边三角形,∴AC=2,又O,H分别为AB,BC中点,∴OH=12AC=1,∴OH2+PO2=PH2,即PO⊥OH,∵OH∩AB=O,OH,AB⊂平面ABCD,PO⊄平面ABCD,∴PO⊥平面ABCD,∵PO⊂平面P AB,∴平面P AB⊥平面ABCD;(2)解:连接CO,由(1)知:△ABC为等边三角形,∴CO⊥AB,CO=√3,以O为坐标原点,OC、OB、OP所在直线分别为x,y,z轴,建立如图所示空间直角坐标系,则A(0,−1,0),C(√3,0,0),D(√3,−2,0),P(0,0,1),H(√32,12,0), ∴AC →=(√3,1,0),PD →=(√3,−2,−1),PH →=(√32,12,−1),PA →=(0,−1,−1), 由PD =4PE 得:PE →=(√34,−12,−14), ∴EA →=PA →−PE →=(−√34,−12,−34), 设平面EAC 的法向量为m →=(x ,y ,z),则{AC →⊥m →EA →⊥m →⇒⇒{AC →⋅m →=0EA →⋅m →=0⇒⇒{√3x +y =0−√34x −y 2−34z =0, 令z =1,解得:x =√3,y =−3,∴m →=(√3,−3,1), ∵x 轴⊥平面P AB ,∴平面P AB 的一个法向量ℎ→=(1,0,0), 设平面EAC 与平面P AB 的夹角为θ, 则cosθ=|cos <m →,ℎ→>|=|m →⋅ℎ→||m →|⋅|ℎ→|=3√13=√3913,所以平面EAC 与平面P AB 夹角的余弦值为√3913. 21.(12分)已知A(−√3,1),B ,M 是椭圆C 上的三点,其中A 、B 两点关于原点O 对称,直线MA 和MB 的斜率满足k MA •k MB =−13. (1)求椭圆C 的标准方程;(2)点Q 是椭圆C 长轴上的不同于左右顶点的任意一点,过点Q 作斜率不为0的直线l ,l 与椭圆的两个交点分别为P 、N ,若1|PQ|+1|QN|为定值,则称点Q 为“稳定点”,问:是否存在这样的稳定点?若有,试求出所有的“稳定点”,并说明理由;若没有,也请说明理由. 解:(1)设M (x ,y ),易知B(√3,−1), 由k MA ⋅k MB =−13,得x+√3⋅x−√3=−13,化简得x 26+y 22=1,故椭圆C 的标准方程为x 26+y 22=1.(2)∵点Q 是椭圆C 长轴上的不同于A 、B 的任意一点, 故可设直线PN 的方程为x =my +x 0,P (x 1,y 1),N (x 2,y 2), 由{x =my +x 0x 26+y 22=1,得(m 2+3)y 2+2mx 0y +x 02−6=0, ∴y 1+y 2=−2mx 0m 2+3,y 1y 2=x 02−6m 2+3,Δ>0恒成立.又|PQ|=√1+m 2|y 1|,|QN|=√1+m 2|y 2|, ∴1|PQ|+1|QN|=√1+m2(1|y 1|+1|y 2|)=√1+m 212−y 1y 2,=1√1+m 2√(y1+y 2)2−4y 1y 2−y 1y 2=1√1+m 2⋅√(−2mx 0m 2+3)2−4⋅x 02−6m 2+3−x 02−6m 2+3=26−x 02√6m 2−3x 02+18m 2+1=26−x 02√6(m 2+6−x 022)m 2+1, 要使其值为定值,则6−x 022=1,故当x 02=4,即x 0=±2时,1|PQ|+1|QN|=√6.综上,存在这样的稳定点Q (±2,0). 22.(12分)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的焦距为4√3,且点P(2,√3)在椭圆E 上.(1)求椭圆E 的方程;(2)若A 、B 、Q 是椭圆E 上的三点,且直线AB 与x 轴不垂直,点O 为坐标原点,OQ →=λOA →+μOB →,则当△AOB 的面积最大时,求λ2+μ2的值.解:(1)由题意得,{2c =4√34a 2+3b 2=1a 2−b 2=c 2,解之得{a 2=16b 2=4c =2√3,故椭圆E 的方程为x 216+y 24=1;(2)设A (x 1,y 1),B (x 2,y 2),Q (x 0,y 0),直线AB 的方程为y =kx +t . 将y =kx +t 代入x 216+y 24=1,整理得(1+4k 2)x 2+8ktx +4t 2﹣16=0,Δ=(8kt )2﹣4(1+4k 2)(4t 2﹣16)>0,即16k 2+4﹣t 2>0, 则x 1+x 2=−8kt 1+4k2,x 1x 2=4t 2−161+4k2,故|AB|=√1+k 2|x 1−x 2|=√1+k 2⋅√(x 1+x 2)2−4x 1x 2=√1+k 2⋅4√16k 2−t 2+41+4k2.又原点O 到直线AB 的距离为d =|t|√1+k,所以S △AOB=12|AB|×d =12⋅√1+k 2⋅4√16k 2−t 2+41+4k 2⋅|t|√1+k=2√(16k 2−t 2+4)t 21+4k 2≤16k 2+41+4k 2=4, 当且仅当16k 2﹣t 2+4=t 2,即2+8k 2=t 2……①时,等号成立. 由OQ →=λOA →+μOB →,得{x 0=λx 1+μx 2,y 0=λy 1+μy 2,代入x 0216+y 024=1,整理得λ2(x 1216+y 124)+μ2(x 2216+y 224)+2λμ(x 1x 216+y 1y 24)=1,即λ2+μ2+2λμ(x 1x 216+y 1y 24)=1⋯⋯②.而x 1x 216+y 1y 24=x 1x 216+(kx 1+t)(kx 2+t)4=(1+4k 2)x 1x 2+4kt(x 1+x 2)+4t 216=(1+4k 2)×4t 2−161+4k2+4kt×(−8kt 1+4k2)+4t216=t 2−2−8k22(1+4k 2).由①可知x 1x 216+y 1y 24=0,代入②式得λ2+μ2=1.故λ2+μ2=1的值为1.。
河南省2023-2024学年高二上学期语文期中试卷( 含答案)
河南省2023-2024学年高二上学期语文期中试卷姓名:__________ 班级:__________考号:__________现代文阅读I;阅读下面的文字,完成小题。
材料一:教育部等十部门印发的《全面推进“大思政课”建设的工作方案》,旨在以“大思政课”建设为抓手,持续推动思政课和思想政治教育高质量发展。
充分挖掘和运用丰富的红色资源,是“传承红色基因,赓续红色血脉”的要求,也是推动思政小课堂与社会大课堂有效结合、增强思政课铸魂育人效果、讲好新时代“大思政课”的重要路径。
习近平总书记指出:“我们党带领人民在革命、建设、改革过程中锻造的革命文化和社会主义先进文化,为思政课建设提供了深厚力量。
”红色资源包括革命遗物和遗址等物质资源、革命传统和文化等精神资源,要准确把握红色资源融入新时代“大思政课”的丰富内容。
构建红色实践教学工作体系,并科学设计思政课红色实践教学大纲。
学校主动对接博物馆、纪念馆等实践基地,开展红色研学活动;支持成立红色文化社团、举办校园红色研讨会,以重大纪念日和历史事件为契机,开展话剧表演、课堂辩论、案例分析等红色文体活动。
推进全国思政课教研系统和国家智慧教育平台建设使用,以数字化技术纵深挖掘、横向关联红色资源蕴含的丰富思政资源,建设红色资源教学案例库、专题素材库、在线示范课程库等。
拓宽网络教育宣传平台,支持思政课教师参加主流媒体的红色时政节目,综合运用多种网络传播媒介,在学生喜闻乐见的平台和场景推送红色知识。
鼓励专任教师将红色文化融入日常教学,聘请相关专家学者担任兼职思政课教师,邀请革命老兵、英雄模范和红色基地讲解员等参与思政课合作教学。
搭建研究队伍平台,组建研究红色资源融入“大思政课”的课题组和教研室。
通过集中培训、实地研学等方式,让思政课教师首先做到信仰坚定、学识渊博、理论深厚,提升融入红色资源的教学能力和综合素质。
深入推进大中小学思政课一体化建设,小学阶段侧重红色历史文化启蒙,初中阶段侧重革命感性体验和历史知识学习相结合,高中阶段侧重红色实践体会和理论学习相结合,大学阶段侧重实现学理认知到信念生成的转化,研究生阶段侧重对红色资源的宣传阐释和研究探索。
2023-2024学年河南省信阳市高二(上)期中数学试卷【答案版】
2023-2024学年河南省信阳市高二(上)期中数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线x +y ﹣2023=0的倾斜角为( ) A .−π4B .π4C .π2D .3π42.抛掷一枚质地均匀的骰子,记随机事件:E =“点数为奇数”,F =“点数为偶数”,G =“点数大于2”,H =“点数不大于2”,R =“点数为1”.则下列结论不正确的是( ) A .E ,F 为对立事件B .G ,H 为互斥不对立事件C .E ,G 不是互斥事件D .G ,R 是互斥事件3.已知直线l 1:mx +y +6=0,l 2:3x +(m ﹣2)y +2m =0,若l 1∥l 2,则m 等于( ) A .﹣3B .﹣1C .3D .﹣1 或34.天气预报说,在今后的三天中,每一天下雨的概率均为50%.我们通过设计模拟实验的方法求概率.利用计算机产生一组随机数:907 966 191 924 274 932 812 458 569 683 431 257 393 027 556 488 730 113 537 986若用1,3,5,7,9表示下雨,用0,2,4,6,8表示不下雨,则这三天中至少有两天下雨的概率近似为( ) A .920B .12C .1120D .385.已知PA →,PB →,PC →不共面,PM →=(3−x −y)PA →+xPB →+(y −2)PC →,则( ) A .∀x ,y ∈R ,A ,B ,C ,M 四点共面 B .∀x ,y ∈R ,A ,B ,C ,M 四点不共面C .∀x ,y ∈R ,A ,B ,C ,P 四点共面D .∃x ,y ∈R ,A ,B ,C ,P 四点共面6.已知AB 是圆锥PO 的底面直径,C 是底面圆周上的点,∠BAC =30°,AB =2√3,P A =2,则P A 与平面PBC 所成角的正弦值为( )A .12B .√32C .2√1313D .3√13137.已知直线l :3x +ay ﹣25=0与圆C :x 2+y 2=25,点A (3,a ),则下列说法不正确的是( )A .若直线l 与圆C 相切,则a =4B .若0<α<4,则直线l 与圆C 相离 C .若a >4,则直线l 与圆C 相交D .若点A 在直线l 上,则直线l 与圆C 相切8.已知x +y +1=0,则√x 2+y 2−2x −2y +2+√(x −3)2+y 2的最小值是( ) A .√10B .√13C .√29D .6二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.若方程x 2+y 2﹣2mx +m 2﹣2m ﹣1=0表示圆,则m 的取值可以为( ) A .2B .0C .−12D .﹣210.如图是一个古典概型的样本空间Ω和事件A 和B ,其中n (Ω)=36,n (A )=18,n (B )=12,n (A ∪B )=24,则( )A .P(A ∪B)=23B .P(AB)=13C .事件A 与B 互斥D .事件A 与B 相互独立11.在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,M 是底面ABCD 的中心,Q 是棱A 1D 1上的一点,且D 1Q →=λD 1A 1→,λ∈[0,1],N 为线段AQ 的中点,则( )A .C ,M ,N ,Q 四点共面B .三棱锥A ﹣DMN 的体积为定值C .当λ=12时,过A ,M ,Q 三点的平面截正方体所得截面的面积为4 D .不存在λ使得直线MB 1与平面CNQ 垂直12.古希腊数学家阿波罗尼斯在《圆锥曲线论》中证明了命题:平面内与两定点距离的比为常数k (k >0且k ≠1)的点的轨迹是圆,人们称之为阿氏圆.现有△ABC ,BC =8,sin B =3sin C .以BC 所在的直线为x 轴,BC 的垂直平分线为y 轴建立直角坐标系xOy ,则( ) A .点A 的轨迹方程为x 2+y 2+10x +16=0(y ≠0)B .点A 的轨迹是以(5,0)为圆心,3为半径的圆C .△ABC 面积的最大值为12D .当AB ⊥BC 时,△ABC 的内切圆半径为4−2√2 三、填空题:本大题共4小题,每小题5分,共20分. 13.圆x 2+y 2+mx ﹣2y ﹣m =0恒过的定点是 .14.第三届“一带一路”国际高峰论坛于2023年10月在北京召开.某记者与参会的3名代表一起合影留念(四人站成一排).则记者站在两端的概率为 ;若记者与代表甲必须相邻,则此两人站在中间的概率为 .15.已知圆C :(x ﹣1)2+(y ﹣3)2=4,直线l :x +2y +3=0,M 为直线l 上的动点,过点M 作圆C 的两条切线MA ,MB ,则四边形MACB 面积的最小值为 .16.在空间直角坐标系中,若一条直线经过点P (x 0,y 0,z 0),且以向量n →=(a ,b ,c )(abc ≠0)为方向向量,则这条直线可以用方程x−x 0a=y−y 0b=z−z 0c来表示.已知直线l 的方程为x −1=12y +1=2z ﹣6,则M (3,1,1)到直线l 的距离为 .四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤 17.(10分)从三名男生(记为A 1,A 2,A 3)、两名女生(记为B 1,B 2)中任意选取两人. (1)在有放回的选取中,写出样本空间,并计算选到两人都是男生的概率; (2)在不放回的选取中,写出样本空间,并计算选到至少有一名女生的概率. 18.(12分)已知A (1,1),B (2,3),C (4,0).求: (1)过点A 且与BC 平行的直线方程; (2)AB 边垂直平分线方程;(3)过点A 且倾斜角为直线AB 倾斜角2倍的直线方程.19.(12分)在三棱锥O ﹣ABC 中,OA =OB =OC =2,OA ⊥OB ,∠AOC =∠BOC =60°,M ,N 分别为AB ,OC 的中点,设OA →=a →,OB →=b →,OC →=c →. (1)用a →,b →,c →表示MN →,并求|MN →|; (2)求OM 与NB 所成角的余弦值.20.(12分)在第19届杭州亚运会上中国射击队获得32枚金牌中的16枚,并刷新3项世界纪录.甲、乙两名亚运选手进行赛前训练,甲每次射中十环的概率为0.9,乙每次射中十环的概率为p ,在每次射击中,甲和乙互不影响.已知两人各射击一次至少有一人射中十环的概率为0.98. (1)求p ;(2)甲、乙两人各射击两次,求两人共射中十环3次的概率.21.(12分)正三棱柱ABC ﹣A 1B 1C 1中,AB =2,M 是BB 1的中点,M 到平面ABC 1的距离为34.(1)求A 1A ;(2)在C 1A 上是否存在点P ,使平面ABC 1与平面PBM 夹角的余弦值为√217? 若存在,求出C 1P PA的值;若不存在,请说明理由.22.(12分)已知圆C 经过点A (0,2),B (2,0),且直线x +y +2=0被圆C 所截得的弦长为2√2.点P 为圆C 上异于A 、B 的任意一点,直线P A 与x 轴交于点M ,直线PB 与y 轴交于点N . (1)求圆C 的方程;(2)探求|AN |•|BM |是否为定值,若为定值,求出此定值,若不是定值,说明理由;(3)过点D (﹣4,0)的动直线l 与圆C 交于不同的两点E ,F .记线段EF 的中点为R ,则当直线l 绕点D 转动时,求动点R 的轨迹长度.2023-2024学年河南省信阳市高二(上)期中数学试卷参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线x+y﹣2023=0的倾斜角为()A.−π4B.π4C.π2D.3π4解:直线x+y﹣2023=0,即y=﹣x+2023,斜率为﹣1,设倾斜角为α,则tanα=﹣1,且α∈[0,π),可得α=3π4.故选:D.2.抛掷一枚质地均匀的骰子,记随机事件:E=“点数为奇数”,F=“点数为偶数”,G=“点数大于2”,H=“点数不大于2”,R=“点数为1”.则下列结论不正确的是()A.E,F为对立事件B.G,H为互斥不对立事件C.E,G不是互斥事件D.G,R是互斥事件解:抛掷一枚质地均匀的骰子,点数为奇数与点数为偶数不可能同时发生,且必有一个发生,即E,F为对立事件,A正确;点数大于2与点数不大于2不可能同时发生,且必有一个发生,即G,H为对立事件,B错误;点数为奇数与点数大于2可能同时发生,即E,G不是互斥事件,C正确;点数大于2与点数为1不可能同时发生,即G,R是互斥事件,D正确.故选:B.3.已知直线l1:mx+y+6=0,l2:3x+(m﹣2)y+2m=0,若l1∥l2,则m等于()A.﹣3B.﹣1C.3D.﹣1 或3解:因为l1∥l2,所以m(m﹣2)=1×3,且m•2m≠6×3,解得m=﹣1.故选:B.4.天气预报说,在今后的三天中,每一天下雨的概率均为50%.我们通过设计模拟实验的方法求概率.利用计算机产生一组随机数:907 966 191 924 274 932 812 458 569 683431 257 393 027 556 488 730 113 537 986若用1,3,5,7,9表示下雨,用0,2,4,6,8表示不下雨,则这三天中至少有两天下雨的概率近似为()A .920B .12C .1120D .38解:由数表可知,20个随机数中,至少有两天下雨为907,191,932,569,431,257,393,556,730,113,537,共11个数,则这三天中至少有两天下雨的概率近似为1120.故选:C .5.已知PA →,PB →,PC →不共面,PM →=(3−x −y)PA →+xPB →+(y −2)PC →,则( ) A .∀x ,y ∈R ,A ,B ,C ,M 四点共面 B .∀x ,y ∈R ,A ,B ,C ,M 四点不共面C .∀x ,y ∈R ,A ,B ,C ,P 四点共面D .∃x ,y ∈R ,A ,B ,C ,P 四点共面解:∵(3﹣x ﹣y )+x +(y ﹣2)=1,∴∀x ,y ∈R ,A ,B ,C ,M 四点共面. 故选:A .6.已知AB 是圆锥PO 的底面直径,C 是底面圆周上的点,∠BAC =30°,AB =2√3,P A =2,则P A 与平面PBC 所成角的正弦值为( )A .12B .√32C .2√1313D .3√1313解:依题意:圆锥的高PO =√22−(√3)2=1,以O 为原点,建立如图所示空间直角坐标系O ﹣xyz :则A(0,−√3,0),B(0,√3,0),C(32,√32,0),P(0,0,1),PB →=(0,√3,−1),BC →=(32,−√32,0),PA →=(0,−√3,−1).设平面PBC 的法向量n →=(x ,y ,z),则{n →⋅PB →=0n →⋅B →C =0⇒⇒{√3y −z =032x −√32y =0取x =1,得n →=(1,√3,3), 设P A 与平面PBC 所成角为θ,则sinθ=|cos〈PA →,n →〉|=62×√13=3√1313,即P A 与平面PBC 所成角的正弦值为3√1313. 故选:D .7.已知直线l :3x +ay ﹣25=0与圆C :x 2+y 2=25,点A (3,a ),则下列说法不正确的是( ) A .若直线l 与圆C 相切,则a =4 B .若0<α<4,则直线l 与圆C 相离 C .若a >4,则直线l 与圆C 相交D .若点A 在直线l 上,则直线l 与圆C 相切解:圆心C (0,0)到直线l 的距离d =25√9+a 2.若直线l 与圆C 相切,则d =25√9+a 2=5,解得a =±4,故A 错误;若0<a <4,则9+a 2<25,所以d =25√9+a 25,则直线l 与圆C 相离,故B 正确;若a >4,则9+a 2>25,所以d =25√9+a 25,则直线l 与圆C 相交,故C 正确;若点A (3,a )在直线l 上,则9+a 2﹣25=0,即a =±4,d =25√9+a 2=5,直线l 与圆C 相切,故D 正确. 故选:A .8.已知x +y +1=0,则√x 2+y 2−2x −2y +2+√(x −3)2+y 2的最小值是( ) A .√10B .√13C .√29D .6解:设点P ′(x ,y )为直线l :x +y +1=0的动点,则√x 2+y 2−2x −2y +2+√(x −3)2+y 2=√(x −1)2+(y −1)2+√(x −3)2+y 2, 可看作P ′(x ,y )与点A (1,1),B (3,0)的距离之和, 设A (1,1)关于直线l 的对称点为A ′(a ,b ),则{b−1a−1=1a+12+b+12+1=0,解得{a =−2b =−2,所以A ′(﹣2,﹣2),则|P ′A |+|P ′B |=|P ′A ′|+|P ′B |≥|A ′B |=√(−2−3)2+(−2−0)2=√29, 当且仅当P ′与A ′,B 共线时(即图中位置P )取等号,即√x 2+y 2−2x −2y +2+√(x −3)2+y 2的最小值是√29. 故选:C .二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.若方程x 2+y 2﹣2mx +m 2﹣2m ﹣1=0表示圆,则m 的取值可以为( ) A .2B .0C .−12D .﹣2解:由(﹣2m )2﹣4×(m 2﹣2m ﹣1)>0知m >−12.结合选项,符合条件的只有2和0. 故选:AB .10.如图是一个古典概型的样本空间Ω和事件A 和B ,其中n (Ω)=36,n (A )=18,n (B )=12,n (A ∪B )=24,则( )A .P(A ∪B)=23B .P(AB)=13C .事件A 与B 互斥D .事件A 与B 相互独立解:因为n (Ω)=36,n (A )=18,n (B )=12,n (A ∪B )=24,则n (A ∩B )=6, 则P (A )=1836=12,P (B )=1236=13,P (AB )=636=16, 则P (A ∪B )=P (A )+P (B )﹣P (AB )=23,P (AB )=P (A )•P (B ), 又A 与B 能同时发生,故不互斥. 故选:AD .11.在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,M 是底面ABCD 的中心,Q 是棱A 1D 1上的一点,且D 1Q →=λD 1A 1→,λ∈[0,1],N 为线段AQ 的中点,则( )A .C ,M ,N ,Q 四点共面B .三棱锥A ﹣DMN 的体积为定值C .当λ=12时,过A ,M ,Q 三点的平面截正方体所得截面的面积为4 D .不存在λ使得直线MB 1与平面CNQ 垂直解:连接AC 、CQ ,则M 、N 分别为AC 、AQ 的中点,因为MN 为△AQC 的中位线,所以MN ∥CQ ,可得C 、M 、N 、Q 四点共面,故A 正确.根据题意,可得V A ﹣DMN =V N ﹣ADM =12V Q ﹣ADM =12×13S △ADM ×2=13为定值,故B 正确. 当λ=12时,过A 、M 、Q 三点的平面截正方体所得截面为等腰梯形ACFQ , 如图所示,过Q 作AC 的垂线,垂足为G ,则AG =2√2−√22=√22,QG =√5−12=3√22.因此可得S =12(√2+2√2)×3√22=92,故C 错误. 以DA 、DC 、DD 1所在直线为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系,可得D (0,0,0,),A (2,0,0),A 1(2,0,2),B 1(2,2,2),C (0,2,0),D 1(0,0,2), M (1,1,0),Q (2λ,0,2),CQ →=(2λ,−2,2),AC →=(−2,2,0),MB 1→=(1,1,2),若存在λ使得直线MB 1与平面CNQ (即平面ACQ )垂直, 则{MB 1→⋅CQ →=0MB 1→⋅AC →=0,即{2λ−2+4=0−2+2+0=0,解得λ=﹣1,不符合题意,故不存在λ使得直线MB 1与平面CNQ 垂直,所以D 正确. 故选:ABD .12.古希腊数学家阿波罗尼斯在《圆锥曲线论》中证明了命题:平面内与两定点距离的比为常数k (k >0且k ≠1)的点的轨迹是圆,人们称之为阿氏圆.现有△ABC ,BC =8,sin B =3sin C .以BC 所在的直线为x 轴,BC 的垂直平分线为y 轴建立直角坐标系xOy ,则( ) A .点A 的轨迹方程为x 2+y 2+10x +16=0(y ≠0)B .点A 的轨迹是以(5,0)为圆心,3为半径的圆C .△ABC 面积的最大值为12D .当AB ⊥BC 时,△ABC 的内切圆半径为4−2√2解:如图,以BC 所在直线为x 轴,BC 的垂直平分线为y 轴建立直角坐标系xOy , 可得B (﹣4,0),C (4,0),由正弦定理和条件sin B =3sin C ,可得|AC |=3|AB |, 设A (x ,y ),可得√(x −4)2+y 2=3√(x +4)2+y 2, 两边平方,化简可得x 2+y 2+10x +16=0,则A 点的轨迹方程为x 2+y 2+10x +16=0(y ≠0),圆心为(﹣5,0),半径为3, 故A 正确,B 错误;由A 的轨迹可得A 到直线BC 的距离的最大值为半径3, 则△ABC 面积的最大值为12×8×3=12,故C 正确;当AB ⊥BC 时,|AB |2+|BC |2=|AC |2,即,|AB |2+64=|AC |2, 又|AC |=3|AB |,解得|AB |=2√2,|AC |=6√2,设△ABC 的内切圆半径为r ,可得12×2√2×8=12r (2√2+8+6√2),解得r =4﹣2√2,故D 正确.故选:ACD .三、填空题:本大题共4小题,每小题5分,共20分. 13.圆x 2+y 2+mx ﹣2y ﹣m =0恒过的定点是 (1,1) . 解:因为圆x 2+y 2+mx ﹣2y ﹣m =0, 则x 2+y 2﹣2y +m (x ﹣1)=0,联立{x 2+y 2−2y =0x −1=0,解得{x =1y =1. 故答案为:(1,1).14.第三届“一带一路”国际高峰论坛于2023年10月在北京召开.某记者与参会的3名代表一起合影留念(四人站成一排).则记者站在两端的概率为 12;若记者与代表甲必须相邻,则此两人站在中间的概率为13.解:四个位置,记者站在两端,有2种站法,所求概率为A 21A 33A 44=12;记者与代表甲必须相邻,则此两人站在中间的概率为A 22A 22A 22A 33=13.故答案为:12;13.15.已知圆C :(x ﹣1)2+(y ﹣3)2=4,直线l :x +2y +3=0,M 为直线l 上的动点,过点M 作圆C 的两条切线MA ,MB ,则四边形MACB 面积的最小值为 8 .解:圆C :(x ﹣1)2+(y ﹣3)2=4,则圆心C (1,3),半径r =2. 因为四边形MACB 的面积S =2S △CAM =|CA |•|AM |=2|AM |=2√|CM|2−4, 要使四边形MACB 面积最小,则需|CM |最小,此时CM 与直线l 垂直, 直线l :x +2y +3=0,|CM |=|1+6+3|1+4=2√5,∴四边形MACB 面积的最小值为2√20−4=8. 故答案为:8.16.在空间直角坐标系中,若一条直线经过点P (x 0,y 0,z 0),且以向量n →=(a ,b ,c )(abc ≠0)为方向向量,则这条直线可以用方程x−x 0a=y−y 0b=z−z 0c来表示.已知直线l 的方程为x −1=12y +1=2z ﹣6,则M (3,1,1)到直线l 的距离为 √693 . 解:直线l 的方程标准化为:x−11=y+22=z−312,所以直线l 过P (1,﹣2,3),方向向量为n →=(1,2,12),|n →|=√12+22+(12)2=√212,设n →的方向向量为u →,则u →=n →|n →|=2√21•(1,2,12)=1√21•(2,4,1), a →=PM →=(2,3,﹣2),可得|a →|=√22+32+(−2)2=√17,所以a →•u →=14√21, 所以M 到直线l 的距离为d =√a →2−(a →⋅u →)2=√17−(1421)2=√693. 故答案为:√693. 四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤 17.(10分)从三名男生(记为A 1,A 2,A 3)、两名女生(记为B 1,B 2)中任意选取两人.(1)在有放回的选取中,写出样本空间,并计算选到两人都是男生的概率; (2)在不放回的选取中,写出样本空间,并计算选到至少有一名女生的概率.解:(1)样本空间Ω={(A 1,A 1),(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 2,A 1),(A 2,A 2),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 3,A 1),(A 3,A 2),(A 3,A 3),(A 3,B 1),(A 3,B 2),(B 1,A 1),(B 1,A 2),(B 1,A 3),(B 1,B 1),(B 1,B 2),(B 2,A 1),(B 2,A 2),(B 2,A 3),(B 2,B 1),(B 2,B 2)}, 设事件A 表示“选到两人都是男生”, 则事件A 包含的样本点有9个, 所以P (A )=925; (2)样本空间Ω={(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 2,A 1),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 3,A 1),(A 3,A 2),(A 3,B 1),(A 3,B 2),(B 1,A 1),(B 1,A 2),(B 1,A 3),(B 1,B 2),(B 2,A 1),(B 2,A 2),(B 2,A 3),(B 2,B 1)}, 设事件B 表示“选到至少有一名女生”, 则事件B 包含的样本点有14个, 所以P (B )=1420=710. 18.(12分)已知A (1,1),B (2,3),C (4,0).求: (1)过点A 且与BC 平行的直线方程; (2)AB 边垂直平分线方程;(3)过点A 且倾斜角为直线AB 倾斜角2倍的直线方程. 解:(1)由于所求的直线l 与BC 平行,故k l =−32,由于直线l 经过点A (1,1),所求的直线的方程为y −1=−32(x −1),整理得3x +2y ﹣5=0; (2)由于A (1,1),B (2,3),所以中点D (32,2),直线AB 的斜率k AB =2,所以直线AB 的垂直平分线的斜率k =−12,所求的垂直平分线的方程为y −2=−12(x −32),整理得2x +4y ﹣11=0.(3)由于A (1,1),B (2,3),所以直线AB 的斜率k AB =2,设直线的倾斜角为θ,故tan θ=2, 所求直线的倾斜角为直线AB 的倾斜角的2倍,所以直线的斜率k =tan2θ=2tanθ1−tan 2θ=−43, 故所求的直线的方程为y −1=−43(x −1),整理得4x +3y ﹣7=0.19.(12分)在三棱锥O ﹣ABC 中,OA =OB =OC =2,OA ⊥OB ,∠AOC =∠BOC =60°,M ,N 分别为AB ,OC 的中点,设OA →=a →,OB →=b →,OC →=c →.(1)用a →,b →,c →表示MN →,并求|MN →|; (2)求OM 与NB 所成角的余弦值.解:(1)MN →=ON →−OM →=12c →−12(a →+b →)=12(c →−a →−b →),∵OA =OB =OC =2,OA ⊥OB ,∠AOC =∠BOC =60°, ∴a →2=b →2=c →2=4,a →⋅b →=0,a →⋅c →=b →⋅c →=2×2cos60°=2,∴|MN →|=12√(c →−a →−b →)2=12√c →2+a →2+b →2−2a →⋅c →−2b →⋅c →+2a →⋅b →=1;(2)OM →=12(a →+b →),NB →=OB →−ON →=b →−12c →,OM →⋅NB →=12(a →+b →)⋅(b →−12c →)=12(a →⋅b →−12a →⋅c →+b →2−12b →⋅c →)=1,|OM →|=12√(a →+b →)2=√2,|NB →|=√(b →−12c →)2=√3, cos <OM →,BN →>=OM →⋅NB →|OM →|⋅|NB →|=2×3=√66.所以,OM 与NB 所成角的余弦值为√66. 20.(12分)在第19届杭州亚运会上中国射击队获得32枚金牌中的16枚,并刷新3项世界纪录.甲、乙两名亚运选手进行赛前训练,甲每次射中十环的概率为0.9,乙每次射中十环的概率为p ,在每次射击中,甲和乙互不影响.已知两人各射击一次至少有一人射中十环的概率为0.98. (1)求p ;(2)甲、乙两人各射击两次,求两人共射中十环3次的概率. 解:(1)由题意,两人各射击一次至少有一人射中十环的概率为0.98, 则都没有击中十环的概率为0.1×(1﹣p )=1﹣0.98,求得p =0.8.(2)甲、乙两人各射击两次,求两人共射中十环3次,即甲乙二人中,只有一人只击中1次,故它的概率为C 22×0.92•C 21×0.8×0.2+C 21×0.9×0.1×C 22×0.82=0.3744.21.(12分)正三棱柱ABC ﹣A 1B 1C 1中,AB =2,M 是BB 1的中点,M 到平面ABC 1的距离为34.(1)求A 1A ;(2)在C 1A 上是否存在点P ,使平面ABC 1与平面PBM 夹角的余弦值为√217 若存在,求出C 1P PA的值;若不存在,请说明理由.解:(1)取AC 的中点O ,以O 为原点,建立如图所示空间直角坐标系O ﹣xyz ,设A 1A =a ,则A (1,0,0),B(0,√3,0),C 1(﹣1,0,a ),M(0,√3,a2), 所以AC 1→=(−2,0,a),AB →=(−1,√3,0),BM →=(0,0,a2), 设平面ABC 1的法向量n →=(x ,y ,z ),则{n →⋅AB →=−x +√3y =0n →⋅AC 1→=−2x +az =0,取x =3,得y =√3,z =6a,所以平面ABC 1的一个法向量为n →=(3,√3,6a ),则M 到平面ABC 1的距离d =|BM →⋅n →||n →|=3√32+3+(6a)2=34,解得a =3,即A 1A =3;(2)因为C 1A →=(2,0,−3),BC 1→=(−1,−√3,3), 设C 1P →=λC 1A →=(2λ,0,−3λ)(0≤λ≤1),所以BP →=BC 1→+C 1P →=(2λ−1,−√3,3−3λ),BM →=(0,0,32), 设平面PBM 的法向量m →=(b ,c ,t),则{m →⋅BP →=(2λ−1)b −√3c +(3−3λ)t =0m →⋅BM →=32t =0, 取b =√3,得c =2λ﹣1,t =0,所以平面PBM 的一个法向量m →=(√3,2λ−1,0),由|cos <m →,n →>|=√217,得√3+(2λ−1)√3|2=√217,解得λ=13,或λ=3(舍去),故在C 1A 上存在点P ,当C 1PPA =12时,可使平面ABC 1与平面PBM 夹角的余弦值为√217.22.(12分)已知圆C 经过点A (0,2),B (2,0),且直线x +y +2=0被圆C 所截得的弦长为2√2.点P 为圆C 上异于A 、B 的任意一点,直线P A 与x 轴交于点M ,直线PB 与y 轴交于点N . (1)求圆C 的方程;(2)探求|AN |•|BM |是否为定值,若为定值,求出此定值,若不是定值,说明理由;(3)过点D (﹣4,0)的动直线l 与圆C 交于不同的两点E ,F .记线段EF 的中点为R ,则当直线l 绕点D 转动时,求动点R 的轨迹长度.解:(1)易知点C 在线段AB 的中垂线y =x 上,故可设C (a ,a ),圆C 的半径为r , ∵直线x +y +2=0被圆C 所截得的弦长为2√2,且r =√a 2+(a −2)2, ∴C (a ,a )到直线x +y +2=0的距离d =|2a+2|√2, 由d 2+(√2)2=r 2,得(|2a+2|√2)2+2=a 2+(a −2)2,∴a =0, ∴圆C 的方程为x 2+y 2=4;(2)当直线P A 的斜率不存在时,|AN |•|BM |=8.当直线P A 的斜率存在时,如图,设P (x 0,y 0),直线P A 的方程为y =y 0−2x 0x +2, 令y =0,得M(2x 02−y 0,0).直线PB 的方程为y =y 0x 0−2(x −2),令x =0,得N (0,2y 02−x 0).∴|AN |•|BM |=(2−2y 02−x 0)(2−2x 02−y 0)=4+4[y 0x 0−2+x 0y 0−2+x 0y0(x 0−2)(y 0−2)]=4+4×y 02−2y 0+x 02−2x 0+x 0y 0(x 0−2)(y 0−2)=4+4×4−2y 0−2x 0+x 0y 0(x 0−2)(y 0−2)=4+4×4−2y 0−2x 0+x 0y04−2y 0−2x 0+x 0y 0=8.故|AN |•|BM |为定值8.(3)设CD 的中点为Q ,则Q (﹣2,0),因为线段EF 的中点为R ,所以CR ⊥EF ,即CR ⊥DR , 所以RQ =12CD =2,设R (x ,y ),则(x +2)2+y 2=4,如图, 设圆x 2+y 2=4与(x +2)2+y 2=4的交点为G ,H ,显然△QCG 是边长为2的正三角形,所以所求弧长GCH ̂的长度即为以Q (﹣2,0)为圆心,以2为半径的圆的13为4π3.。
上海市上海师范大学附属中学2024-2025学年高二上学期期中考试数学试卷(含答案)
上师大附中高二期中数学试卷2024.11一.填空题(第1-6题每题4分,第7-12题每题5分,满分54分)1.直线过点,法向量为,则的一般式方程为______.2.顶点在坐标原点,焦点在轴,且经过的抛物线的标准方程为______.3.已知直线:,:,若,则实数______.4.已知直线的倾斜角,则直线的斜率的取值范围为______.5.经过点且与圆相切的直线方程为______.6.南宋晚期的龙泉窑粉青釉刻花斗笠盏如图1所示,忽略杯盏的厚度,这只杯盏的轴截面如图2所示,其中光滑的曲线是抛物线的一部分,已知杯盏盛满茶水时茶水的深度为3cm ,则抛物线的焦点到准线的距离为______cm.图1图27.已知椭圆的焦点为、,椭圆上的动点的坐标为,且为钝角,则的取值范围为______.8.已知圆:,圆:,圆与圆、圆外切,则圆心的轨迹方程为______.9.过椭圆:右焦点的直线:交于、两点,为AB 的中点,且OP 的斜率为,则椭圆的标准方程为______.10.已知,分别为椭圆:的左、右焦点,过的直线与交于,两点,若,则椭圆的离心率为______.11.已知是抛物线:的焦点,双曲线:(,)的渐近线与抛物线交于抛物线、两点(异于原点),若,则双曲线的离心率为______.l (1,2)(1,2)n = l x (2,4)M --1l 10x ay +-=2l 10ax y +-=12//l l a =l 2,43ππθ⎛⎫∈⎪⎝⎭(5,4)-2225x y +=221167x y +=1F 2F P (),P P x y 12F PF ∠P x A 22(2)9x y ++=B 22(2)1x y -+=C A B C C 22221(0)x y a b a b+=>>F l 20x y --=C A B P 12-C 1F 2F C 22221(0)x y a b a b+=>>1F C P Q 121::6:3:2PF PF FQ =C F C 22(0)y px p =>E 22221x y a b -=0a >0b >C A B 120AFB ︒∠=12.已知双曲线左右焦点分别为、,点为右支上一动点,圆与的延长线、的延长线和线段都相切,则的取值所组成的集合为______.二.选择题(本大题共4题,满分20分)13.方程表示椭圆的充要条件是( )A. B. C. D.或14.已知椭圆的左、右焦点分别为、,点在椭圆上,则的周长为( )A.4 B.6 C.8 D.1015.所表示的曲线为( )A.抛物线 B.椭圆 C.双曲线 D.直线16.从某个角度观察篮球(如图1)可以得到一个对称的平面图形(如图2),篮球的外轮廊为圆,将篮球的表面粘合线视为坐标轴和双曲线,若坐标轴和双曲线与圆的交点将圆的周长8等分,且,则该双曲线的离心率为( )图1图2三.解答题(本大题共有5题,满分76分)17.已知三边所在直线方程为AB :,BC :,CA :.(1)求AC 边上的高所在的直线方程;(2)求直线AB 与直线CA 的夹角.18.已知椭圆:的左、右焦点分别为、,离心率为,点在椭圆上,,,过与坐标轴不垂直的直线与椭圆交于、两点,为线段PQ 的中点.(1)求椭圆的方程;22114425x y -=1F 2F P M 1F P 12F F 2F P 22PM PF PF ⋅ 2214x y m+=0m >0m <4m >04m <<4m >22143x y +=1F 2F P 12PF F △3+-O O AB BC ==CD ABC △34120x y ++=43160x y -+=220x y +-=C 22221(0)x y a b a b +=>>1F 2F 12A C 12AF =1260F AF ︒∠=2F l C P Q N C(2)已知点,且,求线段MN 所在的直线方程.19.如图,某市在城市东西方向主干道边有两个景点,,它们距离城市中心的距离均为,是正北方向主干道边上的一个景点,且距离城市中心的距离为3km ,为改善市民出行,准备规划道路建设,规划中的道路如图所示,道路MN 段上的任意一点到景点的距离比到景点的距离都多4km ,其中道路起点到东西方向主干道的距离为6km ,线路NP 段上的任意一点到的距离都相等,以为原点、线段AB 所在直线为轴建立平面直角坐标系xOy .(1)求道路的曲线方程;(2)现要在上建一站点,使得到景点的距离最近,问如何设置站点的位置?(即确定点的坐标)20.已知圆:和圆:.(1)若圆与圆相交,求的取值范围;(2)若直线:与圆交于,两点,且,求实数的值;(3)若,设为平面上的点,且满足:存在过点的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,求所有满足条件的点的坐标.21.已知双曲线:(,)的渐近线方程为,、分别为双曲线的顶点,且.(1)求双曲线的方程;(2)直线与双曲线交于、两点,且,求的值;(3)设动点,其中,直线AM 、BM 与双曲线分别交于、两点,求证:直线CD 过定点.10,8M ⎛⎫ ⎪⎝⎭MN PQ ⊥A B O C O M N P --A B M O O x M N P --M N P --Q Q C Q Q 1C 226260x y x y ++-+=2C 222810410(0)x y x y r r +--+-=>1C 2C r l 1y kx =+1C P Q 4OP OQ ⋅= k 2r =P P 1l 2l 1C 2C 1l 1C 2l 2C P E 22221x y a b-=0a >0b >20x y ±=A B E 4AB =E 1y kx =-E P Q POQ S =△2k (1,)M m m ∈R E C D参考答案一.填空题1. 2. 3. 4.5.或6.7.8.9.12.二.选择题13.D14.B 15.A 16.B 三.解答题17.(1);(2)18.(1);(2)或19.(1)(,),;(2),20.(1;(23)或21.(1);(2)或;(3)250x y +-=28y x =-1-(,(1,)-∞+∞ 5x =9402050x y --=278⎛ ⎝221(1)3y x x -=>22184x y +={}1240x y -+=1arctan 222143x y +=16810x y +-=162430x y +-=22144x y -=2x ≤≤06y ≤≤224(0)x y y +=≤53,22Q ⎛⎫ ⎪⎝⎭min CQ =22r -<<+51,22⎛⎫- ⎪⎝⎭313,22⎛⎫- ⎪⎝⎭2214x y -=116514(4,0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009-2010学年第二学期期中统考高二历史一.单项选择(本大题共25小题,每题2分,共50分)1.新经济政策与战时共产主义政策相比,主要“新”在()A.国家控制了一切经济命脉B.无产阶级掌握了国家政权C.利用市场和商品货币关系发展商品生产D.建立社会主义经济基础2.列宁在谈到新经济政策时,曾说过“后退一步是为了前进两步”。
这表明列宁认为()A.新经济政策是一种倒退B.战时共产主义政策是适合当时生产力水平的C.俄国要最终建立社会主义,必须部分恢复资本主义D.新经济政策是社会主义经济的根本政策3.20世纪30年代,在列宁格勒生产的一粒纽扣是1卢布,在700公里以外的莫斯科的售价也是1卢布,而万里以外的海参崴仍然是1卢布。
这种现象体现了()A.战时共产主义政策B.新经济政策C.1936年苏联新宪法D.斯大林模式4.德国政府要人表示:“谁签订和约就让谁的手烂掉。
”和约刚刚签订,德国复仇主义者就喊出了“打倒《凡尔赛和约》”的口号。
这是因为这一条约()①将一战的罪责加到了德国身上②对德国进行了严厉的惩罚和限制③使英法获得了巨大的补偿和利益④将德国拘之于国际联盟之外A. ①②③B. ①②④C. ②③④D.①③④5.1929–1933发生了一场席卷整个资本主义世界的经济危机。
当时人们最有可能的体验是()A.“牛奶面包价格都涨到天上去了”B.“找工作比买彩票中奖还要难”C.“整个西方世界像一潭死水般平静”D.“为共渡难关各国变得亲如兄弟”`6.罗斯福新政曾借鉴了社会主义发展模式,主要体现在( )A.整顿金融B.工业复兴法C.兴办公共工程D.调整农业政策7.1929-1933年资本主义世界经济危机爆发的根本原因是( )A.资本主义社会基本矛盾的存在B.资产阶级盲目扩大再生产,激化生产和市场的矛盾C.贫富差距扩大并激化了供求矛盾D.无限制的股票投机活动增加了金融市场的不稳定8. 1918年美国总统威尔逊提出“十四点原则”。
内容有“海洋上航行绝对自由”“取消一切经济障碍和确立贸易条件的平等”,“成立一个一般性的各国联合组织”。
其最终目的是()A.争当海上霸主B.争夺贸易霸权C.建立国际联盟D. 攫取世界霸权9.英法美统治者纵容法西斯侵略扩张的根本原因是( )A.竭力避免与法西斯的冲突B.纵容法西斯进攻苏联C.保护自身的既得利益D.满足法西斯的侵略欲望10.国际纵队中有一百多名中国籍战士,当西班牙内战失败后,一批国际纵队的战士在听说中国抗击日本法西斯的情况后,坚持到中国参加抗日战争,其中有 22名医生直接参加了中国的抗日救亡工作,这些最能说明( )A. 中国和西班牙具有相似的国情B. 国际纵队的国际主义性质C. 法西斯的侵略和反法西斯的斗争是当时国际社会的主要矛盾D. 中国帮助西班牙,西班牙也必然会帮助中国11.德军先后侵略的国家是( )A. 捷克斯洛伐克-波兰-奥地利-英国B. 奥地利-捷克斯洛伐克-波兰-法国C. 丹麦-英国-法国-苏联D. 捷克斯洛伐克-比利时-英国-法国12.二战期间,美国率先研制出原子弹并用于实践。
这说明()A.科技发明威胁人类和平B.科技水平是决定胜负的关键C.对太空的争夺提上日程D.战争的需要加速了科技的发展13.美国在两次世界大战的表现相似之处是( )①先“中立后参战”②都是被动卷入战争③以帝国主义性质为主④其参战大大加速了战争进程A.①②B. ②④C. ①④D.①③14.二战后,一位领导人在美国发表演讲指出:“……an iron cur-tain hasdescended across the European Continent 。
”该演讲被视为“冷战”的前奏曲。
这位领导人是()A.丘吉尔 B. 杜鲁门 C.斯大林 D.铁托15.1970年的一个冬日,联邦德国总理勃兰特在华沙被纳粹杀害的波兰人纪念碑前神色凝重地跪下了。
这一举动的内涵表明德国()A.曾经占领波兰 B .深刻反省历史 C. 实行非军事化 D.奉行和平外交16.有人说,美国经济在二战后的发展“一路高歌”.但在1973年则转入“黑色的一年”其理由是()①发生了严重的经济危机②布雷顿森林体系崩溃③侵越战争以失败告终④不合理的国际经济旧秩序瓦解A.①② B. ②③ C. ③④ D. ①④17.赫鲁晓夫曾坦率地告诉美国记者:“我们都是世界上最强大的国家,如果我们为和平而联合起来,那么就不会有战争。
那时,如果有某个疯子想挑起战争,我们只要用手指吓唬他一下,就足以使他平静下来。
”这说明()A.苏联想与美国合作,共同主宰世界 B .赫鲁晓夫对中国进行威胁C.赫鲁晓夫对美国进行军事恫吓D.当时苏联处于战略优势,企图独霸世界18.下列关于20世纪后半期亚洲地区经济发展情况的表述,错误的一项是()A.各国走上独立发展民族经济之路,但经济发展速度很不平衡B.印度推行国有经济私有化的政策,促进了国家经济的发展C.七八十年代新加坡和韩国成为世界经济发展最快的地区D.各国经济发展方式存在很大差别19.印度、伊拉克和伊朗经济发展面临的共同问题是()A.人口压力、粮食短缺、经济单一B.人口压力、边界争端、教派纷争C.教派纷争、边界争端、市场狭窄D.粮食短缺、经济单一、市场狭窄20.1989年11月柏林墙开放后不久,民主德国边防兵把一个小孩抱到墙上,让他看一眼西柏林的市景。
在此反映了()A.两极格局形成B.两个德国出现C.两德统一在望D.美苏“冷战”结束21.从右图中可以看出,当前国际格局的特点是( )A.美国是世界的中心B.一超多强C.美国的国力不如从前,要和其他力量共同领导世界D.各大国相互对立22.人类提出“可持续发展”主要是想解决什么问题( )A.经济发展的速度问题B.经济发展的稳定问题欧共体日本C.经济发展与环境保护的关系问题D.经济发展中的数量与质量的关系问题23中国积极参加APEC活动,主持召开APEC会议,是为了( )A.加强同亚太地区发展中国家的团结B.推动亚太地区各国的民间交往C.促进亚太地区的和平发展D.建立亚太地区各国之间持久的结盟关系24.第三次科技革命促使社会经济结构和社会生活结构发生变化,它造成第一产业、第二产业在国民经济中的比重下降,第三产业的比重上升。
下列各项中属于第三产业的是()A.采煤业 B.电力工业 C.农产品加工业 D.IT行业25.第三次科技革命的先导是( )A.信息技术B.生物技术C.航天技术D.能源技术二.材料解析:(本大题共2小题,共50分)26.阅读下列材料:材料一 (罗斯福)新政大体上有三个方面内容:一是恢复陷入空前严峻的经济;二是救济大规模失业的贫民;三是革新垄断资本主义的某些弊病。
罗斯福虽然坚信平衡预算的所谓“健全财政”,但在出现大量失业和饥寒交迫的人群时,他毅然不顾强大的政敌的反对,藐视经济规律,实行大规模的赤字开支。
材料二(有些学者将罗斯福的经济理论概括为)“私营企业个人利润经济不应消灭,应当保留。
可是这种经济的营运,并不是总有利、并不总是促进普遍福利。
因此只要是必要,这种营运就必须由各州和联邦政府付出努力,加以改进和补充。
”材料三(罗斯福新政)是为整个资本主义世界摸索出一条延长垄断资本主义生命的唯一可行途径,即大力发展非法西斯式,走所谓“福利国家”道路的国家垄断资本主义,罗斯福“新政”式的国家垄断资本主义。
请回答:(1)分析材料一,将你所学到的新政措施,就其主要倾向,按以上三个方面归类,并说明罗斯福新政财政赤字庞大的原因。
(6分)(2)参照下列答法,对材料二中的关键词语作出简释(不得摘抄原文)“不应消灭”意指:保护资本主义私有经济。
(4分)“经济的营运”意指:“改进和补充”意指:(3)罗斯福新政实施时,曾有美国人说这是法西斯主义,也有人说这是“潜滋暗长的社会主义”。
请结合“新政”措施对上述观点加以评述。
(10分)27.阅读下列材料:材料一 2006年1月29日,世界经济论坛第36届年会在瑞士达外了沃斯闭幕,本届年会特别聚焦了中国和印度的经济发展及其对世界经济的影响等问题。
与会者指出,中印经济崛起是上世纪80年代以来亚洲经济格局乃至世界经济格局中出现的最重要变化。
材料二在当今世界,中国同印度同为发展中国家,又同为世界上最大的人口大国,两国人口加起来超过世界人口的三分之一。
两国人民用一个声音讲话,那就是世界的最强音。
两国同样肩负着发展经济、改善人民生活的重任,两国的迅速发展不仅意味着亚洲的崛起,24亿人口所创造的财富不可阻挡地牵引着整个世界的发展。
材料三印度的资本市场比中国发达,银行系统比中国健全,印度目前的人口结构使其具有后发优势,相比中国即将到来的老龄化而言,印度劳动力市场更能支撑经济的持续发展。
印度有发达的软件产业,中国有更大的装备制造业和硬件产业,中国的基础设施比印度先进。
中国的政体比印度更能集中资源……可以想象,“中国制造加印度服务,中国硬件加印度软件”,将是中国与南亚合作最具号召力的品牌。
——《新闻周刊》请回答:(1)简要说明二战后印度经济发展的成就。
分析目前阻碍印度经济发展的因素有哪些。
对我国经济发展有何警示作用?(13分)(2)结合材料及所学知识,概括指出中印两国加强全面合作的基础条件是什么?简要说明两国合作的意义。
(7分)28.阅读下列材料:材料一列宁说:“我们在夺取政权时便知道,不存在将资本主义制度改造成社会主义制度的现有方法……我们必须根据实践作出判断。
”——《苏联的共产主义》材料二斯大林认为社会主义只能实行计划经济;社会主义只能允许两种公有制形式的存在和发展;社会主义公有制越公就越优越;以重工业为中心的工业化道路就是社会主义区别于资本主义的工业化道路;加强党的领导就是一切权力越来越集中于党;社会主义越发展阶级斗争就越尖锐。
——《世界历史》杂志材料三邓小平说:“社会主义究竟是什么样子?苏联搞了许多年也未完全弄清楚,后来苏联僵化了……什么叫社会主义,我们过去对这个问题并不是完全清醒的,马克思主义最注重发展生产力……计划经济不等于社会主义,资本主义也有计划;市场经济不等于资本主义,社会主义也有市场。
计划和市场都是经济手段,社会主义的本质就是解放生产力,发展生产力。
”——《邓小平文选》请回答:(1)列宁的话表明了什么?为此列宁进行了哪些探索?(3分)(2)从材料二归纳斯大林认为的社会主义制度的特点。
(4分)(3)邓小平的建设观点有什么突出特点?这种观点与上述两则材料有何联系?(3分)。