计算方法——共轭梯度法求解线性方程组
共轭梯度法公式
![共轭梯度法公式](https://img.taocdn.com/s3/m/e9dad3ea2dc58bd63186bceb19e8b8f67c1cefb2.png)
共轭梯度法公式
共轭梯度法是一种用于求解线性方程组的迭代算法。
其主要思想是通过利用前一次迭代的信息来加速当前迭代的速度,从而减少迭代次数和计算量。
共轭梯度法公式包括以下几个步骤:
1. 初始化:设初始解为x0,残量b0为Ax0-b,共轭方向d0=b0。
2. 迭代求解:对于第k次迭代,计算步长αk,使得xk+1=xk+αkd,其中d是共轭方向,满足dTkAd=0,即d是A的共轭向量。
3. 更新残量:计算新的残量bk+1=Axk+1-b,如果bk+1小于预设精度,则停止迭代。
4. 更新共轭方向:计算新的共轭方向dk+1=bk+1+βkdk,其中βk=(bk+1)Tbk+1/(bk)Tbk,保证dk+1与之前的共轭方向都是A的共轭向量。
5. 重复迭代,直到满足收敛条件,返回最终解xk+1。
共轭梯度法是一种高效的求解大型线性方程组的方法,尤其适用于稀疏矩阵和对称正定矩阵。
公式简单易懂,容易实现,且具有较快的收敛速度。
- 1 -。
共轭梯度法和梯度下降法
![共轭梯度法和梯度下降法](https://img.taocdn.com/s3/m/7f4bd25b1fd9ad51f01dc281e53a580216fc50eb.png)
共轭梯度法和梯度下降法共轭梯度法和梯度下降法是两种常用的优化算法,它们在解决最优化问题时具有重要的作用。
本文将分别介绍共轭梯度法和梯度下降法的原理、优势和应用领域,并对它们进行比较和总结。
一、共轭梯度法共轭梯度法是一种迭代算法,用于求解线性最小二乘问题或者解线性方程组。
它的核心思想是通过迭代求解一系列的共轭方向,从而不断逼近最优解。
共轭梯度法的优势在于它能够充分利用问题的特殊结构,避免不必要的计算。
相比于梯度下降法,共轭梯度法通常收敛更快,并且对于大规模问题的求解效果更好。
共轭梯度法主要应用于求解线性方程组、最小二乘问题以及特定的优化问题,如信号处理、图像处理和机器学习等领域。
二、梯度下降法梯度下降法是一种基于梯度的迭代优化算法,用于求解无约束最优化问题。
它的核心思想是沿着负梯度方向不断迭代,直至达到最优解或者满足停止条件。
梯度下降法的优势在于它的简单性和易于实现性。
它不需要求解二阶导数,只需要计算一阶导数,因此对于大规模问题的求解也比较高效。
梯度下降法广泛应用于机器学习中的参数优化问题,如线性回归、逻辑回归和神经网络等。
此外,它还可以用于函数拟合、特征选择和降维等领域。
三、共轭梯度法与梯度下降法的比较共轭梯度法和梯度下降法都是常见的优化算法,它们的选择取决于具体的问题和需求。
1. 收敛速度:共轭梯度法通常比梯度下降法收敛更快。
共轭梯度法在每次迭代时利用了前面所有迭代步骤的信息,可以更快地逼近最优解。
2. 内存消耗:梯度下降法只需要存储当前的梯度信息,而共轭梯度法需要存储一系列的共轭方向。
因此,对于大规模问题,梯度下降法在内存消耗方面更具优势。
3. 线性方程组求解:共轭梯度法是一种求解线性方程组的有效方法,而梯度下降法通常不适用于求解线性方程组。
4. 二次型优化问题:共轭梯度法对于二次型优化问题的求解效果更好。
梯度下降法在处理非二次型问题时可能会出现收敛速度慢、局部最优等问题。
共轭梯度法和梯度下降法是两种常用的优化算法。
共轭梯度法步骤
![共轭梯度法步骤](https://img.taocdn.com/s3/m/f28d6a226fdb6f1aff00bed5b9f3f90f76c64dbe.png)
共轭梯度法步骤共轭梯度法是一种求解线性方程组的迭代算法,它以高效稳定的特点而广受欢迎。
以下是共轭梯度法的步骤:步骤1:初始化首先,我们需要有一个初始向量x0和一个初始残量r0=b-Ax0。
其中,A为系数矩阵,b为常数向量。
步骤2:计算方向向量令d0=r0,表示第一次迭代的方向向量。
步骤3:计算步进长度令α0=(r0·r0)/(d0·Ad0),其中·表示向量的点积。
α0表示迭代过程中每个方向向量的步进长度。
步骤4:更新解向量令x1=x0+α0d0,表示迭代后的解向量。
步骤5:计算新残量令r1=r0-α0Ad0。
步骤6:判断终止条件如果r1的范数小于预设阈值,或者迭代次数达到预设次数,终止迭代。
否则,进入下一次迭代。
步骤7:更新方向向量令β1=(r1·r1)/(r0·r0),表示更新方向向量的轴线。
步骤8:计算新方向向量令d1=r1+β1d0,表示新的迭代方向向量。
步骤9:计算新的步进长度令α1=(r1·r1)/(d1·Ad1)。
步骤10:更新解向量令x2=x1+α1d1。
步骤11:更新残量令r2=r1-α1Ad1。
步骤12:重复步骤6至11,直至满足终止条件。
总结起来,共轭梯度法的步骤主要包括初始化、计算方向向量、计算步进长度、更新解向量、计算新残量、判断终止条件、更新方向向量、计算新的步进长度、更新解向量和更新残量等。
该算法迭代次数较少,收敛速度快,适用于大规模线性方程组的求解。
解线性方程组的共轭梯度法
![解线性方程组的共轭梯度法](https://img.taocdn.com/s3/m/acaf9cf10242a8956bece48e.png)
1 + :,XY∈ =0 ][ 1 f “ 0( ) “ , [1 0] ,x ,;
al 0 ua :
求解 ,验 证 了共轭 梯度 法 的强收 敛性 ,并 给 出 了数值 结 果 。
【)
, , 、
1 方 程 的 离 散
“ ) , )=“ U ,/ , ) (+ 一 u + ) , ) / ( i ( h u— ij h ( =甜】 2 “ , ( = M) f , / ( .l 2¨+ 一 / …;其次,网格剖分空间区域 = 01 [ 1,令h “j 一 u “ 1 + ) [ ] O】 ,x , 为步长, =h j , i ,Y = h
第2 8卷 第 4期
Vl1 8 0 .2 N O. 4
新 乡学院学报 :自然科 学版
J u n l f n in i e st : t r l c e c d t n o r a x a g Un v r i Na u a in eE i o o Xi y S i
2 1年 8月 0l
…
口
I1 2 I
, ●
.
2
=
h:
:
1 — … 4
。 .
l
I
1l l
I
口 .. . 口 口 …
, .
:
: _^ 1
0 … 1—J 4
方程组 阶数 为 ( ~ )。此 方程组 的 系数 矩阵 为一大 型稀 疏矩 阵 ,且 为弱对 角 占优 对称 正定 矩阵 。假设方 程 Ⅳ 1 组 是 阶 的 ,则 由 C G、C R方法可 知 ,最多迭 代 次 就可求 出方 程组 的精确 解 。C 方法 求解需 要 的迭 代 G 次 数见表 1 其 中取初 始值 ( =1 , 。 . ) 0,且当 } ( f } f I J , ’2 b—A ( f 0 = x j ’2 <l 时 ,迭 代终止 。由表 1 可见 ,随着方程 组 阶数 的不 断增 加 ,C G方法 需要 的迭 代 次数也 在 不断 增加 ,从 而计 算 时问 也在不 断 延长 。对 于 C G方法 而言 , 无论 迭代 次数 还是计 算 时间都具 有很 强 的优 势 ,在求 解过程 中 ,C G方 法具 有很 高 的计 算效 率 。
共轭梯度法prp
![共轭梯度法prp](https://img.taocdn.com/s3/m/6f6d4921cd7931b765ce0508763231126edb7715.png)
共轭梯度法prp共轭梯度法prp是求解线性方程组Ax=b的一种有效方法,它具有收敛速度快的优点,在计算机科学、经济学等领域被广泛应用。
在本文中,我们将分步骤阐述共轭梯度法prp的原理和算法流程,并探讨它的一些优缺点。
一、共轭梯度法prp的原理:求解线性方程组Ax=b的时候,如果我们采用梯度下降法,每次迭代时都是从当前点xk出发,按照负梯度方向向下移动一定距离得到下一个点xk+1。
如果点的数目很大,那么求解所需的时间也相应很长。
共轭梯度法prp则是在迭代过程中,每一次移动的方向都是共轭的,这样可以提高迭代收敛的速度。
二、共轭梯度法prp的算法流程:共轭梯度法prp的算法过程非常简单,我们可以用以下五个步骤来描述它的基本流程。
1.初始化:设xi=0,ri=b,pi=ri,i=0。
2.迭代:当i<n时,执行以下操作:(a)计算αi=(ri,pi)/(Api,pi)。
(b)更新:xi+1=xi+αipi。
(c)计算ri+1=ri-αiApi。
(d)选择βi=(ri+1,ri+1)/(ri,ri)。
(e)计算pi+1=ri+1+βipi。
3.输出结果。
三、共轭梯度法prp的优缺点:共轭梯度法prp与梯度下降法相比具有许多优点。
例如,它收敛速度快、计算复杂度低等等。
但是也存在一些缺点。
例如,收敛速度可以很快,但是随着迭代次数的增加,其收敛速度会逐渐变慢,甚至可能陷入振荡状态。
此外,如果矩阵的条件数太大,则共轭梯度法prp 的效果会变得很差,需要使用其他方法来求解方程组。
总之,共轭梯度法prp是求解线性方程组Ax=b的一个优秀方法,它可以提高计算速度和准确度。
尽管存在一些缺点,但共轭梯度法prp 仍是一个值得推崇的算法。
共轭梯度(CG)算法
![共轭梯度(CG)算法](https://img.taocdn.com/s3/m/15aa0c9085254b35eefdc8d376eeaeaad1f316b4.png)
共轭梯度(CG)算法共轭梯度(Conjugate Gradient, CG)算法是一种用于求解线性方程组的迭代算法。
它主要用于求解对称正定矩阵的线性方程组,如最小二乘问题、PDE(偏微分方程)问题等。
CG算法通过利用矩阵的对称性和正定性,以及向量的共轭关系,实现了高效的求解线性方程组的能力。
CG算法的基本思想是通过一系列共轭的方向,逐步逼近方程组的解。
它利用了矩阵的特性,减少了计算量和存储需求,并且具有较快的收敛速度。
下面将介绍CG算法的原理和过程。
首先,假设我们要求解一个线性方程组Ax=b,其中A是对称正定矩阵,b是已知向量,x是待求解向量。
我们通过迭代的方式逼近x的解,即x(k)。
CG算法的迭代过程如下:1.初始化:选择一个初始解x(0),设置r(0)=b-Ax(0),p(0)=r(0),k=0;2. 迭代计算:计算步长alpha(k)和更新向量x(k+1):alpha(k) = (r(k)^T * r(k)) / (p(k)^T * A * p(k))x(k+1) = x(k) + alpha(k) * p(k)3. 计算残差向量r(k+1)和比例系数beta(k+1):r(k+1) = r(k) - alpha(k) * A * p(k)beta(k+1) = (r(k+1)^T * r(k+1)) / (r(k)^T * r(k))4.更新方向p(k+1):p(k+1) = r(k+1) + beta(k+1) * p(k)5.终止条件判断:如果满足终止条件,停止迭代;否则,令k=k+1,返回步骤2在CG算法中,为了降低数值误差和迭代次数,通常会使用预条件技术,如Jacobi预条件、不完全Cholesky预条件等。
预条件技术可以通过对矩阵进行适当的近似,加速算法的收敛。
CG算法的收敛性和效率主要与矩阵的条件数有关。
对于条件数较大的矩阵,CG算法的迭代次数会增加,收敛速度会减慢。
因此,在实际应用中,通常会选择合适的预条件技术和求解策略,以提高CG算法的效率和稳定性。
解正定线性方程组的CG方法
![解正定线性方程组的CG方法](https://img.taocdn.com/s3/m/bd0b2f457e21af45b307a87c.png)
(x) (Ax b, y) a2 (Ay, y)
2
(2.13)
x (3)设 为方程组(2.11)的解,则对一切 x Rn,有
(x)(x) 1(A(x x),x x)
2
证明:因为x A1b, 所以
则
(x ) 1 ( Ax , x ) (b x )
因为对任意 j 0,1,, k 1,有
k 1
(rk , p j ) pTj ( Axk b) pTj (r0 i Api ) i0 k 1 pTj r0 i pTj Api pTj r0 j pTj Apj i0 pTj r0 pTj rj pTj r0 pTj ( Axj b)
求解正定线性方程组的共轭梯度法 (CG方法)
林华堂、张卜元、吕迪
1.方法简介
共轭梯度法已有五十多年的历史,它最早是由
Hestenes和Stiefel于1952年在求解线性方程组时提出的,
并由Fletcher和Reeves于1964年推广到非线性优化领域.
后,Beale,Powell,Fletcher等著名的优化专家对非线性
令 Sk x x0 u u Lk 。
定理2 从任意一点 x0 出发,得到的点序列
x1, x2 ,具有性质
(xk ) min (x0 u) (u Lk) (2.17)
的充分必要条件是 xk Sk且余量rk和Lk正交,即
(rk ,u) 0 (u Lk )
)
t( Axk
b,
pk
)
t2 2
( Apk
,
pk
计算方法——共轭梯度法求解线性方程组的matlab程序
![计算方法——共轭梯度法求解线性方程组的matlab程序](https://img.taocdn.com/s3/m/f7996f6948d7c1c709a14508.png)
21
附录 2 生成系数矩阵、右端项以及阶数的 matlab 程序
附录 2 生成系数矩阵、右端项以及阶数的 matlab 程序
clc;clear; n = input('输入系数矩阵的阶数 n: '); A = zeros(n,n); A(1,1:2) = [-2,1]; A(n,n-1:n) = [1,-2]; for i=2:n-1; A(i,i-1:i+1) = [1,-2,1]; end b = zeros(n,1); b(1) = -1; b(n) = -1; csvwrite('d:\data_A.txt',A); csvwrite('d:\data_b.txt',b); csvwrite('d:\data_n.txt',n);
k1附录2生成系数矩阵右端项以及阶数的matlab程序22附录2生成系数矩阵右端项以及阶数的matlab程序clc
计算方法上机报告
附录 1 共轭梯度法求解线性方程组的 matlab 程序
clear;clc; aa = input('\n 请选择系数矩阵、右端项以及系数矩阵阶数的输 入方式:\n 从文件中输入数据输入 1,\n 从命令窗口输入数据请输 入 2。\n'); if aa==1 A = load('d:\data_A.txt'); b = load('d:\data_b.txt'); n = load('d:\data_n.txt'); end if aa==2 A = input('\n 输入系数矩阵 A(对称正定):\n'); b = input('\n 输入线性方程组的右端项 b:\n'); n = input('\n 输入系数矩阵的阶数 n:\n'); end epsilon = input('\n 输入计算要求的精度 epsilon:\n'); x(:,1) = rand(n,1); alpha = zeros(n,1); %给定初始的向量
共轭梯度法求解线性方程组
![共轭梯度法求解线性方程组](https://img.taocdn.com/s3/m/bc47e3c380eb6294dd886c63.png)
实验1 共轭梯度法求解线性方程组1.算法原理2.程序框图3.程序使用说明。
本程序使用MATLAB来求解线性方程组Ax b源程序文件“gongetidu1.m”为共轭梯度法源程序,x为方程组的解,k为迭代次数,A为方程组的系数矩阵,b为方程组的右端项,ep为精度。
定义A, b,ep后,在命令窗口输入[x,k] = gongetidu1(A,b,ep),回车后即可算出方程组的解和迭代次数。
源程序文件“gongetidu2.m”为共轭梯度算例3.2中构造A,b矩阵的程序。
定义阶数n的数值后,在命令窗口输入[A,b] = gongetidu2(n)即可算出A, b矩阵。
4.算例计算结果此算例为课本113页计算实习3.2.首先,设定MATLAB的数值格式为“long”。
当n=100时,在命令窗口中输入“[A,b]=gongetidu2(100)”,回车后可得到A 和b的矩阵;假设精度ep = 10-3,然后在命令窗口输入“[x,k] = gongetidu1(A,b,10^-3)”即可算出方程组的解x和迭代次数k。
x=( 0.999999999999988,0.999999999999995,1.000000000000009,···0.9999 99999999997,0.999999999999998 )T(x向量一共有100个元素)k=49.同理,可以算出n=200,400的结果。
n=200时,同样假设精度ep = 10-3,结果为:x=( 0.999999999999974,1.000000000000023,0.999999999999935,···1.000000 000000029, 0.999999999999987)T (x向量一共有200个元素)k=99.n=400时,同样假设精度ep = 10-3,结果为:x=( 1.000000000000017,0.999999999999846,1.000000000000039,···0.99999999 9999881,1.000000000000062)T (x向量一共有400个元素)k=199。
线性方程组的共轭梯度法
![线性方程组的共轭梯度法](https://img.taocdn.com/s3/m/94bd2d580b1c59eef8c7b4c9.png)
gT2 d (1) 0(精确一维搜索的要求)
可得gT2 g1 0,从而关系(2)也成立.根据
gT2 d (2)
gT2 (g2
1d (1) )
g
T 2
g
2
,
关系(3)也成立.
设对某个i<m,关系(1), (2), (3)均成立,
现证明对i+1这些关系也成立
罗林开
模式识别与智能系统研究所
当i m 1时,由一维搜索的要求知(d (m1) )T gm+2 0
当1 i<m+1时,由归纳假设有(d (i) )T gm+1 0.因 d (1) , ,d (m1)关于A共
轭 (d (i) )T Ad (m1) 0 (d (i) )T gm+2 0 gm+2 m+1.
,得
(d (i1) )T
Ad (i)
(gi1)T
gi1 gi
i
i (d (i) )T
Ad (i)
(gi1)T
gi1 gi
i
gT i 1
Ad
(i)
(gi1)T
gi1 gi
i
gT i 1
gi1 gi
i
0
故关系(1)成立.
罗林开
模式识别与智能系统研究所
f (w) 1 wT w rT w 2
的最优解w* r.
罗林开
模式识别与智能系统研究所
2019/6/7
8
那么对于正定二次函数(A对称正定)
f (x) 1 xT Ax bT x 2
能否通过在n个方向上的一维搜索, 至多迭代n次获得其最优解x* A1b?
利用共轭梯度法求解线性方程组
![利用共轭梯度法求解线性方程组](https://img.taocdn.com/s3/m/5a64db76a45177232f60a26a.png)
利用共轭梯度法求解线性方程组翟莹1012205052在自然科学和工程技术中很多问题的解决常常归结为解线性方程组,而这些方程组的系数矩阵大致可分为两种:低阶稠密矩阵和大型稀疏矩阵。
而求解方程组的方法通常为直接法和迭代法。
直接法用于较低阶方程组的求解,效率较高;迭代法更适用于高阶方程组的求解,常用的经典迭代法有高斯-赛德尔迭代法和雅各比迭代法,但收敛效率较低;共轭梯度法(CG)以较高的收敛速度而经常被采用。
从理论上讲,一个n阶方程组最多迭代n 步就可求出精确解。
1 直接法直接法就是经过有限步算术运算,无需迭代可直接求得方程组精确解的方法。
但实际计算中由于舍入误差的存在和影响,这种方法也只能得到线性方程组的近似解,该方法是求解低阶稠密矩阵方程组的有效方法。
如Cramer法则,Gauss消元法及其变形(LU分解法、Cholesky 分解法、QR分解法)等。
Matlab中,用矩阵除法“/”或“\”直接求解线性方程组(见附录一),它是一个内部包含着许许多多的自适应算法,对超定方程用最小二乘法求解;对欠定方程因为它的解不唯一,Matlab给出所有解中范数最小的一个特解;对于三对角阵方程组,采用追赶法求解。
2 迭代法迭代法就是用某种极限过程去逐步逼近线性方程组精确解的方法。
该方法具有对计算机的存贮单元需求少,程序设计简单、原始系数矩阵在计算过程中不变等优点,是求解大型稀疏矩阵方程组的重要方法。
迭代法不是用有限步运算求精确解,而是通过迭代产生近似解逼近精确解。
如Jacobi迭代、Gauss-Seidel迭代、SOR迭代法等。
在科学研究和大型工程设计中提出的求解问题,经离散后,常常归结为求解形如Ax = b 的大型线性方程组,此时系数矩阵A和b是通过测量或其它方法得到的,但是在多数情况下方程可能是病态的,即A的条件数非常大。
此时,我们仍然用Matlab中的常规算法,得到的解则可能不是真解。
通常情况下,对系数矩阵A和方程的右端b作微小的扰动,再用上述方法求解,扰动后方程组的解与原方程组的解相差甚远。
共轭梯度方法
![共轭梯度方法](https://img.taocdn.com/s3/m/ce24d9fa370cba1aa8114431b90d6c85ec3a88d4.png)
共轭梯度方法(Conjugate Gradient Method)是求解线性方程组的一种迭代算法。
该方法适用于求解大型稀疏的对称正定线性方程组,可以显著减少计算量和存储空间。
该方法的主要思想是利用共轭方向(Conjugate Directions)的性质,在有限次迭代中求解方程组的解。
共轭梯度方法的基本步骤如下:
选取一个初值$x_0$,并令$r_0=b-Ax_0$,其中$b$ 为方程组的右端向量,$A$ 为系数矩阵。
计算一个共轭方向$p_0=r_0$,即$p_0$ 与$r_0$ 正交,并满足$Ap_0 \neq 0$。
对于$k=0,1,2,\ldots$,执行以下操作:
a. 计算$\alpha_k=\frac{r_k^Tr_k}{p_k^TAp_k}$。
b. 更新解向量$x_{k+1}=x_k+\alpha_kp_k$。
c. 计算残差向量$r_{k+1}=r_k-\alpha_kAp_k$。
d. 计算$\beta_k=\frac{r_{k+1}^Tr_{k+1}}{r_k^Tr_k}$。
e. 更新共轭方向$p_{k+1}=r_{k+1}+\beta_kp_k$,即$p_{k+1}$ 与$p_k$ 具有共轭性。
如果残差向量$r_k$ 较小,则停止迭代,输出解向量$x_k$。
共轭梯度方法具有收敛速度快、存储空间小等优点,但对于非对称和非正定的线性方程组,该方法可能不收敛。
同时,该方法也有一些变体,如预处理共轭梯度法、共轭残差法等,可以更好地解决不同类型的线性方程组求解问题。
共轭梯度法
![共轭梯度法](https://img.taocdn.com/s3/m/e1ba2c11b7360b4c2e3f645b.png)
共轭梯度法1. 算法原理求解一个系数矩阵为正定矩阵的线性方程组可通过求泛函)(x f 的极小值点来获得,进而可以利用共轭梯度法来求解。
共轭梯度法中关键的两点是,确定迭代格式)()()1(k k k k d x x α+=+中的搜索方向)(k d 和最佳步长k α。
实际上搜索方向)(k d是关于矩阵A 的共轭向量,在迭代中逐步构造之;步长k α的确定原则是给定迭代点)(k x 和搜索方向)(k d 后,要求选取非负数k α,使得)()()(k k k d x f α+达到最小,即选择0≥k α,满足)(min )()()(0)()(k k k k k d x f d x f kααα+=+≤。
设迭代点)(k x和搜索方向)(k d已经给定,k α可以通过一元函数)()()()(k k d xf g αα+=的极小化)()(min )()(0k k d xf g ααα+=≤来求得,所以最佳步长)()()()(k k k k k Addd r TT=α。
在给定初始向量)0(x 后,由于负梯度方向是函数下降最快的方向,故第1次迭代取搜索方向)0()0()0()0()(Ax b x f r d-=-∇==。
令)0(0)0()1(d x x α+=,其中)0()0()0()0(0Addd r TT=α。
第2次迭代时,从)1(x 出发的搜索方向不再取()1r,而是选取)0(0)1()1(d r d β+=,使得)1(d与()0d 是关于矩阵A 的共轭向量,即要求)1(d 满足()()()0,01=Ad d ,由此可求得参数)0()0()0()1(0-Ad d Ad r TT=β,然后从()1x 出发,沿方向)1(d进行搜索得)1(1)1()2(d x xα+=,其中1α已由上面k α的计算式获得。
一般地,设已经求出)()()1(k k k k d x x α+=+,计算)1()1(++-=k k Ax b r。
共轭梯度法求解方程组
![共轭梯度法求解方程组](https://img.taocdn.com/s3/m/0f75136e4a73f242336c1eb91a37f111f1850d1f.png)
共轭梯度法是一种常用的迭代方法,用于求解线性方程组Ax = b。
它适用于对称正定矩阵的情况,可以高效地求解大规模的线性方程组。
下面是使用共轭梯度法求解方程组的一般步骤:1. 初始化:选择一个初始解x0 和初始残差r0 = b - Ax0,设置初始搜索方向d0 = r0。
2. 迭代计算:进行迭代计算,直到满足停止准则(如残差的大小或迭代次数达到一定阈值)为止。
a. 计算步长αk = (rk^T rk) / (dk^T A dk),其中rk = b - A xk 是当前的残差。
b. 更新解xk+1 = xk + αk dk。
c. 计算新的残差rk+1 = rk - αk A dk。
d. 计算新的搜索方向dk+1 = rk+1 + (rk+1^T rk+1) / (rk^T rk) dk。
e. 更新迭代次数k = k + 1。
3. 输出解:当满足停止准则时,输出最终的解x。
需要注意的是,共轭梯度法的效率和收敛速度与矩阵的条件数有关。
对于病态矩阵或条件数较大的情况,可能需要进行预处理或使用其他更适合的求解方法。
此外,共轭梯度法还可以应用于非线性方程组的求解,采用牛顿法等方法来迭代求解。
在实际应用中,可以使用现有的数值计算库或软件来实现共轭梯度法,以提高计算的效率和精度。
计算方法——共轭梯度法求解线性方程组
![计算方法——共轭梯度法求解线性方程组](https://img.taocdn.com/s3/m/0df14e15a8114431b80dd808.png)
图 4 命令窗口显示的运行结果
1.6 1.4 1.2 1
残量
0.8 0.6 0.4 0.2 0 0 20 40 60 80 100
迭代步数
图 5 残量随迭代步数的变化
图 6 程序运行后 D 盘根目录下生成的文件
5
4
1 1
1 0 ,b 2 1 0 1 1 2
计算方法上机报告
矩阵 A 的阶数取 200 进行求解。 由于该线性方程组的系数矩阵阶数比较大,而且具有一定的规律,因此首先用 matlab 编程将系数矩阵、右端项以及阶数保存在 D 盘根目录的三个文件中(生成系数 矩阵, 右端项以及阶数的程序见附录 2) , 然后运行共轭梯度法程序进行方程组的求解。 最终的运行结果为图 4 和图 5。程序运行之后 D 盘根目录下生成的文件如图 6 所示。
18 9 27 9 1 18 45 0 45 2 ,b A 9 16 0 126 9 27 45 9 135 8
由于该方程组的系数矩阵以及右端项都比较简单,因此采用从 matlab 命令窗口手 动输入的方式来输入数据,取计算精度为 10-6,运行过程及结果如图 2 和图 3(由于迭 代的初始值为随机产生,因此每次得到的残量图会有所不同,但最终都趋于 0) :
|| r ||2 k k 22 ; || r ||2
d
k 1
r
k 1
k d ;
k
end do
图 1 共轭梯度法求解线性方程组程序框图
1.2 程序使用说明 共轭梯度法求解线性方程组的 matlab 程序见附录 1,该程序可以求解系数矩阵为 对称正定矩阵的线性方程组。在使用该程序时,可将程序复制到 matlab 命令窗口中直 接运行或者复制到编辑窗口中保存运行,运行时刻根据提示输入,直至得到结果。 开始运行程序时,会出现提示“请选择系数矩阵、右端项以及系数矩阵阶数的输
线性方程组的共轭梯度法
![线性方程组的共轭梯度法](https://img.taocdn.com/s3/m/5eae4c2226d3240c844769eae009581b6ad9bd72.png)
迭代过程
计算方程组的雅可比矩阵A和右端项b,得到线性方程组Ax=b。 计算初始残差r0=b-Ax0。 进行迭代,对于k=0,1,2,...,max_iter,执行以下步骤
迭代过程
01
1. 计算搜索方向pk=-Ak^T。
02
2. 在搜索方向pk上进行线搜索,找到步长λk,使得 Axk+1=b-λk*r^k最小化。
感谢观看
THANKS
定义
线性方程组是由一组线性方程组成的 数学模型,其中包含未知数和已知数。
分类
根据方程的系数矩阵和常数项矩阵, 线性方程组可以分为多种类型,如超 定方程组、欠定方程组和恰定方程组。
线性方程组的求解方法
直接法
通过消元或迭代等方法将方程组化为标准形式,然后 求解。
迭代法
通过不断迭代更新解的近似值,逐步逼近方程的解。
在金融工程中的应用
投资组合优化
共轭梯度法可以用于求解投资组合优化问题 ,以最大化投资收益或最小化风险。
期权定价
在期权定价模型中,共轭梯度法可以用于求解 Black-Scholes方程,以得到期权的合理价格。
风险管理
在风险管理方面,共轭梯度法可以用于求解 风险评估模型中的最优化问题,以评估和管 理金融风险。
解效率。
02
常用的预处理方法包括对角占优预处理、不完全LU
分解预处理等。
03
预处理技术可以消除原始方程组中的病态条件,降低
数值误差的放大效应。
自适应步长调整策略
自适应步长调整策略可以根据上 一步的搜索结果动态调整步长, 提高算法的稳定性和收敛速度。
常见的自适应步长调整策略包括 Armijo线搜索、Goldstein线搜
科学计算
第三章 线性代数方程组的共轭梯度法
![第三章 线性代数方程组的共轭梯度法](https://img.taocdn.com/s3/m/6137b34059eef8c75fbfb3b4.png)
对于 k = 0 ,1, 2 ,
tk
=
(r(k) )T p(k) (p(k) )T Ap(k)
x (k+1) = x (k) + t k p(k)
r(k+1) = b − Ax(k+1) = r(k) − t k Ap(k)
sk
=
− (p(k) )T Ar(k+1) (p(k) )T Ap(k)
p(k+1) = r (k+1) + sk p(k)
2:在射线x = x(k ) + tp (k )上求f ( x)的极小点x(k +1) , 即 f ( x(k +1) ) = min f ( x(k ) + tp (k ) )
t>0
3: 判 断 ∇ f ( x (k +1) ) ≤ ε , 或 x(k +1 ) − x(k) ≤ ε !
是 ! x* ≈ x (k +1), 停 止 ; 否 ! k = k + 1, 转 1.
=
x(0)
+t0p(0).
华北电力大学数理学院
School of mathematics & physics
§3 共轭梯度法
对于 k = 1,2,
现有x ( k )及共轭方向p ( k −1),则
r(k) = b − Ax(k)
在r ( k )和p ( k −1) 确定的超平面上 找共轭方向
其中
p(k) = r(k) + sk p(k−1)
华北电力大学数理学院
School of mathematics & physics
定理1:设p 1 , p 2 , p n 是关于n阶对称正定 矩阵A共轭的向量组,则以 p(k)为下降方向的算
共轭梯度法求解线性方程组
![共轭梯度法求解线性方程组](https://img.taocdn.com/s3/m/07f6faca81c758f5f61f6741.png)
共轭梯度法求解线性方程组闫凡晓 3111054017(数学与统计学院,应用数学)摘要 本实验研究了用共轭梯度法求解线性方程组的思想及实现方法,并通过编写Matlab 程序对随机生成的一个线性方程组求解,通过程序的运行调试分析共轭梯度法对不同精度的实际性能,并针对误差进行分析。
关键字 共轭梯度法 误差容限 对称正定矩阵一、实验题目运用共轭梯度法求解一个系数矩阵为对称正定矩阵的线性方程组b Ax =.二、算法思想共轭梯度法是把求解线性方程组的问题转化为求解一个等价的严格凸二次函数的极小化问题。
从任意给定的初始点)0(x出发,沿一组关于A 共轭的方向进行线性搜索,在不考虑舍入误差的情况下,最多迭代n 步(n 是线性方程组的阶数),便可求得二次函数的极小点,也即求得了线性方程组b Ax =的解.对于某些大型稀疏线性方程组,通常该法只经过比方程组阶数n 小得多的迭代次数就能获得所要求精度的近似解.三、算法实现(1)共轭梯度法的简化的计算公式⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧+=-=-=+==-==++++++.,,,,,)()1()1()()()()1()1()1()()()1()()()()()0()0()0(k k k k k T k k T k k k k k k k k k T k k T k k d r d Ad d Ad r Ax b r d x x Ad d d r Ax b r d ββαα(2)基于Matlab 程序的共轭梯度算法实现步骤 1)给定初始近似向量)0(x及精度要求ε<1.0e-4;2)计算,)0()0(Ax b r -=取)0()0(r d =; 3)For 0=k to 1-n do(i),)()()()(kTkkTkk Adddr=α(ii),)()()1(kkkk dxxα+=+(iii),)1()1(++-=k k Axbr(iv)若)1(+krε≤或nk=+1,则输出近似解)1(+kx,停止;否则转(v),(v)22)(22)1(kkkrr+=β,(vi).)()1()1(kkkk drdβ+=++End do四、实验平台MATLAB 7.6.0五、算法设计%用共轭梯度法求解对称正定线性方程组Ax=b的解clear allA=randint(10,10,[-10,10]);A=A'*A;A=A+A'; %随机生成一个10*10对称正定矩阵Ay=eig(A); %求A的特征值for i=1:10 %判断A的正定性if y(i)<0disp('随机生成的矩阵不是正定矩阵')break;endendb=randint(10,1,[-10,10]); %随机生成一10*1列向量x=randint(10,1,[-10,10]); %随机生成方程初始值iter=10; %最大迭代次数-1tol=1.0e-4; %误差容限d=b-A*x;r=b-A*x;for cnt=1:iter %开始迭代a=(norm(r))^2/(d'*A*d);x=x+a*d;r=b-A*x;if (norm(r)/norm(b))<=toldisp('恭喜您,收敛于误差容限')break;endc=(norm(r)/norm(b-A*(x-a*d)))^2;d=r+c*d;cnt=cnt+1;endz=A\b; %计算方程组的精确解y=norm(x-z);y %精确解与数值解的误差x %数值解cnt %迭代次数六、实验结果y =1.1417e-004x =1.0e+004 *-0.6383-0.3289-0.42850.0773-1.39880.3944-1.47841.08641.5021-0.5389cnt =11恭喜您,收敛于误差容限y =1.3975e-009 x =-0.2072 0.7229 -0.1594 -0.2036 0.2337 0.3801 0.1783 0.0894 -0.6825 -0.4136cnt =10七、实验分析通过以上程序的编写及运行,从获得的数据来说,共轭梯度法基本成功,理论上计算中若无计算误差,则至多迭代n 次就求得了方程组的准确解。
共轭梯度法
![共轭梯度法](https://img.taocdn.com/s3/m/43b9657f590216fc700abb68a98271fe910eaf2f.png)
共轭梯度法简介共轭梯度法是一种迭代的最优化算法,用于求解线性方程组或求解非线性优化问题。
它在解决大规模线性方程组时表现出色,尤其适用于对称正定矩阵的问题。
共轭梯度法结合了最速下降法和共轭方向法的优点,能够在有限次数的迭代中快速收敛到最优解。
背景在数值计算和优化问题中,线性方程组的求解是一个常见且重要的问题。
例如,在图像处理、数据分析和机器学习等领域,我们经常需要求解一个大规模的线性方程组。
然而,传统的直接方法,如高斯消元法或LU分解,对于大规模问题往往计算量巨大,耗时较长。
因此,我们需要寻找一种高效的迭代方法来解决这些问题。
共轭梯度法的核心思想是通过一系列共轭的搜索方向来逼近最优解。
具体来说,对于一个对称正定的线性方程组Ax=b,共轭梯度法的步骤如下:1.初始化解向量x0和残差x0=x−xx0。
2.计算初始搜索方向x0=x0。
3.进行共轭梯度迭代:重复以下步骤n次或直到收敛为止。
a.计算步长$\\alpha_k=\\frac{r_k^Tr_k}{d_k^TAd_k}$。
b.更新解向量$x_{k+1}=x_k+\\alpha_kd_k$。
c.更新残差$r_{k+1}=r_k-\\alpha_kAd_k$。
d.计算新的搜索方向$d_{k+1}=r_{k+1}+\\frac{r_{k+1}^Tr_{k+1}}{r_k^Tr_k}d_k$。
共轭梯度法与其他迭代方法相比有以下特点:1.高效性:共轭梯度法能够在有限次数的迭代中收敛到最优解,尤其适用于对称正定矩阵。
相比于直接方法,其计算量较小,具有更高的计算效率。
2.无需存储完整矩阵:共轭梯度法只需知道矩阵A的乘法运算结果,不需要存储完整的矩阵。
这对于大规模问题是一个很大的优势。
3.不需要计算矩阵的特征值:相比于其他迭代方法,共轭梯度法不需要计算矩阵的特征值,因此在实际问题中更加实用。
算法应用共轭梯度法广泛应用于各个领域的优化问题和线性方程组求解问题,包括:1.图像处理:共轭梯度法用于图像恢复、图像去噪和图像分割等问题。
matlab共轭梯度法求解方程组
![matlab共轭梯度法求解方程组](https://img.taocdn.com/s3/m/239bcd62cdbff121dd36a32d7375a417866fc1d2.png)
主题:matlab共轭梯度法求解方程组近年来,随着科学技术的不断发展,数学建模和计算机仿真成为科学研究和工程技术领域的重要手段。
在实际应用中,我们常常需要解决线性方程组的求解问题,而共轭梯度法作为一种高效的迭代求解方法,广泛应用于信号处理、图像处理、地球物理勘探和优化问题等领域。
本文将介绍如何利用matlab中的共轭梯度法求解线性方程组的基本原理和实际操作方法。
1. 共轭梯度法的基本原理共轭梯度法是一种迭代法,用于求解对称正定线性方程组Ax=b。
该方法的核心思想是通过一系列的迭代操作,逐步逼近方程组的解,直到满足一定的精度要求。
在每一步迭代中,共轭梯度法利用残差和方向向量的共轭性质,不断寻找最优的步长,从而实现方程组的求解。
2. matlab中共轭梯度法的基本调用方法在matlab中,调用共轭梯度法求解线性方程组非常简单。
需要将方程组的系数矩阵A和右端向量b输入到matlab中,然后利用内置函数conjugateGradient进行求解。
具体的调用方法如下:x = conjugateGradient(A, b, x0, maxIter, tol)其中,A为系数矩阵,b为右端向量,x0为初始解向量,maxIter为最大迭代次数,tol为精度要求。
调用完毕后,matlab将返回方程组的近似解x。
3. 共轭梯度法在实际工程中的应用共轭梯度法作为一种高效的求解方法,在工程技术领域得到了广泛的应用。
以图像处理为例,图像处理中经常需要解决大规模的线性方程组,而共轭梯度法能够高效地求解这类问题,提高了图像处理算法的效率和稳定性。
另外,在地球物理勘探中,共轭梯度法也被广泛应用于三维数据的快速处理和解释。
可以说,共轭梯度法在实际工程中发挥着重要的作用。
4. 共轭梯度法的优缺点分析尽管共轭梯度法具有非常高的效率和稳定性,但是该方法也存在一些缺点。
该方法只适用于对称正定的线性方程组,对于一般的线性方程组并不适用。
共轭梯度法的收敛速度受到方程条件数的影响,对于病态问题,可能收敛速度较慢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 1
1 0 ,b 2 1 0 1 1 2
计算方法上机报告
矩阵 A 的阶数取 200 进行求解。 由于该线性方程组的系数矩阵阶数比较大,而且具有一定的规律,因此首先用 matlab 编程将系数矩阵、右端项以及阶数保存在 D 盘根目录的三个文件中(生成系数 矩阵, 右端项以及阶数的程序见附录 2) , 然后运行共轭梯度法程序进行方程组的求解。 最终的运行结果为图 4 和图 5。程序运行之后 D 盘根目录下生成的文件如图 6 所示。
18 9 27 9 1 18 45 0 45 2 ,b A 9 16 0 126 9 27 45 9 135 8
由于该方程组的系数矩阵以及右端项都比较简单,因此采用从 matlab 命令窗口手 动输入的方式来输入数据,取计算精度为 10-6,运行过程及结果如图 2 和图 3(由于迭 代的初始值为随机产生,因此每次得到的残量图会有所不同,但最终都趋于 0) :
k
k
r d k T k d Ad
k T k
(3)
r ( k 1)T Ad ( k ) d ( k )T Ad ( k )
(4)
经过一系列的证明和简化,最终可得共轭梯度法的计算过程如下,计算程序框图 如图 1。 (1) 给定初始计算向量 x(0)即精度>0; (2) 计算 r(0) = b -Ax(0),取 d(0) = r(0); (3) for k =0 to ① k ②
|| r ||2 k k 22 ; || r ||2
d
k 1
r
k 1
k d ;
k
end do
图 1 共轭梯度法求解线性方程组程序框图
1.2 程序使用说明 共轭梯度法求解线性方程组的 matlab 程序见附录 1,该程序可以求解系数矩阵为 对称正定矩阵的线性方程组。在使用该程序时,可将程序复制到 matlab 命令窗口中直 接运行或者复制到编辑窗口中保存运行,运行时刻根据提示输入,直至得到结果。 开始运行程序时,会出现提示“请选择系数矩阵、右端项以及系数矩阵阶数的输
计算方法上机报告
计算方法上机报告
1 共轭梯度法求解线性方程组
1.1 算法原理及程序框图 当线性方程组 Ax = b 的系数矩阵 A 是对称正定矩阵是,可以采用共轭梯度法对该 方程组进行求解,可以证明,式(1)所示的 n 元二次函数 1 f ( x ) x T Ax bT x (1) 2 取得极小值点 x*是方程 Ax = b 的解。共轭梯度法是把求解线性方程组的问题转化为求 解一个与之等价的二次函数极小化的问题。从任意给定的初始点出发,沿一组关于矩 阵 A 的共轭方向进行线性搜索,在无舍入误差的假定下,最多迭代 n 次(其中 n 为矩 阵 A 的阶数) ,就可求得二次函数的极小点,也就求得线性方程组 Ax = b 的解。其迭 代格式为公式(2)。
x( k 1) x( k ) k d ( k )
(2)
(k)
共轭梯度法中关键的两点是迭代格式(2)中最佳步长k 和搜索方向 d
(k) (k)
的确定。其
中k 可以通过一元函数f(x +d )的极小化来求得,其表达式为公式(3);取 d (0) = r(0) = b-Ax(0),则 d(k+1) = r(k+1) +kd(k),要求 d(k+1)满足 (d(k+1) , Ad(k)) = 0,可得k 的表达 式(4)。
3
1 共轭梯度法求解线性方程组
图 2 命令窗口显示的运行结果
25
20
15
残量
10 5 0 1
1.5
2
2.5
3
迭代步数
图 3 残量随迭代步数的变化
(2) 《数值分析》课本第 113 页的计算实习题 3.2,用共轭梯度法求解线性方程组 Ax = b,其中
2 1 1 2 A
2
计算方法上机报告
入方式:从文件中输入数据输入 1,从命令窗口输入数据请输入 2。 ”此时需要选择数 据输入的方式(方式 1 和方式 2) ,即文件输入(选择 1)或者手动输入(选择 2) 。当 线性方程组 Ax = b 的系数矩阵的阶数较大时,将该系数矩阵 A、右端项 b 以及系数矩 阵的阶数 n 保存为 txt 格式放在 D 盘的根目录下并分别命名为 data_A、 data_b 和 data_n, 并输入 1 选择文件输入。若系数矩阵 A 的阶数较小,使用手动输入工作量小时,可在 命令框中输入 2 选择手动输入。选择手动输入时需要输入系数矩阵 A、右端项 b 以及 系数矩阵的阶数 n 这三个量,其输入格式与 matlab 中矩阵、列向量和数的输入格式要 求相同。A=[aij]n×n 的输入格式为[a11,a12,…,a1n;a21,a22,…,a2n;…;an1,an2,…,ann],b=(bi)T 的 输入格式为[b1;b2;…;bn], n 直接输入对应的数值即可。 定义完需要求解的线性方程组之 后,接下来会出现提示“输入计算要求的精度 epsilon: ” ,按照提示输入精度值,如要 求的精度为 10-6 时输入 1e-6 即可。以上数据的输入全部完成,每次按提示输入完成时 按 Enter 键继续下一步。在程序运行过程中,屏幕上会显示残差||r||2 随着迭代步数的变 化散点图,程序运行完成之后,matlab 命令窗口会显示线性方程的解 x,同时该解会被 保存到 D 盘根目录下名为 data_x_result 的 Excel 文件中,方便之后的数据处理(注意 在求解一个新方程组之前查看 D 盘根目录,将上次得到的文件删除,以免影响本次计 算的结果) 。 1.3 算例计算结果 (1) 《数值分析》课本第 29 页的例题 2.2.2,下面采用共轭梯度法来求解线性方程 组 Ax = b,其中
图 4 命令窗口显示的运行结果
1.6 1.4 1.2 1
残量
0.8 0.6 0.4 0.2 0 0 20 40 60 80 100
迭代步数
图 5 残量随迭代步数的变化
图 6 程序运行后 D 盘根目录下生成的文件
5
k T
n-1 do
k
r r ; k T k d Ad
xkLeabharlann 1 x k d ;
k k
1
1 共轭梯度法求解线性方程组
③
r
k 1
b Ax
k 1
k 1
;
④ 若 || r k 1 || 或 k 1 n ,则输出近似解 x(k+1),停止;否则,转⑤; ⑤ ⑥