调速控制外文翻译

合集下载

桥式起重机变频调速控制系统设计论文(含中英文翻译)

桥式起重机变频调速控制系统设计论文(含中英文翻译)

前言桥式起重机作为物料搬运机械在整个国民经济中有着十分重要的地位,经过几十年的发展,我国桥式起重机制造厂和使用部门在设计、制造工艺、设备使用维修、管理方面,不断积累经验,不断改造,推动了桥式起重机的技术进步。

但在实际使用中,传统桥式起重机的控制系统所采用交流绕线转子串电阻的方法进行启动和调速,继电—接触器控制,在工作环境差,工作任务重时,电动机以及所串连电阻烧损和断裂故障时有发生;继电—接触器控制系统可靠性差,操作复杂,故障率高;转子串电阻调速,机械特性软,负载变化时转速也变化,调速不理想。

所串连电阻长期发热,电能浪费大,效率低。

要从根本上解决这些问题,只有彻底改变传统的控制方式。

近年来,随着计算机技术和电力电子器件的迅猛发展,同时也带动电气传动和自动控制领域的发展。

其中,具有代表性的交流变频调速装置和可编程控制器获得了广泛的应用,为PLC控制的变频调速技术在桥式起重机系统提供了有利条件。

变频技术的运用使得起重机的整体特性得到较大提高,可以解决传统桥式起重机控制系统存在诸多的问题,变频调速以其可靠性好,高品质的调速性能、节能效益显著的特性在起重运输机械行业中具有广泛的发展前景。

本次设计采用PLC和变频器技术,以PLC控制变频器,即以程序控制取代继电—接触器控制,控制变频器实现变频调速,设计出PLC控制的桥式起重机的变频调速系统,进而实现了起重机的半自动化控制。

此系统特别适用于桥式起重机在恶劣条件下的工作情况,对改善桥式起重机的调速性能,提高工作效率和功率因数,减小起制动冲击以及增加起重机使用的安全可靠性是非常有益的。

桥式起重机变频调速控制系统设计1 绪论1.1 桥式起重机电气传动技术的国内外发展概况电气调速控制的方法很多,对直流驱动来讲60年代采用发电机—电机系统。

从控制电阻分级控制,到交磁放大控制,到可控硅SCR激磁控制,到主回路可控硅即晶闸管整流供电系统。

随着电子技术的飞速发展,集成模块出现,计算机、微处理器应用,因此控制从分立组成模拟量控制发展至今天的数字量控制。

(2021年整理)直流调速系统设计与仿真外文翻译

(2021年整理)直流调速系统设计与仿真外文翻译

(完整)直流调速系统设计与仿真外文翻译编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)直流调速系统设计与仿真外文翻译)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)直流调速系统设计与仿真外文翻译的全部内容。

Double Loop DC Speed Control System Description工学部专业自动化班级学号姓名指导教师负责教师沈阳航空航天大学北方科技学院2010年6月Double Loop DC Speed Control System DescriptionⅠ。

system analysis and synthesis1.Analysis(1)In the speed and current dual closed-loop speed control system,in order to change the motor speed, what parameters should be regulating?Change speed regulator Kn magnification work? Power electronic converter to change the magnification factor Ks work? Change the speed of the feedback coefficient of work? To change the motor’s stall current system should adjust the parameters of what?A: To change the motor speed, change speed regulator Kn magnification and power electronic converters will not work magnification factor Ks, stable when n = Un = Un *, so the only change in the value of a given coefficient of Un * and feedback before。

(完整版)自动控制专业英语词汇

(完整版)自动控制专业英语词汇

(完整版)自动控制专业英语词汇自动控制专业英语词汇(一)acceleration transducer 加速度传感器acceptance testing 验收测试accessibility 可及性accumulated error 累积误差AC-DC-AC frequency converter 交-直-交变频器AC (alternating current) electric drive 交流电子传动active attitude stabilization 主动姿态稳定actuator 驱动器,执行机构adaline 线性适应元adaptation layer 适应层adaptive telemeter system 适应遥测系统adjoint operator 伴随算子admissible error 容许误差aggregation matrix 集结矩阵AHP (analytic hierarchy process) 层次分析法amplifying element 放大环节analog-digital conversion 模数转换annunciator 信号器antenna pointing control 天线指向控制anti-integral windup 抗积分饱卷aperiodic decomposition 非周期分解a posteriori estimate 后验估计approximate reasoning 近似推理a priori estimate 先验估计articulated robot 关节型机器人assignment problem 配置问题,分配问题associative memory model 联想记忆模型associatron 联想机asymptotic stability 渐进稳定性attained pose drift 实际位姿漂移attitude acquisition 姿态捕获AOCS (attritude and orbit control system) 姿态轨道控制系统attitude angular velocity 姿态角速度attitude disturbance 姿态扰动attitude maneuver 姿态机动attractor 吸引子augment ability 可扩充性augmented system 增广系统automatic manual station 自动-手动操作器automaton 自动机autonomous system 自治系统backlash characteristics 间隙特性base coordinate system 基座坐标系Bayes classifier 贝叶斯分类器bearing alignment 方位对准bellows pressure gauge 波纹管压力表benefit-cost analysis 收益成本分析bilinear system 双线性系统biocybernetics 生物控制论biological feedback system 生物反馈系统black box testing approach 黑箱测试法blind search 盲目搜索block diagonalization 块对角化Boltzman machine 玻耳兹曼机bottom-up development 自下而上开发boundary value analysis 边界值分析brainstorming method 头脑风暴法breadth-first search 广度优先搜索butterfly valve 蝶阀CAE (computer aided engineering) 计算机辅助工程CAM (computer aided manufacturing) 计算机辅助制造Camflex valve 偏心旋转阀canonical state variable 规范化状态变量capacitive displacement transducer 电容式位移传感器capsule pressure gauge 膜盒压力表CARD 计算机辅助研究开发Cartesian robot 直角坐标型机器人cascade compensation 串联补偿catastrophe theory 突变论centrality 集中性chained aggregation 链式集结chaos 混沌characteristic locus 特征轨迹chemical propulsion 化学推进calrity 清晰性classical information pattern 经典信息模式classifier 分类器clinical control system 临床控制系统closed loop pole 闭环极点closed loop transfer function 闭环传递函数cluster analysis 聚类分析coarse-fine control 粗-精控制cobweb model 蛛网模型coefficient matrix 系数矩阵cognitive science 认知科学cognitron 认知机coherent system 单调关联系统combination decision 组合决策combinatorial explosion 组合爆炸combined pressure and vacuum gauge 压力真空表command pose 指令位姿companion matrix 相伴矩阵compartmental model 房室模型compatibility 相容性,兼容性compensating network 补偿网络compensation 补偿,矫正compliance 柔顺,顺应composite control 组合控制computable general equilibrium model 可计算一般均衡模型conditionally instability 条件不稳定性configuration 组态connectionism 连接机制connectivity 连接性conservative system 守恒系统consistency 一致性constraint condition 约束条件consumption function 消费函数context-free grammar 上下文无关语法continuous discrete event hybrid system simulation 连续离散事件混合系统仿真continuous duty 连续工作制control accuracy 控制精度control cabinet 控制柜controllability index 可控指数controllable canonical form 可控规范型[control] plant 控制对象,被控对象controlling instrument 控制仪表control moment gyro 控制力矩陀螺control panel 控制屏,控制盘control synchro 控制[式]自整角机control system synthesis 控制系统综合control time horizon 控制时程cooperative game 合作对策coordinability condition 可协调条件coordination strategy 协调策略coordinator 协调器corner frequency 转折频率costate variable 共态变量cost-effectiveness analysis 费用效益分析coupling of orbit and attitude 轨道和姿态耦合critical damping 临界阻尼critical stability 临界稳定性cross-over frequency 穿越频率,交越频率current source inverter 电流[源]型逆变器cut-off frequency 截止频率cybernetics 控制论cyclic remote control 循环遥控cylindrical robot 圆柱坐标型机器人damped oscillation 阻尼振荡damper 阻尼器damping ratio 阻尼比data acquisition 数据采集data encryption 数据加密data preprocessing 数据预处理data processor 数据处理器DC generator-motor set drive 直流发电机-电动机组传动D controller 微分控制器decentrality 分散性decentralized stochastic control 分散随机控制decision space 决策空间decision support system 决策支持系统decomposition-aggregation approach 分解集结法decoupling parameter 解耦参数deductive-inductive hybrid modeling method 演绎与归纳混合建模法delayed telemetry 延时遥测derivation tree 导出树derivative feedback 微分反馈describing function 描述函数desired value 希望值despinner 消旋体destination 目的站detector 检出器deterministic automaton 确定性自动机deviation 偏差deviation alarm 偏差报警器DFD 数据流图diagnostic model 诊断模型diagonally dominant matrix 对角主导矩阵diaphragm pressure gauge 膜片压力表difference equation model 差分方程模型differential dynamical system 微分动力学系统differential game 微分对策differential pressure level meter 差压液位计differential pressure transmitter 差压变送器differential transformer displacement transducer 差动变压器式位移传感器differentiation element 微分环节digital filer 数字滤波器digital signal processing 数字信号处理digitization 数字化digitizer 数字化仪dimension transducer 尺度传感器direct coordination 直接协调disaggregation 解裂discoordination 失协调discrete event dynamic system 离散事件动态系统discrete system simulation language 离散系统仿真语言discriminant function 判别函数displacement vibration amplitude transducer 位移振幅传感器dissipative structure 耗散结构distributed parameter control system 分布参数控制系统distrubance 扰动disturbance compensation 扰动补偿diversity 多样性divisibility 可分性domain knowledge 领域知识dominant pole 主导极点dose-response model 剂量反应模型dual modulation telemetering system 双重调制遥测系统dual principle 对偶原理dual spin stabilization 双自旋稳定duty ratio 负载比dynamic braking 能耗制动dynamic characteristics 动态特性dynamic deviation 动态偏差dynamic error coefficient 动态误差系数dynamic exactness 动它吻合性dynamic input-output model 动态投入产出模型econometric model 计量经济模型economic cybernetics 经济控制论economic effectiveness 经济效益economic evaluation 经济评价economic index 经济指数economic indicator 经济指标eddy current thickness meter 电涡流厚度计effectiveness 有效性effectiveness theory 效益理论elasticity of demand 需求弹性electric actuator 电动执行机构electric conductance levelmeter 电导液位计electric drive control gear 电动传动控制设备electric hydraulic converter 电-液转换器electric pneumatic converter 电-气转换器electrohydraulic servo vale 电液伺服阀electromagnetic flow transducer 电磁流量传感器electronic batching scale 电子配料秤electronic belt conveyor scale 电子皮带秤electronic hopper scale 电子料斗秤elevation 仰角emergency stop 异常停止empirical distribution 经验分布endogenous variable 内生变量equilibrium growth 均衡增长equilibrium point 平衡点equivalence partitioning 等价类划分ergonomics 工效学error 误差error-correction parsing 纠错剖析estimate 估计量estimation theory 估计理论evaluation technique 评价技术event chain 事件链evolutionary system 进化系统exogenous variable 外生变量expected characteristics 希望特性external disturbance 外扰fact base 事实failure diagnosis 故障诊断fast mode 快变模态feasibility study 可行性研究feasible coordination 可行协调feasible region 可行域feature detection 特征检测feature extraction 特征抽取feedback compensation 反馈补偿feedforward path 前馈通路field bus 现场总线finite automaton 有限自动机FIP (factory information protocol) 工厂信息协议first order predicate logic 一阶谓词逻辑fixed sequence manipulator 固定顺序机械手fixed set point control 定值控制FMS (flexible manufacturing system) 柔性制造系统flow sensor/transducer 流量传感器flow transmitter 流量变送器fluctuation 涨落forced oscillation 强迫振荡formal language theory 形式语言理论formal neuron 形式神经元forward path 正向通路forward reasoning 正向推理fractal 分形体,分维体frequency converter 变频器frequency domain model reduction method 频域模型降阶法frequency response 频域响应full order observer 全阶观测器functional decomposition 功能分解FES (functional electrical stimulation) 功能电刺激functional simularity 功能相似fuzzy logic 模糊逻辑game tree 对策树gate valve 闸阀general equilibrium theory 一般均衡理论generalized least squares estimation 广义最小二乘估计generation function 生成函数geomagnetic torque 地磁力矩geometric similarity 几何相似gimbaled wheel 框架轮global asymptotic stability 全局渐进稳定性global optimum 全局最优globe valve 球形阀goal coordination method 目标协调法grammatical inference 文法推断graphic search 图搜索gravity gradient torque 重力梯度力矩group technology 成组技术guidance system 制导系统gyro drift rate 陀螺漂移率gyrostat 陀螺体Hall displacement transducer 霍尔式位移传感器hardware-in-the-loop simulation 半实物仿真harmonious deviation 和谐偏差harmonious strategy 和谐策略heuristic inference 启发式推理hidden oscillation 隐蔽振荡hierarchical chart 层次结构图hierarchical planning 递阶规划hierarchical control 递阶控制homeostasis 内稳态homomorphic model 同态系统horizontal decomposition 横向分解hormonal control 内分泌控制hydraulic step motor 液压步进马达hypercycle theory 超循环理论I controller 积分控制器identifiability 可辨识性IDSS (intelligent decision support system) 智能决策支持系统image recognition 图像识别impulse 冲量impulse function 冲击函数,脉冲函数inching 点动incompatibility principle 不相容原理incremental motion control 增量运动控制index of merit 品质因数inductive force transducer 电感式位移传感器inductive modeling method 归纳建模法industrial automation 工业自动化inertial attitude sensor 惯性姿态敏感器inertial coordinate system 惯性坐标系inertial wheel 惯性轮inference engine 推理机infinite dimensional system 无穷维系统information acquisition 信息采集infrared gas analyzer 红外线气体分析器inherent nonlinearity 固有非线性inherent regulation 固有调节initial deviation 初始偏差initiator 发起站injection attitude 入轨姿势input-output model 投入产出模型instability 不稳定性instruction level language 指令级语言integral of absolute value of error criterion 绝对误差积分准则integral of squared error criterion 平方误差积分准则integral performance criterion 积分性能准则integration instrument 积算仪器integrity 整体性intelligent terminal 智能终端interacted system 互联系统,关联系统interactive prediction approach 互联预估法,关联预估法interconnection 互联intermittent duty 断续工作制internal disturbance 内扰ISM (interpretive structure modeling) 解释结构建模法invariant embedding principle 不变嵌入原理inventory theory 库伦论inverse Nyquist diagram 逆奈奎斯特图inverter 逆变器investment decision 投资决策isomorphic model 同构模型iterative coordination 迭代协调jet propulsion 喷气推进job-lot control 分批控制joint 关节Kalman-Bucy filer 卡尔曼-布西滤波器knowledge accomodation 知识顺应knowledge acquisition 知识获取knowledge assimilation 知识同化KBMS (knowledge base management system) 知识库管理系统knowledge representation 知识表达ladder diagram 梯形图lag-lead compensation 滞后超前补偿Lagrange duality 拉格朗日对偶性Laplace transform 拉普拉斯变换large scale system 大系统lateral inhibition network 侧抑制网络least cost input 最小成本投入least squares criterion 最小二乘准则level switch 物位开关libration damping 天平动阻尼limit cycle 极限环linearization technique 线性化方法linear motion electric drive 直线运动电气传动linear motion valve 直行程阀linear programming 线性规划LQR (linear quadratic regulator problem) 线性二次调节器问题load cell 称重传感器local asymptotic stability 局部渐近稳定性local optimum 局部最优log magnitude-phase diagram 对数幅相图long term memory 长期记忆lumped parameter model 集总参数模型Lyapunov theorem of asymptotic stability 李雅普诺夫渐近稳定性定理自动控制专业英语词汇(二)macro-economic system 宏观经济系统magnetic dumping 磁卸载magnetoelastic weighing cell 磁致弹性称重传感器magnitude-frequency characteristic 幅频特性magnitude margin 幅值裕度magnitude scale factor 幅值比例尺manipulator 机械手man-machine coordination 人机协调manual station 手动操作器MAP (manufacturing automation protocol) 制造自动化协议marginal effectiveness 边际效益Mason's gain formula 梅森增益公式master station 主站matching criterion 匹配准则maximum likelihood estimation 最大似然估计maximum overshoot 最大超调量maximum principle 极大值原理mean-square error criterion 均方误差准则mechanism model 机理模型meta-knowledge 元知识metallurgical automation 冶金自动化minimal realization 最小实现minimum phase system 最小相位系统minimum variance estimation 最小方差估计minor loop 副回路missile-target relative movement simulator 弹体-目标相对运动仿真器modal aggregation 模态集结modal transformation 模态变换MB (model base) 模型库model confidence 模型置信度model fidelity 模型逼真度model reference adaptive control system 模型参考适应控制系统model verification 模型验证modularization 模块化MEC (most economic control) 最经济控制motion space 可动空间MTBF (mean time between failures) 平均故障间隔时间MTTF (mean time to failures) 平均无故障时间multi-attributive utility function 多属性效用函数multicriteria 多重判据multilevel hierarchical structure 多级递阶结构multiloop control 多回路控制multi-objective decision 多目标决策multistate logic 多态逻辑multistratum hierarchical control 多段递阶控制multivariable control system 多变量控制系统myoelectric control 肌电控制Nash optimality 纳什最优性natural language generation 自然语言生成nearest-neighbor 最近邻necessity measure 必然性侧度negative feedback 负反馈neural assembly 神经集合neural network computer 神经网络计算机Nichols chart 尼科尔斯图noetic science 思维科学noncoherent system 非单调关联系统noncooperative game 非合作博弈nonequilibrium state 非平衡态nonlinear element 非线性环节nonmonotonic logic 非单调逻辑nonparametric training 非参数训练nonreversible electric drive 不可逆电气传动nonsingular perturbation 非奇异摄动non-stationary random process 非平稳随机过程nuclear radiation levelmeter 核辐射物位计nutation sensor 章动敏感器Nyquist stability criterion 奈奎斯特稳定判据objective function 目标函数observability index 可观测指数observable canonical form 可观测规范型on-line assistance 在线帮助on-off control 通断控制open loop pole 开环极点operational research model 运筹学模型optic fiber tachometer 光纤式转速表optimal trajectory 最优轨迹optimization technique 最优化技术orbital rendezvous 轨道交会orbit gyrocompass 轨道陀螺罗盘orbit perturbation 轨道摄动order parameter 序参数orientation control 定向控制originator 始发站oscillating period 振荡周期output prediction method 输出预估法oval wheel flowmeter 椭圆齿轮流量计overall design 总体设计overdamping 过阻尼overlapping decomposition 交叠分解Pade approximation 帕德近似Pareto optimality 帕雷托最优性passive attitude stabilization 被动姿态稳定path repeatability 路径可重复性pattern primitive 模式基元PR (pattern recognition) 模式识别P control 比例控制器peak time 峰值时间penalty function method 罚函数法perceptron 感知器periodic duty 周期工作制perturbation theory 摄动理论pessimistic value 悲观值phase locus 相轨迹phase trajectory 相轨迹phase lead 相位超前photoelectric tachometric transducer 光电式转速传感器phrase-structure grammar 短句结构文法physical symbol system 物理符号系统piezoelectric force transducer 压电式力传感器playback robot 示教再现式机器人PLC (programmable logic controller) 可编程序逻辑控制器plug braking 反接制动plug valve 旋塞阀pneumatic actuator 气动执行机构point-to-point control 点位控制polar robot 极坐标型机器人pole assignment 极点配置pole-zero cancellation 零极点相消polynomial input 多项式输入portfolio theory 投资搭配理论pose overshoot 位姿过调量position measuring instrument 位置测量仪posentiometric displacement transducer 电位器式位移传感器positive feedback 正反馈power system automation 电力系统自动化predicate logic 谓词逻辑pressure gauge with electric contact 电接点压力表pressure transmitter 压力变送器price coordination 价格协调primal coordination 主协调primary frequency zone 主频区PCA (principal component analysis) 主成分分析法principle of turnpike 大道原理priority 优先级process-oriented simulation 面向过程的仿真production budget 生产预算production rule 产生式规则profit forecast 利润预测PERT (program evaluation and review technique) 计划评审技术program set station 程序设定操作器proportional control 比例控制proportional plus derivative controller 比例微分控制器protocol engineering 协议工程prototype 原型pseudo random sequence 伪随机序列pseudo-rate-increment control 伪速率增量控制pulse duration 脉冲持续时间pulse frequency modulation control system 脉冲调频控制系统pulse width modulation control system 脉冲调宽控制系统PWM inverter 脉宽调制逆变器pushdown automaton 下推自动机QC (quality control) 质量管理quadratic performance index 二次型性能指标qualitative physical model 定性物理模型quantized noise 量化噪声quasilinear characteristics 准线性特性queuing theory 排队论radio frequency sensor 射频敏感器ramp function 斜坡函数random disturbance 随机扰动random process 随机过程rate integrating gyro 速率积分陀螺ratio station 比值操作器reachability 可达性reaction wheel control 反作用轮控制realizability 可实现性,能实现性real time telemetry 实时遥测receptive field 感受野rectangular robot 直角坐标型机器人rectifier 整流器recursive estimation 递推估计reduced order observer 降阶观测器redundant information 冗余信息reentry control 再入控制regenerative braking 回馈制动,再生制动regional planning model 区域规划模型regulating device 调节装载regulation 调节relational algebra 关系代数relay characteristic 继电器特性remote manipulator 遥控操作器remote regulating 遥调remote set point adjuster 远程设定点调整器rendezvous and docking 交会和对接reproducibility 再现性resistance thermometer sensor 热电阻resolution principle 归结原理resource allocation 资源分配response curve 响应曲线return difference matrix 回差矩阵return ratio matrix 回比矩阵reverberation 回响reversible electric drive 可逆电气传动revolute robot 关节型机器人revolution speed transducer 转速传感器rewriting rule 重写规则rigid spacecraft dynamics 刚性航天动力学risk decision 风险分析robotics 机器人学robot programming language 机器人编程语言robust control 鲁棒控制robustness 鲁棒性roll gap measuring instrument 辊缝测量仪root locus 根轨迹roots flowmeter 腰轮流量计rotameter 浮子流量计,转子流量计rotary eccentric plug valve 偏心旋转阀rotary motion valve 角行程阀rotating transformer 旋转变压器Routh approximation method 劳思近似判据routing problem 路径问题sampled-data control system 采样控制系统sampling control system 采样控制系统saturation characteristics 饱和特性scalar Lyapunov function 标量李雅普诺夫函数SCARA (selective compliance assembly robot arm) 平面关节型机器人scenario analysis method 情景分析法scene analysis 物景分析s-domain s域self-operated controller 自力式控制器self-organizing system 自组织系统self-reproducing system 自繁殖系统self-tuning control 自校正控制semantic network 语义网络semi-physical simulation 半实物仿真sensing element 敏感元件sensitivity analysis 灵敏度分析sensory control 感觉控制sequential decomposition 顺序分解sequential least squares estimation 序贯最小二乘估计servo control 伺服控制,随动控制servomotor 伺服马达settling time 过渡时间sextant 六分仪short term planning 短期计划short time horizon coordination 短时程协调signal detection and estimation 信号检测和估计signal reconstruction 信号重构similarity 相似性simulated interrupt 仿真中断simulation block diagram 仿真框图simulation experiment 仿真实验simulation velocity 仿真速度simulator 仿真器single axle table 单轴转台single degree of freedom gyro 单自由度陀螺single level process 单级过程single value nonlinearity 单值非线性singular attractor 奇异吸引子singular perturbation 奇异摄动sink 汇点slaved system 受役系统slower-than-real-time simulation 欠实时仿真slow subsystem 慢变子系统socio-cybernetics 社会控制论socioeconomic system 社会经济系统software psychology 软件心理学solar array pointing control 太阳帆板指向控制solenoid valve 电磁阀source 源点specific impulse 比冲speed control system 调速系统spin axis 自旋轴spinner 自旋体stability criterion 稳定性判据stability limit 稳定极限stabilization 镇定,稳定Stackelberg decision theory 施塔克尔贝格决策理论state equation model 状态方程模型state space description 状态空间描述static characteristics curve 静态特性曲线station accuracy 定点精度stationary random process 平稳随机过程statistical analysis 统计分析statistic pattern recognition 统计模式识别steady state deviation 稳态偏差steady state error coefficient 稳态误差系数step-by-step control 步进控制step function 阶跃函数stepwise refinement 逐步精化stochastic finite automaton 随机有限自动机strain gauge load cell 应变式称重传感器strategic function 策略函数strongly coupled system 强耦合系统subjective probability 主观频率suboptimality 次优性supervised training 监督学习supervisory computer control system 计算机监控系统sustained oscillation 自持振荡swirlmeter 旋进流量计switching point 切换点symbolic processing 符号处理synaptic plasticity 突触可塑性synergetics 协同学syntactic analysis 句法分析system assessment 系统评价systematology 系统学system homomorphism 系统同态system isomorphism 系统同构system engineering 系统工程tachometer 转速表target flow transmitter 靶式流量变送器task cycle 作业周期teaching programming 示教编程telemechanics 远动学。

基于PLC的离心风机变频调速控制系统中英文资料

基于PLC的离心风机变频调速控制系统中英文资料

System structure and control schemesystem design featuresThe control system of ventilation units with centrifugal activation of interlocking and over—temperature protection。

And conventional relays compared to the implementation of the ventilation system, PLC system has a low failure rate, highreliability and wiring is simple, easy maintenance and many other advantages, PLC control functions so that thventilation systems greatly enhance the degree of automation, reducing the labor jobs intensity。

PLC and frequency converter with the use of air pressure transmitter, allowing the system to control the security, reliability, greatly improved, but also run the fan significantly reduce the failure rate, not onlysaves energy but also improve the operation rate of equipment. Mine ventilation system to meet the requirements of automatic control system the specific design requirements are asfollows:(1) This system provides manual / automatic mode of the two, with a state of alarm display and features such as faults。

变频器专业英语

变频器专业英语

变频器:inverter(日本),AC Driver(欧美),Frequency Converter(欧洲) 变流器:converter整流:rectifying-rectification整流器:rectifier逆变:inverting-inversion逆变器:inverter转矩脉动:torque pulsation矢量控制:Vector Control脉宽调制:PWM(pulse width modulation)正弦波脉宽调制:SPWM(sine pulse width modulation)谐波:harmonic矢量控制:VC(vector control)直接转矩控制:DTC(direct torque control)四象限运行:Four quadrant operation再生(制动):Regeneration (braking)直流制动:DC braking漏电流:leak current滤波器:filter电抗器:reactor电位器:potentiometer编码器:encoder ,PLG(pulse generator)定子:stator转子:rotorPLC常用英文词汇时间:2010-03-20 11:32 来源:未知作者:电气自动化技术网点击:字体设置: 大中小address|[PLC] The location in memory where data is stored. For data areas, an address consists ofa two letter data area designation and a number that designate the word and/or bitlocation. For the UM area, an address designates the instruction location (UM area); for theFM area, the block location (FM area), etc.allocation|[PLC] The process by which the PC assigns certain bits or words in memory for various functions. This includes pairing I/O bits to I/O points on Units.Analog Input Unit|[PLC] A Special I/O Unit that converts external analog input signals to digital input signalsfor the PC. The analog signals can be voltages or amperages.Analog I/O Unit|[PLC] A collective term for Analog Input Unit and Analog Output Unit.Analog Output Unit|[PLC] A Special I/O Unit that converts digital output signals from the PC to analog outputsignals for field devices. The analog signals can be voltages or amperages.Analog Timer Unit|[PLC] A dedicated timer that interfaces through analog signal externally and digital signalsinternally.AND|[PLC] A logic operation whereby the result is true if and only if both premises are true. Inladder diagram programming the premises are usually ON/OFF states of bits or the logicalcombination of such states called execution conditions.BCD|[PLC] Short for binary-coded decimal.BCD calculation|[PLC] An arithmetic calculation that uses numbers expressed in binary-coded decimal.binary|[PLC] A number system where all numbers are expressed to the base 2. Although in aPC all data is ultimately stored in binary form, binary is used to refer to data that isnumerically equivalent to the binary value. It is not used to refer to binary coded decimal.Each four binary bits is equivalent to one hexadecimal digit.binary-coded decimal|[PLC] A system used to represent numbers so that each four binary bits is numerica llyequivalent to one decimal digit.bit|[PLC] The smallest unit of storage in a PC. The status of a bit is either ON or OFF. Fourbits equal one digit; sixteen bits, one word. Different bits are allocated to special purposes, such as holding the status input from external devices, while other bits are available forgeneral use in programming.。

电机学英文文献翻译

电机学英文文献翻译

The three-phase induction motor speed control methodThree-phase asynchronous motor speed formula: N = 60f / p (1-s) Can be seen from the above formula, change the power supply frequency f, motor pole number p and the slip s may be too much to change the speed of purpose. From the speed of the essence of view, is simply a different way to change speed synchronous AC motor does not change the sync transfer speed or two.Widespread use in production machines without changing the synchronous speed of motor speed control method Wound Rotor Series Resistance Speed, chopper speed control, cascade control, and application of electromagnetic slip clutch, fluid couplings, clutches and other film speed. Change the synchronous speed of change on the number of stator pole multi-speed motor to change the stator voltage and frequency to frequency conversion with no change to the motor speed and so on.Energy from the speed point of view when, with high speed method and inefficient methods of two kinds of speed: high speed when the slip refers to the same, so no slip losses, such as multi-speed motors, Slip frequency control and loss can speed recovery methods (such as cascade control, etc.). A deteriorating loss of speed control methods are inefficient speed, such as series resistance of the rotor speed method, the energy loss in the rotor circuit on; Electromagnetic Clutch The speed method, the energy loss in the clutch coils; fluid coupling speed, energy loss in the fluid coupling of the oil. General deterioration in loss increased with the expansion speed range, if not speed range, the energy loss is minimal.1, variable speed control method of pole pairsThis speed is then used to change the stator winding way to change the red cage motor stator pole pairs to achieve speed control purposes, the followingfeaturesWith hard mechanical properties, good stability;No slip loss, high efficiency; Wiring simple, easy to control, low price;A level speed, differential large, can not get smooth speed control;With pressure and speed adjustment, with the use of electromagnetic slip clutch,smooth and efficient access to high speed characteristics.This method is suitable for the production does not require variable speed machinery, such as metal cutting machine Bed , Lift , Lifting equipment, Fans Water Pump And so on.2, Frequency Control Method Frequency control is to change the motor stator Power supply Frequency, thus changing the speed of its synchronous speed method. Frequency control system main equipment is to provide variable frequency power supply Inverter , Inverter can be divided into AC - DC - AC inverter and AC - AC converter two categories, most of the current domestic use of AC - DC - AC inverter. Its characteristicsHighefficiency, speed the process without additional loss;Wide range of applications, can be used for cage induction motor;Speed range, features a hard, high accuracy;Technical complexity, high cost, difficult maintenance and overhaul.This method is suitable for the high accuracy, good speed performance occasions.3, cascade control method Cascade control is wound into the rotor circuit in the series of additional potential can be adjusted to change the motor's slip, to achieve speed control purposes. Most of the deterioration in power to be in series with the added potential absorbed, re-use generate additional devices to absorb the deterioration in power to return power to use or conversion of energy. Slip-power absorption under way, cascade control can be divided into Motor Cascade control, mechanical and thyristor cascade control cascade control, and multi-use cascade control thyristor, characterized byCan speed the process of deterioration in loss of feedback to the network or productionmachinery, more efficient;Installed capacity and speed range in direct proportion to investment, applicable speed range 70% -90% rated speed of production machinery;peed device failure can switch to full speed, to avoid the cut-off;Thyristor cascade speed low power factor, harmonics greater impact.This method is suitable for fans, pumps and rolling mills, mine hoist, extrusion machines.4, wound rotor motor speed control method of Series ResistanceWound Rotor Motor additional resistance in series, so that the motor slip up, motor running at low speed. The greater the resistance in series, the motor speed is lower. This method is simple, easy to control, but deteriorate the power consumption in the form of heat in the resistor. Is a class speed, soft mechanical properties.5, the stator pressure and speed adjustment methodStator voltage when changing the motor, you can get a different set of mechanical properties of curves, which were different speeds. Since the motor torque and voltage proportional to the square, the largest decline in a lot of torque, speed range of its small cage motors in general and difficult to apply. In order to expand the speed range, pressure and speed adjustment should be larger rotor resistance value cage motors, such as dedicated voltage regulator with speed torque motor, or series wound motor frequency sensitive resistors. In order to expand the range of stable operation, when the speed of 2:1 or more occasions in the feedback control should be adopted to achieve the purpose of automatic adjustment of speed.Pressure and speed adjustment is a key device to provide power supply voltage, the current way of a tandem common saturation voltage regulator Reactor , Auto Transformer And several other Thyristor Surge. Thyristor Surge is the best way. Adjusting Speed featuresPressure and speed adjustment circuit is simple, easy to realize automatic control;Poor power surge process to heat transfer in the rotor resistance in the form of consumption, low efficiency.Pressure and speed adjustment generally applies to 100KW below production machinery.6.electromagnetic speed regulating motor speed control method of electromagneticspeed regulating electric motor squirrel cage motor, electric slip clutch and DC excitation power supply (Controller) consists of three parts. DC excitation power small, usually consisting of single phase half-wave or full wave rectifiers thyristors composition, change thyristor conduction angle, you can change the magnetizing current size.Electromagnetic slip clutch armature, poles and excitation windings composed of three parts. Armature and the latter has no mechanical contact, are free to rotate. Armature motor coaxial connection active part, driven by motors; docking with the load axis magnetic pole coupling from the moving parts. When the armature poles are at rest, such as excitation windings for DC, along the circumferential surface will form a number of air gap on the n, s, of alternating polarity poles, the magnetic flux through the armature. Dang electric armature with drag motor rotating Shi, due to electric armature and pole between relative movement, and makes electric armature induction produced Eddy, this Eddy and magnetic pass mutual role produced go moments, led has pole of rotor by same direction rotating, but its speed constant below electric armature of speed N1, this is a go difference adjustable speed way, changes go difference clutch device of DC Lai magnetic current, will can change clutch device of output go moments and speed. Characteristics of electromagnetic speed regulating motor speed:appliances, structure and control circuit is simple, reliable operation, easymaintenance; speed and smooth, stepless speed regulationthe power network harmonic effects;lost speed, low efficiency.This method applies to medium and small power, requires low speed when the smooth, short run production machinery.7. the hydraulic coupler speed regulating hydraulic Coupler is a device for hydraulic drive, is made up of the pump and turbine, they collectively work wheels, placed in a sealed case. Shell filled with a certain amount of working fluid, when pump is impulse driven by rotation, in which liquid propelled by blades which rotate, and under the action of centrifugal force along the outer wheels when entering the turbine pump, to thrust to the turbine blades on the same turn, make it drive production machinery running. Power transfer capacity of the hydraulic coupler and shell filled with fluid volume sizes are consistent. In the course of work, changing the filling rate can change the coupler of turbine speed, stepless speed regulation, characterized by:power scope, can meet the needs of from a couple of different power 10-kilowattto shuqianqian;simple structure, reliable performance, easy to operation and maintenance, andlow cost;small size, capacity;easy to adjust, easy to fulfill automatic control.This method applies to the speed of the fan and water pump.三相异步电动机的几种调速方式三相异步电动机转速公式为:n=60f/p(1-s)从上式可见,改变供电频率f、电动机的极对数p及转差率s均可太到改变转速的目的。

Speed Control and Governors 速度控制与调速器

Speed Control and Governors 速度控制与调速器
当负荷减少时,转速升高,调速器把导叶关小到 使得水轮机的机械转矩和电力负荷产生的电磁转 矩相等的位置,这时转速回到期望的同步转速。
1、that引导的定语从句修饰such an extent,翻译时定语前置
The governor system of the turbine acts as an opening,closing,and gate-setting mechanism for starting, stopping , and synchronizing the turbine which allows for matching output to the system load to maintain the system frequency and creates the necessary adjustment on Kaplan turbine blade angles for optimum operation at synchronous speed.
vocabulary
piston floating lever relay valve flywheel operating point isochronous feedback dashpot permanent magnet generator potential transformer speed signal generator transducer-operator 活塞 浮筒杆 配压阀 飞轮 工况点 等时的、同步的 反馈 缓冲器 永磁发电机 电压互感器 速度信号发生器 转换器操作
同步调速器本身是不稳定的,虽然由于水轮机和所联 负荷的特性带来一些稳定性,但仍是不够的,它们只 是对引水管中水流惯量的稳定效应的一种补充。
1、these指代The isochronous governor

异步电动机矢量控制调速系统设计外文翻译

异步电动机矢量控制调速系统设计外文翻译

毕业设计(论文)外文翻译文献题目:The Design of the Vector Control System of Asynchronous Motor 专业:机械设计制造及其自动化年级:09级姓名:学号:指导教师:职称:副教授2013年4月20日The Design of the Vector Control System of Asynchronous MotorMin Zhang, Xinping Ding & Zhen GuoCollege of Automation, Qingdao Technological University, Qingdao 266033, ChinaE-mail: z_m530@Abstract: Among various modes of the asynchronous motor speed control, vector control has the advantages of fast response, stability, transmission of high-performance and wide speed range. For the need of the asynchronous motor speed control, the design uses 89C196 as the controller, and introduces the designs of hardware and software in details. The Design is completed effectively, with good performance simple structure and good prospects of development.Keywords: Asynchronous motor, 89C196, Vector control1. IntroductionAC asynchronous motor is a higher order, multi-variable, non-linear, and strong coupling object, using the concept of parameters reconstruction and state reconstruction of modern control theory to achieve decoupling between the excitation component of the AC motor stator current and the torque component, and the control process of AC motor is equivalent to the control process of DC motor, the dynamic performance of AC speed regulation system obtaining notable improvement, thus makes DC speed replacing AC speed possible finally. The current governor of the higher production process has been more use of Frequency Control devices with vector-control.2. Vector ControlWith the criterion of producing consistent rotating magneto motive force, the stator AC current A i ,B i ,C i by3S/2S conversion in the three-phase coordinate system, can be equivalent to AC current s d i ,s q i , in two-phase static coordinate system, through vector rotation transformation of the re-orientation of the rotor magnetic field, Equivalent to a synchronous rotation coordinates of the DC current e d i ,e q i . When observers at core coordinates with the rotation together, AC machine becomes DC machine. Of these, the AC induction motor rotor total flux r , it has become the equivalent of the DC motor flux, windings e d equivalent to the excitation windings of DC motor ,e d i equivalent to the excitation current, windings e q equivalent to false static windings, e q i equivalent to the armature current proportional to torque. After the transformation above, AC asynchronous motor has been equivalent to DC motor. As a result, imitating the control method of DC motor, obtaining the control variable of DC motor, through the corresponding coordinates anti-transformation, can control the asynchronous motor. As a result of coordinate transformation of the current (on behalf of magnetic momentum) space vector, thus, this control system achieved through coordinate transformation called the vector control system, referred to VC system.According to this idea, could constitute the vector control system that can control r ψ and e q idirectly, as shown in Figure 1. In the figure a given and feedback signal through the controllersimilar to the controller that DC speed control system has used, producing given signal *e qs i of theexcitation current and given signal *e ds i of the armature current, after the anti-rotation transform VR -1 obtaining *e qs i and *e ds i , obtains *A i ,*B i ,*C i by 3S/2S conversion. Adding the three signals controlled by current and frequency signal 1ω obtained by controller to the inverter controlled by current, can output three-phase frequency conversion current that asynchronous motor needs for speed.3. The Content and Thought of the DesignThis system uses 80C196 as controller, consists of detection unit of stator three-phase current unit of keyboard input, LCD display modules, given unit of simulation speed detection unit of stator three-phase voltage, feedback unit of speed and output unit of control signals. System block diagram shown in Figure 2, the system applies 16 bits MCU 80C196 as control core, with some hardware analog circuits composing the vector control system of asynchronous motor. On the one hand, 80C196 through the A/D module of 80C196, speed gun and the given speed feedback signals has been obtained, obtaining given torque of saturated limiting through speed regulator, to obtain the given torque current; Use a given function generator to obtain given rotor flux, through observation obtaining real flux, through flux regulation obtaining given excitation current of given stator current, then the excitation current and the torque current synthesis through the K/P transformation, obtaining amplitude and phase stator current, after amplitude of stator currentcompared to the testing current , control the size of stator current through current regulator.; on the other hand, the stator current frequency is calculated by the simultaneous conversion rate for the time constant of the control inverter, regularly with timer, through P1,submitting trigger word to complete the trigger of the inverter.4. The Design of Hardware and SoftwareThe hardware circuits of the system mainly consists of AC-DC-AC current inverter circuit, SCR trigger inverter circuit, rectifier SCR trigger circuit, the speed given with the gun feedback circuit, current central regulation circuit, protection circuit and other typical circuits. The design of software includes: speed regulator control and flux detection and regulation.4.1 AC-DC-AC Current Converter CircuitThe main circuit uses AC-DC-AC Current Converter in the system as shown in Figure 3, and main features can be known as follows:1) Main circuit with simple structure and fewer components. For the four-quadrant operation, when the brake of power happens, the current direction of the main circuit keeps the same, just changing the polarity of the voltage, rectifier working in the state of inverter, inverter working in the state of rectifier. The inverter can be easily entered, regenerative braking, fast dynamic response. The voltage inverter has to connect to a group of inverters in order to regenerative braking, bringing the electric energy back to power grids.2) Since the middle using a reactor, current limit, is constant current source. Coupled with current Loop conditioning, current limit, so it can tolerate instantaneous load short-circuit, automatic protection, thereby enhancing the protection of over current and operational reliability3) The current inverter can converter with force and the output current instantaneous value is controlled by current inverter, meeting the vector control requirements of AC motors. Converter capacitor charging and discharging currents from the DC circuit filter by the suppression reactor, unlike a greater inrush current in voltage inverter, the capacitor’s utilization is of high level.4) Current inverter and the load motor form a whole, and the energy storage of the motor windings is also involved in the converter, and less dependent on the voltage inverter, so it has a certain load capacity.4.2 Inverter SCR trigger drive circuitThe Inverter SCR trigger drive circuit as shown in Figure 4. Inverter trigger signal is controlled by P1 of 80C196, slip signal outputting through P1 via PWM regulation in the SCM through the photoelectric isolation to enlarge, to control the trigger of the inverter. The system uses P1.6 as control and uses P1.0~P1.5 to control six SCR inverters separately, so the trigger circuits is composed by six circuits above.The principles of drive circuit of SCR trigger inverter are as follows: when the PWM from P1 is high signal after and gate, photoelectric isolation is not on, composite pipe in a state of on-saturated, the left side of the transformer forming circuit, and that the power of the signal amplifies (current enlarges); when the PWM from P1 is low signal after and gate, photoelectric isolation is on, composite pipe in a state of cut-off, and the left side of the transformer can not form circuit; thus, composite pipe equivalent to a switch, and its frequency relied on the frequency of the PWM, so the left side of the transformer form AC signals, to trigger SCR inverter after transformer decompression, half-wave rectifier and filter.4.3 Current Loop conditioning circuitsAfter the vector calculation, outputting given current through D/A module, testing feedback current by the current testing circuit, sending them to the simulator of the P1 regulator to regulate, can eliminate static difference and improve the speed of regulation. The output of the analog devices can be regarded as the phase-shifting control signals of the rectifier trigger. Current Loop conditioning circuits as shown in figure 5.4.4 The control of speed regulatorSpeed regulator uses dual-mode control. Setting a value T N of speed error, when the system is more than the deviation (more than 10 percent of the rated frequency), as rough location of the start, using on-off control, at this time, speed regulator is in the state of amplitude limit, equivalent to speed loop being open-loop, so the current loop is in the state of the most constant current regulation. Thus, it can play the overload ability of motor fully and make the process of regulation fastest possibly. When the system enters into a state of small deviation, the system uses PI linear control instead of on-off control. As result, absorbing the benefits of non-linear and linear, the system meets stability and accuracy. The speed regulator flowchart is as shown in figure 6.4.5 Flux RegulationSlip frequency vector control system can be affected by the motor parameters, so that the actual fluxand the given flux appear a deviation. This system is of observation and feedback in the amplitude of the magnetic flux, regulating flux of the rotor, actual flux with the changes of given flux.Flux regulator is also the same as the speed regulator, using PI regulator. The discrete formula is:n i S i m m m t n e T n e k n i n i /)}()({)1()(+∆+-= (1) Plus a reminder to forecast for correction:)1()(2--=n i n i I m m m (2) In the formula, m k is proportional coefficient, n t is integral coefficient, s T is sampling period, m I is the actual output value.)1()(--=∆n e n e e n (3))()(2*2n n e n Φ-Φ= (4)When it is in the state of low frequency (f<5HZ), 1r can not be ignored, the phase difference between 1V and 1E enlarges, and the formula 1V ≈'1V no longer sets up. Through the Approximate rotor flux observer and the formula 1101112/)(L I r I V L I m T m m --==Φω to observe the flux amplitude, only open-loop control of flux, that is, to calculate from a given flux, and that is m m L I /*2Φ=.In addition, in order to avoid disorders, or too weak and too strong magnetic, limiting the output m i in preparation for the software, making it in the ranges from 75% to 115% rated value.5. Design SummaryThis text researches the vector control variable speed control system of the asynchronous motor design. The SCM 80C196 and the external hardware complete the asynchronous motor speed vector control system design efficiently, and meet the timing control requirements. The vector control system design thinks clearly, has a good speed performance and simple structure. It has a wide range of use and a good prospect of development from the analysis and design of the speed asynchronous motor vector control systems.The innovations:(1) Complete the data acquisition of the speed and voltage, output the control signal and save the devices effectively with the help of the 80C196 microcontroller owned A/D, D/A.(2) Because the Current Source Inverter uses forced converter, the maximum operating frequency is free from the power grid frequency. And it is with wide speed range.(3) This system uses constant flux to keep the constant flux stably. Use stator physical voltage amplitude to approximate the observed flux amplitude value. The magnetic flux overcomes the impact of the parameters changes. This way is simple and effective.Figure 1. Vector Control System PrincipleFigure 2. Scheme of SystemFigure 3. AC-DC-AC Current inverter CircuitFigure 4. Inverter SCR trigger drive circuitFigure 5. Current Loop conditioning circuitsFigure 6. Flux regulation flowchartReferencesHisao Kubota and Kouki Matsuse. (1994). Speed Sensorless Field-Oriented Control of Induction Motor withRotor Resistance Adaptation. IEEE Trans. Ind. Appl., vo1.30, No.5,pp.1219-1224.Li, Da, Yang, Qingdong, and Liu, Quan.(2007). The DSP permanent magnet synchronous linear motor vector control system. Micro-computer information, 09-2:195-196Liu, Wei. (2007). The application design about vector control of current loop control. Micro-computer information, 07-1: 68-70Zhao, Tao, Jiang, WeiDong, Chen, Quan, and Ren, Tao. (2006). The research about the permanent magnet motor drive system bases on the dual-mode control. Power electronics technology, 40(5) :32-34异步电动机矢量控制调速系统设计张民,丁兴平,郭振中国,青岛,青岛科技大学自动化学院, 266033,E-mail: z_m530@摘 要:异步电动机的各种调速方式中,矢量控制的调速方式响应快、稳定性好、传动性能高、调速范围宽。

电动机及速度控制外文翻译

电动机及速度控制外文翻译

英文The Electric Motor And Speed ControlEach type of motor has its particular field of usefulness・ Because of its simplicity, economy, and durability, the induction motor is more widely used for industrial purposes than any other type of ac motor, especially if a high- speed drive is desired.If ac power is available, all drives requiring constant speed should use squirrel-cage induction or synchronous motors because of their ruggedness and lower cost. Drives requiring varying speeds, such as fans, blowers, or pumps, may be driven by wound-rotor induction motors. However, if there are machine tools or other machines requiring adjustable speed or a wide range of speed control, it will probably be desirable to install de motors on such machines and supply them from the ac system by motor-generator sets or electronic rectifiers.Almost all constant-speed machines may be driven by ac squirrel-cage motors because these motors are made with a variety of speed and torque characteristics・ When large motors are required or when power supply is limited. the wound-rotor motor is used, even to drive constant-speed machines・For varying-speed service, wound-rotor motors with resistance control are used for fans, blowers, and other apparatus for continuous duty and are used for cranes, hoists, and other installations for intermittent duty. The controller and resistors must be properly chosen for the specific application・ Synchronous motors may be used for almost any constant-speed drive requiring about 100 hp or over.Cost is an important factor when more than one type of ac motor is applicable・ The squirrel-cage motor is the least expensive ac motor of the three types considered and requires additional secondary control equipment. The wound-rotor is more expensive and requires additional secondary control. The synchronous motor is even more expensive and requires a source of de excitation, as well as special synchronizing control to apply the de power at the correct instant. When very large machines are involved, as, for example, 1000 hp or over, the cost picture may change considerably and should be checked on an individual basis・The various types of single-phase ac motors and universal motors are used very little in industrial applications, since polyphase ac or de power is generally available・ When such motors are used, they are usually built into the equipment by the machinery manufacturer, as in portable tools, office machinery, and other equipment. These motors are, as a rule, especially designed for the specific machines with which they are used ・Speed Control of D.C. MotorsThe most common requirement for a drive is that giving speed control from zero to full-load speed with a load torque which is approximately constant or increasing with speed・ In such an application it is necessary to supply the armature with variable voltage, and a controlled rectification configuration operating from an a. c. source is admirably suited to this application.The simplest and often the cheapest configuration is that of the half-wave rectifier applied to either a shunt or series d・ c. motor in the manner shown in Fig・1・ The number of components required is minimal and, in its simplest form, it is possible to dispense with current limiting circuits• The current build-up in the positive half-cycle is then limited by the armature inductance・ This system suffers from the major disadvantage that the form factor is bad (at least 2:1), leading to a significant de-rating of the motor. The torque is pulsating and this may produce objectionable results. particularly at low speeds. There will also be a large a. c. component into the supply system and there will, in general, be a practical limit to the rating of such a system .In practice, this arrangement will be restricted to rating below lh. p.Some improvement in form factor cam be made by adding a flywheel diode across the armature・If an inductance is based in series with the armature, its effect will be to smooth out the armature current. In practice, however, a large value of inductance is necessary making such a component large and expensive. It is often cheaper to use a full-wave arrangement.When regeneration is not needed, it is possible to use the half-controlled bridge shown in Fig. 2. This circuit has thyristors on two arms with cathodes connected to the positive terminal and rectifiers in the other two arms. It produces full-wave rectification but has one major disadvantagte in that it is essential to ensure that each thyristor is extinguished before the start of its positive half-cycle of the system voltage. This condition is important because it is possible for the annature current to flywheel through the conducting thyristor and its adjoining rectifier during the negative half-cycle .If this current is present when the system voltage becomes positive again, a full half-cycle of the supply voltage will appear across the motor armature, resulting in a large surge of current. This effect can be prevented by either firing the second thyristor towards the end of the negative half-cycle or by using a flywheel diode across the armature so that an alternative low impedance path is provided for the current.It is, however, possible to rearrange the components in the bridge in the manner shown in Fig. 3, to remove the problem of failure to commutate the armature current from the conducting thyristor. In the arrangement shown in Fig・3, the thyristors are connected to a supply terminal so that the armature current circulates around the rectifiers .In these circumstances the thyristors will be extinguished by reversal of the system voltage・ Thus it is possible that the current in the rectifiers will exceed the current in the thyristors and that the armature current will exceed the mains current. It then becomes necessary to use larger rectifiers or to use protective current limiting operated from the armature circuit. The circuit shown in Fig. 2has the advantage that, if the rectifier bridge is completed, a supply is available for the motor field・An alternative full-wave configuration with some useful features is shown in Fig. 4. This arrangement consists of a full-wave uncontrolled rectifier supplying a single thyristor which can now conduct on both half-cycles of the system voltage・ Its original merit in the days when thyristors were very expensive was that it made full use of single thyristor. It also has the advantage that a supply for the motor field is readily available and that, for a multi-machine system, only one main uncontrolled rectifier is necessary. Only one thyristor firing circuit is necessary and this ensures an even balance of current pulses between alternate half-cycles of the supply. Its major disadvantage is that some reliable method of extinguishing the thyristor at each zero of the mains voltage must be found so that the thyristor can enter a blocking mode to regain control during the next half-cycle・All the circuits so far described have operated from a single-phase supply with either line to line voltage・ The normal acceptable loading limit for a single-phase system is about 7KW and for ratings above this, it is necessary to use a 3-phase supply with the corresponding thyristor configuration.The simplest 3-phase arrangement is the half-controlled bridge with thyristors in one half and rectifiers in the other half of the bridge, connected in the manner shown in Fig.5・ Such an arrangement suffers from the same commutation trouble as the single-phase bridge・ In these circumstances either a minimum firing angle unit must be used or a flywheel diode must be fitted across the armaturc.In some applications, a d. c. motor will be used to speed control an overhauling load such that, under certain circumstances, power transfer from the load to the motor is possible・ Under these conditions the motor will act as a generator and thyristor power converter capable of transferring power into the a. c. mains must be used・ The basic circuit of such a regenerative system is shown in Fig 6. Under regenerative condition current must flow out of the positive motor terminal into the supply system and the thyristor TH I in Fig. 6controls the amount of regenerative power returned to the mains while TH2 controls the system under motoring conditions. Care mustobviously be taken to ensure that both thyristors circuit of this type it is usual to ensure that the net circuit c. m. f ・ always acts in a direction such that the rate of change of current is negative and to ensure that the c. m. f・ is present until zero current is reached・This simple circuit suffers from severe restriction must be placed on the value of the firing angle during regeneration if uncontrolled conduction is to be avoided. The type of restriction is to be overcome by the use of the bi-phase, half-wave system illustrated in Fig. 7, for which continuous conduction is possible with the current being forcibly transferred from one thyristor to the other because the cathode voltage of the incoming device is lower than that of the outgoing device at the instant of firing・Speed Control of A・C・ MotorsMost a. c. motors operate at constant speed and speed control can be obtained by varying the frequency of the applied voltage .In many cases the magnitude of the applied voltage will also be varied in direct proportion to the frequency in order to maintain the flux in the machine at a constant value・ In general, a static power converter producing a variable frequency, variable magnitude polyphase output-voltage from fixed polyphase a. c. mains is required and this can be achieved in one of two days・ Firstly, a direct conversion (a. c to a. c) can be made using the so-called cycloconverter principle・ The second and more common way is to convert the fixed a. c. to variable d. c. and to then reconvert this d. c. voltage to the required variable a. c. system: such a method uses a d・ c. link ・ In this case negative anode-cathode voltage does not occur naturally in the d. c. to a. c. thyristor converter and the process of forced commutation must be used. Two basic methods of forced commutation inverters, the so-called parallel inverter and the pulse-width modulated inverter are in common use.A simplified diagram representing a single-phase parallel inverter is given in Fig.8 in which the inductance L between the source and the thyristors acts as a current limiter. With thyristor TH1 in Fig.8 conducting the supply voltage V appears across one half of the primary of the output transformer T and load current flows・ The voltage across the whole of the transformer primary winding is then 2V and the capacitor C is charged to the voltage 2V. When thyristor TH2 is fired, the capacitor discharges through the two thyristors and TH1 is reverse biased until it turns off. Thyristor TH2 is then in a conducting state and the supply voltage V appears across the other half of the transformer primary in an opposite sense・ The output voltage across the secondary then reverses and is thereforce an approximate square wave whose frequency is controlled by the firing pulse applied to the two thyristors・Filtering can be introduced at the output if a sinusoidal output voltage is required・The general principles of pulse-width modulation are illustrated by the circuit of Fig.9.Thyristor TH1 is the main circuit device and thyristor TH2, capacitor C and resistor R from the commutating circuit for the main thyristor .The presence of the diode D is now essential in that it provides a path for load current and allows the capacitor to discharge・ Initially neither thyristor is conducting so that both points A andB in Fig.9 are at the potential of the negative rail. If TH1 is fired the point B in Fig.9 will now be at the potential of the positive rail. Current will build up in the load on an exponential of time constant L/R and, at the same time, the capacitorC will be charged to a voltage +V, through the resistor R. with the potential at point B positive with respect to that at point A. If after some convenient time, thyristor TH2 is fired. the potential at point A will rise to +V volts, the presense of the charged capacitor will result in the potential at point B, in Fig.9, rising to +2V volts・ The main thyristor TH1 will then be reverse biased and can turn off. Load current must still be flowing, because of the presence of load inductance and this current is supplied by the charge stored in the capacitor. The capacitor will thus be discharged resonantly until point B goes to a negative potential, at which point the diodeD will conduct, thereby clamping the load voltage at approximately zero and also providing aflywheel path for the load current. Capacitor C will now have a voltage of +V across it with point A positive and the thyristor TH1 will be conducting with a small current passing through the resistor R・ The load current will fall exponentially until thyristor TH2 is fired again. This will cause the potential at point B to rise to +V so that the potential at point A rises to +2V. The thyristor TH1 is thus extinguished and the capacitor C recharges through R with the point B again at the positive potential ready for the next cycle of operation・More elegant forms of the basic circuit of Fig. 9 can be used to generate a sinusoid of output voltage with a superimposed high frequency ripple・ The ripple frequency is controlled by the maxiniuin permissible switching rate for the thyristors and the allowable commutation loss which takes place as switching occurs. The frequency of the output voltage is readily controlled by control of the pulse repetition rate of the gate signal.电动机及速度控制每种型号的电机都有其特左的使用范用。

电机调速控制英文翻译

电机调速控制英文翻译

郑州航空工业管理学院毕业论文(设计)外文翻译 2016 届电子信息工程专业 1213081 班级姓名王兴宇学号121308128指导教师王义琴职称讲师二О一六年三月十日The Design of the Vector Control System of Asynchronous MotorAbstract: Among various modes of the asynchronous motor speed control, vector control has the advantages of fast response, stability, transmission of high-performance and wide speed range. For the need of the asynchronous motor speed control, the design uses 89C196 as the controller, and introduces the designs of hardware and software in details. The Design is completed effectively, with good performance simple structure and good prospects of development.Keywords: Asynchronous motor, 89C196, Vector control1. IntroductionAC asynchronous motor is a higher order, multi-variable, non-linear, and strong coupling object, using the concept of parameters reconstruction and state reconstruction of modern control theory to achieve decoupling between the excitation component of the AC motor stator current and the torque component, and the control process of AC motor is equivalent to the control process of DC motor, the dynamic performance of AC speed regulation system obtaining notable improvement, thus makes DC speed replacing AC speed possible finally. The current governor of the higher production process has been more use of Frequency Control devices with vector-control.2. Vector ControlWith the criterion of producing consistent rotating magneto motive force, the statorAC current A i ,B i ,C i by3S/2S conversion in the three-phase coordinate system, can be equivalent to AC current s d i ,s q i , in two-phase static coordinate system, throughvector rotation transformation of the re-orientation of the rotor magnetic field,Equivalent to a synchronous rotation coordinates of the DC current e d i ,e q i . Whenobservers at core coordinates with the rotation together, AC machine becomes DC machine. Of these, the AC induction motor rotor total flux r ψ, it has become theequivalent of the DC motor flux, windings e d equivalent to the excitation windingsof DC motor , e d i equivalent to the excitation current, windings e q equivalent to falsestatic windings, e q i equivalent to the armature current proportional to torque. Afterthe transformation above, AC asynchronous motor has been equivalent to DC motor. As a result, imitating the control method of DC motor, obtaining the control variable of DC motor, through the corresponding coordinates anti-transformation, can control the asynchronous motor. As a result of coordinate transformation of the current (on behalf of magnetic momentum) space vector, thus, this control system achieved through coordinate transformation called the vector control system, referred to VC system. According to this idea, could constitute the vector control system that can control r ψ and e q i directly, as shown in Figure 1. In the figure a given and feedbacksignal through the controller similar to the controller that DC speed control systemhas used, producing given signal *e qs i of the excitation current and given signal *e ds i ofthe armature current, after the anti-rotation transform VR -1 obtaining *e qs i and *e ds i , obtains *A i ,*B i ,*C i by 3S/2S conversion. Adding the three signals controlled by currentand frequency signal 1ω obtained by controller to the inverter controlled by current,can output three-phase frequency conversion current that asynchronous motor needs for speed.3. The Content and Thought of the DesignThis system uses 80C196 as controller, consists of detection unit of stator three-phase current unit of keyboard input, LCD display modules, given unit of simulation speed detection unit of stator three-phase voltage, feedback unit of speed and output unit of control signals. System block diagram shown in Figure 2, the system applies 16 bits MCU 80C196 as control core, with some hardware analog circuits composing the vector control system of asynchronous motor. On the one hand, 80C196 through the A/D module of 80C196, speed gun and the given speed feedback signals has been obtained, obtaining given torque of saturated limiting through speed regulator, to obtain the given torque current; Use a given function generator to obtain given rotor flux, through observation obtaining real flux, through flux regulation obtaining given excitation current of given stator current, then the excitation current and the torque current synthesis through the K/P transformation, obtaining amplitude and phase stator current, after amplitude of stator current compared to the testing current , control the size of stator current through current regulator.; on the other hand, the stator current frequency is calculated by the simultaneous conversion rate for the time constant of the control inverter, regularly with timer, through P1,submitting trigger word to complete the trigger of the inverter.4. The Design of Hardware and SoftwareThe hardware circuits of the system mainly consists of AC-DC-AC current inverter circuit, SCR trigger inverter circuit, rectifier SCR trigger circuit, the speed given with the gun feedback circuit, current central regulation circuit, protection circuit and other typical circuits. The design of software includes: speed regulator control and flux detection and regulation.4.1 AC-DC-AC Current Converter CircuitThe main circuit uses AC-DC-AC Current Converter in the system as shown in Figure 3, and main features can be known as follows:1) Main circuit with simple structure and fewer components. For the four-quadrant operation, when the brake of power happens, the current direction of the main circuit keeps the same, just changing the polarity of the voltage, rectifier working in the state of inverter, inverter working in the state of rectifier. The inverter can be easily entered, regenerative braking, fast dynamic response. The voltage inverter has to connect to a group of inverters in order to regenerative braking, bringing the electric energy back to power grids.2) Since the middle using a reactor, current limit, is constant current source. Coupled with current Loop conditioning, current limit, so it can tolerate instantaneous load short-circuit, automatic protection, thereby enhancing the protection of over current and operational reliability3) The current inverter can converter with force and the output current instantaneous value is controlled by current inverter, meeting the vector control requirements of ACmotors. Converter capacitor charging and discharging currents from the DC circuit filter by the suppression reactor, unlike a greater inrush current in voltage inverter, the capac itor’s utilization is of high level.4) Current inverter and the load motor form a whole, and the energy storage of the motor windings is also involved in the converter, and less dependent on the voltage inverter, so it has a certain load capacity.4.2 Inverter SCR trigger drive circuitThe Inverter SCR trigger drive circuit as shown in Figure 4. Inverter trigger signal is controlled by P1 of 80C196, slip signal outputting through P1 via PWM regulation in the SCM through the photoelectric isolation to enlarge, to control the trigger of the inverter. The system uses P1.6 as control and uses P1.0~P1.5 to control six SCR inverters separately, so the trigger circuits is composed by six circuits above.The principles of drive circuit of SCR trigger inverter are as follows: when the PWM from P1 is high signal after and gate, photoelectric isolation is not on, composite pipe in a state of on-saturated, the left side of the transformer forming circuit, and that the power of the signal amplifies (current enlarges); when the PWM from P1 is low signal after and gate, photoelectric isolation is on, composite pipe in a state of cut-off, and the left side of the transformer can not form circuit; thus, composite pipe equivalent to a switch, and its frequency relied on the frequency of the PWM, so the left side of the transformer form AC signals, to trigger SCR inverter after transformer decompression, half-wave rectifier and filter.4.3 Current Loop conditioning circuitsAfter the vector calculation, outputting given current through D/A module, testing feedback current by the current testing circuit, sending them to the simulator of the P1 regulator to regulate, can eliminate static difference and improve the speed of regulation. The output of the analog devices can be regarded as the phase-shifting control signals of the rectifier trigger. Current Loop conditioning circuits as shown in figure 5.4.4 The control of speed regulatorSpeed regulator uses dual-mode control. Setting a value T N of speed error, when the system is more than the deviation (more than 10 percent of the rated frequency), as rough location of the start, using on-off control, at this time, speed regulator is in the state of amplitude limit, equivalent to speed loop being open-loop, so the current loop is in the state of the most constant current regulation. Thus, it can play the overload ability of motor fully and make the process of regulation fastest possibly. When the system enters into a state of small deviation, the system uses PI linear control instead of on-off control. As result, absorbing the benefits of non-linear and linear, the system meets stability and accuracy. The speed regulator flowchart is as shown in figure 6.4.5 Flux RegulationSlip frequency vector control system can be affected by the motor parameters, so that the actual flux and the given flux appear a deviation. This system is of observation and feedback in the amplitude of the magnetic flux, regulating flux of the rotor,actual flux with the changes of given flux.Flux regulator is also the same as the speed regulator, using PI regulator. The discrete formula is:n i S i m m m t n e T n e k n i n i /)}()({)1()(+∆+-= (1)Plus a reminder to forecast for correction:)1()(2--=n i n i I m m m (2) In the formula, m k is proportional coefficient, n t is integral coefficient, s T is sampling period, m I is the actual output value.)1()(--=∆n e n e e n (3))()(2*2n n e n Φ-Φ= (4)When it is in the state of low frequency (f<5HZ), 1r can not be ignored, the phase difference between 1V and 1E enlarges, and the formula 1V ≈'1V no longer sets up.Through the Approximate rotor flux observer and the formula 1101112/)(L I r I V L I m T m m --==Φω to observe the flux amplitude, only open-loopcontrol of flux, that is, to calculate from a given flux, and that is m m L I /*2Φ=.Inaddition, in order to avoid disorders, or too weak and too strong magnetic, limiting the output m i in preparation for the software, making it in the ranges from 75% to115% rated value.5. Design SummaryThis text researches the vector control variable speed control system of the asynchronous motor design. The SCM 80C196 and the external hardware complete the asynchronous motor speed vector control system design efficiently, and meet thetiming control requirements. The vector control system design thinks clearly, has a good speed performance and simple structure. It has a wide range of use and a good prospect of development from the analysis and design of the speed asynchronous motor vector control systems.The innovations:(1) Complete the data acquisition of the speed and voltage, output the control signal and save the devices effectively with the help of the 80C196 microcontroller owned A/D, D/A.(2) Because the Current Source Inverter uses forced converter, the maximum operating frequency is free from the power grid frequency. And it is with wide speed range.(3) This system uses constant flux to keep the constant flux stably. Use stator physical voltage amplitude to approximate the observed flux amplitude value. The magnetic flux overcomes the impact of the parameters changes. This way is simple and effective.Figure 1. Vector Control System PrincipleFigure 2. Scheme of SystemFigure 3. AC-DC-AC Current inverter CircuitFigure 4. Inverter SCR trigger drive circuitFigure 5. Current Loop conditioning circuitsFigure 6. Flux regulation flowchartReferencesLi, Da, Yang, Qingdong, and Liu, Quan.(2007). The DSP permanent magnet synchronous linear motor vector control system. Micro-computer information, 09-2:195-196Liu, Wei. (2007). The application design about vector control of current loop control. Micro-computer information, 07-1: 68-70Zhao, Tao, Jiang, WeiDong, Chen, Quan, and Ren, Tao. (2006). The research about the permanent magnet motor drive system bases on the dual-mode control. Power electronics technology, 40 (5) :32-34异步电动机矢量控制调速系统设计摘 要:异步电动机的各种调速方式中,矢量控制的调速方式响应快、稳定性好、传动性能高、调速范围宽。

《自动控制原理》部分中英文词汇对照表(英文解释)

《自动控制原理》部分中英文词汇对照表(英文解释)

《自动控制原理》部分中英文词汇对照表(英文解释)《自动控制原理》部分中英文词汇对照表AAcceleration 加速度Angle of departure分离角Asymptotic stability渐近稳定性Automation自动化Auxiliary equation辅助方程BBacklash间隙Bandwidth带宽Block diagram方框图Bode diagram波特图CCauchy’s theorem高斯定理Characteristic equation特征方程Closed-loop control system闭环控制系统Constant常数Control system控制系统Controllability可控性Critical damping临界阻尼DDamping constant阻尼常数Damping ratio阻尼比DC control system直流控制系统Dead zone死区Delay time延迟时间Derivative control 微分控制Differential equations微分方程Digital computer compensator数字补偿器Dominant poles主导极点Dynamic equations动态方程Error coefficients误差系数Error transfer function误差传递函数FFeedback反馈Feedback compensation反馈补偿Feedback control systems反馈控制系统Feedback signal反馈信号Final-value theorem终值定理Frequency-domain analysis频域分析Frequency-domain design频域设计Friction摩擦GGain增益Generalized error coefficients广义误差系数IImpulse response脉冲响应Initial state初始状态Initial-value theorem初值定理Input vector输入向量Integral control积分控制Inverse z-transformation反Z变换JJordan block约当块Jordan canonical form约当标准形LLag-lead controller滞后-超前控制器Lag-lead network 滞后-超前网络Laplace transform拉氏变换Lead-lag controller超前-滞后控制器Linearization线性化Linear systems线性系统Mass质量Mathematical models数学模型Matrix矩阵Mechanical systems机械系统NNatural undamped frequency自然无阻尼频率Negative feedback负反馈Nichols chart尼科尔斯图Nonlinear control systems非线性控制系统Nyquist criterion柰奎斯特判据OObservability可观性Observer观测器Open-loop control system开环控制系统Output equations输出方程Output vector输出向量PParabolic input抛物线输入Partial fraction expansion部分分式展开PD controller比例微分控制器Peak time峰值时间Phase-lag controller相位滞后控制器Phase-lead controller相位超前控制器Phase margin相角裕度PID controller比例、积分微分控制器Polar plot极坐标图Poles definition极点定义Positive feedback正反馈Prefilter 前置滤波器Principle of the argument幅角原理RRamp error constant斜坡误差常数Ramp input斜坡输入Relative stability相对稳定性Resonant frequency共振频率Rise time上升时间调节时间 accommodation timeRobust system鲁棒系统Root loci根轨迹Routh tabulation(array)劳斯表SSampling frequency采样频率Sampling period采样周期Second-order system二阶系统Sensitivity灵敏度Series compensation串联补偿Settling time调节时间Signal flow graphs信号流图Similarity transformation相似变换Singularity奇点Spring弹簧Stability稳定性State diagram状态图State equations状态方程State feedback状态反馈State space状态空间State transition equation状态转移方程State transition matrix 状态转移矩阵State variables状态变量State vector状态向量Steady-state error稳态误差Steady-state response稳态响应Step error constant阶跃误差常数Step input阶跃输入TTime delay时间延迟Time-domain analysis时域分析Time-domain design时域设计Time-invariant systems时不变系统Time-varying systems时变系统Type number型数Torque constant扭矩常数Transfer function转换方程Transient response暂态响应Transition matrix转移矩阵UUnit step response单位阶跃响应VVandermonde matrix范德蒙矩阵Velocity control system速度控制系统Velocity error constant 速度误差常数ZZero-order hold零阶保持z-transfer function Z变换函数z-transform Z变换。

直流电机调速外文文献翻译、中英文翻译、外文翻译

直流电机调速外文文献翻译、中英文翻译、外文翻译
使用晶闸管的单向速度控制系统
一个单相晶闸管逆变器系统如图1所示。读者应该先忽略整流器BR2和它的相关电路(包括交流回路中的电阻器R),因为这部分只有在具有保护功能时才需要,将在下一节介绍。
因为该电路是一个单向转换器,只能在一个旋转方向控制电机轴(系统的输出)的速度。而且,回馈制动不能用于电机,在这种系统类型中,电机电枢可以通过电气制动静止(例如,当晶闸管门极脉冲反向时,电阻可通过一个继电器或其他装置连接到电枢上)。
涡流制动可用于任何机器 只要在轴上安装一个铜条或铝盘并在磁场中旋转它即可。在大型系统中,散热问题是很重要的,因为如果长时间制动,轴、轴承和电机的温度就会升高。
在能耗制动中,存储的能量消耗在回路电阻器上。用在小型直流电机上时 电枢供电被断开,接入一个电阻器,通常是一个继电器、接触器或晶闸管。保持磁场电压,施加制动降到最低速。感应电机要求稍微复杂一点的排布,定子绕组被从交流电源上断开,接到直流电源上。产生的电能继而消耗在转子回路中。能耗制动应用在许多大型交流升降系统中,制动的职责是反向和延长。
任何电机都可以通过突然反接电源以提供反向的旋转方向(反接制动)来停机。在可控情况下,这种制动方法对所传动装置都是使用的。它主要的缺点就是当制动等于负载存储的能量时,电能被机器消耗了。这在大型装置中就大大增加了运行成本。
直流电机速度控制
所有直流电机速度控制的基本关系都可由下式得出
E∝Φω
U=E+IaRa
各项就是她们通常所指的含义。如果IaRa很小,等式近似为U∝Φω或ω=U/Φ。这样,控制电枢电压和磁通就可影响电机转速。要将转速降为零,或者U=0或Φ=∞。后者是不可能的,因此只可通过电枢电压的变化来降低转速。要将转速增加到较高值,可以增大U或减小Φ。后者是最可行的方法,就是我们通常所知道的弱磁场。在要求速度调节范围宽的场合可综合使用这两种方法。

中英文对照变频调速

中英文对照变频调速

变频调速The speed of standard induction motors can be controlled by variation of the frequency of the voltage applied to the motor. Due to flux saturation problems with induction motors, the voltage applied to the motor must alter with the frequency. The induction motor is a pseudo synchronous machine and so behaves as a speed source. The running speed is set by the frequency applied to it and is independent of load torque provided the motor is not over loaded.标准的感应电动机可通过改变施加到电动机上的频率和电压控制电动机的旋转速度。

由于感应电动机存在磁饱和的问题,施加在电动机上的电压必须随频率的变化而变。

感应电动机是准同步电动机,因此是速度的来源。

在电动机没有过载的情况下,电动机的旋转速度是由施加在其上的频率决定的,而不是由负载转矩决定的。

1.Vector drives have a mathematical model of the drive in software and by measuring the current vectors in relation to the applied voltage, they are able to maintain a constant field at all frequencies below the line frequency. These drives need to be tuned to the motor and typically include a self tuning algorithm that is enabled at commissioning to determine the component values for the mathematical model. If the motor is replaced, the drive needs to be retuned to learn the characteristics of the new motors.1. 矢量驱动装置建有软件化的驱动数学模型。

速度控制系统

速度控制系统

速度控制系统简介速度控制系统(speed control systems )以速度(或转速)作为被控制量的自动控制系统。

速度控制系统广泛应用于各种工业部门。

例如,当用原动机(水轮机或汽轮机)驱动一个以某一频率(例如50赫)发电的交流发电机时,必须采用速度控制系统使原动机转速保持恒定,以保证发电机发出的交流电的频率符合要求。

对于一台不带负载的柴油机,如不采用速度控制,就会产生飞车现象。

在速度控制系统中,所期望的速度变化形式是由生产过程中对生产机械的工艺要求决定的.主要形式速度(转速)控制的主要形式有调速、稳速和加减速控制三类。

①调速指在一定的最高转速和最低转速的范围内分档(有级)地或平滑(无级)地调节生产机械转速。

调速系统由生产机械和调速器所组成.调速器通过适当改变流进和流出生产机械的能量来调节它的转速.调速器不仅可使生产机械运行在某个指定的转速,而且还能在负载变动时保持转速恒定或基本不变。

保持转速恒定的调速器称为无差调速器.只能使转速基本不变的调速器称为有差调速器.②稳速可使生产机械以一定的精度稳定在所需转速上运行的一种速度控制.在稳速系统中,调速器的调节作用能使生产机械的转速(速度)完全或基本上不受负载变化、电源电压变化、温度变化等外部和内部扰动的影响。

③加减速控制常用于频繁起动和制动的生产机械.对加减速控制的基本要求是尽量缩短起动和制动时间以提高生产效率,并使生产机械的起动和制动过程尽量平稳。

在生产过程中,从工艺要求出发,不同的生产机械对转速(速度)的控制形式具有不同的要求。

例如轧钢机主、辅传动要求尽可能地缩短起动、制动和反转的时间,同时又能在较大范围内调速.而高速卷纸机则既要求有高的稳速精度和一定调速范围,又要求起动和制动平稳。

实现方法实现速度控制的方法很多,有机械的、液压的和电气的。

电气的方法比较简单,控制性能好,经济,易于维护,所以应用最广。

速度控制系统一般都是闭环控制系统,可以是单环或多环的反馈控制系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用于现场总线系统的卡尔曼滤波-有延迟信号的速率控制系统R. Pizá, J. Salt, A. Cuenca, V. Casanova巴伦西亚技术大学,西班牙{rpiza,julian,acuenca,vcasanov}@isa.upv.es摘要:网络控制系统设备(控制器,传感器和执行器)共享一个共同的通信介质。

由于通信介质会受到外部的干扰,所以这些设备通过共享的通信介质时会被随意地延迟传输。

带宽传输能力也是有限的,这也可以随意地限制我们从控制回路中获得采样周期。

我们可以依据高速质的采样周期来减少信号的延迟并减少一些带宽。

通常这个解决方案能显著的影响系统的性能。

这是因为采样周期的高速质,闭环反应能力将会下降。

本文提出了一个建议,来解决这些类型的问题。

用卡尔曼滤波器,采用多速率过滤器来减少传输的要求。

这最终的目标是建立一个系统,并使它尽可能的接近于一个单一的速率系统,从而得到一个起始点和系统参考。

在这项工作中,我们的多速率建模方法认为,要在有Profibus-DP和起重机三维平台的硬件环境下才能实现实验结果的成功。

我们在检测控制技术方面有些实验。

其中一些实验表明,在直接控制起重机的情况下,没有Profibus-DP总线控制,网络将无法避免一些信号的延迟和丢失。

其它的一些实验表面在整个硬件平台中,使用起重机并有现场总线时,网络可以避免信号的延迟和丢失。

一、导言控制系统采用共享通信介质是由于以下的几个原因。

其中一个原因是,需要在硬件平台减少电缆。

另外一个原因是,同样的信息设备,要能增加多输入多输出系统或更多可能性的配置,并让配置更加容易,还能够创造更复杂的系统。

几种控制应用中需要共享的通信介质有[ 6]:遥控操作,监控和控制系统。

这就是通过共享的网络而诞生的网络控制系统(新的系统)。

一般来说,该网络包括大量线路的减少,因此,体现了较高的维护灵活性和较低的应用成本[ 15]。

由于布线限制了大小(如航空,生产汽车)或空间分布的限制(如化工厂),让成本更低和运行更加优化简单,用上述的解决办法是可取的[ 4],[ 5]。

在网络控制系统项目中,控制回路及附加装置有一个共同的通信介质,即信号传输之间的发送者和接收者(通常称作传感器控制和控制器执行机构)共享的介质。

在这些项目中有2种网络:通用网络(以太网,RS - 232,互联网应用等)和工业网络(基金会现场总线等)。

在第一个情况下,要求很多的数据包能在较短的时间内被发送,然而,在另一个情况下,会有很高的时间限制,并且要求较少的传输数据包必须包含大量的信息[ 3]。

这项工作将重点放在工业网络。

以下有几个共享策略可用:确定一个特定的顺序(如现场总线的投票或优先顺序)或随机存取。

通常,这是已知的协议来作为网络协议本身或最低的阶段,它用来调度上一阶段或作为用户控制策略[ 3],它将决定如何将数据通过网络。

在最后的情况,决策可分为:静态(如投票)或动态(如MEF-最大误差 [ 12 ]或TOD-TRY-短暂丢失 [ 12],[ 13]。

在这种情况下,一个新生系统会带来的三个主要问题[ 15],[ 16], [ 3],[ 7],[ 1],[ 10]:图1.用于开发实验的试验平台。

图2.硬件配置。

•你的数据包传输时在时间上会延迟。

在经典的控制系统中计算延迟是永远存在的。

•在网络化中必须有传播时间延迟和等待时间延迟还有添加的考虑时间延迟。

时间之间的偏移信号是因为不同的设备有不同的起始时间而造成的。

在其它控制中,信息包传不到或传的太晚而叫做信息的损失(丢包)。

•最后一个问题是由于其自身存在的规模而造成的,我们可以认为它是微不足道的。

这个等待的时间延迟是指,通过共享资源的可用数据包一直到被发送的时间延迟。

在虑波网络,这些延迟受多种因素的影响。

在某些情况下,由于实际网络的数码性质,他们可以被称为诱导延迟[ 9 ],具有离散性质和分布性质。

•这重要的一点使后来的解释变得更加详细。

我们可以利用有限的大小,使所有的数据量化,上述这种方式,被称为传输信道容量(或带宽)。

考虑到研究的主要方面和重点是有限的传输信道能力会有时间延迟,在卡尔曼滤波中提出了一套方案,来使多速率控制系统能够与延迟丢失的信号沿不同的采样期间进行控制和管理。

比较它们的方法是,要能够不降低相同的系统性能,并且工作时单一速率高,这样便足以达到我们所需规格。

二,系统识别和经典控制本文开发了一个从远程控制站共享网络控制一台三电机平台起重机的控制过程。

本文的重点是一个实验系统,如图1所示,包括一台三电机起重机,还有相应的传动链控制位置的平衡机构。

如图2所示为硬件采用总线控制布局。

在这项工作中平衡机构的位置已经固定,只有X,Y位置还能被控制,使它能够变化或保持平衡,由此产生的子系统是线性的,并且存在小控制信号的盲区。

不看这个效果时,这个系统连续模型可以作为设备的显示。

1. P和U对应的位置和速度在XY轴指出了相应的分指数和你输入的值对应的控制信号。

由于硬件平台的这一结构,由此产生的模型装饰是一种解耦系统。

出于这个原因,余下的文章将只集中在第一子系统(×位置)或操纵较短的表达式。

该方法可以使受益轻易地扩展到整个系统。

我们的最终目标是使用多技术来管理并保持多速率控制系统的延迟信号,并且尽可能多地保持单速率控制回路的行为规格。

首先,设计一个离散的控制系统,使用一个0.1秒的采样周期,这所获得的控制器有一定转让功能。

2.这个时期的选择是依据古典控制标准来决定的。

尽管该系统是以机械为基础的,使用一个缓慢的系统运行任务,这个采样期完成带宽环路限制。

传统的个人电脑控制系统赋予了一个数据采集板,所取得的速率控制系统成果如图3所示,图4表明系统行为不同于仿真的预期结果。

系统响应在新情况下整体出现稳态误差。

分析系统,其原因是存在一个明显的死亡地带。

本控制范围死区存在于±1之间和±0.08之间。

这意味着8%的损失控制范围。

这一影响,系统并不是当小控制信号应用,这原因是有稳态误差。

这里的原因是从不同的仿真实验获得的数据结果得来的。

出现在图4情况表明,存在死区的控制信号的死区越小误差越小,系统集成的影响消失。

为解决这个问题,新的控制器的设计中引入了一个附加的积分器。

其目的是让卡尔曼滤波闭环槽通过过滤的动态行为纠正稳态错误。

图4显示系统的行为, 3式所描述的是卡尔曼滤波器环槽的控制。

这是第一个实验,目的是在设计一个标准的卡尔曼滤波器,并有一个起点引进修改的滤波公式。

这些修改的重点将是有利于多速率传输并减少信号延迟。

模拟滤波器如下[ 2]:图3.单速率控制直接参考信号位置(蓝色实线)和输出位置(红色虚线)。

图4.比较实验数据与模拟结果数据和模拟结果参考信号(蓝色实线),实际位置(红色虚线),模拟的位置(绿色虚线)。

有不同的元素:•A,B,C,D :空间系统矩阵正常状态•Г:输入的噪声耦合矩阵,通常Г=b•Q,R :输入噪声方差阵和观测噪声方差阵•V,u :测量向量和输入向量•×:方向向量•p :估计方差矩阵:•k :卡尔曼增益T K K K TK K K K K K Q A P A P Γ∙∙Γ+∙∙=---1|11| 11|1|][---+∙∙∙=K T K K K K T K K K K R C P C C P K1|1||--∙∙-=K K K K K K K K P C K P P][1|1||--∙-∙-∙+=K K K K K K K K K K K X C u D V K X XK K K K K K K u B X A X ∙+∙=+||1图5.Kal man滤波闭合槽控制回路,参考位置(蓝色实线),实际位置(红色虚线)和模拟位置(绿色虚线)。

图6.控制回路的传输延迟,参考(蓝色实线),无输出滤波(绿色虚线)和过滤器(红色虚线)。

图7.控制回路的传输延迟,参考位置(蓝色实线),无输出滤波位置(绿色虚线)和过滤器滤波位置(红色虚线)。

图8.控制回路的传输延迟,参考位置(蓝色实线),没有延迟的原始位置(红色虚线)和卡尔曼滤波器补偿修正延迟后的位置(绿色虚线)。

图9.多速率控制回路N=3,参考位置(蓝色实线),原来的行为位置(红色虚线)和多速率滤波器修改后的位置(绿色虚线)。

时间偏移的位置(同步)。

T K K K T K K K K K K Q A P A P Γ∙∙Γ+∙∙=---1|11|11|1|][---+∙∙∙∙=K T K K K K T K K K K R C P C C P K 1|1||--∙∙-=K K K K K K K K P C K P P][|1||d K d K d K d K d K Kd K K K K K X C u D V K X X ------∙-∙-∙+= K K K K K K K u B X A X ∙+∙=+||1图10.多速率控制回路N=5,参考(蓝色实线),和输出(红色虚线)。

图11.多速率控制回路N=10,参考位置(蓝色实线),输出位置(红色虚线)。

图12.协方差位置演变估计N=1(蓝色实线),N=2(绿色实线),N=3(褐色实线),N=5(青色实线),N=10(红色实线)。

致谢这项工作是由西班牙语博客协会的DPI2006-09162和FEDER完成的。

参考文献[ 1] Casanova,V, Salt, J., Cuenca, A. and Mascarós V,现场总线网络控制系统模拟模型[J], 慕尼黑IEEE CCA/CACSD/ISIC评估,2006,20(4): 7-11[ 2] Chui, C.K. and Chen, G. ,Kal man滤波实时应用程序[J],施普林格书本978-0387540139,2001,11 (3):37-49[ 3] Goodwin, G.C., Quevedo, D.E. and Silva, E.I.,介绍了网络控制系统 [J],亚洲控制会议全体会议讲座,2006,10(10):65-73[ 4] Halevi, Y. and Ray, A.,通信与控制系统:部分i-analysis [J],动态系统测量和控制杂志, 1988,110(2):367-373[ 5] Halevi, Y. and Ray, A.,通信与控制系统:部分ii-design考虑[J],动态系统测量和控制杂志,1988,110(10):374-381[ 6] Kim, W-J., Ji, K. and Ambike, A.,网络控制系统实时运行环境[J],自动化科学与工程杂志, 2006,3(3):287-296[ 7] Lee, K.C., Lee, S. and Lee, M.H.,网络控制系统通过PROFIBUS-DP总线的远程模糊逻辑控制[J],工业电子学汇刊,2003,50(4):784-792[ 8] Lee, D and Tomizuka,M.,传感器融合与多速率最优状态估计[J],美国控制会议,2003,11(20):2887-2892[ 9] Salt, J. and Albertos,P.,多控制器设计模型基础[J],控制系统技术杂志, 2005,13(6):988-997[ 10 ] ] Tipsuwan Y. and Chow M-Y.,网络控制系统控制方法[J],控制工程实践,2003,3(11):1099-1111[ 11] Tornero, J. Pizá, R. Albertos, Pand Salt,J.,多速率系统控制器进行定位和移动机器人路径跟踪[J],智能机器人系统国际会议, 2001,44(10)625-630[ 12] Walsh, G.C. and Ye, H.,网络控制系统[J],控制系统杂志, 2001,2(12): 57-65[ 13] Walsh, G.C., Ye, H. and Bushnell, L.G.,网络控制系统稳定性分析[J],控制系统技术汇刊, 2002,10(3):438-446[ 14] Yang, Y.,制造光纤通信时衰减拼接控制系统[J],控制系统技术汇刊, 2006,14(1):170 - 175[ 15] Yang, T.C.,一个简短的网络控制系统调查[J],-控制理论的应用研讨会, 2006,153(4):403-412J. H. Chow and K. W. Cheung, “A toolbox for power system dynamic s and control engineering education and research,” IEEE Trans. Power Syst., vol. 7, no. 4, pp. 1559–1564, Nov. 1992.。

相关文档
最新文档