联想笔记本电脑电源适配器原理分析与检修.docx
笔记本电源适配器维修过程

前段时间一个同事一个笔记本电源坏了,我想着容易就想着说修修看,本以为就是电容击穿了换下容易,谁知道就开始了漫漫的维修之路,说实在的,比买说下我的维修心得。
1、用工具撬开电源外壳(一般笔记本电源都是胶粘上的,没有用螺丝固定),取出屏蔽罩跟电源。
2、观察电路有无明显坏掉部位,结果没有,测试保险管好着,上电,绿色指示灯不亮,说明无输出电压,测量整流滤波电容两端电压为310V左右,与理论的√2倍220符合,说明整流电路没坏,断电,电容上电压仍然保持(310V相当危险,测电极一不小心就熏黑了),我的水平仅限于测电容的水平,发现C7正常,C5击穿了,观察主控芯片为KA3842,发现3842裂开了,怀疑还能用,百度其PDF,测试各引脚,(由于芯片很小各脚相距很近,一定不能直接在引脚上测量,要到引出的电路上测,我因此两次短路造成了大片损坏,实际上已经不能分析到原来电路的问题了),百度电路原理图,如图下图所示(图片来自中电网),分析C7不放电原因,根据网上搜索出来的修理经验,估计是电阻坏的可能性大,排查电阻,发现R5断路,6N60C管损坏,MBRF200010T似乎也坏了,D1(1n4148)损坏,初步以为是1n4148损坏造成断路致使C7不能正常放电。
更换好后一通电又是一声响,电源指示灯闪了下,说明工作了,然后就是一声,爆得更彻底,3842直接爆开,6n60c,桥式整流更不用说了,r5又坏了,本来这个电路原件不多,似乎全换了。
3、分析以为是Q1(6n60c)击穿造成电流从6脚进入集成块,引起爆炸,查了下有关资料说是场管栅极容易积累电荷引起击穿,于是查r10电阻发现有22k,而根据他的色环绿红黑,说明只有52欧,和上图也一致,这可能是造成栅极电荷积累的主要原因,于是D2,R10也进行了更换;4、继续查,发现光耦也不对,正反向电阻一致,只有几K,原来这里是导通的,致使3842产生正反馈,估计不停的正增益,致使电压奇高,因此估计tl431也好不到那里去。
联想笔记本电脑电源适配器原理分析与检修

联想笔记本电脑电源适配器原理分析与检修该电源适配器(型号为92P1107),输入电压为交流1OOV~240V市电;输出直流20V;最大输出功率有90W和65W两种。
其核心控制芯片为贴片式脉宽调制集成电路(3843),该芯片内含振荡器、脉宽调制比较器、逻辑控制器;具有过流、欠压等保护控制功能;工作电压为7V~34V;最高工作频率可达500MHz;启动电流仅需1mA。
该芯片的各引脚功能如下:①脚是内部误差放大器的输出端。
②脚是反馈电压输入端,作为内部误差放大器的反相输入端,与同相输入端的基准电压(+2.5V)进行比较,产生误差控制电压,控制脉冲宽度。
③脚为过流检测输入端,当该脚的电压高于1V时,禁止驱动脉冲的输出。
④脚为RT/CT定时电阻和电容的公共接入端,用于产生锯齿振荡波。
⑤脚为接地端。
⑥脚为脉宽调制信号输出端。
⑦脚为工作电压输入端(7V>Vi≤34V)。
⑧脚为内部基准电压(VREF=5V)输出端。
根据实物绘制了其电路原理图如附图所示。
经比较,两种输出功率的电原理图完全相同,只是过流保护电路取样电阻R20~R23的取值以及20V直流电压输出滤波电容C11及C12的容量有所不同。
一、整流滤波电路交流市电经1A保险管F1及电容C1进入整流电路,BD1全桥整流后,经主滤波电容C7滤波,在C7两端得到约300V的直流电压,作为适配器的工作电压。
该适配器的输入电路只有一个高频滤波电容C1进行简单的滤波处理,因此对外部电磁脉冲的抗干扰能力和防止自身的高频电磁信号向外辐射的能力较弱。
二、启动与稳压电路由整流滤波电路产生的300V电压:一路经开关变压器T1的初级①~②绕组加到功率开关管Q1(FS5KM)的漏极;另一路经启动电阻R3~R6并联串联后加到U1(3843)的⑦脚,作为主控制芯片(3843)的启动电压。
在电路加电的瞬间,300V直流电通过R3~R6对C8进行充电,当U1的⑦脚电压达到7V以上时,U1的⑧脚输出5V基准电压Vref,同时3843内部的振荡电路开始工作,其⑥脚开始输出脉宽调制信号,通过R17驱动功率开关管Q1工作于交替导通、截止的工作状态。
笔记本电源适配器的外观结构和维修

笔记本电脑的电源系统是仅次于CPU及其主板、显示屏的第三大关键部件。
电源系统包括电源适配器、充电电池和电源管理系统等。
千万不要认为电源适配器是什么高科技产品,其实笔记本电源适配器现在已经是一种技术上非常成熟的产品,南方一些地方的小作坊都可以生产出质量相对过硬的产品。
虽然笔记本电源适配是低技术含量产品,但是问题也是多多。
以下提到的电源适配器,如果没有特别说明,都是特指笔记本电源适配器。
我的600E近期出现故障,使用外接电源无法开机,使用电池则可以。
本着从易到难,由外入里的原则,笔者首先用万用表检测电源线,即下图中的八形线,笔者检测后发现,该电源线处于断路状态,笔者觉得大动干戈拆开维修这根电源线没有太大意义,拆开后会严重影响电源线的外观,破坏本本的整体协调,于是放弃维修,寻找替代品。
偶然发现这种线和收音机上的差不多,可以说是完全通用的。
于是找来一个正常使用的换上。
但是新的问题又出现,故障表现为笔记本经常掉电,表现时好时坏,有时甚至稍微挪动一下机器,就有可能导致机器掉电。
使用过程中,也经常出现屏幕闪烁等情况。
两个情况结合在一起,在排除了液晶屏自身故障的前提下,笔者初步认定是供电电路有问题,于是笔者将目光投向电源适配器,毕竟笔记本内供电电路是不容易出问题的,供电电路有问题,一般焦点还是在电源适配器上。
笔者以前只是维修过一些小型电源适配器,比如收音机和随身听的电源适配器,并没有本本适配器维修经验,所以只能摸着石头过河,走一步看一步。
也正因为对电源适配器不熟悉,所以其中也漏掉了什么关键步骤没有记录下来,比如电源接口、电容引脚的初始状态和焊接后的状况对比就没有很好地体现出来,只好通过文字加以说明。
请见谅!一、外观电源适配器一般由外壳、电源变压器和整流电路组成。
二、铭牌应该说,拆开电源适配器外壳是需要花费一番功夫的。
笔记本电源适配器的外壳熔合得相当紧密,想一下子打开几乎是不可能的。
打开外壳后想恢复原样,应该说也是不可能。
拆修一只联想电源适配器,告诉你一个不为人知的秘密

拆修一只联想电源适配器,告诉你一个不为人知的秘密拆修一只联想20V4.5A(型号42T4428)的电源适配器,分享独门绝招。
这个电源是x067朋友送来的。
原来折腾修好了,想不到第二天又无缘无故的出现故障,没有电压输出。
先检查输出级是否正常。
在输出级接上实验可调的电源。
然后在光耦输出端接上万用表欧姆档。
再给输出端加上12V电压,而光耦输出端电阻为1.172兆欧(其实可以从19V开始就行了,这里把范围加大些,显示更直观)。
在输出端加上19.8V电压,光耦输出端电阻为1.18兆欧慢慢将电压升高,当电压升高到20.8V电压时,光耦输出端电阻为43.8欧,这个电压就是电源适配器的输出电压了。
慢慢将电压再升高,当电压升高到23.2V电压时,光耦输出端电阻为43.4欧,说明光耦已经达到饱和状态。
而这个方法,是不用分开检查TL431和光耦的,一步就解决次级是否正常。
另外,像这个没有TL43的,用了一块带稳压的运放就更加方便了。
因为没有这芯片的资料,换上一块新的芯片后,问题还是没有得到解决,只能在辅助电源端(变压器的某一绕组、一个二极管、一个电解电容组成,很容易找到的)加上17V的电压(我也是估计的,不敢加高电压了),结果这个贴片电容内部冒出火花了。
而元凶就是这个帖片电容,藏得太深太狡猾了。
找一只体积差不多的电容换上。
测量摸死管栅极有PMW脉冲,频率31.62KHZ,就说明电源起振了。
再接上220V交流电源,输出20.25V,可见电源正常了。
现在就开始折腾输出电压了,原来电压是20V的,要调整成24V的。
这个电源没有TL431、而这芯片也没有资料可查,只能分析电源的正负极与电阻的连接情况。
用一个250K的电位器,将电阻值调到100K左右,依次并到与电源正极连接的电阻上,结果发现,当并到这个49C的电阻上时,电压略微减小了。
所以这个就是取样上臂电阻了。
找几个阻值差不多的电阻,依次代换原来的电阻,换了三次后,终于把电压调到24.33V。
笔记本电源适配器维修心得

前段时间教研室一个同学拜托我维修了一个笔记本电源,说下我的维修心得。
1、用工具撬开电源外壳(一般笔记本电源都是胶粘上的,没有用螺丝固定),取出屏蔽罩跟电源。
2、观察电路有无明显坏掉部位,结果没有,测试保险管好着,上电,绿色指示灯不亮,说明无输出电压,测量整流滤波电容两端电压为310V左右,与理论的√2倍220符合,说明整流电路没坏,断电,电容上电压仍然保持(310V相当危险,被电了一下,但没仔细分析,忽略了这一个非常关键的点,后边再说),观察主控芯片为KA3842,百度其PDF,测试各引脚,发现5脚与7脚短路,与实际不符,分析原因,百度电路原理图,如图下图所示(图片来自中电网),分析短路原因:芯片坏了或者外围电路短路,本人更希望是外围电路的问题,因为外围都是些电阻电容的东西,实验室有现成的不用去买。
短路原因罗列为:○15脚为地,7脚为电源,电容C5是否击穿,焊掉电容,测试电容好着。
○2检测跟7脚相连的另一条电路(R2,二极管,与绕组34),放掉二极管的一端,测试二极管跟电阻发现没问题,再量5,7引脚仍然短路,初步判定为第三种情况。
○3 KA3842坏了,没办法焊掉KA3842(焊掉两脚的电容比八脚芯片可容易得多,这是我希望是○1○2的另一个原因),再测果然是它坏了。
3、查出是KA3842的7脚5脚短路,分析其损坏原因,KA3842为一PWM输出芯片,百度故障多出现7,5,6三脚短路,原因是MOS管6N60损坏(图中是7N60,本人维修的是6N60,电流6A,耐压600V),GD短路导致高压进入6脚,焊掉MOS管,测量MOS 管貌似好的(第一次测有点拿不准,后来事实证明确实没坏,测试方法为:看封装,123脚分别为GDS,用表笔将3个脚短路一下,万用表打到蜂鸣档,红黑表笔分别接S和D,测得有一个电阻,反接为断开;红笔接G,黑表笔接D,给G极一个电压,再次测量SD 发现两个都导通,最初导通的那个电阻减小差不多一半,证明管子好的。
笔记本电脑电源适配器的剖析与维修转

笔记本电脑电源适配器的剖析与维修探访动力之源――笔记本电脑电源适配器的剖析与维修电源适配器是笔记本电脑工作的动力之源,里面是个高品质的开关电源,其工作原理与彩电等家电中的开关电源是一样的,它的作用是为笔记本电脑提供稳定的低压直流电(一般在12~19V之间)。
笔记本的电源适配器均为全密封小体积设计,而其消耗的功率一般可达35~90W,所以内部温度较高,特别是在炎热的夏天,触摸工作中的电源适配器会有烫手的感觉。
正因为如此,电源适配器的故障率相对笔记本电脑其它部件来说还是比较高的。
电源适配器损坏后,购买一个全新的要花费数百元,从二手市场淘得也需百多元。
其实,许多电源适配器损坏并不严重,稍懂一些电路知识的用户都可尝试修理,本文将以IBM的“肉骨头”电源适配器(16V、4.5A)为例,介绍其拆解与简易维修,供大家参考。
电源适配器的拆解笔记本电源适配器的上下盖为注塑封装或是用强力胶粘合的,不用任何螺丝,所以一般只能借助暴力来破解。
不过,只要方法得当,拆解后的电源适配器完全可以恢复原样,不仔细观察几乎看不出有拆开过的痕迹。
拆解工具:电工刀、锤子、螺丝刀、电烙铁、美工刀等。
Step1:把电源适配器横侧放置在白纸上,用电工刀刀刃沿电源适配器上下盖之间的缝隙切入,然后用锤子敲击电工刀刀背(图1),使电工刀从适配器上下盖之间切进去。
以上方法在适配器上下盖之间的缝隙的不同位置多,然后用电工刀的刀尖沿上下盖之间的缝隙划动几圈,当上下盖的某一部位首先裂开后,把刀尖深入,然后慢慢分开适配器的上下盖。
Step2:图2为打开外壳的电源适配器,可以看到适配器电路外面包有铜质的屏蔽层,用美工刀割开屏蔽层上的胶带纸,再用电烙铁焊开屏蔽层与内部电路板连接的两个焊点(图3),即可取下屏蔽层。
Step3:屏蔽层与电路板之间还隔有一层较厚的硬质塑料膜(图4),再用美工刀割开后,即可见到电路板的“庐山真面目”了(图5)。
电源适配器结构剖析接下去,我们来了解一下电源适配器的内部构造。
电脑电源适配器故障的排查和修复方法

电脑电源适配器故障的排查和修复方法在我们日常使用电脑的过程中,电源适配器是一个至关重要的组件。
它负责将市电转换为适合电脑使用的直流电,为电脑提供稳定的电力供应。
然而,有时候电源适配器可能会出现故障,导致电脑无法正常充电或使用。
这时候,我们就需要掌握一些排查和修复电源适配器故障的方法,以便及时解决问题。
一、电源适配器故障的常见表现1、电脑无法充电这是电源适配器故障最常见的表现之一。
当你将电源适配器连接到电脑上时,电脑的充电指示灯不亮,或者电池电量一直没有增加。
2、电源适配器过热在使用过程中,电源适配器异常发热,甚至烫手,这可能是内部电路出现问题导致的。
3、电源适配器发出异常声音比如嗡嗡声、滋滋声等,这可能意味着变压器或其他组件存在故障。
4、电脑频繁死机或重启如果电源适配器输出的电压不稳定,可能会导致电脑频繁死机或重启。
二、排查电源适配器故障的方法1、外观检查首先,检查电源适配器的外观是否有明显的损坏,如插头弯曲、线缆破损、外壳破裂等。
如果有这些情况,很可能是外部因素导致了故障。
2、检查指示灯大多数电源适配器上都有指示灯,正常情况下,连接电源后指示灯应该亮起。
如果指示灯不亮,或者闪烁异常,说明电源适配器可能存在问题。
3、测量输出电压使用万用表测量电源适配器的输出电压。
将万用表调到直流电压档,将表笔分别接触电源适配器的输出插头的正负极,正常情况下,输出电压应该与适配器标注的电压值相近(允许有一定的误差范围)。
如果测量结果偏差较大,说明电源适配器的电压输出不正常。
4、替换法如果身边有其他相同型号或兼容的电源适配器,可以尝试替换使用。
如果替换后电脑能正常充电和使用,那么原来的电源适配器很可能已经损坏。
三、电源适配器故障的修复方法1、线缆和插头修复如果是线缆破损或插头弯曲,可以尝试修复线缆或更换插头。
对于线缆破损,可以使用绝缘胶带进行包扎;插头弯曲可以小心地将其矫正,但要注意不要用力过猛导致损坏。
2、清洁电源适配器有时候,电源适配器内部可能会积累灰尘和杂物,影响其正常工作。
笔记本电脑电源适配器原理及维修经验维修技术

笔记本电脑电源适配器原理及维修经验维修技术笔记本电脑电源适配器原理及维修经验维修技术笔记本电脑电源适配器原理及维修经验作者:admin来源:互联网笔记本电脑电源适配器原理及维修经验随着人民生活水平的提高,笔记本电脑也越来越普及。
所有的笔记本电脑都离不开一个重要的部件― 为它提供电源的交流电源适配器。
这些电源适配器体积很小,其内部结构非常紧凑,但其消耗功率却相当可观:一般可达30-90W !所以它工作时的发热也比较大,是笔记本电脑所有部件中故障率较高的一个。
同样,在台式电脑的液晶显示器中,也有相当一部分将其电源电路独立置于机身之外,与笔记本电脑的电源适配器大同小异。
这些电源适配器损坏后,如果去市场上购买一个全新原装的,通常需要数十甚至数百元不等的花费。
其实这些电源适配器的损坏一般并不严重,并且多数具有一定规律性,只需花费几元,一般不超过20 元即可修复如初。
一些刚刚涉足维修的电子爱好者,往往觉得这些采用开关电源的适配器比较复杂,维修时无从下手。
其实,不同品牌、不同型号的笔记本电脑和液晶显示器的电源适配器,其内部电路设计基本相同,初学者只要掌握一种典型的此类适配器开关电源的丁作原理,维修摇夹其实并不困难。
下面,本文就以在笔记本和液晶显示器电源适配器中运用相当广泛,采用KA3842 控制芯片的一种典型适配器为例,说明其工作原理与检修方法。
图1 为这种适配器开关电源的电路原理图,图2 为该电源所使用的三星公司的开关电源控制芯片KA3842 引脚功能。
一、电路基本工作原理该电源适配器完成将220V交流电压转换为19V 直流电压输出的功能,输出电流约3A 。
电路基本工作过程如下:220v 交流输人电压经桥式整流电路D2 (KBP206G ) 整流、C1 滤波后得到约300v 的直流电压,该电压一路经开关变压器T1的① 一② 绕组加至场效应开关管Ql ( K2543 )D 极,另一路经R4 降压后得到约17V 启动电压给ICl ( KA3842 )⑦ 脚供电,并从ICl 内部基准电压发生器产生5V基准电压从第⑧ 脚输出,此时其内部振荡器起振,从第⑥ 脚输出调宽脉冲(PWM) ,驱动开关管Ql ,使其工作在开关状态,Q1 的D 极输出电流在Tl 初级绕组上产生感应电压,经磁芯藕合到TI 次级,在次级⑤ -⑥ 绕组上产生的感应电压经肖特基二极管Q2、电容C4 整流滤波后得到19v 直流电压输出。
UC3842笔记本电脑电源适配器的故障检修

UC3842笔记本电脑电源适配器的故障检修近日笔者接修了一台笔记本电脑的电源适配器.此电源适配器系副厂件(非原装配送品。
属“三无”产品).虽然检修及故障排除并无多大困难,但造成故障的原因却耐人寻味。
该电源适配器是因无输出电压而送修的。
接通交流电源,绿色指示灯不亮。
检查交流输入的线缆并无断路.由此确定系电源内部元件损坏所至。
用“一”字螺丝刀将外壳撬开查看线路板,发现如图1中的保险丝F1已熔断。
怀疑初级元件有击穿过流现象。
于是重点对D4~D7、C7、Q1作检查,未发现异常,故将F1更换后通电试机,但电源还是没有输出。
这时测主滤波电容C7两端+300V,正常。
断电后,再测C7两端仍储有高压,说明开关电源并未起振。
根据图2中控制芯片内部原理图可知,KA3842的⑦脚是启动端,正常工作时,+300V经启动电阻R11使控制芯片初始启动,这个电压需16V 以上(启动电流约为0.5mA)方可使芯片正常起振工作。
当KA3842顺利启动后,开关变压器④、④绕组的脉冲电压经D1整流、R2限压.经C5滤波后得到约12V的直流电压取代由启动电阻R11提供的16V启动电压为KA3842供电。
在通电情况下测量KA3842的⑦脚电压为0V.笔者由于图方便并没有拆下R11来测量(由此造成后面不必要的损失),只是将R11与KA3842⑦脚的印制线路划断,通电测最C5两端的电压可升至超过16V,说明启动电阻R11及C5是正常的。
断电后再用万用表电阻挡测量KA3842已悬空.⑦脚的对地电阻正反均为75Ω,通过器件内部原理图可知这应该是异常的。
很可能是内部⑦脚与⑤脚间的35V稳压管已击穿,使R11的启动电压与接地短路,于是将KA3842用uc3842直接代换。
将⑦脚的印板走线接通后通电,只见电源指示灯亮一下即熄灭。
检查发现UC3842内的稳压管与KA3842一样再次击穿。
这下笔者觉得奇怪了,启动电压有R11限流,正常工作电压也有R2限流,而且电阻损坏只会阻值变大或开路,一般不会发生短路或阻值变小的现象。
手提电脑电源适配器没有电压输出故障检修

手提电脑电源适配器没有电压输出故障检修手提电脑电源适配器没有电压输出故障检修维修过程:拆开外壳检查,发现保险丝烧黑了,说明电源电路存在短路现象。
用万用表测量场效应开关管的漏极对地电阻,阻值接近于零,拆下场效应开关管Q2测量,发现其漏-源极已烧通短路。
我们在检修开关电源电路时,当检查出开关管已损坏,不能认为更换开关管后故障就已排除,因为有可能是开关管驱动电路故障引起开关管损坏。
如果由于驱动的原因引起故障,那么在更换开关管后通电试机时,有可能再次烧毁开关管,造成维修成本升高。
因此,还要进一步检查驱动电路的2SK1082代替,再购买一只的延时保险丝。
更换元件后通电试验,发现还是没有18V电压输出,也没有出现再烧毁元件的现象,说明短路故障已排除,但还是没有驱动脉冲加到场效应管的栅极。
进一步分析电路,高压整流输出的300V直流通过R5、C5和R4、R6、RT1加到集成块的第2、3脚,估计分别是场效应管过热取样和市电欠压取样电压。
用万用表测量3脚有取样电压,2脚没有取样电压,拆下R5测量阻值为无穷大,已断路。
换上一只1W270K电阻后再通电试验,电源有输出电压,但一秒钟后降为零。
检查电路没有发现其他故障,再通电试验仍然只有一秒钟的电压输出。
电源电路有一秒钟的输出电压,说明功率变换电路已经开始工作了,但不能维持下去。
从电路图可知道IC1在通电初期由高压整流得到的300V通过Q1供给启动电源,变换电路工作后应改由D4对T1绕组的感应脉冲整流得到直流供给工作电源,现在IC1不能持续输出驱动脉冲,可能是在启动初期IC1输出的脉冲宽度过窄,D4整流后的电压过低,不能维持控制电路和变换电路的工作。
根据正常使用情况下应该只有一个故障点的规律,对原有故障再进行分析,判断最初的故障原因应是R5,在R5损坏的瞬间,使IC1产生异常的驱动脉冲,导致场效应管烧毁,因此原来的TDA4605-3应该是好的,后来购买的IC型号为TDA4605,少了后面的”-3”,参数可能有差异,导致整个电路不能维持工作。
笔记本适配器工作原理及维修

一.笔记本电脑电源适配器电路常见典型故障快速排除故障方法(2010-10-12 17:59:12)转载标签:杂谈1.通电电源适配器指示灯不良,无电压输出。
打开外壳,一股烧焦气味很浓,保险管发黑熔断、负载元件电容C8、C9顶部炸裂,稳压管ZD3变色有裂纹,该现象为输出电压过高造成的,拆除并更换损坏的原件。
将自制30V可调稳压电源调到19V,接在稳压管ZD3两端,加电用电压表测量IC3基准电压工作状况,同时调节输入电压大小,IC3的K极对地有高低电平变化,表明IC3良好,测量IC2光电管电阻无明显变化。
重新代换一只EL817故障排除。
更换或替换光耦合器时应参考电流传输比CTR值,他的允许范围为80%-160%,当电流传输比值小于70%时,光耦合器中的发光二极管将损耗较大的工作电流。
2.通电电源适配器指示灯不良,无电压输出。
保险管发黑熔断、开关管Q1击穿、取样电阻R10B开路、,更换损坏元件,将30V的可调稳压电源可调稳压电源调到17V,接在IC1⑦上,加电用电压表测量IC3⑧18V,IC⑥1V正常,通电保险管再次熔断,仔细检查Q1外围电路发现D1内阻变大。
当Q1场效应管从饱和状态突变为截止状态时,在脉冲变压器T1初级线圈产生的反向峰值电压,不能有效地被吸收掉造成Q1开关管损坏,更换D1,故障排除。
二.笔记本电脑电源适配器电路常见典型故障快速排除故障方法(2010-10-12 18:01:44)转载标签:杂谈3.通电电源适配器指示灯亮,液晶屏幕闪烁,经常掉电,表现时好时坏,将电源适配器空载加电正常,只要接入负载电压就降低不稳,表明电路中有元件过载能力变差。
断开电源用手触摸开关电源元件,发现开关管Q1表面温度很高,更换一只同型号的,故障排除,但是电源内发出轻微的吱吱声,再仔细检查一遍电路各部件均正常,只是开关管温度30°左右,重新更换一只开关管,故障排除。
经查发现开关管放大倍数太小,在通电带上负荷后,就会尖叫、发热稳定变差,因此,代换开关管时一定要注意观察其运行稳定和电路发出的响声,以避免陷入维修困境。
一台3842的笔记本电源适配器修理

一台3842的笔记本电源适配器修理笔记——By feitian9000 一、故障主体HP笔记本电脑电源适配器,标称输出:18.5V,3.5A。
二、故障现象一台HP DV1000系列笔记本电脑,开机后不久电源告警,并自动关机,用电源适配器供电同样。
三、检查修理过程1、笔记本电脑开机后不久电源告警,估计应是随机电池电能不足,电池老化或未充进电。
先查电源适配器:电源适配器接电,适配器指示灯亮,应开始工作;接入笔记本电脑,电脑充电电源指示灯闪动,认为电源适配器供电正常。
2、电源适配器正常,判断应该是笔记本电池出了问题了。
取下电池后接电源适配器开机,电脑无法开机,接上电池后又可以开机,但同样要自停。
同时观察到笔记本电脑的散热风扇时转时停,遂认为是电脑上电源接口有问题。
3、试图拆解笔记本电脑检查接口和散热风扇电路,未能拆开,暴力拆解又怕拆坏,只得暂时从其他方法途径检查。
4、不断检查中,发现偶然一次运行关机后,电脑充电灯长亮了,摇动电源接口,观察是否会断开电源,结果摇动没有影响,充电灯保持长亮,推测电源接口处应该是没有脱焊故障。
取出电源插口,灯熄灭;再插上,灯又成为闪动。
确认笔记本电脑电池充电时应该是充电灯长亮,闪动应该是在不断尝试充电但因某些原因未能充电成功。
估计是电源适配器供电负载性能不良,造成带负荷(开始充电)电压降低所致。
5、检查电源适配器空载输出电压,约30余V,带100欧、50欧、27欧、10欧电阻做负载输出电压均在19V左右,应为正常,仅仅空载输出电压觉得偏高,但是一带负载能到正常电压,故认为电源适配器是正常的。
而不带适配器电脑能开机,电池应该有一定电压而且肯定没短路,充电电流过大引起适配器电压降低的可能性消除了,但是为什么笔记本电脑电池无法充电,原因在哪里理不出头绪了。
6、无奈,将电源适配器拆解,发现适配器是3842电路,采用了如图所示的保护电路(借用的其他电源局部图)。
然后在拆开的情况下进行检查测试。
联想笔记本电源适配器PA-1900-05维修实例(图)

联想笔记本电源适配器PA-1900-05维修实例(图)
2014年9月21日,维修联想电源适配器,外壳标注型号PA-1900-05,输出19V4.74A,内部主板标注型号kB94VO,故障为灯不亮、无输出。
老虎钳短接450V大电容放电操作,结果打火花并响声巨大,说明电容放电回路放电慢或没有放电,改用电烙铁电源插头接触电容正负极放电,未打火花,万用表测电压为零,放电成功。
静置2天后,大电容电压降低为80V,说明放电回来没有问题,是放电速度慢而已。
替换管理芯片3842,故障依旧。
使用CAD软件画出整个电路图并逐个检测原件,发现管理芯片供电脚连接电阻R11阻值色环标识为130K欧姆,实际测量为阻值无穷大,R11损坏,再测尖峰吸收电阻R10、电容C37正常,找到220K 欧姆电阻替换,确定无其他安全问题,远离人体,用重物压在电源适配器外壳上以防爆炸引发事故,通电测试,指示灯亮,输出电压正常,胶水固定外壳,静置晾干胶水。
附完整电路图:。
笔记本电源适配器工作原理

笔记本电源适配器工作原理
笔记本电源适配器的工作原理主要包括输入电压转换、直流稳压和过流保护等部分。
1. 输入电压转换:笔记本电源适配器一般能够接受来自电网的交流电,其输入电压范围一般为100V到240V。
适配器内部的输入电路将交流电转换为直流电以供给笔记本电脑使用。
2. 直流稳压:笔记本电脑通常需要以恒定的电压工作,而输入电源的电压可能存在波动。
适配器内部的直流稳压电路会对输入的直流电进行稳压,将其输出为稳定的电压值(通常为19V 或20V),以确保笔记本电脑正常工作。
3. 过流保护:适配器还会具备过流保护功能,以防止电流超过安全范围而对适配器和笔记本电脑造成损坏。
当电流超过设定的阈值时,过流保护电路将自动断开电源,以避免意外事故的发生。
值得注意的是,笔记本电源适配器通常在使用过程中会发热,这是因为在电源转换和调整过程中存在能量损耗。
为了保证适配器的正常工作和延长寿命,使用时应避免长时间过载和暴露在高温环境下。
电脑电源适配器故障的排查和修复方法

电脑电源适配器故障的排查和修复方法在日常使用电脑的过程中,我们经常会遇到电源适配器出现故障的情况。
这时候,我们应该如何排查和修复这些故障呢?下面就让我们一起来了解一下。
一、电源适配器故障的常见症状1. 电源无法正常供电:当插上电源适配器后,电脑无法正常启动或者无法充电,这可能是电源适配器出现故障的表现。
2. 电源适配器发出异常声音:如果电源适配器在工作时发出嗡嗡声、嘶嘶声或者其他异常声音,这很有可能是适配器内部元件损坏导致的。
3. 电源适配器过热:电源适配器在工作时会有一定的发热量,但如果发现适配器过热,甚至出现烧焦味道,那么就需要注意了,这可能是适配器内部出现故障。
二、电源适配器故障的排查方法1. 检查电源线连接:首先,我们需要检查电源线是否与电源适配器连接牢固,插头是否松动。
有时候,电源线与适配器的接触不良会导致无法正常供电。
2. 更换电源线和插头:如果发现电源线与适配器连接良好,但仍然无法正常供电,可以尝试更换电源线和插头。
有时候,电源线和插头本身出现故障也会导致适配器无法正常工作。
3. 检查电源适配器输出电压:使用万用表或者电压表,将表笔分别接在适配器的输出插孔上,测量输出电压是否与标注的电压相符。
如果输出电压偏低或者为零,那么很可能是适配器内部元件损坏。
4. 检查适配器电源灯:大部分电源适配器都会有一个电源指示灯,用于显示适配器是否正常工作。
如果电源灯不亮,那么可能是适配器本身出现故障。
三、电源适配器故障的修复方法1. 更换电源适配器:如果经过排查确认是电源适配器出现故障,那么我们可以选择更换一个新的适配器。
在购买新适配器时,要注意选择与原适配器相匹配的型号和规格,以免出现不兼容的情况。
2. 检修电源适配器:如果你具备一定的电子维修知识,那么你可以尝试自行检修电源适配器。
首先,将适配器拆开,检查内部元件是否有明显的损坏或者烧焦现象。
如果发现有问题的元件,可以尝试更换它们。
3. 寻求专业维修帮助:如果你对电子维修没有经验,或者无法确定适配器内部元件的具体损坏情况,那么最好寻求专业的维修帮助。
电脑电源工作原理及维修详解

电脑电源⼯作原理及维修详解电脑电源维修教程开始我们要知道计算机开关电源的⼯作原理。
电源先将⾼电压交流电(220V)通过全桥⼆极管整流以后成为⾼电压的脉冲直流电,再经过电容滤波以后成为⾼压直流电。
此时,控制电路控制⼤功率开关三极管将⾼压直流电按照⼀定的⾼频频率分批送到⾼频变压器的初级。
接着,把从次级线圈输出的降压后的⾼频低压交流电通过整流滤波转换为能使电脑⼯作的低电压强电流的直流电。
其中,控制电路是必不可少的部分。
它能有效的监控输出端的电压值,并向功率开关三极管发出信号控制电压上下调整的幅度。
在计算机开关电源中,因为电源输⼊部分⼯作在⾼电压、⼤电流的状态下,故障率最⾼;还有就是输出直流部分的整流⼆极管、保护⼆极管、⼤功率开关三极管较易损坏;再就是脉宽调制器TL494的4脚电压是保护电路的关键测试点。
通过对多台电源的维修,总结出了对付电源常见故障的⽅法。
⼀、在断电情况下,“望、闻、问、切”由于检修电源要接触到220V⾼压电,⼈体⼀旦接触36V以上的电压就有⽣命危险。
因此,在有可能的条件下,尽量先检查⼀下在断电状态下有⽆明显的短路、元器件损坏故障。
⾸先,打开电源的外壳,检查保险丝(图5)是否熔断,再观察电源的内部情况,如果发现电源的PCB板上元件破裂,则应重点检查此元件,⼀般来讲这是出现故障的主要原因;闻⼀下电源内部是否有糊味,检查是否有烧焦的元器件;问⼀下电源损坏的经过,是否对电源进⾏违规的操作,这⼀点对于维修任何设备都是必须的。
在初步检查以后,还要对电源进⾏更深⼊地检测。
⽤万⽤表测量AC电源线两端的正反向电阻及电容器充电情况,如果电阻值过低,说明电源内部存在短路,正常时其阻值应能达到100千欧以上;电容器应能够充放电,如果损坏,则表现为AC电源线两端阻值低,呈短路状态,否则可能是开关三极管VT1、VT2击穿。
然后检查直流输出部分。
脱开负载,分别测量各组输出端的对地电阻,正常时,表针应有电容器充放电摆动,最后指⽰的应为该路的泄放电阻的阻值。
笔记本电源适配器原理与检修

笔记本电源适配器原理与检修笔记本电脑电源适配器消耗功率一般可达30-90W,发热较高。
用KA3842控制芯片的一种典型的电路为例。
一、工作原理适配器是将220V交流电压转变为19V的直流电压,输出电流为3A。
220V交流电压经D2整流,C1滤波得到300V直流电压。
该电压一路经开关变压器T1的1、2脚绕组加到场效应开关管Q1(K2543)的D极,另一路经R4降压后得到约17V启动电压给ICI(KA3842)⑦脚供电,并从ICl内部基准电压发生器产生5V基准电压从第⑧脚输出。
此时其内部振荡器起振,从第⑥脚输出调宽脉冲(PWM),驱动开关管Q1,使其工作在开关状态。
Q1的D极输出电流在开关变压器Tl初级绕组上产生感应电压,经磁芯耦合到T1次级,在次级⑤、⑥脚绕组上产生的感应电压经肖特基二极管Q2、电容C4整流滤波后得到19V直流电压输出。
为保证输出电压稳定,输出端由R13、R14对19V输出电压进行误差取样,取样电压由三端可调分流基准IC3(TL431)进行比较和误差放大,再驱动光电耦合器IC2(PC817),将误差电压耦合放大后送到IC1(KA3842)第①脚内部,通过内部PWM电路改变第⑥脚输出脉冲的宽度,使Q1的开关时间发生改变,从而达到调整输出电压的目的。
经过这样一个反馈控制过程后,最终使输出电压稳定在19V上。
该电路中还设有几路过压过流保护:开关变压器初级绕组第③、④脚的感应电压经D4、C2整流滤波后得到约17V电压送至IC1第⑦脚,用以维持ICI 正常工作(300V电压经R4降压供给⑦脚的电压因电流较小只作为启动电压)。
当某种原因引起输出电压升高时,该路电压也将升高,当该电压升高至22V以上时,稳压二极管Dl将反向击穿,导致IC1第③脚过流保护端的电压升高至lV 以上,此时IC内部将关断第⑥脚的脉冲输出,使电路停止工作,达到过压保护的目的。
当某种原因使开关管Q1电流过大时,Q1的S极所接过流取样电阻R8两端电压将升高,当该电压升高至使ICl第(3)脚电压高于1V时,也将切断ICl第⑥脚输出.起到过流保护作用。
笔记本电源原理及维修

6A 5B 8 8 4A
DDR Power TPS51116 9 9
V0_9S_ON V1_8_ON
10
+V3.3S +V5S +V1.8GDDR
AP431 GM
12 +V2.5S
+V1.5S
SC338 PM
12 16
V2_5S_PWROK
+V2.5S +V1.2PCIE
V1_2S_PWROK
RST_Circuit
• 充电电路
• Adapter和Battery电源输入及隔离电路
电路简要分析:
PD1,PD2隔离电池的电不能流到Adapter上,PQ1隔离Adapter的电不能直接流到电池 上。 电池充电过压时,电池过压保护电路会使BAT_OV#变为低电平,导致PQ2不导通, Adapter的电就流不过去,由电池供电,使其电压降低。 在Battery Learning的放电过程中,EC会发出高电平的AC_OFF信号使PQ2不导通,切 断Adapter的供电通路,让电池放电,电池放电完毕转入充电状态时他又变为低电平,保 证Adapter正常供电。 I_SYS_P,I_SYS_N是检测系统总的输入电流大小的输入信号。 当出现电源过压时,OVP电路动作,会发出低电平的SHDN#信号,使PQ60不导通,电 池,Adapter的电都流不进去,所有的电都会关掉。只有再拔掉电池和Adapter才能在动 作。
13 +VGA_CORE 18
17
VGA_CORE
ISL6269 PM
NVVDD_PWROK
VR_PWRGD_CK410_INV
13
V2_5S_PWROK
21 +VDC
笔记本电脑电源适配器不能正常使用

笔记本电脑电源适配器不能正常使用一台笔记本电脑,在不慎摔落后,出现使用电源适配器供电时,有时能够正常使用,有时不能够正常使用的故障。
故障判断:在排除电源适配器异常的情况下,此类故障多半是笔记本电脑的主机电源接口存在虚焊、损坏,或主机电源接口电路和保护隔离电路中的电子元器件存在虚焊、损坏等问题造成的。
所以在检修的过程中,应重点对上述两条电路进行检修。
故障分析:笔记本电脑因为摔落、撞击或进水而导致不能开机、黑屏故障是比较常见的。
该故障笔记本电脑在不慎摔落后,使用电源适配器供电时,有时能够正常使用,有时不能够正常使用,则相对少见。
拿到故障笔记本电脑后,应进一步确认故障,以确保有必要拆机检修的必要性。
此时只使用电源适配器供电已经完全不能开机,检测该故障笔记本电脑使用的电源适配器,经检测其输出供电正常,于是决定拆机检修。
拆机检修过程的第一步,是对故障笔记本电脑的主板进行清理,并且在清理的过程中,仔细观察故障笔记本电脑的主板上主要电子元器件和硬件设备是否存在明显的物理损坏。
对于该故障笔记本电脑,应重点检测主机电源接口电路和保护隔离电路中的电子元器件是否存在虚焊、脱落等问题。
简单清理并仔细观察后,没有发现明显的物理损坏和虚焊问题。
找到该故障笔记本电脑的电路图,根据电路图进行检测,如图1所示为该故障笔记本电脑保护隔离电路局部电路图。
如图1所示,场效应管PQ1在电路中起供电切换功能,正常导通时,笔记本电脑由电源适配器供电。
在不加电的情况下,初步对场效应管PQ1检测,发现其已经损坏。
为了进一步确认故障,加电检测,只插人电源适配器,卸掉可充电电池检测场效应管的PQ1的5、6、7、8引脚。
+DC_IN_SS供电为主机电源接口输出的供电。
经检测该供电正常,说明该故障笔记本电脑的主机电源接口电路没有问题,能够正常输出供电。
于是判断场效应管PQ1损坏,导致了故障笔记本电脑不能正常使用电源适配器为笔记本电脑供电。
更换损坏的场效应管,加电测试,故障排除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
该电源适配器(型号为92P1107),输入电压为交流1OOV~240V市电;输出直流20V;最大输出功率有90W
和65W两种。
其核心控制芯片为贴片式脉宽调制集成电路(3843),该芯片内含振荡器、脉宽调制比较器、逻辑控制
器;具有过流、欠压等保护控制功能;工作电压为7V~34V;最高工作频率可达500MHz;启动电流仅需1mA。
该芯片的各引脚功能如下:①脚是内部误差放大器的输出端。
②脚是反馈电压输入端,作为内部误差放大器的
反相输入端,与同相输入端的基准电压(+2.5V)进行比较,产生误差控制电压,控制脉冲宽度。
③脚为过流检测输入
端,当该脚的电压高于1V时,禁止驱动脉冲的输出。
④脚为RT/CT定时电阻和电容的公共接入端,用于产生锯齿振
荡波。
⑤脚为接地端。
⑥脚为脉宽调制信号输出端。
⑦脚为工作电压输入端(7V>Vi≤34V)。
⑧脚为内部基准电压
(VREF=5V)输出端。
根据实物绘制了其电路原理图如附图所示。
经比较,两种输出功率的电原理图完全相同,只是过流保护电路取
样电阻R20~R23的取值以及20V直流电压输出滤波电容C11及C12的容量有所不同。
一、整流滤波电路
交流市电经1A保险管F1及电容C1进入整流电路,BD1全桥整流后,经主滤波电容C7滤波,在C7两端得到约
300V的直流电压,作为适配器的工作电压。
该适配器的输入电路只有一个高频滤波电容C1
进行简单的滤波处理,因此对外部电磁脉冲的抗干扰能力和防止自身的高频电磁信号向外辐射的能力较弱。
二、启动与稳压电路
由整流滤波电路产生的300V电压:一路经开关变压器T1的初级①~②绕组加到功率开关管Q1(FS5KM)的漏
极;另一路经启动电阻R3~R6并联串联后加到U1(3843)的⑦脚,作为主控制芯片(3843)的启动电压。
在电路加电
的瞬间,300V直流电通过R3~R6对C8进行充电,当U1的⑦脚电压达到7V以上时,U1的⑧脚输出5V基准电压
Vref,同时3843内部的振荡电路开始工作,其⑥脚开始输出脉宽调制信号,通过R17驱动功率开关管Q1工作于交替
导通、截止的工作状态。
开关变压器T1的初级①~②绕组流过高频脉冲电流,同时由于交流互感的作用,在开关变
压器T1的次级③~④绕组两端产生的感应电压经R16限流、D3整流、C8滤波后得到UI持续工作所需的电压。
脉宽调
制信号的频率由R11和C3决定(本电路中.R11为5.6k,C3为4700pF),其振荡频率大约为70kHz。
T1的⑤~⑥
绕组产生的感应电压经D2整流,C11和C12滤波,输出20V的直流电压。
稳压电路由精密可调基准电压集成器件U3(KA431Z)、电阻R26、R27、R28、R29、电容C以及光电耦合器
U2(PC817)组成。
输出的20V电压经R27与R28、R29分压后加到U3的①脚。
当由于某种原因导致输出20V电压升
高时,U3的①脚电压升高,③脚的电压降低,导致流过光耦合器U2内部发光二极管的电流增大,使U2内部发光二
极管的亮度增强。
U2内部光电三极管的内阻降低,将U1的①脚电位拉低,使U1内误差放大器的输出电压降低,经
内部自动控制电路的作用,自动将U1的⑥脚输出的脉冲宽度调窄,使开关管Q1的导通时间缩短,经开关变压器的
作用,使适配器输出的电压自动降低。
当适配器输出20V电压变低时,其稳压过程与上述相反,将输出电压调整到
稳定的20V。
三、保护电路
1.功率管的保护:该保护电路由R13~R15、C6及D1组成,接在开关变压器T1的初级①~②绕组间。
由于功
率开关管Q1交替工作在饱和导通与截止状态之间,当开关管由饱和导通变为截止状态时,在①~②绕组之间会产生瞬
间反向尖峰高电压,如果没有泄放电路,功率管的漏(D)、源(S)极很可能会被高压击穿。
通过该保护电路可以将反
向尖峰电压吸收掉,从而起到保护功率开关管Q1的作用。
2.过流保护:电路由R20~R23、R18组成,当功率管的电流突然增大时,电阻R20~R23并联后的一端对热地
端电压升高,该电压经R18加到U1的③脚,当该电压高于1V时,U1(3843)内部控制电路控制⑥脚停止输出脉宽调
制信号,使Q1截止,保护功率管不因电流过大而被热击穿。
另外在输出整流二极管D2两端接有由R24、R25、C10组成的高频振荡脉冲RC吸收网络,以降低绕组之间的尖
峰脉冲干扰。
四、故障检修
故障1:加电后指示灯不亮,输出电压为OV。
据用户反映,使用中不小心将适配器掉到地上,随后就没电了。
检修与分析:打开外壳,取出电路板,观察电路板发现保险管爆裂,线路板背面全桥引脚附近有明显打火烧蚀
的痕迹,交流输入到保险管之间的铜箔被烧断;保险管到全桥的一个输入脚之间的铜箔线也被烧断,显然电路发生
了严重的高压短路。
于是将全桥及功率开关管Q1(FS5KM)焊下来。
经测量全桥未损坏,功率开关管(FS5KM)也正
常,测量电阻R20~R23均正常,于是用酒精仔细清洗被烧蚀的线路板,在清洗线路板的过程中发现主滤波电容C7
的正极焊盘与线路断裂。
于是用导线将被烧断的铜箔连接好,更换保险管,焊接好主滤波电容C7的正极焊盘,并
对其他焊点进行补焊。
试加电,电路竟然工作,测量输出20V正常,接入笔记本使用一个多月未见异常。
分析认
为:引起故障的原因可能是,在适配器掉到地上时,线路板上未清理掉的焊锡珠或元件引脚等导体掉落,将高压元
件的引脚短路造成高压短路,引起烧保险管和线路板铜箔。
所幸未造成元件大面积损坏。
故障2:加电后指示灯不亮,输出电压为OV。
检修与分析:打开外壳,取出电路板,观察电路板发现保险管爆裂,保险管到全桥的一个输入脚之间的铜箔连
线被烧断。
测量全桥未损坏,检测功率开关管一(FS5KM)的漏极(D)与源极(S)间短路,漏极(D)与栅极(G)之间也短
路,过流保护电阻R20~R23全被烧断,电阻R17断路。
测量U1的⑥脚对地正向电阻为4k,反向电阻为4.5k,在R17
断路的情况下,U1(3843)的⑥脚对地正反向电阻应为4.4k和200k,因此怀疑U1(3843)也损坏。
测试光耦合器
U2(PC817)以及精密三端稳压器U3(KA431)均正常,检查其他相关阻容元件均正常。
于是更换以上损坏的元件,加
电试机,适配器工作,测输出20V电压正常,经长时间工作未出现异常。
分析认为:该故障可能由于输入交流电源
过压或长时间在过重负载下工作,导致功率开关管(FS5KM)被热击穿短路,导致300V高压将相关的一系列元件击
穿损坏。
精品资料。