材料力学:第12章:能量法
材料力学能量法第3节 卡式定理
q 2 M ( x) (l x) M e 2
M 1 M e
(2)计算 B 截面转角 B
M q 2 1 M ( x) (l x) M e M e 2 M ( x) M ( x) Bq M e dx EI M e 1 l q 2 [ ( l x ) M ] ( 1 ) d x e EI 0 2 3 l ql 顺时针转向 Me EI 6 ql 3 顺时针转向 B 令 Me 0 6 EI
2
1 dFi dyi U dFi yi 2
(3)
比较(2)(3)式
1 dFi dyi U dFi yi (3) 2 U ( F1 , F2 , Fn ) yi i 1,2,3,... Fi
U U dFi Fi
(Hale Waihona Puke 2)梁的变形能对某一载荷 Fi 的偏导数,等于 在该载荷处沿载荷方向的位移,这就是卡氏定理, 也称卡氏第二定理。由意大利工程师 A 卡斯蒂利亚 诺(1847-1884)于1873年提出的。卡氏定理对其他 线弹性结构也是适用的。
广义力的函数:设在如图所示梁上,作用有 n 个力 y2 , , yn 。 F1, F2 , , Fn ,其相应位移分别为 y1, 在载荷施加过程中,外力所做的功转变成梁的变形 能。这样,变形能应为广义力 Fi 的函数
U f ( F1, F2 ,, Fn )
若 Fi
(1) ( 2)
Fi dFi , 则 U
U U dFi Fi
卡式定理的推导 —— 改变加力的次序 (1)先施加 dFi :在施加 dFi 时,其作用点沿 dFi 方向的 1 dF dy 位移为 dyi ,梁的变形能为 i i;
材料力学能量法
限制条件:不适 用于求解动力学 问题如振动、冲 击等
适用范围:适用 于求解线性问题 如弹性、塑性等
限制条件:不适 用于求解非线性 问题如塑性、蠕 变等
材料力学能量法的发展趋势和未来 展望
材料力学能量法的发展趋势
计算方法:发展高效、准确 的数值计算方法
应用领域:拓展应用领域如 航空航天、生物医学等
柱的压缩问题
问题描述:柱在轴向 压力作用下的压缩问 题
应用实例:桥梁、建 筑等结构中的柱在受 压时的变形和破坏
能量法分析:利用能 量法分析柱的受压变 形和破坏过程
结论:能量法在柱的 压缩问题中的应用可 以有效地预测柱的变 形和破坏情况为工程 设计提供依据。
弹性体的振动问题
添加 标题
弹性体振动问题的背景:在工程中弹性体的振动问题非常常见如桥梁、建筑物、机械设备等。
定义和原理
材料力学能量法: 一种研究材料力学 问题的方法通过分 析能量变化来求解 问题。
基本概念:能量、 应力、应变、位移 等。
原理:根据能量守 恒定律材料的变形 和破坏过程中能量 会发生变化通过分 析这些变化可以求 解问题。
应用:广泛应用于 结构分析、优化设 计等领域。
能量法的应用范围
结构力学:分析结构受力、变形和稳定性 材料力学:分析材料应力、应变和断裂 流体力学:分析流体流动、压力和速度 热力学:分析热传导、对流和辐射 电磁学:分析电磁场、电磁波和电磁感应 声学:分析声波传播、反射和吸收
能量法的基本假设
材料是连续、均匀、各向同性的
材料是线弹性的应力与应变成正 比
添加标题
添加标题
材料是弹性的满足胡克定律
添加标题
添加标题
材料是各向同性的应力与应变的 关系与方向无关
用能量法研究夹芯梁的弯曲挠度计算
z
∫
h
2
z
zbdz +
zbdz +
ME t
D
∫
h
2
h
+t
2
( M + dM) E t
D
∫
h
2
Et Ec
zbdz
h
+t
2
(6)
12G c D
QE t
- z ö÷ +
ç
τc =
( ht + t 2 )
2D è 4
ø 2D
Δ=
(7)
2 夹芯梁弯曲挠度
由文献[12ꎬ13] 可知梁截面弯矩、剪力导致的
2
Q 1 ∂Q 1
C ∂P
M 2 ∂M 2
D ∂P
dx
dx +
(18)
P ( l - a ) 2 ( l + 2a ) P ( l - a )
=
+
48D
4C
3 算例分析
(1) 试验 1
文献[14] 采用三点弯曲试验研究了1.81
1.87
3.21
1.89
4.58
300
19.76
入式(10) 中可得:
M 2 E t z 2 M 2 E c z 2 Q 2 E 2t
+
+
u=
2D
2D
8G t D 2
2
2
éê æ h + ö - 2 ùú +
ç
÷
t
z
êë è 2
úû
ø
Q 2 E 2c æ h 2 2 ö2 Q 2 E 2t
-z ÷ +
ç
( ht + t 2 ) 2 +
8G c D 2 è 4
3
ø 8 û 12
材料力学 能量法
3
13 Pa 12 EI
3
M
能量法
例:图示梁,抗弯刚度为EI,承受均布载荷q及
集中力X作用。用图乘法求: (1)集中力作用端挠度为零时的X值; (2)集中力作用端转角为零时的X值。
能量法
解:(1)
ql / 8
2
1 wC EI
Xal 2a Xa 2 2a ql 3 a 2 3 2 3 12 2
l P 2 得:P wC1 m 2E I 2 ml 由此得: C wC1 8E I
2
能量法
例:长为 l 、直径为 d 的圆杆受一对横向压力 P 作用,
求此杆长度的伸长量。已知E和m。
能量法
解:由位移互等定理知,①杆的伸长量等于 ②杆直径的减小量
l
①
d
②
e d e d
4 P P d d E AE
能量法
例:已知简支梁在均布载荷 q 作用下,梁的中点挠
度
5ql w 384E I
4
。求梁在中点集中力P作用下(见
图),梁的挠曲线与梁变形前的轴线所围成的面积A。
A
能量法
A
5ql q A P 384E I
能量法
4
可用于线弹性材料,也可用于非线弹性材料。
能量法
§12-7 单位载荷法 莫尔积分
P1
P2
C
用虚功原理可以导出计算结构一点位移的单位载荷法
能量法
P1
P2
C
Fs ( x)
C
M ( x)
1 M ( x)d
M ( x) d dx EI
P0 1 Fs ( x)
材料力学13能量法
功的互等定理:
F1 12 F2 21
即:F1 力在由F2力引起的位移上所作的功,等于F2 力在由F1力引起的位移上所作的功。
若F1 = F2 ,则得
位移互等定理:
12 21
即: F2引起的F1 作用点沿 F1方向的位移,等于同 样大小的力F1 引起的F2作用点沿 F2方向的位移。
( F1 F2 ) L F1 L F2 L F1F2 L V 2 EA 2 EA 2 EA EA
2
2
2
L
2) F1 单独作用下:
F1 F2
F1 L V 1 2 EA
3)F2 单独作用下:
F22 L V 2 2 EA
2
L F1 F2
L
V1 V 2 V
证毕。
b Px1 l ( 0 ≤x1 ≤ a) a CB段: M(x2 ) = RB x2 = Px2 l ( 0 ≤x2≤ b) 2
AC段:M(x1 ) = RA x1 =
13-3 应变能的普遍表达式
基础知识
广义
线弹性结构上受一个外力作用,任一点的位移与该力成正比。
线弹性结构上任意一点的广义位移与各广义力成线性 齐次关系。 比例加载时,线弹性结构上任一外力作用点沿外力方 向的位移与该点的广义力成正比。
P12 l1 P1作功为 V 3 2 EA
(5)应变能是可逆的。(跳板跳水)
总功仍为上述表达式。
直接利用功能原理求位移的实例
利用能量法求解时,所列 例 求简支梁外力P作用点C的挠度。 弯矩方程应便于求解。
解:
A x1 RA l a
P
材料力学第2版 课后习题答案 第12章 变形能法
3 d1 ; 2
(b) 梁的抗弯刚度EI,略去剪切变形的影响。 解: (a) M n1 = m
M n2 = m U2 = J P2 =
9.6m 2 l Gπd14
U1 = J P1 =
m 2l 4GJ P1 π 4 d1 32
m 2l 4GJ P2 π 4 5.06π 4 d2 = d1 32 32
故
U a 16 = Ub 7
11-3 图示桁架各杆材料相同,截面面积相等,试求在 P 力作用下,桁架的变形能。 解:
支反力
R Ax = P R Ay = R B =
各杆的轴力和变形能如表所示 杆号 1 内力 Ni 杆长 各杆的变形能 Ui
P 2
2P 2
2l
2 P 2 l (4 EA)
2
− 2P 2
求 θA
M 0 ( x1 ) = −1 M 0 ( x 2 ) = −1
θA =
1 EJ
⎡ ⎛L ⎤ 1 ⎞ − P⎜ + x2 ⎟(− 1)⎥ dx 2 ∫0 (− Px1 )(− 1)dx1 + 2EJ ∫0 2 ⎢ ⎠ ⎣ ⎝2 ⎦
2
L
L
1 L2 1 = ⋅P⋅ + EJ 8 2 EJ =
求 δB
0
2l
l l l
2 P 2 l (4 EA)
0
3 4 5ຫໍສະໝຸດ P 2 P 2P 2 l (8EA) P 2l (8 EA)
故珩架的变形能为
5
U = ∑ Ui =
i =1
2 2 + 1 P 2l P 2l = 0.957 4 EA EA
11-4 试计算图示各杆的变形能。 (a) 轴材料的剪切弹性模量为G, d 2 =
材料力学II能量法的应用补充
压杆的临界载荷——极值点失稳问题
压杆的临界载荷——极值点失稳问题
曲线OA部分为稳定平衡,极值点以后部 分为不稳定平衡。A点为临界状态。
对于受轴向压力P作用的扁锥,力P与轴 向位移间的关系如图b所示。不仅存在相 对极大值A点,还存在相对极小值B点。 这类无分支点的稳定问题也称为跳跃 (snap)问题。
能量法的应用
能量法研究梁的横向剪切效应 能量法研究杆件的冲击应力 能量法研究压杆的临界载荷 能量法研究梁柱纵横弯曲变形与应力计
算等问题 此外,另一重要应用为求解静不定问题。
梁的横向剪切效应
梁的横向剪切效应
梁的横向剪切效应
梁的横向剪切效应
梁的横向剪切效应
梁的横向剪切效应
将(a)式代入到公式(5)可得临界载荷为
Fcr
EIw''2 dx
l
w'2 dx
l
l
EI(
a
l2
2
sin
x
l
)2
dx
( a cos x )2 dx
2EI l2
ll
l
所得解答与精确解相同。之所以如此,是因为 假设的挠曲线方程就是真实的挠曲线方程。
例 2 如图所示细长 压杆,一端固定、另 一端自由,承受集度 为q的轴向均布载荷 作用。试用能量法确 定载荷q的临界值qcr。
平衡;
若ΔΠ<0,原始状态ΔΠ=max,属于不稳
定平衡;
若ΔΠ=0,势能不变,属于随遇平衡。
平衡相关物理概念从数学观点看可以归 结为寻求势能函数的极小值和极大值的 微分或变分问题。
压杆的临界载荷
两类失稳形式: 弹性体的平衡问题,其稳定性取决于结
专题能量法求位移lecture
计算转角的莫尔定理
P1 P2 P3
C
x
c
l
原受力结构
EIz
1c
L
M
0
x
M
x
dx
EI Z
1C
x
l 克隆结构
EIz
莫尔定理—又称单位力法 适用范围—线性弹性结构
例:如图所示:简支梁AB,跨长为L,抗弯刚度为 EI Z
。梁上受均布载荷作用,载荷集度为q,试求出梁跨中点C的
挠度 f c 及端面B的转角 B
L
U
N 2x dx
0 2EA
dx
N(x) dx qdx
N ( x)
二.扭转变形能的计算:
1.M n 常量
U
W
M
2 n
L
2GI P
2.M n M n x
U M n2 xdx
L 2GI P
三.弯曲变形能的计算:
1. M z 常量 U M z2l 2EIZ
2. M z M z x
U M 2 xdx L 2EIZ
1 2
Fa 1 EA
2
2 F 2
EA
2a
(
2
2)
Fa 3 2 EA 2
例3 用卡氏第二定理求B点的挠度。EI为常数。
F
F
解:
A
C l x2
l x1 B (1)弯矩方程及导数
M1(x1) Fx1
M 2 (x2 ) F (l x2 ) Fx2
M1 F
x1
M 2 F
l
x2
(2)卡氏第二定理求挠度
(4)求解多余未知力: 将力-位移间物理关系,代入变形协 调条件,得补充方程。由补充方程解出多余未知力。
材料力学第12章 能量法
范围内工作时,其轴线弯曲成为一段圆弧,如图12.5(a)所示。两端横截
面有相对转动,其夹角为θ ,由第7章求弯曲变形的方法可以求出
图12.5 与前面的情况相似,在线弹性范围内,当弯曲外力偶矩由零逐渐增加到M0时
,梁两端截面相对于转动产生的夹角也从零逐渐增加到θ ,M0与θ 的关系也
是斜直线,如图12.5(b)所示,所以杆件纯弯曲变形时的应变能为
dW在图12.2(a)中以阴影面积来表示。拉力从零增加到FP的整个加载过程
中所做的总功则为这种单元面积的总和,也就是说是△OAB的面积,即
可以将以上的分析推广到其他受力情况,因而静载荷下外力功的计算式可以
写为 式中的 F是广义力,它可以是集中力或集中力偶;Δ 是与广义力F相对应的
位移,称为广义位移,它可以是线位移或角位移。式(12.2)表明,当外力
在工程实际中,最常遇到的是横力弯曲的梁。这时梁横截面上同时有剪力和
弯矩,所以梁的应变能应包括两部分:弯矩产生的应变能和剪力产生的应变 能。在细长梁的情况下,剪切应变能与弯曲应变能相比,一般很小,可以不
计,常只计算弯曲应变能。另外,此时弯矩通常均随着截面位置的不同而变
化,类似于式(12.5)与式(12.9),梁的弯曲应变能为
表面上的剪力与相应的位移方向垂直,没有做功。因此,单元体各表面上的 剪切力在单元体变形过程中所做的功为
故单元体内积蓄的应变能为
则单元体内积蓄的应变比能为
下
这表明,vε 等于γ 直线
的面积。由剪切胡克定律=Gγ ,比能又可以写成下列形式
(3)扭转 如图12.4(a)所示的受扭圆轴,若扭转力偶矩由零开始缓慢增加到最终值T
,积蓄在弹性体内的应变能Vε 及能量耗损Δ E在数值上应等于载荷所做的功 ,既 如果在加载过程中动能和其他形式的能量耗损不计,应有
材料力学能量法
F
A
B
x
l
②列弯矩方程 M =-Fx ( 0 ≤ x < l ) ③求外力功W 和应变能Ve
1 W FwA 2
1 F 2l 3 FwA 2 6 EI
2 l ( Fx ) dx M 2 dx F 2l 3 Ve 0 2 EI 0 2 EI 6 EI l
Fl 3 wA 3EI
l
由功能原理有
由平衡方程和对称条件有 F1 F2 ,Dl1 Dl2
2 F1 cos + F3 F
1 1 F Dl3 ( F1Dl1 + F2 Dl2 + F3Dl3 ) 2 2
(1) Dl3
(2) (3)
F
Dl1
(2)、(3)代入(1)得 Dl3 cos Dl1
变形几何方程
即 D1= d11F1+d12F2+ … +d1iFi + … +d1nFn …… Di= di1F1+di2F2+ … +diiFi + … +dinFn …… 其中dij 是与载荷无关的常数。 注意:各载荷和位移都是指最终值,所以是常数。
材料力学 中南大学土木建筑学院
16
设各外载荷有一增量,于是位移亦有一增量。载荷 在位移增量上所作的元功为:
( )
仅仅只能求力作用点与力相对应的位移, 其它位移的求解有待进一步研究功能原理。
材料力学 中南大学土木建筑学院
10
图示对称结构,各杆抗拉刚度EA均相等。 ①由平衡方程,通过功能原理导出变形几 何方程;②由平衡方程结合功能原理求出 各杆内力。
解:A点的位移等于③杆的变形Dl3。
B
大连理工考研专业课《816材料力学》大纲
第1章材料力学的基本概念 2、轴向拉伸及压缩 3、剪切 4、扭转 5、弯曲内力6、弯曲应力 7、弯曲变形 8、应力状态理论和强度理论 9、组合变形 10、压杆稳定11、能量法 1 2、静不定系统 13动栽荷 14、疲劳《材料力学》教学大纲(4.5 学分,72 学时。
课堂教学64学时,实验教学8学时)适用专业:过程装备与控制工程(必修)材料力学是过程装备与控制工程专业(即专业目录修订前的化工设备与机械专业)的一门重要技术基础课。
它是机械设计、过程机械、成套装备优化设计、压力容器安全评估、典型过程设备设计等各门后续专业课程的基础,并在许多工程技术领域中有着广泛的应用。
本课程的任务是使学生掌握材料力学的基本概念、基本知识;训练学生对基本变形问题进行力学建模和基本计算的能力;使学生熟悉材料力学分析问题的思路和方法;培养学生自觉运用力学观点看待工程和日常生活中实际事物的意识。
目的在于为学习本专业相关后继课程打好力学基础。
二、课程内容、基本要求与学时分配1.引言。
材料力学基本概念、教学任务、研究方法以及背景知识介绍。
(2学时)2.轴向拉伸和压缩。
熟练掌握轴向拉伸与压缩的内力计算,截面法,轴力,轴力图。
轴向拉伸(压缩)时横截面及斜截面上的应力。
拉(压)杆的变形计算,胡克定律,叠加原理,杆系结点的位移计算。
了解拉压杆的应变能及应变能密度的概念,材料在拉伸和压缩时的力学性质,掌握拉(压)杆的强度条件。
(6学时)3.剪切。
熟练掌握剪切胡克定律,学会画剪力图。
掌握用剪切强度和挤压强度条件进行简单设计和实用计算。
(3学时)4. 扭转。
熟练掌握薄壁圆筒的扭转,外力偶矩,扭矩,扭矩图,等直圆杆扭转时横截面上的应力,切应力互等定理,等直圆杆扭转时的变形计算,了解斜截面上的应力及应变能计算,掌握强度条件和刚度条件的建立。
(4学时)5.弯曲内力。
熟练掌握平面弯曲的概念,指定截面的剪力和弯矩计算,剪力方程和弯矩方程,剪力图和弯矩图,剪力-弯矩与分布荷载之间的微分关系,叠加法做弯矩图。
材料力学第12篇能量方法
(
2 x
2 xy
2 xz
)dV
V 2E 2G 2G
M T(x) M (x)
FN (x)
MT(x) M (x) F N (x)
dx 图12.9
组合变形时的应变能
M T(x) M (x)
FN (x)
MT(x) M (x) FN (x)
dx
图12.9
dV
dW
1 2
FN (x)d(l)
1 2
M T (x)d
dF1l EA
F 2l 2EA
1 2
Fl
V
1 2
F l
FN2l 2EA
F
(a)
如果杆件的轴力 FN 分段为常量时
V
n FN2i li i 1 2Ei Ai
△l
l
F
F1
dF1
F A
B △l
O
△ l1 d(△ l1)
△l
(b)
图12.1
杆件轴线的轴力为变量 FN (x) 时
V
l
FN2 (x) 2 EA( x)
V
V
v
dV
l
A
1 2G
FbSISzz*图122.d6 A
dx
(d)
γdx
dx
(c) 图12.6
FS( x)
梁的应变能
V
V v dV
{
l
A
[
M 2(x)y
2EI
2 z
2
FS
2
(
x)
S
*2 z
2GI z2b 2
]dA}dx
令
k
A
I
2 z
A
材料力学(能量法)
弹性变形阶段
01
外力作用下,材料发生弹性变形,此时外力所做的功全部转化
为应变能储存于材料内部。
塑性变形阶段
02
当外力继续增加,材料进入塑性变形阶段,部分应变能转化为
热能散失到环境中。
断裂破坏阶段
03
当材料达到强度极限时发生断裂破坏,此时储存的应变能迅速
释放并转化为断裂表面的新表面能和其他形式的能量。
非圆截面扭转时的能量可以通过实验或数值模拟等方法进 行计算,以获得准确的能量值。
扭转变形过程中能量转化
弹性变形能
在扭转变形过程中,部分能量以弹性变形能的形式储存在材料中。 当外力去除后,这部分能量可以释放并使材料恢复原状。
塑性变形能
当扭转变形超过材料的弹性极限时,部分能量会以塑性变形能的形 式消耗在材料中。这部分能量不可逆转,导致材料产生永久变形。
压缩过程中能量变化
外力做功
在压缩过程中,外力对杆件做 功,使其产生压缩变形和位移 。外力做功的大小与外力的大 小和杆件的位移成正比。
内力耗能
杆件在压缩过程中,材料内部 会产生应力和应变,从而消耗 能量。内力耗能的大小与材料 的应力-应变关系有关。
弹性势能
杆件在压缩过程中,由于材料 的弹性变形,会储存一定的弹 性势能。弹性势能的大小与材 料的弹性模量和变形量有关。
结构稳定性分析方法
能量准则
通过比较结构失稳前后的能量变 化,判断结构的稳定性。若失稳 后能量降低,则结构不稳定。
平衡路径跟踪法
通过逐步增加荷载或位移,跟踪 结构的平衡路径,观察结构从稳 定到不稳定的转变过程。
特征值分析法
基于结构刚度矩阵和质量矩阵, 求解特征值和特征向量,分析结 构的振动特性和稳定性。
材料力学2--能量法
因仅与第i个荷载相应的位移有一微小增量, 而与其余各荷载相应 的位移保持不变,因此,对于位移的微小增量d i ,仅Fi 作了外 力功,外力功的变化为:
d W Fi di
注意到上式与下式在数值上相等
V d V d i i
从而有:
V Fi i
(卡氏第一定理 )22l l 2 l l 2 FN EA
F F F Fl FN 2 sin 2 tan 2 l 2
F 代入前一式得: l EA
3
F F= ( /l )3 EA
或: F EA
l
3
(几何非线性弹性问题)
O
其F-间的非线性关系曲线为: 应变能为:
所以有
V vV v Al
应变能的特征:
(1)应变能恒为正的标量,与坐标系的选取无关; (2)由能量守恒原理可以证明:应变能仅与荷载的 最终值有关,而与加载的顺序无关; (3)在线弹性范围之内,应变能为内力(或位移) 的二次函数,因此力的叠加原理不再适用;
例1:弯曲刚度为 EI 的简支梁受均布荷载 q 作用,如图所 示。 试求梁内的应变能 。
由于外力余功在数值上等于余能,得
d V c d Wc
V c 解得: i Fi
(称为“余能定理”)
特别:对线弹性体,由于力与位移成正比,应变能 V 在数值上等于余能V c , 此时上式变为:
V i Fi
(称为“卡氏第二定理”)
式中的Fi 和i分别为广义力和广义位移。
应用卡氏第一定理得
V EA 4 2 2 ( 1 2) 0 1 2l 2 2 V EA 2 ( 1 2) F 2 2l 2
孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解-能量法(圣才出品)
第12章能量法12.1 复习笔记由于弹性体的变形具有可逆性,因此外力在相应位移上做功在数值上等于在物体内积蓄的应变能。
利用功和能的概念求解可变形固体的位移、变形和内力等的方法,称为能量法。
能量法是有限元法求解固体力学问题的基础。
本章首先介绍了应变能和余能的概念及计算方法,在此基础上讨论了卡氏定理,最后介绍了能量法在求解超静定问题中的应用。
本章应重点掌握卡氏定理内容及能量法求解超静定问题的应用。
一、应变能和余能(见表12-1-1)表12-1-1 应变能和余能二、卡氏定理(见表12-1-2)表12-1-2 卡氏定理三、能量法求解超静定系统(见表12-1-3)表12-1-3 能量法求解超静定系统12.2 课后习题详解12-1 图12-2-1(a)、(b)所示各杆均由同一种材料制成,材料为线弹性,弹性模量为E。
各杆的长度相同。
试求各杆的应变能。
图12-2-1(a)图12-2-1(b )解:(1)图12-2-1中(a )杆的应变能为:222112212222222222231842112(2)24478Ni i i F l F l F l V EA EA EA l F F lE d E dF l Ed ==⨯+⎛⎫⋅⋅ ⎪⎝⎭=⨯+⋅⋅=∑επππ(2)图12-2-1中(b )杆上距离下端x 处截面上的轴力为:F N (x )=F +fx =F +(F/l )x ,故杆件的应变能为:2002220()d d 214d 23llN l F x V V xEAF F x F l l x EA Ed ==⎛⎫+ ⎪⎝⎭==⎰⎰⎰εεπ12-2 拉、压刚度为EA的等截面直杆,上端固定、下端与刚性支承面之间留有空隙Δ,在中间截面B处承受轴向力F作用,如图12-2-2所示。
杆材料为线弹性,当F>EAΔ/l时,下端支承面的反力为:F C=F/2-(Δ/l)(EA/2)。
于是,力F作用点的铅垂位移为:ΔB=(F-F C)l/EA=Fl/(2EA)+Δ/2。
《材料力学》第十二章-求变形的能量法
3 虚功的计算 外力:P1, P2,……, 虚位移:a1, a2,……., 外力虚功: 内力:N, M,… 虚变形:
We=P1a1+P2a2+……..
内力虚功:
由 We=Wi
虚功原理是最一般的功能原理
对于梁,施加单位力P=1, 力P产生的内力 则有:
莫尔定理
小结: 1 变形位能的概念 2 卡氏定理 3 莫尔定理 4 互等定理 5 虚功原理 作业:12.19, 12.20
2 ( x)
2G
L
dv
2 w ( x)
L
2E
dv
内力表达的变形位能
应力表达的变形位能
结
论
1. 变形位能是状态函数 (同最终的力和变形有关)
11
2. 变形位能的计算不能用叠加原理
如何解释交叉项? 单独作用时 则 交叉项是两个载荷相互作用的外力功
〈解释1〉
载荷
在载荷
引起的位移上做的功
⑤ 莫尔积分必须遍及整个结构
例
A
求等截面直梁C点的挠度和转角(例 12.3 [P356])
q B x a C
A
P0 =1
B
a
a
C
a
解:①画单位载荷图 ②求内力
qx2 M ( x ) aqx 2
③变形
q A x a C B A P0 =1 B
a
a
C
a
对称性
④求转角,重建坐标系(如图)
q
A
§12–3 莫尔定理 Mohr Theory
q(x)
A
在实载荷下得到
相应内力如弯矩为M(x) 如何计算任一点A的位移? 1、 在A点加虚单位力
《材料力学》11-1能量法
F1 dF
0
与外力功
W
1 0
Fd之和等于矩形面积
F1 1
线弹性范围内外力功等
F
F
于余功,能等于余能。
F1
F1
o
1
o
1
例题
试计算图示结构在荷载 F1 作用下的余能,结构中两杆的 长度均为 l,横截面面积均为A材料在单轴拉伸时的应力
—应变曲线如图所示。
B
D
K1nn1 1
C
F1
解:由结点C的平衡方程,可得两杆的轴力为
例题
xy平面内,由k根杆组成的杆系,在结点A处用铰链结 在一起,受到水平荷载和铅垂荷载作用,截面分别 为 A1,A2,Ai,Ak ,试用卡氏第一定理求各杆的轴力。
1
2
i
k
F1 A
F2
这种以位移为基本未知量,把它的求解当作关键性问题的方法称为位移法
本章作业
(II)3-2,
(II)3-4,
(II)3-10,
例题
图示在线弹性范围内工作的一端固定、另一端自由的圆轴,在自由端截面
上承受扭转力偶矩M1。材料的切变模量G和轴的长度 l 以及直径 d 均已知。 试计算轴两端的相对扭转角。
M1
d
A
B
l
四 余功、余能及卡氏第二定理
Wc
F1 dF
0
与余功相应的能称为余能
Vc V vcdV
vc
1 d
0
Vc
Wc
V cvc2Al2A nK lnn1 cF 1 o sn1
卡氏第二定理
F1
F2
F3
Fn
A
B
1
2
3
n
材料力学习题及答案
材料力学-学习指导及习题答案第一章绪论1-1 图示圆截面杆,两端承受一对方向相反、力偶矩矢量沿轴线且大小均为M的力偶作用。
试问在杆件的任一横截面m-m上存在何种内力分量,并确定其大小。
解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其大小等于M。
1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ。
解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=τ=p sinα=120×sin10°=1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零。
试问杆件横截面上存在何种内力分量,并确定其大小。
图中之C点为截面形心。
解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106××2=200×103 N =200 kN其力偶即为弯矩M z=200××10-3 = kN·m1-4 板件的变形如图中虚线所示。
试求棱边AB与AD的平均正应变及A点处直角BAD的切应变。
解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最大值。
解:(a) F N AB=F, F N BC=0, F N,max=F(b) F N AB=F, F N BC=-F, F N,max=F(c) F N AB=-2 kN, F N2BC=1 kN, F N CD=3 kN, F N,max=3 kN(d) F N AB=1 kN, F N BC=-1 kN, F N,max=1 kN2-2 图示阶梯形截面杆AC,承受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解: M ( ) PR (1 cos ) M ( ) R (1 cos )
0
AB 2
0
3 PR 3 EI
ቤተ መጻሕፍቲ ባይዱ
2 2 M ( ) M ( ) PR (1 cos ) R d 2 R d EI EI 0 0
d
例:半圆形小曲率曲杆的A端固定,在自 由端作用扭转力偶矩m,曲杆横截面为圆形,
的集中力P垂直于轴线所在的平面。试求A点的
垂直位移。已知GIp、EI为常量。
解:T ( ) PR(1 cos ) , M ( ) PR sin T 2 ( ) M 2 ( ) U Rd Rd 2G I p 2E I l l
3 P R P R 4G I p 4E I 1 W P AV 2
M ( x) M ( x) dx EI
0
l
M ( x ) Px ,
M ( x ) 1
B
l
M ( x) M ( x) dx EI
0
0
l
2 Px Pl dx EI 2 EI
例:计算图(a)所示开口圆环在 P力作用
下切口的张开量 Δ AB 。EI=常数。
2
2
2 2 2 P 2b 2 a 3 P2a 2 b3 P a b 2 2 6 EI l 2 EI l 3 2 EI l 3
1 W P vC 2
由U W,得: Pa 2 b 2 vC 3EI l
例:试求图示四分之一圆曲杆的变形能,
并利用功能原理求B截面的垂直位移。已知EI
2
U
l
l
1 W P vB 2
Pl 由 U W,得 v B 3EI
3
例:试求图示梁的变形能,并利用功能原 理求C截面的挠度。
解:
U
l
Pb Pa x1 x2 2 a b M ( x) l l dx dx1 dx 2 2E I 2E I 2E I 0 0
注意:上式中应看成广义位移,把单位力看成与广 义位移对应的广义力
P
例:试用莫尔定
A
l
x
B
理计算图(a)所示
悬臂梁自由端B
的挠度和转角。
A
1
B
x
1
A B
x
解: (1) 在B截面作用一单位力 , 如图 (b) 所示 M ( x ) Px ,
0
M ( x) x
0
3 Px 2 vB dx Pl EI l 3EI 0 (2) 在B截面作用一单位力偶 , 如图 (c) 所示
W1 U 1
[( M ( x ) M 0 ( x )]2 U 0 U 1 dx 2E I l
l
M ( x) M 0 ( x) M 2 ( x) [ M 0 ( x )]2 dx dx dx 2E I 2E I EI l l
M M x )MMx) ( x ) ( ( x) ( 1 E I dx dx EI l
0 l
0
l
M ( x) M ( x) 莫尔定理 dx EI (莫尔积分)
M ( x) M 0 ( x) dx EI
0
对于组合变形: l
l
N ( x) N 0 ( x) T ( x) T 0 ( x) M ( x) M 0 ( x) dx dx dx EA GI p EI l l
为常量。
解: M ( ) PR sin
U
l
M 2 ( ) Rd 2E I
( PR sin ) P R 2 E I Rd 8 EI 0
2 2
2
3
1 W P BV 2
由U W,得:
BV
PR
4 EI
3
R
例:轴线为半圆形的平面曲杆,作用于A端
2 3 2 3
由U W,得:
AV 3 PR PR 2GI p 2 EI
3 3
R
§12-3 单位载荷法
P1
P2
C
P1
P2
C
M ( x)
U
l
M ( x) dx 2E I
2
P0 1
C
M ( x)
0
[ M ( x )] U0 dx 2E I l
0
2
P1 P2
P0
第十二章
能量法 述
§12-1 概
在弹性范围内,弹性体在外力作用下发
生变形而在体内积蓄的能量,称为弹性变形能,
简称变形能。
物体在外力作用下发生变形,物体的变
形能在数值上等于外力在加载过程中在相应位
移上所做的功,即
U=W
§12-2 杆件变形能计算
一、轴向拉伸和压缩
1 Pl 1 U W P l 2 P EA 2
三、弯曲
2 2 1 ml m l M l 纯弯曲: W 1 m m U 2 EI 2E I 2E I 2
横力弯曲:U
M ( x) 2 E I ( x ) dx l
2
四、组合变形 截面上存在几种内力,各个内力及相应的 各个位移相互独立,力独立作用原理成立,各 个内力只对其相应的位移做功。
N ( x) T ( x) M ( x) U dx dx dx l 2 E A( x ) l 2G I p ( x ) l 2 E I ( x)
2
2
2
例:试求图示悬臂梁的变形能,并利用功 能原理求自由端B的挠度。
解:
M ( x) P x
2 3 ( Px ) 2 M ( x) P l dx dx 2E I 2E I 6 EI 0
P l N l 2 EA 2 EA
N ( x) U dx 2 EA( x ) l
2
P
2
2
P
l
l
二、扭转
m
m
2
2
ml 1 1 m l T l U W m m 2 G I p 2G I p 2G I p 2 2 T ( x) U dx 2G I p ( x ) l
C
M ( x) M 0 ( x)
[( M ( x ) M 0 ( x )]2 U1 dx 2E I l
P0 作功:
共做功 P1 、P2 作功: U W1 U 0 U 1 1 P0 在上又作功: P0 1 P1 P2
U0
C