高中数学双曲线离心率求法专题
高中数学专题 双曲线中的离心率问题(含答案解析)
高中数学专题 双曲线中的离心率问题限时:120 分钟满分:150 分一、单选题:本大题共 8 小题,每个小题 5 分,共 40 分. 在每小题给出的选项中,只有一项是符合题目要求的.1.设F 1、F 2分别是双曲线C :x 2-y 2b=1的左、右焦点,过F 2作x 轴的垂线与C 相交于A 、B 两点,若△ABF 1为正三角形,则C 的离心率为()A.2B.63C.22D.32.若双曲线C :y 2a 2-x 2b 2=1a >0,b >0 的一条渐近线被圆x 2+y -2 2=4所截得的弦长为23,则C的离心率为()A.2B.233C.223D.4333.已知双曲线C :x 2a2-y 2b 2=1(a >0,b >0)的右焦点为F ,A 、B 两点在双曲线的左、右两支上,且OA+OB =0,AF ⋅FB =0,3BF =FC ,且点C 在双曲线上,则双曲线的离心率为()A.103B.102C.52D.2334.如图,双曲线x 2a2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,直线l 过点F 1与双曲线的两条渐近线分别交于P ,Q 两点.若P 是F 1Q 的中点,且F 1Q ⋅F 2Q=0,则此双曲线的离心率为()A.3B.2C.22D.235.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,若在C 上存在点P (不是顶点),使得∠PF 2F 1=3∠PF 1F ,则C 的离心率的取值范围为()A.2,2B.3,+∞C.(1,3]D.1,26.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点为F 1、F 2,点M ,N 在C 上,且F 1F 2 =3MN ,F 1M⊥F 2M ,则双曲线C 的离心率为()A.6+32B.6+3C.2+2D.5+27.已知双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的上下焦点分别为F 1,F 2,点M 在C 的下支上,过点M 作C的一条渐近线的垂线,垂足为D ,若MD >F 1F 2 -MF 1 恒成立,则C 的离心率的取值范围为()A.1,53B.53,2C.1,2D.53,+∞8.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左顶点为A ,过A 的直线l 与C 的右支交于点B ,若线段AB 的中点在圆O :x 2+y 2=a 2上,且OB =7OA ,则双曲线C 的离心率为()A.2B.3C.2D.3二、多选题:本大题共4小题,每个小题5分,共20分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.9.双曲线x 2a 2-y 2b 2=1的离心率为e 1,双曲线y 2b 2-x 2a2=1的离心率为e 2,则e 1+e 2的值不可能是()A.3B.22C.145D.5210.双曲线x 2-y 2a2=1的离心率为e ,若过点(2,2)能作该双曲线的两条切线,则e 可能取值为().A.324B.2C.32D.211.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1的直线l 与圆x 2+y 2=a 2相切,且与C 交于M ,N 两点,若cos ∠F 1NF 2=45,则C 的离心率可能为()A.53B.32C.52D.13312.已知F 1、F 2是双曲线x 2a2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 2作双曲线一条渐近线的垂线,垂足为点A,交另一条渐近线于点B,且AF2=13F2B,则该双曲线的离心率为().A.62B.2C.3D.5三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.双曲线x2a2-y2b2=1(a>0,b>0)的一条渐近线方程为y=22x,则其离心率是.14.已知双曲线方程为C:x2a2-y2b2=1(a>0,b>0),左焦点F关于一条渐近线的对称点在另一条渐近线上,则该双曲线的离心率为.15.已知双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点为F c,0,直线l:x=c与双曲线C交于A,B两点,与双曲线C的渐近线交于D,E两点,若DE=2AB,则双曲线C的离心率是.16.已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,双曲线的左顶点为A,以F1F2为直径的圆交双曲线的一条渐近线于P,Q两点,其中点Q在y轴右侧,若AQ≥3AP,则该双曲线的离心率的取值范围是.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知F1,F2分别为双曲线x2a2-y2b2=1a>0,b>0的左、右焦点,P为双曲线右支上的任意一点,当PF12PF2取最小值时,求双曲线的离心率e的取值范围.18.已知椭圆C1:x2a21+y2b21=1a1>b1>0与双曲线C2:x2a22-y2b22=1a2>0,b2>0,有相同的左、右焦点F1,F2,若点P是C1与C2在第一象限内的交点,且F1F2=4PF2,设C1与C2的离心率分别为e1,e2,求e2-e1的取值范围.19.已知双曲线T:x2a2-y2b2=1(a>0,b>0)离心率为e,圆O:x2+y2=R2R>0.(1)若e=2,双曲线T的右焦点为F2,0,求双曲线方程;(2)若圆O过双曲线T的右焦点F,圆O与双曲线T的四个交点恰好四等分圆周,求b2a2的值;(3)若R=1,不垂直于x轴的直线l:y=kx+m与圆O相切,且l与双曲线T交于点A,B时总有∠AOB=π2,求离心率e的取值范围.20.已知点P是双曲线C:x2a2-y2b2=1(a>0,b>0)右支上一点,F1、F2是双曲线的左、右焦点,PF1=(2+3)PF2,∠F1PF2=60°.(1)求双曲线的离心率;(2)设R、r分别是△F1PF2的外接圆半径和内切圆半径,求Rr.21.已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,A为双曲线C左支上一点,AF2-AF1=2b.(1)求双曲线C的离心率;(2)设点A关于x轴的对称点为B,D为双曲线C右支上一点,直线AD,BD与x轴交点的横坐标分别为x1,x2,且x1x2=1,求双曲线C的方程.22.已知双曲线C:x2a2-y2b2=1(a>0,b>0),若直线l与双曲线C交于A,B两点,线段AB的中点为M,且k AB⋅k OM=34(O为坐标原点).(1)求双曲线C的离心率;(2)若直线l不经过双曲线C的右顶点N2,0,且以AB为直径的圆经过点N,证明直线l恒过定点E,并求出点E的坐标.高中数学专题 双曲线中的离心率问题答案解析限时:120 分钟满分:150 分一、单选题:本大题共 8 小题,每个小题 5 分,共 40 分. 在每小题给出的选项中,只有一项是符合题目要求的.1.设F 1、F 2分别是双曲线C :x 2-y 2b=1的左、右焦点,过F 2作x 轴的垂线与C 相交于A 、B 两点,若△ABF 1为正三角形,则C 的离心率为()A.2B.63C.22D.3【解析】设AF 2 =t ,因为AB ⊥x 轴,则点A 、B 关于x 轴对称,则F 2为线段AB 的中点,因为△ABF 1为等边三角形,则∠AF 1F 2=30°,所以,AF 1 =2AF 2 =2t ,所以,AF 1 -AF 2 =AF 2 =t =2a =2,则AF 1 =2AF 2 =2t =4,所以,2c =F 1F 2 =AF 12-AF 2 2=42-22=23,则c =3,因此,该双曲线C 的离心率为e =ca= 3.故选:D .2.若双曲线C :y 2a 2-x 2b 2=1a >0,b >0 的一条渐近线被圆x 2+y -2 2=4所截得的弦长为23,则C的离心率为()A.2B.233C.223D.433【解析】双曲线C 的渐近线方程为y =±a b x ,直线y =±ab x 被圆x 2+y -2 2=4所得截得的弦长为23,则圆心0,2 到直线y =±ab x 的距离为d =22-3 2=1,由点到直线的距离公式可得d =21+ab2=1,解得a 2b 2=3,则b 2a2=13,因此,双曲线C 的离心率为e =ca =1+b a2=1+13=233.故选:B .3.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,A 、B 两点在双曲线的左、右两支上,且OA+OB =0,AF ⋅FB =0,3BF =FC ,且点C 在双曲线上,则双曲线的离心率为()A.103B.102C.52D.233【解析】设双曲线的左焦点为F ,连接AF ,BF ,CF ,因为AF ⋅FB =0,所以AF ⊥FB ,因为OA +OB =0,所以OA =OB ,因为OF =OF ,所以四边形AFBF 为矩形,设BF =t (t >0),则FC =3t ,BF =2a +t ,CF =2a +3t ,在Rt △CBF 中,BC 2+BF 2=CF 2,所以4t 2+2a +t 2=2a +3t 2,化简得t 2-at =0,解得t =a ,在Rt △BFF 中,BF 2+BF 2=FF 2,所以t 2+2a +t 2=4c 2,所以a 2+9a 2=4c 2,所以10a 2=4c 2,得10a =2c ,所以离心率e =c a =102,故选:B4.如图,双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,直线l 过点F 1与双曲线的两条渐近线分别交于P ,Q 两点.若P 是F 1Q 的中点,且F 1Q ⋅F 2Q=0,则此双曲线的离心率为()A.3B.2C.22D.23【解析】因为F 1Q ⋅F 2Q =0,则QF 1⊥QF 2,所以△F 1F 2Q 是直角三角形,又因为O 是F 1F 2的中点,所以OQ 是直角△F 1F 2Q 斜边中线,因此F 1O =OQ ,而点P 是线段F 1Q 的中点,所以△F 1OQ 是等腰三角形,因此∠F 1OP =∠POQ ,由双曲线渐近线的对称性可知中:∠F 1OP =∠F 2OQ ,于是有:∠F 1OP =∠POQ =∠F 2OQ =π3,因为双曲线渐近线的方程为:y =±b ax ,因此有:ba=tan π3⇒b a =3⇒b 2=3a 2⇒c 2-a 2=3a 2⇒c =2a ⇒e =2,故选:B .5.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,若在C 上存在点P (不是顶点),使得∠PF 2F 1=3∠PF 1F ,则C 的离心率的取值范围为()A.2,2B.3,+∞C.(1,3]D.1,2【解析】设PF 1与y 轴交于Q 点,连接QF 2,则QF 1=QF 2,∴∠QF 1F 2=∠QF 2F 1,因为∠PF 2F 1=3∠PF 1F ,故P 点在双曲线右支上,且∠PF 2Q =∠PQF 2=2∠PF 1F 2,故|PQ |=|PF 2|,而|PF 1|-|PF 2|=2a ,故|PF 1|-|PF 2|=|PF 1|-|PQ |=|QF 1|=2a ,在Rt △QOF 1中,|QF 1|>|OF 1|,即2a >c ,故e =ca<2,由∠PF 2F 1=3∠PF 1F 2,且三角形内角和为180°,故∠PF 1F 2<180°4=45°,则cos ∠PF 1F 2=|OF 1||QF 1|>cos45°,即c2a>22,即e =c a >2,所以C 的离心率的取值范围为2,2 ,故选:A6.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点为F 1、F 2,点M ,N 在C 上,且F 1F 2 =3MN ,F 1M⊥F 2M ,则双曲线C 的离心率为()A.6+32B.6+3C.2+2D.5+2【解析】由于F 1F 2 =3MN ,所以x M =-2c ×13×12=-c 3,则-c32a2+y 2Mb 2=1,解得y M =b 3ac 2-9a 2,由于F 1M ⊥F 2M ,所以2c 3,b 3ac 2-9a 2 ⋅-4c 3,b3a c 2-9a 2 =0,整理得c 4-18a 2c 2+9a 4=0,两边除以a 4得e 4-18e 2+9=0,由于e >1,e 2>1,故解得e =6+ 3.故选:B7.已知双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的上下焦点分别为F 1,F 2,点M 在C 的下支上,过点M 作C的一条渐近线的垂线,垂足为D ,若MD >F 1F 2 -MF 1 恒成立,则C 的离心率的取值范围为()A.1,53B.53,2C.1,2D.53,+∞【解析】如图,过点F 2作渐近线的垂线,垂足为E ,设|F 1F 2|=2c ,则点F 2到渐近线y =±abx 的距离EF 2 =bca 2+b2=b .由双曲线的定义可得MF 1 -MF 2 =2a ,故MF 1 =MF 2 +2a ,所以MD +MF 1 =|MD |+MF 2 +2a ≥EF 2 +2a =b +2a ,即MD +MF 1 的最小值为2a +b ,因为MD >F 1F 2 -MF 1 恒成立,所以|MD |+MF 1 >F 1F 2 恒成立,即2a +b >2c 恒成立,所以,b >2c -2a ,即b 2>4c 2+4a 2-8ac ,即c 2-a 2>4c 2+4a 2-8ac ,所以,3c 2+5a 2-8ac <0,即3e 2-8e +5<0,解得1<e <53.故选:A .8.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左顶点为A ,过A 的直线l 与C 的右支交于点B ,若线段AB 的中点在圆O :x 2+y 2=a 2上,且OB =7OA ,则双曲线C 的离心率为()A.2B.3C.2D.3【解析】设线段AB 的中点为E ,双曲线的右顶点为D ,左右焦点为F 1,F 2,连接DE ,DB ,因为线段AB 的中点E 在圆O :x 2+y 2=a 2上,所以DE ⊥AB ,所以△ADE ≌△BDE ,所以AD =BD =2a ,因为OB =7OA ,所以OB =7a ,在△ODB 中,由余弦定理得cos ∠ODB =OD2+DB 2-OB 22OD ⋅DB =a 2+4a 2-7a 24a 2=-12,因为∠ODB ∈0,π ,所以∠ODB =2π3,所以∠BDF 2=π3,过B 作BF ⊥x 轴于F ,则BF =3a ,DF =a ,所以B 2a ,3a ,所以4a 2a 2-3a 2b 2=1,得a 2=b 2,所以a 2=c 2-a 2,2a 2=c 2,所以c =2a ,所以离心率e =ca=2,故选:A二、多选题:本大题共4小题,每个小题5分,共20分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.9.双曲线x 2a 2-y 2b 2=1的离心率为e 1,双曲线y 2b 2-x 2a2=1的离心率为e 2,则e 1+e 2的值不可能是()A.3B.22C.145D.52【解析】∵e 1+e 2 2=e 21+e 22+2e 1e 2=a 2+b 2a 2+a 2+b 2b 2+2×a 2+b 2a×a 2+b 2b=2+b 2a 2+a 2b2+2a 4+b 4+2a 2b 2a 2b 2=2+b 2a 2+a 2b 2+2a 2b 2+b 2a 2+2≥2+2+22+2=8,当且仅当b 2a 2=a 2b2即a =b 时取等号,所以e 1+e 2≥22.故选:CD .10.双曲线x 2-y 2a2=1的离心率为e ,若过点(2,2)能作该双曲线的两条切线,则e 可能取值为().A.324B.2C.32D.2【解析】斜率不存在时不合题意,所以直线切线斜率一定存在,设切线方程是y -2=k (x -2),由x 2-y 2a2=1y -2=k (x -2) 得(a 2-k 2)x 2+4k (k -1)x -4(k -1)2-a 2=0,显然a 2-k 2=0时,所得直线只有一条,不满足题意,所以k ≠±a ,由Δ=0得16k 2(k -1)2+4(a 2-k 2)[4(k -1)2+a 2]=0,整理为3k 2-8k +4+a 2=0,由题意此方程有两不等实根,所以Δ1=64-12(4+a 2)>0,a 2<43,则c 2=1+a 2<73(c 为双曲线的半焦距),e =c 1=c <213,即1<e <213,k =±a 代入方程3k 2-8k +4+a 2=0,得a =±1,此时e =2,综上,e 的范围是1,2 ∪2,213.故选:AC 11.已知双曲线C :x 2a2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1的直线l 与圆x 2+y 2=a 2相切,且与C 交于M ,N 两点,若cos ∠F 1NF 2=45,则C 的离心率可能为()A.53B.32C.52D.133【解析】当点M ,N 同时在双曲线C 的左支上时,设切点为P ,则OP ⊥MN ,OP =a ,OF 1 =c ,PF 1 =c 2-a 2=b .作F 2Q ∥OP 交MN 于点Q ,则F 2Q ⊥MN ,而O 为F 1F 2的中点,则P 为QF 1的中点,故F 2Q =2OP =2a ,QF 1 =2PF 1 =2b ,因为cos ∠F 1NF 2=45,∠F 1NF 2为锐角,故sin ∠F 1NF 2=35所以NF 2 =F 2Qsin ∠F 1NF 2=10a 3,NQ =NF 2 cos ∠F 1NF 2=8a3,NF 1 =NQ -QF 1 =8a 3-2b ,所以NF 2 =NF 1 +2a =8a 3-2b +2a =10a 3,则2a =3b ,故双曲线C 的离心率e =ca =1+b 2a2=1+232=133.当点M ,N 在双曲线的两支上时,仍有F 2Q =2OP =2a ,QF 1 =2PF 1 =2b ,因为cos ∠F 1NF 2=45,∠F 1NF 2为锐角,故sin ∠F 1NF 2=35所以NF 2 =F 2Qsin ∠F 1NF 2=10a 3,NQ =NF 2 cos ∠F 1NF 2=8a3,NF 1 =NQ +QF 1 =8a 3+2b ,所以NF 2 =NF 1 -2a =8a 3+2b -2a =10a 3,则4a =3b ,故双曲线C 的离心率e =ca =1+b 2a2=1+432=53,故选:AD12.已知F 1、F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 2作双曲线一条渐近线的垂线,垂足为点A ,交另一条渐近线于点B ,且AF 2=13F 2B ,则该双曲线的离心率为().A.62B.2C.3D.5【解析】当AF 2 =13F 2B时,设∠F 2OA =α,则∠AOB =2α,设a =1,如图,双曲线的渐近线方程为y =±b a x ,即tan α=b a ,在Rt △OAF 2中,tan α=|AF 2||OA |=ba ,设|AF 2|=bt ,|OA |=at ,又|AF 2|2+|OA |2=|OF 2|2,则(bt )2+(at )2=c 2,又双曲线中c 2=a 2+b 2,即有t =1,于是|OA |=a =1,|OF 2|=c =e ,|AF 2|=b ,|BF 2|=3b ,则|AB |=4b ,tan α=b a =b ,tan2α=4ba=4b ,代入得tan2α=2tan α1-tan 2α=2b 1-b 2=4b ,即2=4-4b 2,解得b =22,则e =c a =a 2+b 2=1+12=62,A 正确;当F 2A =13F 2B 时,设∠F 2OA =α,∠AOB =β,设a =1,如图,则∠F 2OB =α+β,∠F 1OB =π-(α+β),在Rt △OAF 2中,tan α=|AF 2||OA |=b a ,设|AF 2|=bt ,|OA |=at ,又|AF 2|2+|OA |2=|OF 2|2,则(bt )2+(at )2=c 2,又双曲线中c 2=a 2+b 2,即t =1,于是|OA |=a =1,|OF 2|=c =e ,|AF 2|=b ,|BF 2|=3b ,则|AB |=2b ,tan α=b a =b ,tan β=2ba=2b ,而tan ∠F 1OB =tan [π-(α+β)]=-tan (α+β)=tan α,即tan (α+β)=tan α+tan β1-tan α⋅tan β=-tan α,因此b +2b1-b ⋅2b=-b ,即3=2b 2-1,解得b =2,则e =c a =a 2+b 2=3,C 正确.故选:AC三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =22x ,则其离心率是.【解析】由题意知ba=22,又因为在双曲线中,c 2=a 2+b 2,所以e 2=c 2a 2=1+b 2a2=32,故e =62(负舍)14.已知双曲线方程为C :x 2a 2-y 2b 2=1(a >0,b >0),左焦点F 关于一条渐近线的对称点在另一条渐近线上,则该双曲线的离心率为.【解析】如图:设F 关于渐近线y =bax 对称的点A 在渐近线y =-b a x 上,FA 的中点B 在渐近线y =bax 上,则∠FOB =∠BOA ,又∠FOB =∠AOx ,所以∠FOB =∠BOA =∠AOx =60°,所以tan60°=ba=3,所以e =c a =a 2+b 2a 2=1+b a2=1+3=2.15.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为Fc ,0 ,直线l :x =c 与双曲线C 交于A ,B 两点,与双曲线C 的渐近线交于D ,E 两点,若DE =2AB ,则双曲线C 的离心率是.【解析】由双曲线方程可得其渐近线方程为:y =±ba x ,∵直线l :x =c ,∴AB 为双曲线的通径,则由x =cx 2a2-y2b 2=1得x =cy =±b 2a,则AB =2b 2a,由x=cy=±bax得x=cy=±bca,则DE =2bca,由DE=2AB得:2bca=4b2a即c=2b,所以a=c2-b2=3b,所以离心率e=ca=23316.已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,双曲线的左顶点为A,以F1F2为直径的圆交双曲线的一条渐近线于P,Q两点,其中点Q在y轴右侧,若AQ≥3AP,则该双曲线的离心率的取值范围是.【解析】依题意可得,以F1F2为直径的圆的方程为x2+y2=c2,不妨设双曲线的这条渐近线方程为y=ba x,由y=baxx2+y2=c2,得:x=ay=b或x=-ay=-b,所以Q(a,b),P(-a,-b),双曲线的左顶点为A,则A(-a,0),所以AQ=(a+a)2+b2=4a2+b2,AP=(-a+a)2+b2=b,因为AQ≥3AP,所以4a2+b2≥3b,化简得a2≥2b2,所以a2≥2(c2-a2),所以e2=a2c2≤32,所以e ≤62,又e>1,所以e∈1,62.四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.已知F1,F2分别为双曲线x2a2-y2b2=1a>0,b>0的左、右焦点,P为双曲线右支上的任意一点,当PF12PF2取最小值时,求双曲线的离心率e的取值范围.【解析】双曲线x2a2-y2b2=1a>0,b>0的左右焦点分别为F1,F2,P为双曲线右支上的任意一点,∴PF1-PF2=2a,PF1=2a+PF2,∴PF12PF2=2a+PF22PF2=4a2PF2+4a+PF2≥8a,当且仅当4a2PF2=PF2,即PF2=2a时取等号,∴PF1=2a+PF2=4a,∵PF 1 -PF 2 =2a <2c ,PF 1 +PF 2 =6a ≥2c ⇒e =ca≤3,∴e ∈1,3 ,故双曲线的离心率e 的取值范围为:1,3 ..18.已知椭圆C 1:x 2a 21+y 2b 21=1a 1>b 1>0 与双曲线C 2:x 2a 22-y 2b 22=1a 2>0,b 2>0 ,有相同的左、右焦点F 1,F 2,若点P 是C 1与C 2在第一象限内的交点,且F 1F 2 =4PF 2 ,设C 1与C 2的离心率分别为e 1,e 2,求e 2-e 1的取值范围.【解析】设PF 1 =m ,PF 2 =n ,F 1F 2 =2c ,由椭圆的定义可得m +n =2a 1,由双曲线的定义可得m -n =2a 1,解得m =a 1+a 2,n =a 1-a 2,由F 1F 2 =4PF 1 ,可得n =12c ,即a 1-a 2=12c ,由e 1=c a 1,e 2=c a 2,可得1e 1-1e 2=12,由0<e 1<1,可得1e 1>1,可得1e 2>12,即1<e 2<2,则e 2-e 1=e 2-2e 22+e 2=e 222+e 2,设2+e 2=t 3<t <4 ,则e 222+e 2=t -2 2t =t +4t-4,由于函数f t =t +4t -4在3,4 上递增,所以f t ∈13,1 ,即e 2-e 1的取值范围为13,1.19.已知双曲线T :x 2a 2-y 2b 2=1(a >0,b >0)离心率为e ,圆O :x 2+y 2=R 2R >0 .(1)若e =2,双曲线T 的右焦点为F 2,0 ,求双曲线方程;(2)若圆O 过双曲线T 的右焦点F ,圆O 与双曲线T 的四个交点恰好四等分圆周,求b 2a 2的值;(3)若R =1,不垂直于x 轴的直线l :y =kx +m 与圆O 相切,且l 与双曲线T 交于点A ,B 时总有∠AOB =π2,求离心率e 的取值范围.【解析】(1)因e =2,双曲线T 的右焦点为F 2,0 ,则c =2,ca =2,a =1,b 2=c 2-a 2=3,则双曲线方程为x 2-y 23=1.(2)如图所示,因为圆O与双曲线T的四个交点恰好四等分圆周,则OA=c,∠AOF=45°,则A22c,22c,代入双曲线方程x2a2-y2b2=1,可得b2a2-a2b2=2,令x=b2a2x>0,则x-1x=2,解得x=1+2,即b2a2=2+1.(3)由题知,作图如下,因为直线l:y=kx+m与圆O相切,且R=1,则圆心到直线l距离为mk2+1=1,化简得m2=k2+1,①又∠AOB=π2,设A x1,y1,B x2,y2,则k OA⋅k OB=-1,即y1x1⋅y2x2=-1,则k2x1x2+km x1+x2+m2x1x2=-1,②联立y=kx+mx2a2-y2b2=1得b2-a2k2x2-2a2kmx-a2m2-a2b2=0,则x1+x2=2a2kmb2-a2k2,x1x2=-a2m2+b2b2-a2k2,③联立①②③,得k2+1a2+a2b2-b2=0,则a2+a2b2-b2=0,又c2=a2+b2,则c2a2=c2-a2+2=b2+2>2,则e=ca>2,即离心率e的取值范围为2,+∞.20.已知点P 是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)右支上一点,F 1、F 2是双曲线的左、右焦点,PF 1=(2+3) PF 2 ,∠F 1PF 2=60°.(1)求双曲线的离心率;(2)设R 、r 分别是△F 1PF 2的外接圆半径和内切圆半径,求Rr.【解析】(1)由P 为双曲线的右支上一点,可得|PF 1|-|PF 2|=2a ,又PF 1=(2+3) PF 2 ,可得PF 1 =(3+1)a ,PF 2 =(3-1)a ,在△F 1PF 2中,∠F 1PF 2=60°,由余弦定理可得4c 2=(4+23)a 2+(4-23)a 2-2(3+1)(3-1)a 2⋅12=8a 2-2a 2=6a 2,即c =62a ,可得e =c a =62;(2)由2R =2csin60°=6a32=22a ,即R =2a ;因为S △PF 1F 2=12PF 1⋅ PF 2 ⋅sin60°=12(3+1)(3-1)a 2⋅32=32a 2,又S △PF 1F 2=12PF 1+ PF 2 +2c r =12(23a +6a )r ,所以r =323+6a =2-22a ,所以R r =222-2=2+22.21.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,A 为双曲线C 左支上一点,AF 2 -AF 1 =2b .(1)求双曲线C 的离心率;(2)设点A 关于x 轴的对称点为B ,D 为双曲线C 右支上一点,直线AD ,BD 与x 轴交点的横坐标分别为x 1,x 2,且x 1x 2 =1,求双曲线C 的方程.【解析】(1)由于A 为双曲线C 左支上一点,由双曲线的定义可知AF 2 -AF 1 =2a =2b ,所以2a 2=b 2=c 2-a 2.整理,得3a 2=c 2,所以ca=3,所以双曲线C 的离心率为3.(2)由(1)可设双曲线C 的标准方程为x 2a 2-y 22a2=1.设A x3,y3,B x3,-y3,D x4,y4.直线AD的方程为y-y3=y3-y4x3-x4x-x3.令y=0,则x1=-x3y4-x4y3y3-y4.直线BD的方程为y+y3=-y3-y4x3-x4x-x3,令y=0,则x2=x3y4+x4y3y3+y4.所以x1x2=-x3y4-x4y3y3-y4⋅x3y4+x4y3y3+y4=x23y24-x24y23y23-y24.因为A x3,y3,D x4,y4满足方程x2a2-y22a2=1,所以x23=a2+y232,x24=a2+y242,所以x1x2=x23y24-x24y23y23-y24=a2+y232y24-a2+y242y23y23-y24=a2=1,所以双曲线C的方程为x2-y22=1.22.已知双曲线C:x2a2-y2b2=1(a>0,b>0),若直线l与双曲线C交于A,B两点,线段AB的中点为M,且k AB⋅k OM=34(O为坐标原点).(1)求双曲线C的离心率;(2)若直线l不经过双曲线C的右顶点N2,0,且以AB为直径的圆经过点N,证明直线l恒过定点E,并求出点E的坐标.【解析】(1)设A x1,y1,B x2,y2,则Mx1+x22,y1+y22,由题意得x21a2-y21b2=1,x22a2-y22b2=1,所以x21-x22a2-y21-y22 b2=0,y21-y22x21-x22=b2a2,y1-y2x1-x2∙y1+y22x1+x22=b2a2,k AB=y1-y2x1-x2,k OM=y1+y22x1+x22,∴k AB⋅k OM=b2a2,即b2a2=34,a2=43b2,c2=a2+b2=73b2,e2=c2a2=74,∴e=72;(2)因为双曲线的右顶点N 2,0 ,所以双曲线C 的标准方程为x 24-y 23=1,因为k AB ⋅k OM =34,所以直线l 的斜率一定存在,并且k ≠±32(如果k =±32,则k OM =±32,AB ⎳OM ,这不可能),设直线l 的方程为y =kx +m ,联立方程y =kx +m x 24-y 23=1 得:3-4k 2 x 2-8kmx -4m 2-12=03-4k 2≠0 ,所以Δ=64k 2m 2-43-4k 2-4m 2-12 >0,即m 2-4k 2+3>0,所以x 1+x 2=8km 3-4k 2,x 1⋅x 2=-4m 2-123-4k 2.因为以AB 为直径的圆经过点N ,所以NA ⊥NB ,所以NA ⋅NB =0,又因为NA =x 1-2,y 1 ,NB =x 2-2,y 2 ,所以NA ⋅NB =x 1-2 x 2-2 +y 1y 2=x 1x 2-2x 1+x 2 +4+y 1y 2=0,又因为y 1y 2=kx 1+m kx 2+m =k 2x 1x 2+km x 1+x 2 +m 2,所以NA ⋅NB =k 2+1 x 1x 2+km -2 x 1+x 2 +m 2+4=0,即k 2+1 ×-4m 2-123-4k 2+km -2 ×8km 3-4k 2+m 2+4=0,化简得m 2+16km +28k 2=0,即m +14k m +2k =0,解得m =-14k 或m =-2k ,且均满足m 2-4k 2+3>0,当m =-2k 时,y =kx -2k =k x -2 ,因为直线l 不过定点N 2,0 ,故舍去;当m =-14k 时,y =kx -14k =k x -14 ,所以直线l 恒过定点E 14,0 ;综上,e =72,直线l 恒过定点E 14,0 .·15·。
双曲线离心率常见求法整理归纳
1双曲线离心率求法 在双曲线中,1c e a =>,c e a ===== 方法一、直接求出a c ,或求出a 与b 的比值,以求解e1.已知双曲线22221x y a b -=的一条渐近线方程为43y x =,则双曲线的离心率为 . 2.已知双曲线22212x y a -=(a >)的两条渐近线的夹角为3π,则双曲线的离心率为 .3.已知1F 、2F 是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段12F F 为边作正三角形12MF F ,若边1MF 的中点在双曲线上,则双曲线的离心率是 .4.设双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,右准线l 与两条渐近线交于P 、Q 两点,如果PQF ∆是直角三角形,则双曲线的离心率=e .5.已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是 .6.设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是 . 7.已知以双曲线C 的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60,则双曲线C 的离心率为 .8.已知双曲线的渐近线方程为125y x =±,则双曲线的离心率为 . 9.过双曲线12222=-by a x 的一个焦点的直线交双曲线所得的弦长为2a ,若这样的直线有且仅有两条,则离心率为 .10.双曲线两条渐近线的夹角等于90,则它的离心率为 .方法二、构造,a c 的齐次式,解出e1.过双曲线22221x y a b-=((0,0)a b >>)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN 为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于________.2.设1F 和2F 为双曲线22221x y a b-=(0,0a b >>)的两个焦点, 若1F 、2F ,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为________.3.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为________.方法三、寻找特殊图形中的不等关系或解三角形1.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为________.2.双曲线22221,(0,0)x y a b a b-=>>的两个焦点为12,F F ,若P 为其上一点,且12||2||PF PF =,则双曲线离心率的取值范围为________.3.设12,F F 分别是双曲线22221x y a b-=的左、右焦点,若双曲线上存在点A ,使1290F AF ∠=,且12||3||AF AF =,则双曲线离心率为________.4.双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12,F F ,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为________.5.如图,1F 和2F 分别是双曲线22221(0,0)x y a b a b-=>>的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且2F AB ∆是等边三角形,则双曲线的离心率为________.6.设点P 是双曲线22221(0,0)x y a b a b -=>>右支上的任意一点,12,F F 分别是其左右焦点,离心率为e ,若12||||PF e PF =,此离心率的取值范围为________.方法四、双曲线离心率取值范围问题例1.(本题需要使用双曲线的第二定义解决)已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12(,0),(,0)F c F c -,若双曲线上存在一点P 使1221sin sin PF F a PF F c∠=∠,则该双曲线的离心率的取值范围是 .例2.已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60的直线与双曲线右支有且只有一个交点,则此双曲线的离心率的取值范围是 .例 4.已知点P 在双曲线)0,0(12222>>=-b a by a x 的右支上,双曲线两焦点为12,F F ,2221||||PF PF 最小值是8a ,则此双曲线的离心率的取值范围是 . 例 5.双曲线2222222211x y y x a b b a-=-=与的离心率分别是12,,e e 则12e e +的最小值为 .与准线有关的题目1.在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为 .2.已知双曲线)0( 1222>=-a y ax 的一条准线为23=x ,则该双曲线的离心率为 . 3.设点P 在双曲线)0,0(12222>>=-b a by a x 的左支上,双曲线两焦点为12,F F ,已知1PF 是点P 到左准线l 的距离d 和2PF 的比例中项,则此双曲线的离心率的取值范围是 .4.已知双曲线22221x y a b -=(0,0)a b >>的左、右焦点分别为1F 、2F ,P 是准线上一点,且12PF PF ⊥,124PF PF ab =,则双曲线的离心率是_______.。
双曲线离心率如何求——从一道高考真题谈起
双曲线离心率如何求从一道高考真题谈起ʏ河南省禹州市第一高级中学 冯会远求双曲线的离心率,是高考常考题型㊂那么双曲线的离心率该如何求呢?让我们从一道高考真题谈起㊂题目:(2023年高考新课标Ⅰ卷)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左㊁右焦点分别为F 1㊁F 2,点A 在双曲线C 上,点B 在y 轴上,F 1A ңʅF 1B ң,F 2A ң=-23F 2B ң,则双曲线C 的离心率为㊂分析:方法1:利用双曲线的定义与向量数量积的几何意义得到|A F 2|,|B F 2|,|B F 1|,|A F 1|关于a ,m 的表达式,从而利用勾股定理求得a =m ,最后利用余弦定理得到a ,c 的齐次方程,进行得解㊂方法2:依题意设出各点坐标,从而由向量坐标运算求得x 0=53c ,y 0=-23t ,t 2=4c 2,将点A 代入双曲线C 的方程得到关于a ,b ,c 的齐次方程,最后得解㊂图1解析:(方法1)依题意,如图1,设|A F 2|=2m ,则|B F 2|=3m =|B F 1|,|A F 1|=2a +2m ㊂在R t әA B F 1中,9m 2+(2a +2m )2=25m 2,则(a +3m )(a -m )=0,故a =m 或a =-3m(舍去)㊂所以|A F 1|=4a ,|A F 2|=2a ,|B F 2|=|B F 1|=3a ,则|A B |=5a ㊂故c o s øF 1A F 2=|A F 1||A B |=4a 5a =45㊂所以在әA F 1F 2中,c o søF 1A F 2=16a 2+4a 2-4c 22ˑ4a ˑ2a=45,整理得5c 2=9a 2㊂故e =c a =355㊂(方法2)依题意,得F 1(-c ,0),F 2(c ,0),令A (x 0,y 0),B (0,t )㊂因为F 2Aң=-23F 2B ң,所以(x 0-c ,y 0)=-23(-c ,t ),则x 0=53c ,y 0=-23t ㊂又F 1A ңʅF 1B ң,所以F 1A ң㊃F 1B ң=83c ,-23t㊃(c ,t )=83c 2-23t 2=0,则t 2=4c 2㊂又点A 在双曲线C 上,则259c 2a 2-49t 2b2=1,整理得25c 29a 2-4t 29b 2=1,即25c 29a 2-16c29b2=1㊂所以25c 2b 2-16c 2a 2=9a 2b 2,即25c 2(c 2-a 2)-16a 2c 2=9a 2(c 2-a 2)㊂整理得25c 4-50a 2c 2+9a 4=0㊂则(5c 2-9a 2)(5c 2-a 2)=0,解得5c 2=9a 2或5c 2=a 2㊂又e >1,所以e =355或e =55(舍去)㊂故e =355㊂点评:解决过双曲线焦点的三角形的关键是充分利用双曲线的定义,结合勾股定理与余弦定理得到关于a ,b ,c 的齐次方程,从而得解㊂从这道高考真题的解法可以看出,双曲线离心率的求法主要有两种方法:定义法和方程法㊂我们再来看几个变式题㊂变式1:过双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左焦点F ,作x 2+y 2=a 2的一条切线,设切点为T ,该切线与双曲线E 在第一象限交于点A ,若F A ң=3F T ң,则双曲线E 的离心率为( )㊂A.3 B .5C .132 D .152分析:取线段A T 中点,根据给定条件,结03 解题篇 经典题突破方法 高二数学 2023年12月合双曲线定义及勾股定理解答㊂图2解析:如图2,令双曲线E 的右焦点为F ',半焦距为c ,取线段A T 中点M ,连接O T ,A F ',F 'M ㊂因为F A 切圆x 2+y2=a 2于T ,所以O T ʅF A ,|F T |=|O F |2-|O T |2=c 2-a 2=b ㊂因为F A ң=3F T ң,所以|A M |=|M T |=|F T |=b ,|A F '|=|A F |-2a =3b -2a ㊂而O 为F F '的中点,于是F 'M ʊO T ,即F 'M ʅA F ,|F 'M |=2|O T |=2a ㊂在R t әA F 'M 中,(2a )2+b 2=(3b -2a )2,整理得b a =32㊂所以双曲线E 的离心率e =ca=1+b 2a2=132,选C ㊂点评:本题采用了定义法,关键是应用双曲线的定义和几何图形的性质,求出a 与b 的关系式,进而再通过a 2+b 2=c 2,来求a 与c 的关系式,即双曲线的离心率㊂变式2:已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左㊁右焦点分别为F 1㊁F 2,点M 在双曲线E 上,әF 1M F 2为直角三角形,O 为坐标原点,作O N ʅM F 1,垂足为N ,若2MN ң=3N F 1ң,则双曲线E 的离心率为㊂分析:根据给定条件,确定直角三角形的直角顶点位置,建立方程并结合双曲线定义求出|M F 1|,|M F 2|,再借助相似三角形性质列式求解㊂图3解析:әF 1M F 2为直角三角形,显然øM F 1F 2ʂ90ʎ,否则N 与F 1重合㊂若øF 1M F 2=90ʎ,由O N ʅM F 1,得O N ʊM F 2,则N 为M F 1的中点,与2MN ң=3N F 1ң矛盾㊂于是øM F 2F 1=90ʎ,即M F 2ʅx 轴,如图3㊂令双曲线半焦距为c ,由x =c ,x 2a 2-y 2b2=1,得y 2=b 4a2㊂因此,|M F 2|=b 2a ,|M F 1|=b2a +2a =a 2+c 2a㊂由2MN ң=3N F 1ң,得|N F 1|=25|M F 1|=2(a 2+c 2)5a㊂显然әO N F 1ʐәM F 2F 1,则|N F 1||F 1F 2|=|O F 1||M F 1|,即a 2+c 25a c =a c a 2+c2,整理得a 2+c 2=5a c ㊂则e 2-5e +1=0,解得e =5+12或e =5-12(舍去),所以双曲线E 的离心率为5+12㊂点评:本题采用了方程法,即通过建立关于离心率的方程来求得离心率,解答的关键是充分利用几何图形中相似三角形的对应边成比例建立方程㊂变式3:双曲线C :x 2a 2-y2b 2=1(a >0,b >),过虚轴端点且平行x 轴的直线交双曲线C 于A ,B 两点,F 为双曲线的一个焦点,且A F ʅB F ,则该双曲线的离心率e 为㊂分析:解决本题的落脚点是 A F ʅB F ,对于解决线线垂直问题,高中阶段我们常用的策略有:(1)两条直线垂直且斜率存在,则两条直线斜率之积等于-1;(2)考虑三边边长,利用勾股定理构造直角三角形;(3)转化为向量问题,两条垂线对应向量的数量积为零;(4)利用直角三角形的几何性质㊂解析:(方法1,利用 两条直线垂直且斜率存在,则两直线斜率之积等于-1)如图4,已知A ,B 两点的纵坐标都为b ,将b 代入双曲线方程得x =ʃ2a ,所以A (-2a ,b ),B (2a ,b )㊂13解题篇 经典题突破方法 高二数学 2023年12月图4设F (c ,0)为双曲线右焦点,则k A F =-bc +2a ,k B F =-bc -2a㊂因为A F ʅB F ,所以k A F ㊃k B F =-b c +2a ㊃-bc -2a=-1,整理得c 2+b 2=2a 2㊂①易知c 2=a 2+b 2㊂②由①②,得b 2a2=12㊂离心率e =1+ba2=62㊂(方法2,әA F B 是直角三角形,利用勾股定理解题)根据方法1可得A (-2a ,b ),B (2a ,b )㊂设F (c ,0)为双曲线的右焦点,则:|A B |=22a ,|A F |=(c +2a )2+b 2,|B F |=(c -2a )2+b 2㊂因为A F ʅB F ,所以由勾股定理得:|A F |2+|B F |2=|A B |2,即(c +2a )2+b 2+(c -2a )2+b 2=8a 2㊂整理得c 2+b 2=2a 2㊂①又在双曲线中有c 2=a 2+b 2㊂②由①②,得b 2a2=12㊂故离心率e =1+ba2=62㊂(方法3,转化为向量求解)根据方法1可得A F ң=(c +2a ,-b ),B F ң=(c -2a ,-b )㊂因为A F ʅB F ,所以A F ңʅB F ң㊂则(c -2a )(c +2a )+b 2=0,整理得c 2+b 2=2a 2㊂①又双曲线中有c 2=a 2+b 2㊂②由①②,得b 2a2=12㊂故离心率e =1+ba2=62㊂(方法4,转化为直角三角形性质求解)由方法2可得|A B |=22a ,如图5,设图5虚轴端点为C ,连接C F ,则|C F |=|A B |2=2a ㊂即c 2+b 2=2a ,c 2+b 2=2a 2㊂后面过程与前三种方法相同㊂(方法5,转化为双曲线定义求解)图6如图6,设虚轴端点为C ,连接C F ,则|C F |=|C A |=|C B |=2a ㊂由题意|A F |-|B F |=2a ,|A F |2+|B F |2=8a 2,得|A F |=(3+1)a ,|B F |=(3-1)a ㊂t a n øF A B =|B F ||A F |=(3-1)a(3+1)a=2-3,则t a nøF C B =t a n 2øF A B =33,故øF C B =30ʎ,øF C O =60ʎ㊂因为s i n øF C O =|O F ||C F |,所以s i n 60ʎ=c2a,则e =62㊂点评:双曲线有两个虚轴端点以及两个焦点,本题未明确给出哪个端点哪个焦点,看似让人无从下手,实则增加了问题的灵活性,同学们只需根据双曲线的对称性,任意选取其中的一个虚轴端点和焦点即可解决本题㊂方法总结:离心率是双曲线最重要的几何性质,求离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式e =ca ;②只需要根据条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式两边分别除以a 或a 2转化为关于e的方程,解方程即可得离心率e 的值㊂当求双曲线的离心率时一定要注意数形结合思想和双曲线定义的应用㊂(责任编辑 徐利杰)23 解题篇 经典题突破方法 高二数学 2023年12月。
高中数学双曲线离心率求法专题
双曲线离心率求法(一)一、双曲线离心率的求解1、直接求出a c ,或求出a 与b 的比值,以求解e 。
在双曲线中,a ce =>1,c e a ===== 1.已知双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =43x ,则双曲线的离心率为2.在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为3.已知双曲线x2a2 - y22 =1(a>2)的两条渐近线的夹角为π3,则双曲线的离心率为4.已知双曲线)0( 1222>=-a y a x 的一条准线为23=x ,则该双曲线的离心率为__________ 5.已知F 1、F 2是双曲线)0,0(12222>>=-b a b y a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1 的中点在双曲线上,则双曲线的离心率是__________6.设双曲线22221(0,0)x y a b a b -=>>的右焦点为F ,右准线l 与两条渐近线交于P 、Q 两点,如果PQF∆是直角三角形,则双曲线的离心率=e ________.7.已知双曲线12222=-b y a x (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是8.设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是__________.9.已知以双曲线C 的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60 o,则双曲线C 的离心率为________10.已知双曲线的渐近线方程为125y x=±,则双曲线的离心率为_________2、构造a c ,的齐次式,解出e 。
1.已知双曲线22221x y ab -=(0,0)a b >>的左、右焦点分别为F 1、F 2,P 是准线上一点,且P F 1⊥P F 2, |P F 1|⋅|P F 2 |=4ab ,则双曲线的离心率是_______2.过双曲线22221x y a b -=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于________.3.设1F 和2F 为双曲线22221x y a b-=(0,0a b >>)的两个焦点, 若12F F ,,(0,2)P b 是正三角形的三个顶点,则双曲线的离心率为_________4.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为_______3、寻找特殊图形中的不等关系或解三角形。
人教版高中数学选修2-1《求取离心率问题》
e 的取值范围
例4:已知椭圆 (a>b>0)的左顶点
为A,上顶点为B,右焦点为F.设线段AB的中 点 2 2MF MA BF 0 为M,若 ,求该椭圆离心率的 取值范围.
y
B
M
A
o
F
x
《3》根据曲线方程列出含参数的关系式,求
e 的取值范围
例4:已知椭圆 (a>b>0)的左顶点
为A,上顶点为B,右焦点为F.设线段AB的中 点 2 2MF MA BF 0 为M,若 ,求该椭圆离心率的 1 , 1) 取值范围.[ 2-
(a>0,b>0)的左焦点,点E是该双曲线的右顶点, 过点F且垂直于x轴的直线与双曲线交于A,B两 点,△ABE是锐角三角形,则该双曲线离心率 e 的取值范围是( B ) A.(1,+∞) C.(1,1+ ) B.(1 , 2 )
D.(2,1+
)
三.归纳小结
1.注意椭圆与双曲线的离心率取值范围. 2.求离心率解题步骤。 3.求离心率的关键。 4.求离心率的题型有两类(1)求值 (2)求取值范围
3 或 D 2
5
例2: 设双曲线的—个焦点为F;虚轴的— 个端点为B,如果直线FB与该双曲线的一条 渐近线垂直,那么此双曲线的离心率为( ) (A)
《2》构建关于a,c的方程求解
2 (B)
3 (C)
3 1 (D) 2
5 1 2
B
F
例2: 设双曲线的—个焦点为F;虚轴的— 个端点为B,如果直线FB与该双曲线的一条 渐近线垂直,那么此双曲线的离心率为( D ) (A)
《2》构建关于a,c的方程求解
2 (B)
3 (C)
3 1 (D) 2
高考数学专题《双曲线》习题含答案解析
专题9.4 双曲线1.(2021·江苏高考真题)已知双曲线()222210,0x y a b a b-=>>的一条渐近线与直线230x y -+=平行,则该双曲线的离心率是( )ABC .2D【答案】D 【分析】写出渐近线,再利用斜率相等,进而得到离心率【详解】双曲线的渐近线为b y x a =±,易知by x a=与直线230x y -+=平行,所以=2b e a ⇒==故选:D.2.(2021·北京高考真题)若双曲线2222:1x y C a b-=离心率为2,过点,则该双曲线的程为()A .2221x y -=B .2213y x -=C .22531x y -=D .22126x y -=【答案】B 【分析】分析可得b =,再将点代入双曲线的方程,求出a 的值,即可得出双曲线的标准方程.【详解】2c e a == ,则2c a =,b =,则双曲线的方程为222213x y a a-=,将点的坐标代入双曲线的方程可得22223113a a a-==,解得1a =,故b ,因此,双曲线的方程为2213y x -=.故选:B3.(2021·山东高考真题)已知1F 是双曲线22221x y a b-=(0a >,0b >)的左焦点,点P 在双曲线上,直线1PF 与x 轴垂直,且1PF a =,那么双曲线的离心率是()练基础A B C .2D .3【答案】A 【分析】易得1F 的坐标为(),0c -,设P 点坐标为()0,c y -,求得20by a=,由1PF a =可得a b =,然后由a ,b ,c 的关系求得222c a =,最后求得离心率即可.【详解】1F 的坐标为(),0c -,设P 点坐标为()0,c y -,易得()22221c y a b--=,解得20b y a =,因为直线1PF 与x 轴垂直,且1PF a =,所以可得2b a a=,则22a b =,即a b =,所以22222c a b a =+=,离心率为e =故选:A .4.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D |AB .则双曲线的离心率为( )A B C .2D .3【答案】A 【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解.【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c y a b -=,解得2b y a =±,所以22bAB a=,又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a =c =,所以222212a c b c =-=,所以双曲线的离心率ce a==故选:A.5.(2019·北京高考真题(文))已知双曲线2221x y a-=(a >0)a =( )AB .4C .2D .12【答案】D 【解析】∵双曲线的离心率ce a==,c = ,=,解得12a = ,故选D.6.(全国高考真题(文))双曲线2222:1(0,0)x y C a b a b -=>>的离心率为2,焦点到渐近线的,则C 的焦距等于( ).A.2B. C.4D.【答案】C 【解析】设双曲线的焦距为2c ,双曲线的渐进线方程为,由条件可知,,又,解得,故答案选C .7.(2017·天津高考真题(文))已知双曲线的左焦点为,点在双曲线的渐近线上,是边长为2的等边三角形(为原点),则双曲线的方程为( )A. B. C. D.【答案】D 【解析】22221(0,0)x y a b a b -=>>F A OAF △O 221412x y -=221124x y -=2213x y -=2213y x -=由题意结合双曲线的渐近线方程可得:,解得:,双曲线方程为:.本题选择D选项.8.(2021·全国高考真题(理))已知双曲线22:1(0)xC y mm-=>的一条渐近线为my+=,则C的焦距为_________.【答案】4【分析】将渐近线方程化成斜截式,得出,a b的关系,再结合双曲线中22,a b对应关系,联立求解m,再由关系式求得c,即可求解.【详解】my+=化简得y=,即ba,同时平方得2223ba m=,又双曲线中22,1a m b==,故231m m=,解得3,0m m==(舍去),2223142c a b c=+=+=⇒=,故焦距24c=.故答案为:4.9.(2019·江苏高考真题)在平面直角坐标系xOy中,若双曲线2221(0)yx bb-=>经过点(3,4),则该双曲线的渐近线方程是_____.【答案】y=.【解析】由已知得222431b-=,解得b=或b=,因为0b>,所以b=.因为1a=,所以双曲线的渐近线方程为y=.10.(2020·全国高考真题(文))设双曲线C:22221x ya b-= (a>0,b>0)的一条渐近线为y= 2222tan60cc a bba⎧⎪=⎪=+⎨⎪⎪==⎩221,3a b==2213yx-=x ,则C 的离心率为_________.【解析】由双曲线方程22221x y a b-=可得其焦点在x 轴上,因为其一条渐近线为y =,所以b a =c e a ===1.(2018·全国高考真题(理))设,是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若则的离心率为( )ABC .D【答案】B 【解析】由题可知在中,在中,故选B.2.(2020·云南文山·高三其他(理))已知双曲线2221(0)x y a a-=>上关于原点对称的两个点P ,Q ,右顶点为A ,线段AP 的中点为E ,直线QE 交x 轴于(1,0)M ,则双曲线的离心1F 2F 2222:1x y C a b-=O 2F C P 1PF =C222,PF b OF c==PO a∴=2Rt POF V 222cos P O PF b F OF c∠==12PF F △22221212212cos P O 2PF F F PF b F PF F F c+-∠==223bc a c=⇒=e ∴=练提升率为( )A B .C D 【答案】D 【解析】由已知得M 为APQ V 的重心,∴3||3a OM ==,又1b =,∴c ==,即c e a ==.故选:D.3.(2020·广东天河·华南师大附中高三月考(文))已知平行于x 轴的直线l 与双曲线C :()222210,0x y a b a b-=>>的两条渐近线分别交于P 、Q 两点,O 为坐标原点,若OPQ △为等边三角形,则双曲线C 的离心率为( )A .2B .C D 【答案】A 【解析】因为OPQ △为等边三角形,所以渐近线的倾斜角为3π,所以22,3,bb b a a=∴=∴=所以2222223,4,4,2c a a c a e e -=∴=∴=∴=.故选:A4.(2021·广东广州市·高三月考)已知1F ,2F 分别是双曲线C :2213xy -=的左、右焦点,点P 是其一条渐近线上一点,且以线段12F F 为直径的圆经过点P ,则点P 的横坐标为( )A .±1B .C .D .2±【答案】C 【分析】由题意可设00(,)P x ,根据圆的性质有120F P F P ⋅= ,利用向量垂直的坐标表示,列方程求0x 即可.【详解】由题设,渐近线为y =,可令00(,)P x x ,而1(2,0)F -,2(2,0)F ,∴100(2,)F P x x =+ ,200(2,)F P x =- ,又220120403x F P F P x ⋅=-+= ,∴0x =故选:C5.(2020·广西南宁三中其他(理))圆22:10160+-+=C x y y 上有且仅有两点到双曲线22221(0,0)x y a b a b -=>>的一条渐近线的距离为1,则该双曲线离心率的取值范围是( )A .B .55(,)32C .55(,42D .1)【答案】C 【解析】双曲线22221x y a b-=的一条渐近线为0bx ay -=,圆22:10160C x y y +-+=,圆心()0,5,半径3因为圆C 上有且仅有两点到0bx ay -=的距离为1,所以圆心()0,5到0bx ay -=的距离d 的范围为24d <<即24<<,而222+=a b c 所以524a c <<,即5542e <<故选C 项.6.【多选题】(2021·湖南高三)已知双曲线2222:1x y C a b-=(0a >,0b >)的左,右焦点为1F ,2F ,右顶点为A ,则下列结论中,正确的有( )A .若a b =,则CB .若以1F 为圆心,b 为半径作圆1F ,则圆1F 与C 的渐近线相切C .若P 为C 上不与顶点重合的一点,则12PF F △的内切圆圆心的横坐标x a =D .若M 为直线2a x c=(c =0的一点,则当M 的纵坐标为2MAF V 外接圆的面积最小【答案】ABD 【分析】由a b =,得到222a c =,利用离心率的定义,可判定A 正确;由双曲线的几何性质和点到直线的距离公式,可判定B 正确;由双曲线的定义和内心的性质,可判定C 不正确;由正弦定理得到2MAF V 外接圆的半径为222sin AF R AMF =∠,得出2sin AMF ∠最大时,R 最小,只需2tan AMF ∠最大,设2,a M t c ⎛⎫⎪⎝⎭,得到22tan tan()AMF NMF NMA ∠=∠-∠,结合基本不等式,可判定D 正确.【详解】对于A 中,因为a b =,所以222a c =,故C 的离心率ce a==A 正确;对于B 中,因为()1,0F c -到渐近线0bx ay -=的距离为d b ==,所以B 正确;对于C 中,设内切圆与12PF F △的边1221,,FF F P FP 分别切于点1,,A B C ,设切点1A (,0)x ,当点P 在双曲线的右支上时,可得121212PF PF PC CF PB BF CF BF -=+--=-1112A F A F =-()()22c x c x x a =+--==,解得x a =,当点P 在双曲线的左支上时,可得x a =-,所以12PF F △的内切圆圆心的横坐标x a =±,所以C 不正确;对于D 中,由正弦定理,可知2MAF V 外接圆的半径为222sin AF R AMF =∠,所以当2sin AMF ∠最大时,R 最小,因为2a a c<,所以2AMF ∠为锐角,故2sin AMF ∠最大,只需2tan AMF ∠最大.由对称性,不妨设2,a M t c ⎛⎫ ⎪⎝⎭(0t >),设直线2a x c =与x 轴的交点为N ,在直角2NMF △中,可得222=tan a c NF c NM t NMF -∠=,在直角NMA △中,可得2=tan a a NA c NM tMA N -∠=,又由22222222tan tan tan tan()1tan tan 1NMF NMA AMF NMF NMA NMF NMAa a c a c ct t a a c a c c t t--∠-∠∠=∠-∠==+∠∠--⨯+-⋅22()c a ab c a t c t-=≤-+当且仅当()22ab c a t c t -=,即t =2tan AMF ∠取最大值,由双曲线的对称性可知,当t =2tan AMF ∠也取得最大值,所以D 正确.故选:ABD .7.【多选题】(2021·重庆巴蜀中学高三月考)已知点Q 是圆M :()2224x y ++=上一动点,点()2,0N ,若线段NQ 的垂直平分线交直线MQ 于点P ,则下列结论正确的是( )A .点P 的轨迹是椭圆B .点P 的轨迹是双曲线C .当点P 满足PM PN ⊥时,PMN V 的面积3PMN S =△D .当点P 满足PM MN ⊥时,PMN V 的面积6PMN S =V 【答案】BCD 【分析】根据PM PN -的结果先判断出点P 的轨迹是双曲线,由此判断AB 选项;然后根据双曲线的定义以及垂直对应的勾股定理分别求解出PM PN ⋅的值,即可求解出PMN S △,据此可判断CD 选项.【详解】依题意,2MQ =,4MN =,因线段NQ 的垂直平分线交直线MQ 于点P ,于是得PQ PN =,当点P 在线段MQ 的延长线上时,2PM PN PM PQ MQ -=-==,当点P 在线段QM 的延长线上时,2PN PM PQ PM MQ -=-==,从而得24PM PN MN -=<=,由双曲线的定义知,点M 的轨迹是双曲线,故A 错,B 对;选项C ,点P 的轨迹方程为2213y x -=,当PM PN ⊥时,2222616PM PN PM PN PM PN MN ⎧-=⎪⇒⋅=⎨+==⎪⎩,所以132PMN S PM PN ==△,故C 对;选项D ,当PM MN ⊥时,2222316PM PN PM PN PM MN ⎧-=-⎪⇒=⎨-==⎪⎩,所以162PMN S PM MN ==△,故D 对,故选:BCD.8.(2021·全国高二课时练习)双曲线()22122:10,0x y C a b a b-=>>的焦距为4,且其渐近线与圆()222:21C x y -+=相切,则双曲线1C 的标准方程为______.【答案】2213x y -=【分析】根据焦距,可求得c 值,根据渐近线与圆2C 相切,可得圆心到直线的距离等于半径1,根据a ,b ,c 的关系,即可求得a ,b 值,即可得答案.【详解】因为双曲线()22122:10,0x y C a b a b-=>>的焦距为4,所以2c =.由双曲线1C 的两条渐近线b y x a=±与圆()222:21C x y -+=相切,可得1=又224a b +=,所以1b =,a =所以双曲线1C 的标准方程为2213x y -=.故答案为:2213x y -=9.(2021·全国高二单元测试)已知双曲线2213y x -=的左、右焦点分别为1F ,2F ,离心率为e ,若双曲线上一点P 使2160PF F ∠=︒,则221F P F F ⋅的值为______.【答案】3【分析】在12PF F △中,设2PF x =,则12PF x =+或12PF x =-.分别运用余弦定理可求得答案.【详解】解:由已知得2124F F c ==.在12PF F △中,设2PF x =,则12PF x =+或12PF x =-.当12PF x =+时,由余弦定理,得()222124242x x x +=+-⨯⨯,解得32x =,所以221314322F P F F ⋅=⨯⨯= .当12PF x =-时,由余弦定理,得()222124242x x x -=+-⨯⨯,无解.故2213F P F F ⋅=.故答案为:3.10.(2021·全国高二课时练习)如图,以AB 为直径的圆有一内接梯形ABCD ,且//AB CD .若双曲线1C 以A ,B 为焦点,且过C ,D 两点,则当梯形的周长最大时,双曲线1C 的离心率为______.1【分析】连接AC ,设BAC θ∠=,将梯形的周长表示成关于θ的函数,求出当30θ=︒时,l 有最大值,即可得到答案;【详解】连接AC ,设BAC θ∠=,2AB R c R ==,,作CE AB ⊥于点E ,则||2sin BC R θ=,()2||||cos 902sin EB BC R θθ=︒-=,所以2||24sin CD R R θ=-,梯形的周长221||2||||24sin 24sin 4sin 52l AB BC CD R R R R R R θθθ⎛⎫=++=++-=--+ ⎪⎝⎭.当1sin 2θ=,即30θ=︒时,l 有最大值5R ,这时,||BC R =,||AC =,1(||||)2a AC BC =-=,1=c e a .1+1. (2021·全国高考真题(理))已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF ∠=︒=,则C 的离心率为( )ABCD【答案】A 【分析】根据双曲线的定义及条件,表示出12,PF PF ,结合余弦定理可得答案.【详解】因为213PF PF =,由双曲线的定义可得12222PF PF PF a -==,所以2PF a =,13PF a =;因为1260F PF ∠=︒,由余弦定理可得2224923cos 60c a a a a =+-⨯⋅⋅︒,整理可得2247c a =,所以22274a c e ==,即e =故选:A2.(2020·浙江省高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y=|OP |=( )ABCD【答案】D 【解析】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a=-=-=,即双曲线的右支方程为()22103y x x -=>,而点P还在函数y =练真题由()22103y x x y ⎧⎪⎨->==⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP ==.故选:D.3.(2019·全国高考真题(理))设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为( )ABC .2D【答案】A 【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c == ,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2c OA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a=∴==.e ∴=,故选A .4.(2019·全国高考真题(理))双曲线C :2242x y -=1的右焦点为F ,点P 在C的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为( )A B C .D .【答案】A 【解析】由2,,,a b c ====.,P PO PF x =∴=,又P 在C 的一条渐近线上,不妨设为在y x =上,1122PFO P S OF y ∴=⋅==△,故选A .5. (2021·全国高考真题(文))双曲线22145x y -=的右焦点到直线280x y +-=的距离为________.【分析】先求出右焦点坐标,再利用点到直线的距离公式求解.【详解】由已知,3c ===,所以双曲线的右焦点为(3,0),所以右焦点(3,0)到直线280x y +-===.6.(2019·全国高考真题(理))已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB = ,120F B F B ⋅=,则C 的离心率为____________.【答案】2.【解析】如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22//,2.BF OA BF OA =由120F B F B =g ,得121,,F B F B OA F A ⊥⊥则1OB OF =有1AOB AOF ∠=∠,又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠又21BOF AOB AOF π∠+∠+∠=,得02160,BOF AOF BOA ∠=∠=∠=.又渐近线OB 的斜率为0tan 60ba==,所以该双曲线的离心率为2c e a ====.。
高二数学 专题 求离心率(强化训练)(解析版)
专题求离心率题型一利用几何性质求解题型二利用坐标法求解题型三利用第一定义求解题型四利用第二定义求解题型五利用第三定义求解题型六与斜率乘积相关题型七焦点三角形双余弦定理模型题型八焦点弦与定比分点题型一利用几何性质求解1.已知椭圆C :()222210x y a b a b+=>>的上顶点为B ,两个焦点为1F ,2F ,线段2BF 的垂直平分线过点1F ,则椭圆的离心率为.【答案】12/0.5【分析】求出线段2BF 的中点坐标,根据两直线垂直斜率关系可得224a c =,再结合222a b c=+可求得离心率.【详解】如图,设2BF 的垂直平分线与2BF 交于点H ,由题,()1,0F c -,()2,0F c ,()0,B b ,则,22c b H ⎛⎫⎪⎝⎭,()10232F Hb b kc c c -∴==--,200BF b b k c c -==--,121F H BF k k ⋅=- ,13b b c c ⎛⎫∴⨯-=- ⎪⎝⎭,化简得,223b c =,由222a b c =+,解得224a c =,22214c e a ∴==,即12e =.故答案为:12.2.已知双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为()1,0F c -,坐标原点为O ,若在双曲线右支上存在一点P 满足1PF =,且PO c =,则双曲线C 的离心率为.1【分析】构建焦点三角形,判断出其为直角三角形,进而可求.【详解】如图,因为12||||PO c FO F O ===,所以1122,PF O OPF PF O OPF ∠=∠∠=∠,所以1212π2OPF OPF F PF ∠+∠=∠=,则2222221212||||||,32)4PF PF F F c a c +=∴+-=,22240c a -+=,220e -+=,解得1e =.13.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F ,2F ,点P 在椭圆C 上,且212PF F F ⊥,过P 作1F P 的垂线交x 轴于点A ,若212AF c =,记椭圆的离心率为e ,则2e =.【分析】由题意可得22122PF F F AF =⋅,从而可求得2PF c =,根据勾股定理可求得1PF ,利用椭圆离心率的定义即可求得结果.【详解】如下图所示:因为212PF F F ⊥,1AP PF ⊥,所以122PF F APF ,可得22122P F F A F F PF =,即222212122P F A F c F c c F =⋅=⋅=,可得2PF c =;又在12Rt PF F 中,1PF ==,由椭圆定义可得122PF PF a +=2c a +=,所以12c e a ===,可得22e ==⎝⎭4.椭圆22221(0)x y a b a b+=>>的两个焦点为()()12,0,,0,F c F c M -是椭圆上一点,且满足120F M F M ⋅= .则椭圆离心率e 的取值范围为()A .22⎡⎢⎣⎦B .22⎛ ⎝⎭C .22⎛⎫⎪ ⎪⎝⎭D .2⎫⎪⎪⎣⎭【答案】D【分析】根据给定条件,可得12F M F M ⊥,进而得出||MO c b =≥,再求出离心率范围即得.【详解】由点M 满足120F M F M ⋅=,得12F M F M ⊥,即12F MF △是直角三角形,原点O 是斜边12F F 的中点,因此||MO c =,又点M 在椭圆上,则c b ≥,即2222c b a c ≥=-,整理得2212c a ≥,即212e ≥,而01e <<,因此212e ≤<,所以椭圆离心率e 的取值范围为22⎫⎪⎪⎣⎭.故选:D5.点P 在椭圆上,且在第一象限,过右焦点2F 作12F PF ∠的外角平分线的垂线,垂足为A ,O 为坐标原点,若OA =,则该椭圆的离心率为.【答案】3【分析】延长2F A ,交1PF 于点Q ,根据PA 是12F PF ∠的外角平分线,得到2||=AQ AF ,2||PQ PF =,再利用椭圆的定义求解.【详解】延长2F A ,交1PF 于点Q ,∵PA 是12F PF ∠的外角平分线,2||AQ AF ∴=,2||PQ PF =,又O 是12F F 的中点,1QF AO ∴∥,且12||QF OA ==.又1112||2QF PF PQ PF PF a =+=+=,2a ∴=,222233()a b a c ∴==-,则62a c =,∴离心率为c a =故答案为:36.如图,A B C ,,是椭圆()222210x y a b a b+=>>上的三个点,AB 经过原点O AC ,经过右焦点F ,若BF AC⊥且3BF CF =,则该椭圆的离心率为.【答案】2【分析】设椭圆的左焦点为()1,0F c -,连接111,,AF BF CF ,设CF m =,利用对称性得到13AF BF m ==,23AF a m =-,12CF a m =-,再根据BF AC ⊥,分别在1AF C △和1R t AF F 中,利用勾股定理求解.【详解】解:如图所示:设椭圆的左焦点为()1,0F c -,连接111,,AF BF CF ,设CF m =,由对称性知:13AF BF m ==,23AF a m =-,12CF a m =-,因为1//AF BF ,所以1AF AC ⊥,在1AF C △中,22211AF AC CF +=,即()()2229222m a m a m +-=-,解得3a m =,在1R t AF F 中,()()2229232m a m c +-=,将3a m =代入上式,得22c e a ==,故答案为:22题型二利用坐标法求解7.已知F 为双曲线C :()222210,0x y a b a b-=>>的右焦点,平行于x 轴的直线l 分别交C 的渐近线和右支于点A ,B ,且90OAF ∠=︒,OBF OFB ∠=∠,则C 的离心率为()A.2BC .32D【答案】B【分析】设(),B m n ,联立方程组求得,an A n b ⎛⎫⎪⎝⎭,根据90OAF ∠=︒,得到1AF OA k k ⋅=-,求得ab n c =,再由(),B m n 在双曲线C 上,化简得到22422a c am c+=,结合OB OF =,化简得到222a c =,进而求得双曲线的离心率.【详解】双曲线C :()222210,0x y a b a b -=>>的渐近线方程为b y x a =±.设(),B m n ,联立方程组b y x a y n ⎧=⎪⎨⎪=⎩,解得,an A n b ⎛⎫⎪⎝⎭.因为90OAF ∠=︒,所以1AF OAk k ⋅=-,即1n ban a c b⋅=--,可得ab n c=.又因为点(),B m n 在双曲线C 上,所以22221m na b-=,将ab n c =代入,可得22422a c a m c +=,由OBF OFB ∠=∠,所以OB OF =,所以222m n c +=,即22422222a c a a bc c c++=,化简得222a c =,则ce a==.故选:B.8.已知1F ,2F 是双曲线()222210,0x y a b ab-=>>的左、右焦点,若双曲线上存在点P 满足2212PF PF a ⋅=- ,则双曲线离心率的最小值为()AB C .2D【答案】D【分析】设P 的坐标,代入双曲线的方程,利用数量积的坐标表示,结合双曲线离心率的计算公式求解即得.【详解】设00(,)P x y ,双曲线的半焦距为c ,则有0||x a ≥,2200221x y a b-=,12(,0),(,0)F c F c -,于是200100(,),(,)PF c x y PF c x y =--=---,因此22222222222222220210000222(1)x c c PF PF x c y x b c x b c a b c b a a a⋅=-+=+--=⋅--≥⋅--=- ,当且仅当0||x a =时取等号,则222a b -≥-,即222b a ≥,离心率c e a ==≥,故选:D9.过双曲线22221(0,0)x y a b a b-=>>的左焦点且垂直于x 轴的直线与双曲线交于,A B 两点,D 为虚轴上的一个端点,且ADB ∠为钝角,则此双曲线离心率的取值范围为()A.(B.C.)2D.)+∞【答案】D【分析】根据双曲线的性质求出,,A B D 的坐标,写出向量,DA DB,根据∠ADB 为钝角,结合向量的数量积公式化简求解即可.【详解】设双曲线22221(0,0)x y a b a b-=>>的左焦点为1(,0)F c -,令x c =-,得2by a=±,可设22,,,b b A c B c a a ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭由对称性,不妨设(0,)D b ,可得2,b DA c b a ⎛⎫=-- ⎪⎝⎭ ,2,b DB c b a ⎛⎫=--- ⎪⎝⎭,由题意知,,A D B 三点不共线,所以∠ADB 为钝角0DA DB ⇔⋅<,即为2220b b c b b a a ⎛⎫⎛⎫-+-< ⎪⎪⎝⎭⎝⎭,将222b c a =-代入化简得4224420e a c a -+>,由ce a=,可得42420e e -+>,又1e >,解得22e >e ,综上,离心率的取值范围为)+∞.故选:D.10.已知双曲线C :()222210,0x y a b a b-=>>的左右焦点分别为1F ,2F ,过1F 作x 轴的垂线交C 于点P ﹒2OM PF ⊥于点M (其中O 为坐标原点),且有223PF MF =,则C 的离心率为.【分析】由向量垂直的坐标表示得出关于,,a b c 的齐次式后可得离心率.【详解】如图,易得2(,b P c a -,2(,0)F c ,22(2,b PF c a=- ,设(,)M x y ,2(,)MF c x y =-- ,由223PF MF = 得2(2,3(,)b c c x y a-=--,223()3c c x b y a =-⎧⎪⎨-=-⎪⎩,解得2133x c b y a ⎧=⎪⎪⎨⎪=⎪⎩,即21(,33b M c a ,21(,33b OM c a = ,又2OM PF ⊥,∴42222033b OM PF c a ⋅=-= ,ce a =,222b c a =-代入得2222(1)0e e --=,因为1e >故解得e =故答案为:622.11.已知双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12F F ,,过点1F 作直线分别交双曲线左支和一条渐近线于点,A B (,A B 在同一象限内),且满足1F A AB =.联结2AF ,满足21AF BF ⊥.若该双曲线的离心率为e ,求2e 的值.【答案】12-【分析】设点()0000,()0,0A x y x y <>,由21AF BF ⊥,A 在双曲线上,1F A AB =得到B 的坐标,然后根据B在渐近线b y x a =-上列方程,解方程得到a b =,然后求离心率即可.【详解】不妨设()0000,()0,0A x y x y <>,由21AF BF ⊥得00001y y x c x c⋅=--+,化简得222000y x c +-=(1),A 在双曲线上,∴2200221x y a b -=,即2222002a y x a b =+,代入(1)解得20b y c=,1F A AB = ,()002,2B x c y ∴+,又B 在渐近线by x a=-上,()0022by x c a∴=-+,即0022bx ay bc +-=.两边平方得222222000444b x a y b c abcy =++(2),将2222002a y x a b =+和20b y c =代入(2)得242422322224444a b a b b c ab a b c c++=+,化简得22340a ab b --=,解得a =或a b =(舍去),即)222a c a =-,化简得212e =-.故答案为:12-.12.已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为12,F F ,过1F 斜率为43的直线与C 的右支交于点P ,若线段1PF 与y 轴的交点恰为1PF 的中点,则C 的离心率为()A .13B C .2D .3【答案】D【分析】求得P 点坐标,根据直线1PF 的斜率列方程,化简求得双曲线的离心率.【详解】由于线段1PF 与y 轴的交点恰为1PF 的中点,且O 是12F F 的中点,所以212PF F F ⊥,由22221c y a b -=解得2P by a=,则2,b P c a ⎛⎫⎪⎝⎭,而()1,0F c -,所以1222242223PF b b c a a k c ac ac -====,2222833,3830ac c a c ac a =---=,两边除以2a 得23830e e --=,解得3e =或13e =-(舍去).故选:D13.直线2y x =与椭圆C :22221x y a b+=的交点在x 轴上的射影恰好是椭圆的焦点,则椭圆C 的离心率为()A1BC1D.12【答案】A【分析】根据A 在椭圆上和直线2y x =上列方程,整理后求得椭圆的离心率.【详解】设在第一象限的交点为A ,右焦点为(),0F c ,根据题意:AF x ⊥轴,A 在椭圆上,由22221c y a b +=解得2A b y a =,则2,b A c a ⎛⎫ ⎪⎝⎭,A 在直线2y x =上,则(),2A c c ,所以22b c a=,22b ac =,222-=a c ac ,所以()221001e e e +-=<<,解得1e =.故选:A题型三利用第一定义求解14.已知椭圆221222:1(0),,x y C a b F F a b+=>>分别是C 的左,右焦点,P 为C 上一点,若线段1PF 的中点在y 轴上,12π6PF F ∠=,则C 的离心率为()AB .23CD.2【答案】A【分析】根据中点关系可得2PF x ⊥轴,进而根据直角三角形中的边角关系,结合椭圆定义即可求解.【详解】由于线段1PF 的中点M 在y 轴上,O 是12F F 的中点,所以22//,MO PF PF x ∴⊥轴,122F F c =,12π6PF F ∠=,所以1221212112tan ,cos 32F F PF F F PF F PF PF F =∠=∠,2a a e ⇒=⇒=故选:A15.1F ,2F 是椭圆E :()222210 x y a b a b+=>>的左,右焦点,点M 为椭圆E 上一点,点N 在x 轴上,满足1245FM N F MN ∠=∠=︒,1234NF NF =,则椭圆E 的离心率为.【答案】57【分析】根据1245FM N F MN ∠=∠=︒,得到12F M F M ⊥,且MN 是12F MF ∠的角平分线,再结合1234NF NF =和角平分线定理得到1243F M F M=,然后在12Rt F MF △中,利用勾股定理求解.【详解】解:因为1245FM N F MN ∠=∠=︒,所以12F M F M ⊥,则MN 是12F MF ∠的角平分线,所以1122F M F N F MF N=,又因为1234NF NF =,所以1243F M F M=,设124,3F M F x M x ==,由椭圆定义得122F M F M a +=,即432x x a +=,解得27x a =,则1286,77F M F M a a ==,则22286477a a c ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,所以222549c a =,则57c e a ==,故答案为:5716.已知椭圆2222:1(0)x y C a b a b +=>>的左、右焦点分别为12,F F ,经过2F 的直线交椭圆C 于,P Q 两点,O 为坐标原点,且()2220,2OP OF PQ PF F Q +⋅==,则椭圆C 的离心率为.【分析】利用向量的数量积的运算律,以及椭圆的定义,利用齐次化方法求离心率.【详解】因为()2220,2OP OF PQ PF F Q +⋅== ,所以()22302OP OF PF +⋅=,即()()22302OP OF OF OP +⋅-=,所以21OP OF OF c === ,所以12π2F PF ∠=.设2F Q x =,则22PF x =,所以1122,2PF a x QF a x =-=-,由22211||PF PQ QF +=得222(22)(3)(2)a x x a x -+=-,所以3a x =,所以2124,33a PF a PF ==,在12Rt PFF △中,由2221212PF PF F F +=,得22224(2)33a a c ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,所以53c e a ==.故答案为:17.已知1F ,2F 分别是椭圆2222:1x y C a b +=(0a b >>)的左,右焦点,M ,N 是椭圆C 上两点,且112MF F N = ,20MF MN ⋅=,则椭圆C 的离心率为()A .34B .23C D 【答案】C【分析】设1NF n =,结合椭圆的定义,在2Rt MNF △中利用勾股定理求得3an =,12Rt MF F △中利用勾股定理求得223620c a =,可求椭圆C 的离心率.【详解】连接2NF ,设1NF n =,则12MF n =,222MF a n =-,22NF a n =-,在2Rt MNF △中22222N M MF NF +=,即()()()2223222n a n a n +-=-,22222948444n a an n a an n ∴+-+=-+,2124n an ∴=,3an =,123a MF ∴=,243a MF =,在12Rt MF F △中,2221212MF MF F F +=,即222416499a a c =+,223620c a ∴=,2205369e ==,又()0,1e ∈ ,e ∴=故选:C.18.已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且12120F PF ∠=,124PF PF =,则C 的离心率为()AB .215C D 【答案】A【分析】根据124PF PF =,12120F PF ∠=,利用余弦定理可得2c =,再由双曲线定义可得32m a =,由离心率定义可得c e a ==.【详解】如下图所示:根据题意可设21,4,0PF m PF m m ==>,易知122F F c =;由余弦定理可知2222112212212221741cos 24P m PF F F F P c F PF m m F PF +-∠=⋅==--⋅,可得22214c m =;即212c =,由双曲线定义可知可知1232PF PF m a -==,即32m a =;所以离心率213c e a ==.故选:A19.已知12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点,过点1F 倾斜角为30 的直线与双曲线的左,右两支分别交于点,A B .若22AF BF =,则双曲线C 的离心率为()AB C .2D .【答案】A【分析】设22AF BF m ==,利用双曲线的定义及题中几何关系将m 用a c 、表示,再利用几何关系建立关于a c 、齐次方程,从而求出离心率.【详解】如图,过2F 作2AB F N ⊥与N,设22AF BF m ==,则12AF m a =-,12BF a m =+,∴114AB BF AF a =-=,2AN a =,1F N m =,由题意知1230BF F ︒∠=,∴在12Rt F NF 中,212sin 30F N F F c ︒==,112cos30F N F F ︒==,∴m =,在2Rt ANF 中,22222AN NF AF +=,即())2222a c +=解得c a=双曲线C.故选:A.题型四利用第二定义求解20.已知直线1y x =-与双曲线221ax by +=(0a >,0b <)的渐近线交于A ,B 两点,且过原点和线段AB中点的直线的斜率为,则a b的值为.【答案】【分析】设()11,A x y ,()22,B x y ,利用点差法可求ab的值.【详解】设()11,A x y ,()22,B x y ,AB 的中点为()00,M x y ,故2211222211ax by ax by ⎧+=⎨+=⎩,所以()()()()111122220a x y x y b x y x y -++-+=即()()1201200a x x x b y y y -+-=,所以0121200y y y a b x x x -+⨯⨯=-.因为过原点和线段AB中点的直线的斜率为002y x =-.由:1AB y x =-+可得12121y y x x -=--,所以()102a b ⎛⎫+⨯-⨯= ⎪ ⎪⎝⎭,所以2a b =-.故答案为【点睛】直线和圆锥曲线的位置关系中,如果涉及到弦的中点问题,可以考虑用点差法来简化计算.21.已知椭圆C 的左右焦点分别为1F ,2F ,P ,Q 为C 上两点,2223PF F Q =,若12PF PF ⊥ ,则C 的离心率为()A .35B .45CD【答案】D【分析】根据椭圆的焦点三角形,结合勾股定理即可求解.【详解】设23PF m =,则22QF m = ,123PF a m =- ,122QF a m =- .5PQ m =在1PQF △中得:()()222232522a m m a m -+=-,即215m a =.因此225PF a = ,185PF a = ,212F F c = ,在12PF F △中得:22264442525a a c +=,故221725a c =,所以175e =.故选:D22.设1F ,2F 分别是椭圆C 的左,右焦点,过点1F 的直线交椭圆C 于M ,N 两点,若113MF F N =,且24cos 5MNF ∠=,则椭圆C 的离心率为.【分析】如图,设1F N x =,由题意,椭圆定义结合余弦定理可得3ax =,后在12NF F △由余弦定理可得12F F ,即可得答案.【详解】如图,设1F N x =,则13MF x =,4MN x =.又由椭圆定义可得2223,2MF a x F N a x =-=-.则在2MNF 中,由余弦定理可得:()()()222222222162234425825MN NF MF x a x a x MN NF x a x +-+---=⇒=⋅-()222288410101681868253x ax a x ax ax x x ax x x a x +⇒=⇒+=-⇒=⇒=-.则125,33a aF N NF ==,则在12NF F △由余弦定理可得:12F F a=.又12222c F F c c e a =⇒=⇒==.故答案为:2223.已知椭圆22221x y a b+=的右焦点为2F ,过右焦点作倾斜角为π3的直线交椭圆于,G H 两点,且222GF F H = ,则椭圆的离心率为()A .12BC .23D【答案】C【分析】根据题意写出直线方程,与椭圆方程联立,运用韦达定理与222GF F H =构建出关于a 、b 、c 的齐次方程,根据离心率公式即可解得.【详解】设()2,0F c ,()11,G x y ,()22,H x y ,过点2F 做倾斜角为π3的直线斜率k =直线方程为)y x c =-,联立方程)22221x y a by x c ⎧+=⎪⎨⎪=-⎩,可得22224123033a b y b cy b ⎛⎫++-= ⎪⎝⎭,根据韦达定理:21222233cy y a b+=-+,4122233b y y a b =-+,因为222GF F H =,即()()1122,2,c x y x c y --=-,所以122y y =-,所以()22121242112221222323y y y y b y y y y a b⎛ +⎝⎭+=-=-=---+,即2224132c a b =+,所以22238a b c +=,联立22222238a b c a b c ⎧+=⎨=+⎩,可得2249a c =,24293e e =⇒=.故选:C.24.已知椭圆C :22221x y a b+=(0a b >>)的左焦点为1F ,过左焦点1F 作倾斜角为π6的直线交椭圆于A ,B 两点,且113AF F B =,则椭圆C 的离心率为()A .12B .23CD【答案】C【分析】联立直线与椭圆方程可得韦达定理,进而根据向量共线的坐标运算可得22239a b c +=,进而结合222a b c =+求解离心率.【详解】设()1,0F c -,()11,A x y ,()22,B x y ,过点1F 所作直线的倾斜角为π6所以直线方程可写为x c =-,联立方程22221x y a b x c ⎧+=⎪⎨⎪=-⎩,可得()2222430a b y cy b +--=,()()22422043cb a b =++>∆,根据韦达定理:12y y +=412223b y y a b =-+,因为113AF F B =,即()()1122,3,c x y x c y ---=+,所以123y y =-,所以()2222212124211222233122333c a b y y y y b y y y y a b ⎛⎫ ⎪++⎝⎭+=-=-=---+,即2223133c a b =+,所以22239a b c +=,联立22222239a b c a b c ⎧+=⎨=+⎩,可得223a c =,2133e e =⇒=.故选:C25.设12,F F 分别为椭圆22221(0)x ya b a b+=>>的左右焦点,M 为椭圆上一点,直线12,MF MF 分别交椭圆于点A ,B ,若11222,3MF F A MF F B ==,则椭圆离心率为()ABC .37D【答案】D【分析】设出()00,M x y ,根据向量的定比分点,将,A B 两点的坐标表示成含00,x y 的式子,再代入椭圆方程联立即可解得2237a c =,即可求得离心率.【详解】如下图所示:易知()()12,0,,0F c F c -,不妨设()00,M x y ,()()1122,,,A x y B x y ,易知2200221x y a b+=,由112MF F A = 可得()()01012020c x x c y y ⎧--=+⎪⎨-=-⎪⎩,即0101322c x x y y --⎧=⎪⎪⎨⎪=-⎪⎩同理由223MF F B = 可得0202433c x x y y -⎧=⎪⎪⎨⎪=-⎪⎩;将()()1122,,,A x y B x y 两点代入椭圆方程可得22002222002232214331c x y a bc x y a b ⎧--⎛⎫⎛⎫-⎪ ⎪ ⎪⎝⎭⎝⎭⎪+=⎪⎨-⎛⎫⎛⎫⎪- ⎪ ⎪⎪⎝⎭⎝⎭+=⎪⎩;即222000222220002296144168199c x cx y a bc x cx y a b ⎧+++=⎪⎪⎨+-⎪+=⎪⎩,又2200221x y a b +=,整理得220220322c cx a c cx a ⎧+=⎨-=⎩解得2237a c =,所以离心率217c e a==;故选:D26.已知椭圆()2222:10x y E a b a b +=>>,过左焦点F 且不与x 轴垂直的直线l 交E 于P 、Q 两点,若直线2a x c =-上存在点T ,使得PQT △是等边三角形,则E 的离心率的取值范围是()A.⎛ ⎝⎭B.⎫⎪⎪⎝⎭C.⎛ ⎝⎭D.⎫⎪⎪⎝⎭【答案】D【分析】设直线PQ 的方程为x my c =-,其中0m ≠,设点()11,P x y 、()22,Q x y ,将直线PQ 的方程与椭圆方程联立,列出韦达定理,求出PQ 的长以及等边PQT △的高,根据几何关系可得出a c 该椭圆离心率的取值范围.【详解】知点(),0F c -,设直线PQ 的方程为x my c =-,其中0m ≠,设点()11,P x y 、()22,Q x y,联立22221x my cx y ab =-⎧⎪⎨+=⎪⎩可得()22222420a b m y b cmy b +--=,()()422422224244410b c m b a b m a b m ∆=++=+>,由韦达定理可得2122222b cmy y a b m +=+,412222b y y a b m=-+,所以,()2222221ab m PQ a b m+=+,设线段PQ 的中点为()00,M x y ,则21202222y y b cm y a b m +==+,22200222222b cm a cx my c c a b m a b m=-=-=-++,因为PQT △为等边三角形,则TM PQ ⊥,且直线TM 的斜率为m -,所以,()32220222a b a TM x c c a b m =+=+,且πtan3TM PM ==,即TM=,即()()322222222221a b m a b m c a b m +=++,整理可得(a c =1ca<<,故选:D.题型五利用第三定义求解27.双曲线()2222:10,0x y E a b a b-=>>被斜率为4的直线截得的弦AB 的中点为()2,1,则双曲线E 的离心率为()ABC .2D【答案】B【解析】根据点差法,设出交点坐标,代入作差即可得解.【详解】设()()1122,,,A x y B x y 代入双曲线方程作差有:()()()()1112121222x x x x y y y y a b -+-+=,有2121221212()()2()()y y y y b a x x x x -+==-+,所以223c a=,e =故选:B .【点睛】本题考查了解析几何中的点差法,点差法主要描述直线和圆锥曲线相交中斜率和中点的关系,在解题中往往大大简化计算,本题属于基础题.28.已知斜率为1的直线l 与双曲线C :22221x y a b-=(0a >,0b >)相交于B 、D 两点,且BD 的中点为3(1)M ,.则C 的离心率为()A .2BC .3D【答案】A【解析】设()()1122,,,B x y D x y ,得22112222222211x y a b x y ab ⎧-=⎪⎪⎨⎪-=⎪⎩,两式做差得到()()()()2121221212y y y y b a x x x x -+=-+,代入条件即可计算离心率.【详解】设()()1122,,,B x y D x y 22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩,两式做差得()()()()12121212220x x x x y y y y a b -+-+-=整理得()()()()2121221212y y y y b a x x x x -+=-+,而12121BD y y k x x --==,122x x +=,126y y +=,代入有223b a =,即2223c a a -=可得2ce a==.故选:A.【点睛】直线与圆锥曲线相交所得弦中点问题,是解析几何的内容之一,也是高考的一个热点问题,其解法可以利用“点差法”.29.已知椭圆,点F 为左焦点,点P 为下顶点,平行于FP 的直线l 交椭圆于A ,B 两点,且AB 的中点为11,2M ⎛⎫⎪⎝⎭,则椭圆的离心率为()A.2B .12C .14D.2【答案】A【分析】点差法解决中点弦问题.【详解】由题意,设椭圆方程为22221x y a b+=,有(),0F c -,()0,P b -,设11(,)A x y ,22(,)B x y ,AB 的中点为11,2M ⎛⎫⎪⎝⎭,122x x ∴+=,121y y +=.//PF l ,1212PF l y y b k k c x x -∴==-=-.由2211221x y a b +=,2222221x y a b+=.两式相减得1212121222()()()()0x x x x y y y y a b +-+-+=,即1212221212()()()()x x y y a y y b x x +-=-+-,∴222a cbb =,可得:22bc a =,22244()c a c a ∴-=,化为:424410e e -+=,解得212e =,01e <<,e ∴=故选:A .30.已知F 1(﹣c ,0),F 2(c ,0)分别为双曲线C :2222x y a b-=1(a >0,b >0)的左、右焦点,直线l :x y c b +=1与C 交于M ,N 两点,线段MN 的垂直平分线与x 轴交于T (﹣5c ,0),则C 的离心率为()ABCD【答案】D【分析】设M (x 1,y 1),N (x 2,y 2),线段MN 的中点为S (x 0,y 0),运用点满足双曲线方程,作差,结合中点坐标公式和平方差公式,以及直线的斜率公式,两直线垂直的条件,以及双曲线的离心率公式,计算可得所求值.【详解】设M (x 1,y 1),N (x 2,y 2),线段MN 的中点为S (x 0,y 0),联立方程组2222221122222222b x a y a b b x a y a b ⎧-=⎨-=⎩,两式相减可得b 2(x 12﹣x 22)=a 2(y 12﹣y 22),可得b 2(x 1﹣x 2)(x 1+x 2)=a 2(y 1﹣y 2)(y 1+y 2),可得2b 2(x 1﹣x 2)x 0=2a 2(y 1﹣y 2)y 0,所以kMN 20122120b x y y b c x x a y -=-==-,即b c -2020y b x a⋅=(1),由kMN ⋅kST =-1,可得b c -⋅005y x c =-+1(2),由(1)(2)可得x 025a c =-,y 0=5b ,即S (25a c -,5b ),又S 在直线l 上,所以225a c-+5=1,解得e c a ==故选:D .【点睛】本题考查了双曲线的方程和性质,考查了点差法和方程思想、运算求解能力,属于中档题.31.(多选)已知椭圆222:12x y C m+=的焦点分别为()10,2F ,()20,2F -,设直线l 与椭圆C 交于M ,N 两点,且点11,22P ⎛⎫⎪⎝⎭为线段MN 的中点,则下列说法正确的是()A .26m =B .椭圆CC .直线l 的方程为320x y +-=D .2F MN的周长为【答案】AC【分析】先由题意求出2m 即可判断A ;再根据离心率公式即可判断B ;由点差法可以求出直线l 的斜率,由直线的点斜式化简即可判断C ;由焦点三角形的周长公式即可判断D.【详解】如图所示:根据题意,因为焦点在y 轴上,所以224m -=,则26m =,故选项A 正确;椭圆C的离心率为c e a ==,故选项B 不正确;不妨设()()1122,,,M x y N x y ,则2211126x y +=,2222126x y +=,两式相减得()()()()1212121226x x x x y y y y +-+-=-,变形得121212123y y x x x x y y -+=-⨯-+,又注意到点11,22P ⎛⎫⎪⎝⎭为线段MN 的中点,所以121212121221122P P x x x x x y y y y y ++====++,所以直线l 的斜率为121212123313l y y x k xx x y y ⨯=-+⨯--=-+=-=,所以直线l 的方程为11322y x ⎛⎫-=-- ⎪⎝⎭,即320x y +-=,故选项C 正确;因为直线l 过1F ,所以2F MN 的周长为()()222121224F M F N MN F M F M F N F N a a a ++=+++=+==,故选项D 不正确.故选:AC .32.已知椭圆()222210x y a b a b+=>>上一点M ,点F 为右焦点,点P 为下顶点,2FP MF = ,则椭圆的离心率为.【分析】过M 作MN x ⊥轴于N ,根据相似关系确定3,22c b M ⎛⎫⎪⎝⎭,代入方程计算得到答案.【详解】如图所示:过M 作MN x ⊥轴于N ,2FP MF = ,则122b MN OP ==,122c NF FO ==,故3,22c b M ⎛⎫⎪⎝⎭,则222291441c b a b+=,整理得到29344e =,故33e =.题型六与斜率乘积相关33.已知A ,B 分别是双曲线()2222:10,0x y C a b a b-=>>的左、右顶点,F 是C 的焦点,点P 为C 的右支上位于第一象限的点,且PF x ⊥轴.若直线PB 与直线PA 的斜率之比为3,则C 的离心率为()ABC .2D .3【答案】C【分析】由已知可得A ,B ,P 的坐标,求得PA ,PB 所在直线的斜率,再由直线PB 与直线PA 的斜率之比为3列式求双曲线C 的离心率.【详解】由题意可得,(,0)A a -,(,0)B a ,P 点的横坐标为c ,代入22221c y a b-=,又0P y >,所以2(,)b P c a ,2PAb a kc a =+,2PBb a kc a =-,则3PBPAk c a kc a +==-,可得2ca=.即双曲线的离心率为2.故选:C .34.设双曲线()222210,0x y a b a b-=>>的右焦点为(),0F c ,点A 满足3OA OF = ,点P 、Q 在双曲线上,且2AQ AP = .若直线PQ ,PF 的斜率之积为13,则双曲线的离心率为.【详解】如图,取P ,Q 的中点为M ,连接OM ,PF,则由题意可得,2PA PM =,2AF FO =,所以APF ,AMO 相似,所以PF MO ∥,因为直线PQ ,PF 的斜率之积为13,所以13PQ OM k k =⋅,设()11P x y ,()22,Q x y ,则1212,22x x y y M ++⎛⎫⎪⎝⎭,且22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减可得()()()()12121212220x x x x y y y y a b +-+--=,即()()()()2121221212y y y y b x x x x a +-=+-,即2213PQ OMb k a k ==⋅,即2213b a =,所以双曲线的离心率为233e ===.35.设椭圆()2222:10x y a b a bΓ+=>>的右焦点为(),0F c ,点()3,0A c 在椭圆外,P 、Q 在椭圆上,且P 是线段AQ 的中点.若直线PQ 、PF 的斜率之积为12-,则椭圆的离心率为.【答案】2【分析】取线段PQ 的中点M ,连接OM ,推导出//OM PF ,可得出12OM PQ PF PQ k k k k ==-,利用点差法可求得22b a的值,由此可求得椭圆Γ的离心率的值.【详解】如下图所示:由题意可知,点(),0E c -为椭圆Γ的左焦点,因为点()3,0A c 、(),0F c ,易知点F 为线段AE 的中点,又因为P 为AQ 的中点,所以,//PF QE ,取线段PQ 的中点M ,连接OM ,则2AP AF PMOF==,所以,//OM PF ,所以,OM PF k k =,故12OM PQ PF PQ k k k k ==-,设点()11,P x y 、()22,Q x y ,则点1212,22x x y y M ++⎛⎫⎪⎝⎭,所以,22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两个等式作差可得22221212220x x y y a b --+=,可得2221222212y y b x x a -=--,所以,122221212222121212012202OM PQy y y y y y b k k x x x x x x a +---=⋅==-=-+---,所以,椭圆Γ的离心率为2c e a ====.故答案为:22.36.已知椭圆C :()222210x y a b a b+=>>的焦距为2c ,左焦点为F ,直线l 与C 相交于A ,B 两点,点P 是线段AB 的中点,P 的横坐标为13c .若直线l 与直线PF 的斜率之积等于316-,则C 的离心率为.【答案】12/0.5【分析】设()()1111,,,A x y B x y ,求出PF 的斜率,利用点差法求出直线l 的斜率,在根据题意求出,,a b c 之间的关系即可得解.【详解】(),0F c -,设()()1111,,,A x y B x y ,因为点P 是线段AB 的中点,P 的横坐标为13c ,所以12122,,332y y c c x x P +⎛⎫+=⎪⎝⎭,则()121212123224832PFy y y y y y k x x c c c+++===++,由直线l 与C 相交于A ,B 两点,得2222112222221,1x y x y a b a b+=+=,两式相减得2222112222220x y x y a b a b+--=,即()()()()12121212220x x x x y y y y a b -+-++=,所以()()()()2121221212y y y y b x x x x a -+=--+,即212122l k y y x x b a⋅=++-,所以()222221211223l x x c y y b b k a y a y +=-=-⋅+⋅+,则()()2212122233623841l PFy y b b k a c y y k c a +⋅=-⋅⋅=-=-+,所以2234b a =,所以离心率12c e a ===.故答案为:12.37.双曲线C :()222210,0x y a b a b -=>>的右顶点为A ,点,M N 均在C 上,且关于y 轴对称.若直线AM ,AN的斜率之积为54-,则C 的离心率为()A .32B C .2D 【答案】A【分析】根据已知条件列方程,化简求得22b a,进而求得双曲线的离心率.【详解】依题意(),0A a -,设(),M m t ,则(),N m t -,m a >且222222222222221,m t a b t a t a m a a b b b+-===+,而22254AM ANt t t k k m a m a a m ⋅=⋅==-+-+-,()222222222225455t a t a t m a a a b b ⎛⎫=-=+-= ⎪⎝⎭,2254b a =,所以32c e a ==.故选:A38.已知椭圆()2222:10x y C a b a b+=>>的右顶点为A ,P 、Q 为C 上关于坐标原点对称的两点,若直线AP ,AQ 的斜率之积为25-,则C 的离心率为()A B C D 【答案】A【分析】根据题意结合椭圆方程整理得22AP AQ b k k a⋅=-,进而可求离心率.【详解】由题意可知:(),0A a ,设()()000,0P x y y ≠,则()00,Q x y --,可得000000,AP AQ y y y k k x a x a x a -===---+,则200022000AP AQy y y k k x a x a x a ⋅=⋅=-+-,又因为点()00,P x y 在椭圆上,则2200221x y a b +=,整理得()2222002b y a x a=-,可得()222220202222200APAQb a x y b a kk x a x a a-⋅===---,即2225b a -=-,所以C的离心率155e ===.故选:A.39.椭圆C :()222210x y a b a b+=>>的左顶点为A ,点P ,Q 是C 上的任意两点,且关于y 轴对称.若直线AP ,AQ 的斜率之积为19,则C 的离心率为()AB.3CD【答案】C【分析】设00(,)P x y ,则00(,)Q x y -,根据斜率公式结合题意可得19AP AQ k k ⋅=,再结合2200221x y a b+=可求出离心率.【详解】由题意得(,0)A a -,设00(,)P x y ,因为点P ,Q 是C 上的任意两点,且关于y 轴对称,所以00(,)Q x y -,2200221x y a b +=,所以0000,AP AQ y yk k x a a x ==+-,所以20002200019AP AQy y y k k x a a x a x ⋅=⋅==+--,因为2200221x y a b +=,所以2222002()b a x y a-=,所以2220222220()19b a x b a a x a -==-,所以离心率c e a =====,故选:C题型七焦点三角形双余弦定理模型40.已知双曲线()222210,0x y a b a b-=>>左右焦点分别为1F ,2F ,过2F 的直线在第一象限与双曲线相交于点A ,与y 轴的负半轴交于点B ,且2232AF F B =,1AF AB = ,则双曲线的离心率为.【分析】根据题意,设()230AF t t => ,利用由双曲线的定义,求得23AF a = ,22F B a = ,15AF AB a == ,分别在12AF F △和1AF B △中,由余弦定理,列出方程,求得,a c 关系式,即可求解.【详解】因为2232AF F B =且1AF AB = ,可设()230AF t t => ,则212,5F B t AF AB t === ,由双曲线的定义,可得1222AF AF t a -==,所以t a =,所以23AF a = ,22F B a = ,15AF AB a ==,分别在12AF F △和1AF B △中,可得()()()()()()222222532552cos 253255a a c a a a A a aa a+-+-==⨯⨯⨯⨯,整理得:285c a ⎛⎫= ⎪⎝⎭,所以双曲线的离心率为5..41.已知双曲线2222:1(0,0)x y a b a bΓ-=>>的左、右焦点分别为1F 、2F ,O 为坐标原点.过1F 作双曲线Γ一条渐近线的垂线,垂足为D ,若2DF OD =,则双曲线Γ的离心率为.【分析】先由已知双曲线方程得出一条渐近线方程,再利用点到直线的距离公式求出1DF ,进而求出OD ,2DF ,再利用余弦定理得出a 与c 的关系,进而求出离心率.【详解】由双曲线2222:1(0,0)x y a b a b Γ-=>>的性质可知,双曲线的一条渐近线方程为b y x a =-,焦点1(,0)F c -,2(,0)F c .由1F 作该渐近线的垂线,则由点到直线的距离公式可得1DF b =,所以OD a ==,所以2DF =,由于1FOD ∠与2F OD ∠互补,所以12cos cos 0F OD F OD ∠+∠=,即2222228022a c b a c a ac ac+-+-+=,可得225c a =,则离心率c e a ==42.已知1F ,2F 分别是双曲线Γ:()222210,0x y a b a b -=>>的左、右焦点,过1F 的直线分别交双曲线左、右两支于A ,B 两点,点C 在x 轴上,25CB F A =uu r uuu r,2BF 平分1F BC ∠,则双曲线Γ的离心率为()A B C D .83【答案】A【分析】因为25CB F A =uu r uuu r,所以12F AF ∽1F BC △,设122F F c =,则28F C c =,设1AF t =,则15BF t =,4AB t =.由角平分线的性质可得24AF t =,由双曲线的定义可得23at =,22BF t =,再结合余弦定理可得226c t =,从而可求解.【详解】因为25CB F A =uu r uuu r,则2//CB F A ,所以12F AF ∽1F BC △,设122F F c =,则28F C c =,设1AF t =,则15BF t =,4AB t =.因为2BF 平分1F BC ∠,由角平分线定理可知,11222841BF F F c BCF Cc ===,所以1420BC BF t ==,所以2145AF BC t ==,由双曲线定义知212AF AF a -=,即42t t a -=,23at =,①又由122BF BF a -=得2522BF t a t =-=,在2ABF △中,由余弦定理知2222222222164161cos 22424AB BF AF t t t ABF AB BF t t +-+-∠===⋅⋅⨯⨯,在12F BF 中,由余弦定理知22212121212cos 2BF BF F F F BF BF BF +-∠=⋅⋅,即222125444252t t c t t +-=⨯⨯,化简得226c t =,把①代入上式得22249a c =,解得c e a ==故选:A .43.已知双曲线E :2222x y a b-=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与E 交于A ,B两点(B 在x 轴的上方),且满足1117AF F B =.若直线的倾斜角为120°,则双曲线的离心率为()A .2B .72C .52D .32【答案】D【解析】设1,F B k = 则117AF k = ,由双曲线的定义知,2212,27F A a k F B a k =+=+,在12AF F ∆和12BF F ∆中分别利用余弦定理,然后两式相减即可求解.【详解】设1,F B k = 则117AF k = ,则122F F c =,由双曲线的定义知,2212,27F A a k F B a k =+=+,在12AF F ∆中,由余弦定理可得,22221121122cos 60AF AF F F AF F F =+-⋅⋅ ,即()222111122227772a k k c k c ⎛⎫⎛⎫+=+-⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭,在12BF F ∆中,由余弦定理可得,22221121122cos120BF BF F F BF F F =+-⋅⋅即()()222122222a k k c k c ⎛⎫+=+-⨯⨯⨯- ⎪⎝⎭两式相减可得,843a c =,所以离心率32c e a ==.故选:D【点睛】本题考查双曲线及其性质、直线与双曲线的位置关系,及三角形中的余弦定理;考查运算求解能力和转化与化归能力;双曲线定义的灵活运用是求解本题的关键;属于中档题、常考题型.44.已知12,F F 分别为双曲线()2222100x yC a b a b-=>>:,的左、右焦点,过1F 的直线与双曲线左支交于,A B 两点,且113AF BF =,以O 为圆心,2OF 为半径的圆经过点B ,则C 的离心率为()A .3B .2CD 【答案】B【分析】设1BF m =,利用双曲线定义表示出22,BF AF 的长,再利用勾股定理可得()()22222m m a c ++=,在12BF F △和12AF F △中,分别利用余弦定理可得223b m a =,联立两式即可得离心率e ==【详解】如下图所示,连接22,BF AF ,易知以O 为圆心,2OF 为半径的圆经过点1F ,即12F F 为圆O 的直径,所以12BF BF ⊥;不妨设()1,0BF m m =>,则13AF m =,由双曲线定义可得222,32,BF m a AF m a =+=+所以2221212||||BF BF F F +=,即()()22222m m a c ++=,整理得2222m am b +=⋅⋅⋅⋅⋅⋅①在12BF F △中可得,()2222124244cos 224m c m a b am BF F m c mc+-+-∠==⋅;在12AF F △中可得,()2222129432412cos 23212m c m a b am AF F m c mc+-+-∠==⋅⋅;又易知1212cos cos 0BF F AF F ∠+∠=,可得223b m a=⋅⋅⋅⋅⋅⋅②联立①②可得,2232a b =,则双曲线的离心率为e ==故选:B45.已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1F ,2F ,直线3y x =与双曲线C 交于A ,B两点(点A 在第二象限),且12AB F =.则双曲线C 的离心率为()A BC .13+D 【答案】A【分析】根据直线斜率可得倾斜角,作焦点三角形,利用余弦定理,结合双曲线的定义,可得答案.【详解】因为12AB F F =,所以OA =因为AB k =130AOF ∠=︒.所以。
椭圆双曲线离心率范围问题 专题讲义--高三数学一轮复习备考
椭圆双曲线离心率范围问题离心率的范围问题:在寻找不等关系时通常可从以下几个方面考虑:(1)题目中某点的横坐标(或纵坐标)是否有范围要求:例如椭圆与双曲线对横坐标的范围有要求。
如果问题围绕在“曲线上存在一点”,则可考虑该点坐标用,,a b c 表示,且点坐标的范围就是求离心率范围的突破口如:椭圆(以()222210x y a b a b+=>>为例),则[],x a a ∈-,[],y b b ∈-双曲线:(以()22221,0x y a b a b-=>为例),则(],x a ∈-∞-(左支)[),a +∞(右支)(2)若题目中有一个核心变量,则可以考虑离心率表示为某个变量的函数,从而求该函数的值域即可(3)通过一些不等关系得到关于,,a b c 的不等式,进而解出离心率注:在求解离心率范围时要注意圆锥曲线中对离心率范围的初始要求:椭圆:()0,1e ∈,双曲线:()1,+e ∈∞典例讲解例1:已知12,F F 是椭圆()2222:10x y E a b a b+=>>的左右焦点,若椭圆上存在点P ,使得12PF PF ⊥,则椭圆离心率的取值范围是( )A. 55⎫⎪⎪⎣⎭B. 22⎫⎪⎪⎣⎭C. 50,5⎛ ⎝⎦D. 22⎛ ⎝⎦解:在椭圆上的点P 与焦点连线所成的角中,当P 位于椭圆短轴顶点位置时,12F PF ∠达到最大值。
所以若椭圆上存在12PF PF ⊥的点P ,则短轴顶点与焦点连线所成的角90θ≥,考虑该角与,,a b c 的关系,由椭圆对称性可知,2452OPF θ∠=≥,所以22tan 1OF c OPF OP b∠==≥,即22222c b c b c a c ≥⇒≥⇒≥-,进而2212c a ≥即212e ≥,解得22e ≥,再由()0,1e ∈可得22e ⎫∈⎪⎪⎣⎭例2:已知双曲线)0,0(12222>>=-b a by a x 上有一点A ,它关于原点的对称点为B ,点F 为双曲线的右焦点,且满足BF AF ⊥,设α=∠ABF ,且]6,12[ππα∈,则该双曲线 离心率e 的取值范围为( )A .]32,3[+B .]13,2[+C .]32,2[+D .]13,3[+解:BF AF ⊥可得ABF 为直角三角形,且22AB OF c ==,结合α=∠ABF 可得2sin ,2cos AF c BF c αα==,因为,A B 关于原点对称,所以AF 即为B 的左焦半径。
双曲线离心率求解技巧
双曲线离心率求解技巧双曲线是数学中一种常见的曲线形状,其特点是离心率大于1。
在解决问题和分析双曲线时,了解和计算离心率是一项重要的技巧。
下面是一些关于双曲线离心率求解技巧的详细说明。
首先,让我们回顾一下双曲线的定义。
双曲线可以通过以下方程表示:(x²/a²) - (y²/b²) = 1其中,a和b是曲线的两个参数,通过改变这两个参数的值可以调整曲线的形状。
曲线的离心率可以通过参数a 和b来计算,具体方法如下:1. 找到曲线的焦点坐标。
双曲线的焦点坐标可以通过下面的公式计算:c = √(a² + b²)其中,c是双曲线曲线的焦点到原点的距离。
根据焦点的位置,曲线可以分为两种类型:左右开口和上下开口。
如果曲线是左右开口的,焦点坐标的x分量为±c,y分量为0;如果曲线是上下开口的,焦点坐标的x分量为0,y 分量为±c。
2. 计算离心率。
离心率是一个用来描述在双曲线上的点离焦点的距离和该点到曲线的距离之比。
数学上,离心率可以通过以下公式计算:e = c/a离心率大于1,说明曲线是一个双曲线。
离心率越接近于1,曲线的形状越趋向于直线。
离心率越大,曲线的形状越弯曲。
计算离心率是分析和解决问题的关键步骤之一,因为离心率的大小可以告诉我们关于曲线特性的很多信息。
例如,离心率越大,曲线的焦点越集中,曲线在焦点附近的形状会发生明显变化。
除了上述的求解技巧,还有一些常见的双曲线的性质和应用,可以帮助我们更好地理解和使用双曲线。
以下是一些常见的例子:1. 长轴和短轴:在双曲线上,a被称为长轴,b被称为短轴。
它们之间的关系是a²- b²= 1。
长轴是双曲线在水平方向上的最长距离,短轴是双曲线在垂直方向上的最短距离。
2. 渐近线:双曲线的渐近线是指曲线在无限远处趋于的直线。
双曲线有两个渐近线,一个是左右开口的情况下的水平渐近线(y = ±(b/a) * x),另一个是上下开口的情况下的垂直渐近线(x = ±(a/b) * y)。
离心率的求法+课件——2024届高三数学二轮专题复习
A. B.
3
6
3
11
C.
12
D.
33
6
2
跟踪训练 4
已知 A,B 是椭圆 E:
2
+
2
2
= 1( > > 0)的左、右顶点,M 是
4
E 上不同于 A,B 的任意一点,若直线 AM,BM 的斜率之积为− ,则 E 的离心
9
率为(
A.
2
3
)
B.
3
3
2
C. D.
3
5
3
五、离心率的范围
例5
a b
O为圆心,|OF1|为半径的圆与该双曲线左支的两个交点,且△F2AB是等边三
3+1
角形,则双曲线的离心率为________.
思维切入 连接AF1,在△F1AF2中利用双曲线的定义可求解.
c
点评 涉及到焦点三角形的题目往往利用圆锥曲线的定义求得的 值.
a
跟踪训练 2
(2023 年全国普通高等学校招生统一考试文数(全国卷 II)
为-3 的直线 l 与双曲线左、右支均相交.则双曲线离心率的取值范围为(
A.(1, 10) B.(1, 5) C.( 10, +∞) D.( 5, +∞)
)
谢谢
2
AB,CD 的中点为 E 的两个焦点,且 2|AB|=3|BC|,则 E 的离心率是_____.
思维切入
通过2|AB|=3|BC|,得到a,b,c的关系式,再由b2=c2-a2,得到a
和c的关系式,同时除以a2,即可得到关于e的一元二次方程,求得e.
点评
求圆锥曲线的离心率,就是求a和c的值或a和c的关系,然后根据离心
关于高中数学离心率题型解法的有效解决技巧
关于高中数学离心率题型解法的有效解决技巧高中数学中,离心率是一个常见的题型,解题时需要掌握一些有效的解决技巧。
下面将介绍几种常见的离心率题型及解法。
一、求离心率的大小对于给定的椭圆方程或双曲线方程,要求其离心率的大小,可以通过以下步骤进行解题:1.找到椭圆(或双曲线)的焦点坐标(a,0)和(-a,0),及顶点的坐标(c,0)和(-c,0)。
2.根据离心率的定义,离心率e等于焦点到顶点的距离与长轴的一半的比值,即e=c/a。
3.计算离心率的大小。
二、已知离心率和焦点坐标求椭圆(或双曲线)方程对于给定的离心率e和焦点坐标(a,0)和(-a,0),要求方程的解,可以按照以下步骤进行:2.由于离心率与顶点的坐标有关,可以令顶点的坐标为(c,0)和(-c,0)。
3.根据顶点坐标和离心率的定义,可以得到方程的表达式。
4.化简方程,得到标准形式的方程。
2.根据标准形式可以得到椭圆(或双曲线)的中心坐标(h,k),椭圆(或双曲线)的焦点公式为(h ± ae,k),离心率为e。
四、已知椭圆(或双曲线)方程及一点求与该点相切的切线方程3.通过求导可得到椭圆(或双曲线)的斜率k1。
4.由于切线与椭圆(或双曲线)相切,切线的斜率与椭圆(或双曲线)的斜率k1相等。
5.利用点斜式得到切线方程。
五、已知圆心和两个点的坐标求圆方程1.根据圆的定义,圆的半径r等于圆心到任意一点的距离,即r=sqrt((x1-h)^2+(y1-k)^2)。
六、已知圆的方程求切线方程总结:在解决高中数学离心率题型时,需要熟悉椭圆和双曲线的基本概念和性质,掌握离心率的定义和求解方法。
通过对给定的条件进行分析和计算,可以得到离心率的大小、椭圆(或双曲线)的方程、焦点的坐标及离心率的大小、与给定点相切的切线方程等信息。
掌握了这些解题技巧,就能够快速、准确地解决高中数学离心率题型。
离心率的五种求法
离心率的五种求法离心率的五种求法一、直接求出a、c,求解e当已知圆锥曲线的标准方程或a、c易求时,可利用离心率公式e=c/a来解决。
例如,已知双曲线2-x^2/y^2=1(a>c)的一条准线与抛物线y^2=-6x的准线重合,则该双曲线的离心率为(3a^2c^2-13c^2)/(2a^2c)。
解法为:抛物线y=-6x的准线是x=2c^2/3,即双曲线的右准线x=c^2/(a-c)=2c^2/3-1/3.由此得到c=2,a=3,e=c/a=2/3.因此,选D。
变式练1:若椭圆经过原点,且焦点为F1(1,0)、F2(-1,0),则其离心率为√(2/3)。
解法为:由F1(1,0)、F2(-1,0)知2c=2,∴c=1,又∵椭圆过原点,∴a-c=1,a+c=2,解得a=3/2,e=c/a=√(2/3)。
因此,选C。
变式练2:如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为√13/2.解法为:由题设a=2,2c=6,则c=3,e=c/a=√13/2.因此,选C。
变式练3:点P(-3,1)在椭圆4x^2/a^2+2y^2/b^2=1(a>b)的左准线上,过点P且方向为(2,-5)的光线,经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为√113/5.解法为:由题意知,入射光线为y-1=-x/2,关于y=-2的反射光线(对称关系)为y+5=-2(x+3),解得a=3,c=√5,则e=c/a=√113/5.因此,选A。
二、构造a、c的齐次式,解出e根据题设条件,借助a、b、c之间的关系,构造a、c的关系(特别是齐二次式),进而得到关于e的一元方程,从而解得离心率e。
1到l1的距离,又AB的长为2a,∴XXX的长为a。
设AB的中点为M,则MF1为椭圆的半长轴,由于F1在x轴右侧,∴F1的横坐标为c,且c>a。
设F1为(c,0),则根据椭圆的统一定义,可得c2x2y2a2c2。
其中c为椭圆的半焦距,由题意可得AD的长为a,即MF1的长为a,又MF1为椭圆的半长轴,∴a=c,代入上式得x2y2122c离心率为e=cacc1故选D。
专题 求双曲线的离心率(解析版)高考数学专题复习
03 求双曲线的离心率典例分析一、求离心率的值1.在直角坐标系xOy 中,设F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,P 为双曲线C 的右支上一点,且OPF △为正三角形,则双曲线C 的离心率为( )A .43B .13+C 23D 3【答案】B 【分析】根据OPF △为正三角形求出P 的坐标,代入双曲线方程,根据离心率公式化为关于e 的方程,可求出结果, 【详解】不妨设P 在第一象限,因为OPF △为正三角形,||OF c =,所以13()2P c ,又P 在双曲线上,所以22223121c a b ⎫⎛⎫⎪ ⎪⎝⎭⎝⎭-=,所以22213144c e b-=,所以222213144()c e c a -=-,所以222131444e a c -=-, 所以22131444e e-=-,化简得42840e e -+=,解得2423e =+13e = 2.如图为陕西博物馆收藏的国宝-唐-金筐宝钿团化纹金杯,杯身曲线内收,玲珑娇美,巧夺天工,是唐朝金银细作的典范之作.该杯的主体部分可以近似看作是双曲线C :()222210,0x y a b a b -=>>的右支与直线0x =,6y =,3y =-围成的曲边四边形ABMN 绕y 轴旋转一周得到的几何体,若该金杯主体部分的上口外直径为4526C 的离心率为( )A .2B 2C 3D .3【答案】C【分析】根据题意可知点()25,6M ,点263N ⎫-⎪⎪⎝⎭,将其代入双曲线方程,即可求出a ,b 的值,再根221b a+.【详解】由题意上口外直径为4526()25,6M ,点263N ⎫-⎪⎪⎝⎭, 将点M ,点N 的坐标代入双曲线的方程()222210,0x y a b a b -=>>可得22222036126914a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩,解得2a =2b =,所以双曲线C 2213b a+3.(多选题)已知椭圆()22122:10x y C a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为1e ,椭圆1C 的上顶点为M ,且120MF MF ⋅=.双曲线2C 和椭圆1C 有相同焦点,且双曲线2C 的离心率为2e ,P 为曲线1C 与2C 的一个公共点,若123F PF π∠=,则( )A .213e e =B .123e e ⋅=C .221252e e += D .22212e e += 【答案】ABD【分析】由三角形的面积公式可得b c =,由椭圆的离心率公式可得1e ,设双曲线的方程为22221(0,0)x y m n m n-=>>,设P 在第一象限,且1||PF s =,2||PF t =,运用椭圆和双曲线的定义,可得s ,t ,(用a ,m 表示),再在△12PF F 中,运用余弦定理,求得2212134e e +=,进而得到2e ,检验即可得到结论.【详解】由题意120MF MF ⋅=,所以12MF MF ⊥,可得△12MF F 的面积为11222b c a a ⋅⋅=⋅⋅,所以22222222a b c bc b c bc +==⇒+=,即有b c =,则122c e a c =22221(0,0)x y m n m n-=>>,设P 在第一象限,如图:令1||PF s =,2||PF t =,由椭圆的定义可得2s t a +=,由双曲线的定义可得2s t m -=,解得s a m =+,t a m =-,在△12PF F 中,2221241cos 22s t c F PF st +-∠==,则2224s t st c +-=,可得22222()()()()34a m a m a m a m a m c ++--+-=+=,则222234a m c c +=,即有2212134e e +=,由12e =可得26e =,则123e e =,213e e =,221213222e e +=+=,∴选项ABD 正确;C 错误.4.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的两个焦点,曲线上的点P 到原点的距离为b ,且2112sin 2sin PF F PF F ∠=∠,则该双曲线的离心率为______.22【分析】由等面积法结合定义得出212,4PF a PF a ==,由12180POF POF ︒∠+∠=结合余弦定理得出该双曲线的离心率.【详解】设焦距为2c ,因为2112sin 2sin PF F PF F ∠=∠,1121sin 2c PF PF F ⋅∠2211sin 2c PF PF F =⋅∠,所以122PF PF =,又122PF PF a -=,所以212,4PF a PF a ==,因为22222212164cos ,cos 22b c a b c a POF POF bc bc+-+-∠=∠=,12180POF POF ︒∠+∠=, 所以22222216422b c a b c a bc bc +-+-=-,结合222b c a =-整理得22112c a =,即22c e a ==二、求离心率的取值范围1.(多选题)已知双曲线22221x y a b -=(a >0,b >0)的左、右焦点为F 1,F 2,过F 1的直线l 与双曲线右支交于点P .若12||2||PF PF =,且12PF F △有一个内角为120,则双曲线的离心率可能是( )A 131- B .2 C 131+D 7【答案】AD【分析】当12120F PF ∠=时,由122PF PF a -=,122PF PF =,求得2PF ,1PF ,12F F ,利用余弦定理可得答案;当21120PF F ∠=时, 122PF PF a -=,122PF PF =,求出2PF ,1PF ,12F F ,由余弦定理可得答案.【详解】当12120F PF ∠=时,122PF PF a -=,122PF PF =,所以22PF a =,14=PF a ,122F F c =, 所以22121221212cos 2+-∠=⨯PF PF F F F PF PF PF ,即222224c 116411o 62s 0+-==-c a a a ,化简得227c a=,所以7e 当21120PF F ∠=时,122PF PF a -=,122PF PF =,所以22PF a =,14=PF a ,122F F c =,所以221221212221cos 2+-∠=⨯F F PF PF PF F F F PF ,即22224c s 4112810o 6=--+=ac a c a ,化简得2230c ac a +-=,解得131e -=2.在平面直角坐标系xOy 中,已知双曲线()222210,0x y a b a b -=>>的左、右顶点为A 、B ,若该双曲线上存在点P ,使得直线PA 、PB 的斜率之和为1,则该双曲线离心率的取值范围为__________. 【答案】5⎛ ⎝⎭【解析】【分析】求得22PA PBb k k a=,利用基本不等式可求得b a 的取值范围,结合离心率公式可求得结果.【详解】设点()00,P x y ,其中0x a ≠±,易知点(),0A a -、(),0B a ,且有2200221x y a b -=,则2222002a x a y b =+,22200002222200002PA PB y y y y b k k a x a x a x a a y b =⋅===+--,当点P 在第一象限时,0x a >,00y >,则000PA y k x a =>+,000PB y k x a =>-,且PA PB k k ≠,由基本不等式可得22PA PB PA PB b k k k k a+>=,因为存在点P ,使得直线PA 、PB 的斜率之和为1,则21b a <,即102b a <<,251b e a ⎛⎛⎫∴=+ ⎪ ⎝⎭⎝⎭. 3.已知椭圆1C 和双曲线2C 有公共的焦点1F 、2F ,曲线1C 和2C 在第一象限相交于点P .且1260F PF ∠=︒,若椭圆1C 的离心率的取值范围是322⎡⎢⎣⎦,则双曲线2C 的离心率的取值范围是___________.【答案】63⎡⎢⎣ 【分析】设12||,||PF s PF t ==,由椭圆、双曲线的定义可得1s a a =+,1t a a =-,由余弦定理可建立方程,转化为离心率的关系式,根据椭圆离心率范围,计算即可得到双曲线离心率范围.【详解】设椭圆22122:1(0)x y C a b a b+=>>,双曲线:2C 2222111x y a b -=,椭圆与双曲线的半焦距为c ,椭圆离心率ce a=,双曲线离心率11c e a =,12||,||PF s PF t ==,如图,由椭圆定义可得:2s t a +=,由双曲线定义可得:12s t a -=,联立可得1s a a =+,1t a a =-,由余弦定理可得:1222222211111242cos ()()2()()cos 603c s t st a a a a a P a a F a F a a =+-=++--+⋅︒=+∠-,即221134e e =+,解得212314e e=-,因为32e ⎡∈⎢⎣⎦,所以21132e ≤≤,2123e ≤≤,可得21332e ≤≤163e ≤≤ 方法点拨求双曲线的离心率或其范围的方法(1)求a ,b ,c 的值,由c 2a 2=a 2+b 2a 2=1+b 2a2直接求e .(2)列出含有a ,b ,c 的齐次方程(或不等式),借助b 2=c 2-a 2消去b ,然后转化成关于e 的方程(或不等式)求解,注意e >1.(3)因为离心率是比值,所以可以利用特殊值法,例如,令a =1,求出相应c 的值,进而求出离心率,能有效简化计算.(4)通过特殊位置求出离心率.2.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线的斜率k 与离心率e 的关系:当k >0时,k =b a =c 2-a 2a =c 2a 2-1=e 2-1;当k <0时,k =-ba=-e 2-1.巩固练习1.已知双曲线22221(0,0)x y a b a b-=>>3a ,则此双曲线的离心率为( )A 2B 3C .2D .4【答案】C 【解析】【分析】由题列出关于,,a b c 的关系式求解即可.【详解】由题可知渐近线方程by x a =±,即0bx ay ±=,故焦点(),0c ±到渐近线的距离223bc d a a b==+, ∴3b a .,即2222233b a c a a =⇒-=,解得2ca =.故选:C.2.已知1F ,2F 分别是双曲线22221(0,0)x y a b ab-=>>的左、右焦点,过1F 且垂直于x 轴的直线与双曲线交于A ,B 两点,若2145AF F ∠=︒,则该双曲线的离心率为( )A .12B .13+C .52D 5【答案】A 【解析】【分析】根据所给的条件,分析双曲线内部的几何关系,即可求解.【详解】易知1(,0)F c -,2(,0)F c ,将x c =-代入双曲线的方程,可得2b y a=±,则21bAF a =.又因为2145AF F ∠=︒,12AF F △是等腰直角三角形,所以112AF F F =,即22b c a =,整理得2220c ac a --=,解得12c a = 3.已知曲线C :()222210,0x y a b a b-=>>的左、右顶点分别为1A ,2A ,点P 在双曲线C 上,且直线1PA 与2PA 的斜率之积等于2,则C 的离心率为( )A 2B 3C 6D .3【答案】B 【解析】【分析】设出点P 的坐标,由给定条件列式求出22b a,再利用离心率计算公式求解作答.【详解】依题意,12(,0),(,0)A a A a -,设点(,)P t s ,则22221t s a b-=,有22222()b s t a a =-,由直线1PA 与2PA 的斜率之积等于2得:222222s s s b t a t a t a a ⋅===+--,所以C 的离心率2222213a b b e a a+=+=4.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为(),0F c ,直线:l x c =与双曲线C 交于,A B 两点,与双曲线C 的渐近线交于,D E 两点,若2DE AB =,则双曲线C 的离心率是( )A .2B 2C .43D 23【答案】D 【解析】【分析】利用双曲线通径长和与渐近线交点情况可得,AB DE ,由2DE AB =和,,a b c 关系可求得2c b =,3ab ,由此可求得离心率.【详解】由双曲线方程可得其渐近线方程为:b y x a =±;:l x c =,AB ∴为双曲线的通径,即22b AB a=;由x cb y x a =⎧⎪⎨=±⎪⎩得:x c bc y a =⎧⎪⎨=±⎪⎩,2bc DE a ∴=,由2DE AB =得:224bc b a a =,即2c b =,223a c b b ∴-,∴离心率23c e a ==. 5.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,P 是双曲线上一点,若125PF PF =,则该双曲线的离心率可以是( )A .75B 2C 3D .2【答案】AB 【解析】【分析】依据双曲线定义及几何性质构造不等式,求得双曲线的离心率的取值范围即可解决. 【详解】P 是双曲线右支上一点,125PF PF =则有12224a PF PF PF =-=,又2PF c a ≥-, 则有12a c a ≥-,即32c a ≤,则双曲线的离心率取值范围为31,2⎛⎤⎥⎝⎦,选项AB 正确;选项CD 错误.6.(多选题)已知椭圆2212:1(1)x C y m m+=>与双曲线2222:1(0)x C y n n -=>的焦点重合,12,e e 分别为12,C C 的离心率,则( )A .m n >B .m n <C .121e e >D .121e e <【答案】AC 【解析】【分析】由题可得2211m n -=+,即可得出m n >,进而表示出离心率即可得出答案.【详解】因为12,C C 的焦点重合,所以2211m n -=+,即2220m n -=>,所以m n >,故A 正确;则222212221111111m n m m e e mn m m-+--==>=->,故C 正确. 7.(多选题)已知双曲线2222:1(0,0)x y C a b a b-=>>,点00(,)P x y 是直线20bx ay a -+=上任意一点,若圆2200()()1x x y y -+-=与双曲线C 的右支没有公共点,则双曲线的离心率可能为( )A .32B .2C .3D .5【答案】AB【分析】由题意可得双曲线的一条渐近线与直线20bx ay a -+=,利用平行线间的距离公式求出它们之间的距离d ,则由题意可得1d ≥,从而可求出离心率的范围【详解】双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线方程为b y x a=,即0bx ay -=,则直线20bx ay a -+=与直线0bx ay -=的距离为2222a ad ca b ==+,因为点00(,)P x y 是直线20bx ay a -+=上任意一点,且圆2200()()1x x y y -+-=与双曲线C 的右支没有公共点,所以1d ≥,即21a c≥,得离心率2ce a =≤,因为1e >所以双曲线的离心率的取值范围为(1,2]。
高中数学双曲线离心率取值范围的解题策略学法指导
双曲线离心率取值范围的解题策略求双曲线离心率的取值范围涉及到解析几何、平面几何、代数等多个知识点,综合性强方法灵活,解题关键是挖掘题中的隐含条件,构造不等式,下面举例说明。
一、利用双曲线性质例1 设点P 在双曲线)0b ,0a (1by a x 2222>>=-的左支上,双曲线两焦点为21F F 、,已知|PF |1是点P 到左准线l 的距离d 和|PF |2的比例中项,求双曲线离心率的取值范围。
解析:由题设|PF |d |PF |221=得:|PF ||PF |d |PF |121=。
由双曲线第二定义e d |PF |1=得:e |PF ||PF |12=,由焦半径公式得:e ex a ex a =+--,则a e e a)e 1(x 2-≤-+-=,即01e 2e 2≥--,解得21e 1+≤<。
点评:求双曲线离心率取值范围时可先求出双曲线上一点的坐标,再利用性质:若点P在双曲线1b y a x 2222=-的左支上则a x -≤;若点p 在双曲线1by a x 2222=-的右支上则a x ≥。
二、利用平面几何性质例2 设点P 在双曲线)0b ,0a (1by a x 2222>>=-的右支上,双曲线两焦点21F F 、,|PF |4|PF |21=,求双曲线离心率的取值范围。
解析:由双曲线第一定义得:a 2|PF ||PF |21=-,与已知|PF |4|PF |21=联立解得:a 32|PF |,a 38|PF |21==,由三角形性质|F F ||PF ||PF |2121≥+得:c 2a 32a 38≥+解得:35e 1≤<。
点评:求双曲线离心率的取值范围时可利用平面几何性质,如“直角三角形中斜边大于直角边”、“三角形两边之和大于第三边”等构造不等式。
三、利用数形结合 例3 (同例2) 解析:由例2可知:a 32|PF |,a 38|PF |21==,点P 在双曲线右支上由图1可知:a c |PF |1+≥,|a c PF |2-≥,即a c a 32,a c a 38-≥+≥,两式相加得:c a 35≥,解得:35e 1≤<。
专题训练----求双曲线离心率(有详解)
求双曲线离心率举例一、填空题1. 双曲线12222=-by a x 的两条渐近线互相垂直,则双曲线的离心率为______ (2)提示:斜率之积等于1-。
即2,,1,1)(22=∴∴==-=-⋅e b a ab a b a b 为等轴双曲线,。
(事实上,有下述定理:等轴双曲线⇔两渐近线互相垂直;等轴双曲线⇔2=e )2. 已知双曲线12222=-by a x 的实轴长、虚轴长、焦距成等差数列,则其离心率等于___(35=e ) c a b +=2,22224c ac a b ++= 22222)(4c ac a a c ++=- 052322=--a ac c 05232=--e e ,0)53)(1(=-+e e ,取35=e 。
3. 双曲线12222=-by a x 的左顶点和右焦点分别是A 、F ,点B 的坐标是(0,b ),若,90︒=∠ABF 则双曲线的离心率是________ (215+ ) 由1-=⋅BF AB K K 或由勾股定理可得:ac b =2,代入222b ac +=,得:022=--a ac c ,两边同除以2a ,得:012=--e e 。
215e ,1+=>解得e 4. 已知F 1、F 2是双曲线12222=-by a x 的两个焦点,AB 是经过焦点F 1且垂直于x 轴的双曲线的弦,若∠AF 2B=90º,则双曲线的离心率为__________(12+).易知:AB 为通径,211F F AF =。
令),(2a b c A -,则 ac b c a b 2,222==,12,2)1(,012,2222222+==-=--+=+=e e e e ac a b a c 化为:5. 双曲线12222=-b y a x 的离心率为e 1,双曲线12222=-ax b y 的离心率为e 2, 则=+222111e e ____1____, e 1+e 2 的最小值为 22. e 1·e 2的最小值为__2 . 由双曲线离心率定义知:b b a e ab a e 222221,+=+=, 故有=+222111e e 1. 法一: 22)2(2)()11(222221=≥++=++=+ababab ab b a b a b a b a e e ,等号成立当且仅当时即2,==e b a ;222221=≥+=⋅ababab b a e e ,等号成立当且仅当时即2,==e b a法二:不妨设1,121>=>=y e x e ,则问题相当于:,11122=+y x 求y x +、xy 的最小值。
高二文科数学离心率的五种求法(精)
离心率的五种求法椭圆的离心率0<e<1,双曲线的离心率e>1,抛物线的离心率e=1.一、直接求出a、c,求解e已知圆锥曲线的标准方程或a、c易求时,可利用率心率公式e=c来解决。
ax2例1:已知双曲线2-y2=1(a>0)的一条准线与抛物线y2=-6x的准线重合,则该双曲线的离心率为a() 3233 B. C. D. 2322223ac-132解:抛物线y=-6x的准线是x=,即双曲线的右准线x===,则2c2-3c-2=0,解得2cc2A.c=2,a=,e=c2,故选D =a3变式练习1:若椭圆经过原点,且焦点为F1(1,0)、F2(3,0),则其离心率为()3211 B. C. D. 4324解:由F1(1,0)、F2(3,0)知 2c=3-1,∴c=1,又∵椭圆过原点,∴a-c=1,a+c=3,∴a=2,c=1,c1所以离心率e==.故选C. a2A.变式练习2:如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为() A. 36 B. C. D 2 222c3=,因此选C a2解:由题设a=2,2c=6,则c=3,e=x2y2变式练习3:点P(-3,1)在椭圆2+2=1(a>b>0)的左准线上,过点P且方向为=(2,-5)的光线,ab经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为()A 112BCD 32325(x+3),关于y=-2的反射光线(对称关系)为5x-2y+5=0,则2解:由题意知,入射光线为y-1=-⎧a2c⎪=3c=1a=e==解得,,则,故选A ⎨ca3⎪-5c+5=0⎩二、构造a、c的齐次式,解出e根据题设条件,借助a、b、c之间的关系,构造a、c的关系(特别是齐二次式),进而得到关于e的一元方程,从而解得离心率e。
x2y2例2:已知F1、F2是双曲线2-2=1(a>0,b>0)的两焦点,以线段F1F2为边作正三角形MF1F2,若ab边MF1的中点在双曲线上,则双曲线的离心率是() +1 D. +1 2c解:如图,设MF1的中点为P,则P的横坐标为-,由焦半径公式2PF1=-exp-a, A. 4+2 B. 3-1 C.2c⎛c⎫c⎛⎫⎛c⎫即c=-⨯ -⎪-a,得⎪-2 ⎪-2=0,解得 a⎝2⎭⎝a⎭⎝a⎭ce==1+(1-3舍去),故选D ax2y2变式练习1:设双曲线2-2=1(0<a<b)的半焦距为c,直线L过(a,0),(0,b)两点.已知原点到直线ab的距离为3c,则双曲线的离心率为( ) 4A. 2B.C. 2D. 2 3解:由已知,直线L的方程为bx+ay-ab=0,由点到直线的距离公式,得aba2+b2=c, 422242又c=a+b, ∴4ab=3c,两边平方,得16a2c2-a2=3c4,整理得3e-16e+16=0, 2() c2a2+b2b2422=1+>2e=4,∴e=2,故选A 得e=4或e=,又0<a<b ,∴e=2=,∴223aaa22变式练习2:双曲线虚轴的一个端点为M,两个焦点为F1、F2,则双曲线的离心率为()∠F1MF2=1200,A B 6 C D 323解:如图所示,不妨设M(0,b),F1(-c,0),F2(c,0),则MF1=MF2=c2+b2,又F1F2=2c,在∆F1MF2中,由余弦定理,得cos∠F1MF2= MF1+MF2-F1F22MF1⋅MF2222,b2-c211c2+b2+c2+b2-4c2即-=,∴, =-22222b+c22c+b()()-a213222∵b=c-a,∴2,∴,∴,∴,故选B e==-3a=2ce=22222c-a222三、采用离心率的定义以及椭圆的定义求解例3:设椭圆的两个焦点分别为F1、F2,过F2作椭圆长轴的垂线交椭圆于点P,若∆F1PF2为等腰直角三角形,则椭圆的离心率是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双曲线离心率求法
一、双曲线离心率的求解
1、直接求出a c ,或求出a 与b 的比值,以求解e 。
在双曲线中,a c e =>1,c e a =====
1.已知双曲线x 2a 2-y 2
b 2
=1的一条渐近线方程为y =4
3x ,则双曲线的离心率为
2.在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为
3.已知双曲线x 2a 2 - y 2
2 =1(a>2)的两条渐近线的夹角为π
3
,则双曲线的离心率为
4.已知双曲线)0( 12
22>=-a y a
x 的一条准线为23=x ,则该双曲线的离心率为__________
5.已知F 1、F 2是双曲线)0,0(122
22>>=-b a b
y a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1 的
中点在双曲线上,则双曲线的离心率是__________
6.设双曲线22
221(0,0)x y a b a b
-=>>的右焦点为F ,右准线l 与两条渐近线交于P 、Q 两点,如果PQF ∆是
直角三角形,则双曲线的离心率=e ________.
7.已知双曲线122
22=-b
y a x (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且
只有一个交点,则此双曲线离心率的取值范围是
8.设1a >,则双曲线22
22
1(1)
x y a a -=+的离心率e 的取值范围是__________. 9.已知以双曲线C 的两个焦点及虚轴的两个端点为原点的四边形中,有一个内角为60 o
,则双曲线C 的离心率为________
10.已知双曲线的渐近线方程为12
5
y x =±
,则双曲线的离心率为_________ 2、构造a c ,的齐次式,解出e 。
1.已知双曲线22
221x y a b
-=(0,0)a b >>的左、右焦点分别为F 1、F 2,P 是准线上一点,且P F 1⊥P F 2,
|P F 1|⋅|P F 2 |=4ab ,则双曲线的离心率是_______
2.过双曲线22
221x y a b
-=(a >0,b >0)的左焦点且垂直于x 轴的直线与双曲线相交于M 、N 两点,以MN
为直径的圆恰好过双曲线的右顶点,则双曲线的离心率等于________.
3.设1F 和2F 为双曲线22
221x y a b
-=(0,0a b >>)的两个焦点, 若12F F ,,(0,2)P b 是正三角形的三个
顶点,则双曲线的离心率为_________
4.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为_______
3、寻找特殊图形中的不等关系或解三角形。
1.已知双曲线22
221,(0,0)x y a b a b
-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且
12||4||PF PF =,则此双曲线的离心率e 的最大值为________
2.双曲线22
221x y a b
-=(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲
线离心率的取值范围为_________
3.设F 1,F 2分别是双曲线22
221x y a b
-=的左、右焦点。
若双曲线上存在点A ,使1290F AF ∠=,且
|AF 1|=3|AF 2|,则双曲线离心率为_________
4.双曲线22
221x y a b
-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线
右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为___________
5.如图,1F 和2F 分别是双曲线22
221(0,0)x y a
b a b
-=的两个焦点,
A 和
B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个
交点,且△AB F 2是等边三角形,则双曲线的离心率为_____________
6.设点P 是双曲线22
221(0,0)x y a
b
a b
-=右支上的任意一点,12,F F 分别是其左右焦点,离心率为e ,
若12||||PF e PF =,此离心率的取值范围为
二、双曲线离心率取值范围问题
三、作业
1、设点P 在双曲线)0,0(122
22>>=-b a b
y a x 的左支上,双曲线两焦点为
,已知
是点P 到左准
线的距离和的比例中项,求双曲线离心率的取值范围。
2 、设点P 在双曲线)0,0(122
22>>=-b a b
y a x 的右支上,双曲线两焦点
,,求双曲
线离心率的取值范围。
3、 已知点在双曲线)0,0(122
22>>=-b a b
y a x 的右支上,双曲线两焦点为
,2
221||||PF PF 最小值是,
求双曲线离心率的取值范围。