细胞反应动力学
第四章第二节细胞反应动力学
μ μm μm μ S KS
b) 对于快速生长密度较高的微生物培养过程:
Where S0 ─ 底物的初始浓度 KS0 ─ 无纲量系数 c) 其它方程:
μmS μ KS0S0 S
or
μmS μ KS1 KS0S0 S
Blackman equation
S
限制性底物 的浓度
12
Monod方程与Michaelis-Menten方程的比较
Michaelis-Menten方程
1. 酶催化反应 2. 一种酶参与 3. 单底物的反应 4. 反应速率
kca t E 0 S dP Vm S vP dt Km S Km S
kca t S vP dP E 0 E 0 dt Km S
dS dt dP dt
a) Monod 方程的提出
假设条件: 1.只有一种限制性底物 2. 均衡生长 3. 细胞得率系数为常数
典型的非结构非分离动力学模型是Monod 方程, 表达形式类似于酶的Michaelis-Menten 方程:
μm S μ KS S
半经验公式
Where μ ─ 比生长速率 ( h-1 )
rP
μ
dP dt
dX Xdt
qS
dS Xd t
底物比消耗速率 (h-1)
产物比合成速率 (h-1)
5
dP qP Xdt
4.2.2 细胞反应动力学
细胞生长动力学 (X) 细胞反应动力学 产物合成动力学 (P) 底物消耗动力学 (S)
6
细胞生长与限制
什么是限制性底物? During the microorganisms growth the environment will change but if the conditions remain favorable growth will continue until one of the essential substrates is depleted. If all other nutrients are available in excess this substrate is called the growth-limiting substrate. 培养基中某一底物S的浓度增加会影响细胞生长速率, 而其它营养物浓度的变化对生长速率无明显影响,则 底物S即为限制性底物。
细胞化学反应动力学例题和知识点总结
细胞化学反应动力学例题和知识点总结细胞化学反应动力学是研究细胞内化学反应速率和机制的重要领域,它对于理解细胞的生理功能、代谢过程以及疾病的发生发展都具有关键意义。
接下来,让我们通过一些例题来深入理解细胞化学反应动力学的相关知识点。
一、知识点回顾在探讨例题之前,先来回顾一下细胞化学反应动力学的几个重要知识点。
1、反应速率反应速率通常用单位时间内反应物浓度的减少或生成物浓度的增加来表示。
对于一般的化学反应 aA +bB → cC + dD,其反应速率可以表示为:v =-1/a(dA/dt) =-1/b(dB/dt) = 1/c(dC/dt) = 1/d(dD/dt) 。
2、浓度对反应速率的影响根据质量作用定律,反应速率与反应物浓度的乘积成正比。
对于简单的一级反应,反应速率只与一种反应物的浓度成正比;对于二级反应,反应速率与两种反应物浓度的乘积成正比。
3、酶促反应动力学酶能够显著加快反应速率,但不改变反应的平衡常数。
酶促反应的速率受到酶浓度、底物浓度、温度、pH 值等多种因素的影响。
米氏方程(v = VmaxS /(Km + S))常用于描述酶促反应的速率与底物浓度之间的关系,其中 Vmax 表示最大反应速率,Km 表示米氏常数。
4、反应级数通过实验确定反应速率与反应物浓度之间的关系,可以确定反应的级数。
一级反应的速率与反应物浓度的一次方成正比,二级反应的速率与反应物浓度的二次方成正比,零级反应的速率与反应物浓度无关。
二、例题解析例题 1:在一个细胞内的化学反应A → B 中,反应物 A 的初始浓度为 10 mol/L,经过 20 秒后,A 的浓度降低到 05 mol/L。
计算该反应在这段时间内的平均反应速率。
解:反应速率 v =(dA/dt) ,由于浓度的变化量为 10 05 = 05mol/L ,时间为 20 秒,所以平均反应速率 v =(05 / 20) = 0025mol/(L·s) 。
细胞反应过程动力学
大肠杆菌细胞的化学组成(以干基计% )
成分
含量
成分
含量
C
50
Na
1
H
20
Ca
0.5
O
8
Mg
0.5
N
14
Cl
0.5
P
3
Fe
0.2
S
1
其他
0.3
K
1
2.2.1 忽略产物生成的细胞生长过程的计量关系
对忽略产物生成的细胞生长过程的计量关系可表 示为
第二章 细胞反应动力学
2.1微生物反应过程概论
• 2.1.1微生物反应过程主要特征 • (1)微生物是该反应过程的主体 • (2)微生物反应的本质是复杂的酶催化反
应体系 • (3)微生物反应是非常复杂的反应过程
复杂性表现
1. 代谢成网络化分布,并相互影响,无法完全了解 清楚
2. 反应体系中的细胞生长、基质消耗和产物生成, 三者的动力学规律既有联系,又有明显差别,且 有各自的最佳反应条件。
式中 CX——细胞浓度,(g/L) t——时间,(h)
细胞浓度通常用单位体积的培养液中的细胞
(或菌体)的干燥质量表示。细胞浓度一般用质 量单位表示,很难用摩尔单位表示。
② 底物消耗速率
rS
dCS dt
式中 CS——底物浓度,(g/L)或(mol/L)—单位体积的培养液中O2的消耗量, (g/L)或(mol/L)
rCO2 CX
(1/h)或 (mol/g·h )
⑥ 热量的比生成速率
qH
1 CX
dCH dt
rH CX
(kJ/g·h )
第二章-生物反应动力学-2-细胞反应PPT课件
.
18
霉菌的生长特性是菌丝伸长和分枝。从
菌丝体(顶端生长)的顶端细胞间形成
隔膜进行生长,一旦形成一个细胞,它
就保持其完整性。霉菌的倍增时间可短
至60~90 min,但典型的霉菌倍增时间
为4~8 h。
.
19
病毒能在活细胞内繁
殖,但不能在一般培
养基中繁殖。病毒是
通过复制方式进行繁
1 细胞反应过程计量学
反应计量学是对反应物的组成和反应
转化程度的数量化研究。通过计量学,可
知道反应过程中有关组分的组成变化规律
以及各反应之间的数量关系。知道了这些
数量关系,就可以由一个物质的消耗或生
成速率来推知其他物质的消耗或生成速率。
.
40
由于细胞反应过程由众多组分参与,
且代谢途径错综复杂,在细胞生长和繁殖
的。
CH
O
m
n aO
2bNH
3
cCH
fCO
xO
yN
z dCH
uO
vN
weH
2O
2
.
45
CH
O
bNH
m
n aO
2
3
cCH
fCO
xO
yN
z dCH
uO
vN
weH
2O
2
• 式中CHmOn为碳源的元素组成,CHxOyNz
是细胞的元素组成,CHuOvNw为产物的元
素组成。下标m、n、u、v、w、x、y、z
最伟大的发现。
.
3
第三代现代生物技术产品
从1953年美国的Watson及Crick发现了
DNA分子的双螺旋结构,由此而来21世
2.细胞生长动力学作业参考资料
非相关模型
二次代谢产 物
与细胞生长 是否同步
同步
细胞生长期 基本无产物
细胞生长期 无产物积累
2-2 酵母在需氧条件下,以乙醇为基质进行生长可表 示下列总反应式:
C2H5OH aO2 bNH3 cCH1.704O0.149 N0.408 dCO2 eH2O
试求当RQ=0.66时(1)求计量关系中的系数a,b,c,d和e的值; (2)确定YX/S 和YX/O值
C:2=c+d H: 6+3b=1.704c+2e O:1+2a=0.149c+2d+e N:b=0.408c d/a=0.66
解方程得 a=2.917, b=0.011, c=0.075, d=1.925, e=2.953
YX / S YX / o cM X 0.075(12 1.704 0.149 14 16 0.408) 0.075 22.32 0.036 MS 46 46
2、写出描述无抑制的细胞生长动力学模型的monod方程,并 简单的讨论 rX 随CS的变化.
max
cS K S cS
max
cS K S cS
cS KS
(1)cS << KS时:
max
rX max
cS cX KS
(2)cS >> KS时:
max
rX max cS 0 1 YX / S
c X c X 0
1
K S cS 0
YX / S
c X c X 0
cX
cX
rX max
cS 0
1 YX / S
细胞生物学中的生物化学反应动力学
细胞生物学中的生物化学反应动力学近年来,随着科技的不断进步,细胞生物学中的生物化学反应动力学研究也得到了极大的发展。
生物化学反应动力学是研究化学反应速率及其影响因素的学科,细胞生物学中研究生物化学反应动力学可以揭示生物现象的本质,为疾病的治疗和预防提供更有效的方法。
一、生物化学反应动力学的概念生物化学反应动力学是一门研究化学反应速率及其影响因素的学科。
在细胞生物学中,生物化学反应动力学研究细胞内各种生化反应的速率和对速率的影响。
细胞内的化学反应通常由酶催化,而酶催化的反应速率受到很多因素的制约。
二、反应速率常数的计算方法反应速率常数是生物化学反应动力学中最基本的参数,它是化学反应速率与反应物浓度的函数。
计算反应速率常数需要用到一些公式,其中最基本的公式为:k = (1/t) ln([A]₀/[A])其中k表示反应速率常数,t为反应时间,[A]₀表示反应初始时刻A的浓度,[A]表示t时刻A的浓度,ln表示自然对数。
该公式表明,反应速率常数与反应时间和反应物浓度有关,可以通过实验测定得到。
三、影响反应速率的因素生物化学反应速率受到很多因素的影响,其中包括温度、pH 值、浓度、催化剂和反应物分子间的碰撞概率。
其中,温度和pH 值是影响反应速率最主要的因素。
温度影响反应速率的原因在于温度升高会使反应物分子的平均动能增加,达到一定温度后,反应物分子的碰撞能够克服反应物分子间的相互作用能,从而使反应发生。
不过,温度过高时,酶的空间构型被破坏,反应速率会急剧下降。
pH值对反应速率的影响是因为酶对pH值非常敏感。
当pH值偏离其最适pH值时,酶的活性减退,反应速率明显降低。
四、酶催化反应的动力学酶是生物体内催化化学反应的生物催化剂。
酶催化反应动力学研究的重要性体现在酶反应速率与底物浓度之间的函数关系深入研究中。
基本的Michaelis-Menten方程可以描述酶催化反应速率(v)与底物浓度([S])的关系,该方程表达为:V = Vmax * [S] / (Km + [S])其中,Vmax表示酶的最大催化速率,在酶浓度饱和时达到。
生化反应器 第三章 细胞反应动力学1
所以: a= 0.782,b=1.473,c=0.909,d=3.855,e=2
即: C6H12O6+0.782NH3+1.473O2=0.909C4.4H7.3O1.2N0.86 +3.855H2O+2CO2 (2)底物对细胞的得率YX / S的计算
YX / S
max
= 1 / 0.0167 = 59.8802(g/mol)
m = 0.0012(mol/g ⋅ h )
由而可看出两种作法的计算结果时接近的
0.04 0.035 0.03 YX/S (g/mol) 0.025 0.02 0.015 0.01 0.005 0 0 5 10 1/ µ (h ) 15 20
0.008 0.007 q S (mol/g·h) 0.006 0.005 0.004 0.003 0.002 0.001 0 0 0.1 0.2 0.3 0.4
µ (1/h )
qS及µ的实验数据计算YX/S ,以1/YX/S对1/µ进 行回归得到 则
1 / Y X / S = 0.0167 + 0.0012 / µ
对N元素平衡,有:
a = 0.86c = 0.782
对H元素平衡,有:
12 + 3a = 7.3c + 2d , 12 + 3a − 7.3c d= 2 12 + 3 × 0.782 − 7.3 × 0.909 = 2 = 3.855
对O元素平衡,有:
6 + 2 × b = 1 .2 c + d + 2 e ,
第八章 细胞生长动力学
• (3)类型Ⅲ 产物的形成显然与基质(糖类)的 消耗无关,例如青霉素、链霉素等抗生素发酵。 • 即产物是生物的次级代谢产物,其特征是产物 合成与利用碳源无准量关系。产物合成在菌体 生长停止及底物被消耗完以后才开始。此种培 养类型也叫做无生长联系的培养。
三、根据反应形式分类
• (1)简单反应型 营养成分以固定的化学量转化为 产物,没有中间物积聚。又可分为有生长偶联和 无生长偶联两类。 • (2)并行反应型 营养成分以不定的化学量转化为 产物,在反应过程中产生一种以上的产物,而且 这些产物的生成速率随营养成分的浓度而异,同 时没有中间物积聚。
发酵动力学的研究内容
• 主要包括:细胞生长和死亡动力学,基质 消耗动力学,氧消耗动力学,CO2生成动 力学,产物合成和降解动力学,代谢热生 成动力学等。 • 以上各方面不是孤立的,而是既相互依赖 又相互制约,构成错综复杂、丰富多彩的 发酵动力学体系。
发酵动力学内容及目的
• 发酵动力学:是研究发酵过程中菌体生 长、基质消耗、产物生成的动态平衡及 其内在规律。 • 研究内容:包括了解发酵过程中菌体生 长速率、基质消耗速率和产物生成速率 的相互关系,环境因素对三者的影响, 以及影响其反应速度的条件。
• (1)分批式操作 底物一次装入罐内,在适宜条 件下接种进行反应,经过一定时间后将全部反 应系取出。 • (2)半分批式操作 也称流加式操作。是指先将 一定量底物装入罐内,在适宜条件下接种使反 应开始。反应过程中,将特定的限制性底物送 人反应器,以控制罐内限制性底物浓度保持一 定,反应终止取出反应系。 • (3)反复分批式操作 分批操作完成后取出部分 反应系,剩余部分重新加入底物,再按分批式 操作进行。
• 1.得率(或产率,转化率,Y):包括生长 得率(Yx/s)和产物得率(Yp/s)。 • 得率:是指被消耗的物质和所合成产物之 间的量的关系。 • 生长得率:是指每消耗1g(或mo1)基质(一 般指碳源)所产生的菌体重(g),即Yx/s=ΔX /一ΔS。
第三章 细胞反应动力学
四、胞内代谢反应
根据功能分为: 供能反应 生物合成反应 多聚反应 组装反应 根据过程分为: 初级代谢 次级代谢
五、胞内代谢调控
实质 把细胞内所有酶组织起来,通过活化某些酶、抑 制另一些酶,甚至出现一些新酶,去掉某些原有的酶, 以使整个代谢过程适应细胞生理活动的需要
两个重要机制 酶活性调控 酶合成调控
cS cS max exp( ) K S cS K SI cS cS ) exp( )] Teissier等: max [exp( K SI KS
三、有抑制的细胞反应动力学
产物抑制 对产物竞争性抑制:
max cS
cP cS K S (1 ) K PI
三、有抑制的细胞反应动力学
底物抑制 对底物非竞争性抑制:
d max, 0 dcS
* cS KSI KS
*
max
1 2 K S / K SI
三、有抑制的细胞反应动力学
底物抑制 对底物竞争性抑制:
经验方程 Aiba等:
max cS
cS cS K S (1 ) K SI
cS 为限制性底物的质量浓度,g/L K S 为饱和常数,g/L
二、无抑制的细胞反应动力学
Monod模型方程
cS
二、无抑制的细胞反应动力学
Monod模型方程
不同K S值的Monod曲线
二、无抑制的细胞反应动力学
Monod模型方程 max 和 c S 为一级动力学关系 cS , K S时, 当 cS KS 提高限制性底物浓度可以提高比生长速率
13401370436生物反应工程第三章细胞反应动力学概述研究对象以细胞微生物催化剂的反应过程动力学研究内容在细胞水平上通过对细胞的生长速率代谢产物的生成速率和底物的消耗速率等动力学特性的描述反映出细胞反应过程的本征动力学特性研究目的细胞反应过程动力学是进行细胞反应过程优化和生物反应器设计的重要理论依据主要内容第四节底物消耗和产物生成动力学第一节细胞反应概论一基本概念细胞细胞是一切生物体进行生长遗传和进化等生命活动的基本单位也是决定生物体形态结构和功能的基本单位代谢产物排泄进入胞外非生物相二细胞的基本特征组成chon四种元素约占细胞质量的90spnacakclmgfe含量其次以上12种元素约占细胞质量的99细胞的化学组成二细胞的基本特征组成活细胞的主要成分是水占总量8095干物质中90是由蛋白质核酸糖类和脂类等四类大分子物质所组成细胞的元素和化学组成将直接影响细胞大规模培养时的培养基设计二细胞的基本特征组成蛋白质
细胞化学反应的动力学原理例题和知识点总结
细胞化学反应的动力学原理例题和知识点总结细胞化学反应的动力学原理是细胞生物学中的重要内容,它对于理解细胞内各种生化过程的速率和机制具有关键意义。
接下来,让我们通过一些具体的例题来深入探讨这一原理,并对相关知识点进行总结。
一、细胞化学反应动力学的基本概念细胞化学反应动力学主要研究化学反应的速率以及影响反应速率的各种因素。
在细胞中,化学反应通常在温和的条件下进行,受到酶的催化和多种调节机制的控制。
反应速率可以用单位时间内反应物浓度的减少或生成物浓度的增加来表示。
例如,对于反应A → B,如果在时间 t 内 A 的浓度从 A₀变为 A₁,那么反应速率 v =( A₁ A₀)/ t 。
影响细胞化学反应速率的因素主要包括反应物浓度、酶的浓度和活性、温度、pH 值、离子强度等。
二、例题分析例题 1:在一个细胞内的酶促反应中,底物浓度为 10 mM 时,反应速率为5 μmol/min。
当底物浓度增加到 20 mM 时,反应速率变为 10μmol/min。
计算该反应的米氏常数(Km)和最大反应速率(Vmax)。
首先,根据米氏方程 v = Vmax S /( Km + S ),我们可以列出两个方程:5 = Vmax × 10 /( Km + 10 )(1)10 = Vmax × 20 /( Km + 20 )(2)通过解方程(1)和(2),可以得到 Km = 10 mM,Vmax = 15μmol/min 。
例题 2:某细胞化学反应在 37℃时的反应速率是20 μmol/min,当温度升高到 42℃时,反应速率增加到30 μmol/min。
计算该反应的活化能(Ea)。
根据阿伦尼乌斯方程 k = A × e^(Ea/RT) ,其中 k 是反应速率常数,A 是指前因子,R 是气体常数,T 是绝对温度。
设 37℃(310 K)时的速率常数为 k₁,42℃(315 K)时的速率常数为 k₂,则:k₁= 20 /反应物浓度,k₂= 30 /反应物浓度ln(k₂/ k₁) = Ea / R ×( 1 / T₁ 1 / T₂)代入数据计算可得Ea ≈ 50 kJ/mol 。
生化工程5细胞反应动力学
0.5 3.24 19.12
解:根据细胞生长动力学,细菌的生长 速率可表示为:rx=dX/dt=μ.X 因此, μ= rx / X = μmax S/(Ks+S) 取其倒数:X/ rx= Ks/μmax .1/S+1/μmax 根据试验提供的数据,在一段短的实验时 间间隔内,上式可表示为
X平/ rx平= Ks/μmax .1/S平+1/μmax
求:该培养条件下,大肠杆菌的最大比生长速率 μm,半饱和常数Ks,倍增时间td。
解:依据方程s/μ=Ks/μm+ 1/μm ·S,分别采用图解 和回归法求解。
将数据整理: S/μ 100 137.5 192.5 231.8 311.3 S 6 33 64 153 221
对S/ μ—S作图。
由图中可得出斜率K为0.95,截距C为90,
1949
普遍化
1958
菌体生长,基质消耗 1959
1963
1972
Dabes等 尺田等 Bailey
S=Aμ+Bμ/(μm+μ) μ2/K-(Ks+S)μ-μmS=0 μ= μmS/(Ks+S)-D
微生物维持代谢
1973 1975 1977
一般化模型的构建
dμ/dS=K (μmax- μ)n
Konak,1974
第一节、概论
一、动力学 二、反应速率 三、得率系数
第二节 细胞生长动力学
一、无抑制的细胞生长动力学——Monod方程 二、单基质限制的细胞生长动力学模型 三、基质抑制的细胞生长动力学模型 四、产物抑制动力学模型 五、细胞浓度对比生长速率影响模型 六、 分批培养细胞生长
第三节、基质消耗动力学 第四节、产物生成动力学
生命科学中的细胞动力学研究
生命科学中的细胞动力学研究细胞动力学是生命科学中一个重要的研究领域,通过研究细胞内外的动态过程,揭示了细胞生命周期、细胞分裂、信号转导和运动等重要机制。
在生命科学的发展历程中,细胞动力学研究的成果为生物学、医学以及生命科学的其他领域提供了基础和支持。
一、基础知识细胞动力学研究主要基于显微技术进行观察和分析,这些技术包括荧光显微镜技术、激光共聚焦显微镜技术、电子显微镜技术等。
荧光显微镜技术是一种通过标记细胞中某些物质并以特定的波长进行激发发射荧光的技术,用于观察和研究细胞内特定分子的动态变化;激光共聚焦显微镜技术是一种利用激光聚焦在样品表面的特定位置进行特定深度成像的技术,用于多种生物过程、细胞和组织的三维成像;电子显微镜技术则是一种通过电子束的距离照射样品来获取其高清晰度图像的技术,能够提供更高的空间分辨率。
除技术手段外,细胞动力学的研究还需要基于一系列理论模型和计算方法。
常用的模型包括分子动力学模型、蒙特卡罗模型、有限元模型等,这些模型可以将细胞的生物过程和宏观现象进行定量计算、预测和模拟。
二、研究领域细胞动力学研究涉及的领域包括细胞生命周期、细胞分裂、细胞与细胞之间的相互作用、细胞内运动以及信号传递等。
在细胞生命周期的研究方面,细胞周期是其中最重要的一环,关于细胞周期包括周期节律、调控机制、DNA修复与复制等内容。
细胞分裂则是细胞周期的最后一环,也是生命的延续之本。
目前,关于细胞透过分裂所消耗的能量的计算和理论模型方面仍有很多待研究的问题。
细胞与细胞之间的相互作用是细胞动力学研究的重要方向之一,这其中涉及到的领域包括癌细胞的转移、免疫调节以及细胞材料相互作用等。
基于这些研究,我们能够更好地了解癌症转移的过程,以及如何有效地预防和治疗癌症。
细胞内运动是细胞动力学研究的另一重要方向,其中运动的原动力学机制可归纳为细胞自主运动、细胞质流动和细胞核流动。
这些运动机制是细胞内运动的基础,同时也是细胞间交流的重要途径,因此对于人体内运动的过程、化学反应和传递做出了重要的贡献。
细胞动力学
细胞动力学细胞动力学是一门复杂而有趣的科学,它涉及到生物细胞的形状、动力学、结构、生物功能和其他复杂的过程。
它是生命科学领域中一个重要的研究领域,它涉及到微小细胞的结构和动力学,它们构成了生物系统的构成部分,也是生物系统中活动的重要元素。
本文将对细胞动力学的相关概念进行简要的介绍。
首先,细胞动力学是一个多学科领域,它结合了生物学、物理学、数学和化学等学科。
细胞动力学涉及到生物细胞的结构、形状、动力学和生物功能,是研究细胞及其动力学的领域,是研究细胞形态、加速度和力学特性的课题。
它也是研究细胞内部的化学反应的课题,所以也就涉及到细胞的代谢及传递。
它还涉及到细胞结构,如细胞膜和细胞质等,及其细胞内的机械运动,例如收缩和膨胀等。
其次,细胞动力学也涉及到有关细胞形态和力学特性的研究,这些研究可以用一系列的物理方程来表达。
其中最重要的是哈密尔顿方程,它是旋转力学中最基本的一个方程。
还有一些其他的方程,例如动量方程、能量方程和张量方程等。
这些方程可以用来描述细胞内部的机械运动,例如细胞的形变和收缩等,也可以用来对细胞的形状和力学性质进行模拟和分析,从而更好地了解细胞的结构和动力学性质。
此外,细胞动力学还涉及到细胞内部的生物学功能,例如蛋白质的结构和功能、细胞围绕的正常机制、细胞的繁殖和分化等,这些都是细胞的动力学的重要研究内容。
探究这些功能使得研究者能够更好地理解细胞的结构和动力学,因此,这些都是细胞动力学研究中重要的课题。
最后,细胞动力学是一个快速发展的领域,细胞动力学研究的一个重要方面是利用数值模拟来研究细胞的内部运动和外在的形状和动力学特性。
这是一个复杂的过程,需要对计算机编程、数据处理和数学建模等领域有深入的了解和掌握。
同时,细胞动力学还研究细胞内部的传感器、机械运动和复杂的化学反应。
总之,细胞动力学是一门复杂而有趣的科学,它涉及到生物细胞的形状、动力学、结构、生物功能和其他复杂的过程。
它不仅涉及到微小细胞的结构和动力学,而且涉及到细胞的机械运动、化学反应和生物功能。
第六章微生物细胞反应动力学
1 D1 D2
CX1 0.85CX 2; 2 D
2
1 (1
CX1 CX 2
)
1 (1
0.85)
0.151
1
2
0.15
m
0.15
2
0.15
2
0.3
以上计算,表明用两个罐串联发酵(培 养)时间是单罐发酵时间的0.3倍,或说双 罐串联发酵罐体积是单罐体积的0.3倍。反 之,也可以说单罐串联发酵(培养)时间 是双罐串联发酵时间的3.33倍,或说单罐 发酵罐体积是双罐发酵罐体积的3.33倍。
mX mS
分批培养瞬时得率系数可写成:
YX
S
rX rS
• 总的细胞得率系数可写成:
YX
S
CXt CX 0 CS 0 CSt
㏑(CX/C0)
二、微生物间歇培养
1)延滞期 μ= 0 2)加速期 0<μ<μmax 3)对数期 μ= μmax 4)减速期
Monod方程:
max
CS Ks CS
rX
dcX dt
CX
生长比速率μ大小,与微生物种类、环境、 营养等有关。
对一定的微生物,在一定条件下,当营养 充足时, μ= μmax,是常数,积分得到:
ln CX t
CX 0
2、细胞反应过程的得率系数
(1)相对底物的细胞得率系数 YX S
定义:
YX
S
生成细胞的质量 消耗底物的质量
假定用两个罐(等体积)串联连续发酵,第一个罐 的菌体浓度为第二个罐的0.85倍。即:CX1=0.85CX2
细胞内酶促反应的生化动力学研究
细胞内酶促反应的生化动力学研究细胞是所有生物体的基本单位,它们起着重要的生物学功能,例如:维持体内环境稳定性、传递信号和进行能量转换等。
细胞如何完成这些任务,部分得益于细胞内酶促反应的存在。
酶是一种催化剂,它们能够加速体内化学反应的速率。
在细胞内,许多生物反应需要依赖酶催化来完成,因此,酶催化的生化动力学研究对于解释细胞功能的机制和设计生物工程系统具有重要的意义。
在细胞内,纤维素、淀粉质、脂肪、核酸等生物大分子能够被酶降解成小分子物质。
这些反应通常包含多个步骤,其中每一步都是由一个特定的酶催化。
不同类型的酶具有不同的结构和功能特征。
例如,淀粉酶负责将淀粉质降解成葡萄糖单元,而脱氧核糖核酸合成酶负责将构建新的DNA链。
酶催化反应的速率可以通过动力学参数来描述。
动力学参数是反应速率与底物浓度的函数,通常可以用线性回归模型来自行,它们能够说明酶对反应速率的控制作用。
例如,Michaelis-Menten (MM) 模型描述了酶催化反应和底物之间的速率限制,它是酶催化反应动力学模型的基础。
MM模型的总速率受到两个速率常数的控制,它们分别是酶和底物之间的最大速率(vmax)和半饱和常数(Km),后者是底物浓度使反应速率达到vmax一半时的浓度。
这个模型被广泛地用于演示不同酶催化反应之间的动力学特性。
通过实验和计算可以确定MM模型的参数,并用于优化生化反应系统。
除了MM模型之外,还有一些更高级别的动力学模型可用于描述酶催化反应的性质。
这些模型包括酶促反应网络、代数方程等,它们相对复杂,但通常可以提供更准确的预测。
为了更好地理解细胞内酶促反应,许多实验室进行了生化动力学研究。
近年来,计算机模拟技术被广泛应用于研究酶与底物之间相互作用的细节。
通过这些模拟,研究人员可以计算反应速率、观察页面场、预测反应机制,以及了解酶催化反应的结构、松弛度和变形性质。
总之,细胞内酶促反应是细胞生命过程中的关键步骤。
通过生化动力学研究,我们可以更好地理解细胞内反应的机制和影响因素,并为设计和优化生物工程反应系统提供了更好的基础。
第生化反应器 三章 细胞反应动力学
0.68
59.4
葡qA萄TP糖m的o碳l /元g ·素h含量为0.400
0.68
60.4
0.500 (ΔCATP)G—— 用于细胞合成所消耗的
(3)细胞反应的ATP的平衡
0.20
48.8
(ΔCATP)m—— 细胞维持代谢所消耗的
0.600 即YATP/P=1(mol/mol),求mATP和YATPmax 。
➢ 能量生长的非偶联型 当缺少细胞构成材料或 细胞生长受抑制时,细胞的生长取决于细胞构成 材料的供给或生长过程,这时多余的ATP的高能 键会被酶分解,能量以废热释放,这种生长为能 量生长的非偶联型。
(2)细胞对ATP的得率YX/ATP
碳源消耗对细胞的 得率
YX/ ATP消 谢耗 所1m生o碳 l成A源 的T有 的 P 分 mo解 数 l 代
第生化反应器 三章 细胞反应动力学
(1)能量生长的偶联型与非偶联型
细胞的生长过程依靠ATP的高能键释放的能 量将细胞的构成材料合成为细胞的高分子物质 (如蛋白质、DNA、RNA、脂类、多糖等)
➢ 能量生长的偶联型 当有大量的细胞构成材料 时,细胞的生长取决于ATP的共能,这种生长为 能量生长的偶联型。
例 产气气杆菌Aerobacter aerogenes以葡萄糖为唯 一碳源进行厌氧培养,已知细胞对碳源的得率 YX/S(g/mol),代谢产物乙酸对碳源的得率 YP/S(g/mol),细胞的碳元素含量a2=0.45 (g C/g biomass),计算YX/ATP 。 解:设用于合成代谢的葡萄糖与ATP无关
(ΔCATP)m—— 细胞维持代谢所消耗的 ATP量
(ΔCATP)G—— 用于细胞合成所消耗的 ATP量
设
C AT m P m AT C X P t