有理数加减乘除乘方混合运算
七年级上册数学有理数加减乘除混合运算
七年级上册数学有理数加减乘除混合运算一、有理数混合运算的基本概念有理数混合运算是基于有理数的加、减、乘、除四则运算,以及乘方和开方的运算。
有理数包括正数、负数和0。
在混合运算中,我们需要注意运算的顺序和法则。
二、数的加减法数的加减法遵循以下法则:1. 加法交换律:a+b=b+a2. 加法结合律:(a+b)+c=a+(b+c)3. 相反数:a=-(-a)4. 0的任何非零有理数(0除外)相加,结果为0。
三、数的乘除法乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
除法法则:两数相除,同号得正,异号得负,并把绝对值相除,0不能作除数。
四、混合运算的顺序混合运算的顺序是先乘方,再乘除,最后加减;如果有括号,先算括号里面的。
五、代数式的值代数式的值是指将字母的取值代入代数式后得到的数值。
求代数式的值有两种方法:一种是直接代入求值;另一种是整体代入求值。
六、方程的基本概念方程是一种含有未知数的等式。
一元一次方程是指只含有一个未知数,并且未知数的次数是1的方程。
解一元一次方程就是求出使方程成立的未知数的值。
七、一元一次方程的解法解一元一次方程的基本步骤包括去分母、去括号、移项、合并同类项、系数化为1等步骤。
通过这些步骤,我们可以将复杂的一元一次方程简化,并求出未知数的值。
八、实际问题的数学模型实际问题中,我们可以通过建立数学模型来解决问题。
数学模型是指用数学语言描述实际问题,并把问题的数量关系和数学规律联系起来的一种工具。
通过建立数学模型,我们可以更好地理解和解决实际问题。
九、综合应用举例有理数加减乘除混合运算在实际生活中有着广泛的应用。
例如,购物时计算花费、计算物品的总重量或总价、计算速度和路程等等都需要用到有理数混合运算的知识。
通过这些实际应用的例子,我们可以更好地理解和掌握有理数混合运算的知识。
有理数加减乘除乘方混合运算相关法则知识整理汇总
有理数加减乘除乘方混合运算相关法则知识整理一、知识整理填空答案符号计算绝对值加法同号取相同的符号绝对值相加异号取绝对值大的符号绝对值相减减法减去一个数等于加上这个数的相反数乘法同号取正绝对值相乘异号取负除法同号取正绝对值相除异号取负除以一个数等于乘以这个数的倒数二、一个运算中,含有有理数的加、减、乘、除、乘方等多种运算,称为有理数的混合运算.三、运算法则1、有理数的加法法则:1)同号两数的相加,取相同的符号,并把绝对值相加;2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;3)一个数同0相加仍得这个数.2、有理数的减法法则: 减去一个数,等于加上这个数的相反数.3、有理数的乘法法则:1)两数相乘同号得正,异号得负,并把绝对值相乘;2)任何数与0相乘,积仍为0.4、有理数的除法法则: 1)除以一个数就是乘以这个数的倒数;2)两数相除同号得正,异号得负;并把绝对值相除;3)零除以任何非零的数得为零.注:0不能作除数5、有理数的乘方符号法则:1)正数的任何次幂都是正数;2)负数的奇次幂为负,偶次幂为正.四、有理数的运算律1、加法交换律:a+b=b+a2、加法结合律:(a+b)+c=a+(b+c)3、乘法交换律:ab=ba4、乘法结合律:(ab)c=a(bc)5、乘法分配律:a(b+c)=ab+ac五、有理数混合运算的法则:(1)先算乘方,再算乘除,最后算加减。
(2)如有括号,先进行括号里的运算。
1.先算乘方,再算乘除,最后算加减。
2.同级运算依照从左到右的顺序运算;3.若有括号,先小括号,再中括号,最后大括号,依次运算;。
有理数的乘除法、乘方运算
说一说我们学过的有理数的运算律:加法交换律:a +b=b+a ; 加法结合律:(a +b)+c=a +(b+c);乘法交换律:a b=b a ; 乘法结合律:(a b)c=a (bc);乘法分配律:a (b+c)=a b+a c这个算式里,含有有理数的加减乘除乘方多种运算,称为有理数的混合运算。
2.有理数混合运算的运算顺序规定如下:①先算乘方,再算乘除,最后算加减;②同级运算,按照从左至右的顺序进行;③如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的。
注意:①加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方(今后将会学到)叫做第三级运算。
②可以应用运算律,适当改变运算顺序,使运算简便。
②进行分数的乘除运算,一般要把带分数化为假分数,把除法转化为乘法;③同级运算,按从左往右的顺序进行,这一点十分重要。
三、课堂小结:理数混合运算的规律:1.先乘方,再乘除,最后加减;2.同级运算从左到右按顺序运算;3.若有括号,先小再中最后大,依次计算。
有理数的混合运算的关键是运算的顺序,运算法则和性质,为此,必须进一步对加,减,乘,除,乘方运算法则和性质的理解与强化,熟练掌握,在此基础上对其运算顺序也应熟知,只要这两个方面学的好,掌握牢在运算过程中,始终遵循四个方面:一是运算法则,二是运算律,三是运算顺序,四是近似计算,为了提高运算适度,要灵活运用运算律,还要能创造条件利用运算律,如拆数,移动小数点等,对于复杂的有理数运算,要善于观察,分析,类比与联想,从中找出规律,再运用运算律进行计算,至此,便可在有理数的混合运算中稳操胜卷。
1、有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同0相乘都得0;(3)多个有理数相乘:a :只要有一个因数为0,则积为0。
b :几个不为零的数相乘,积的符号由0的个数决定,当0的个数为奇数,则积为负, 当0的个数为偶数,则积为正。
七年级上册数学有理数加减乘除乘方混合运算
7、
B
8、
自我挑战:
9、
解: 将(-2,3)放入其中,得 (-2)2+3+1=8, 再将(8,1)放入其中,得 82+1+1=66
七年级上册数学有理数加减乘除乘 方混合运算
思考:前面我们已经学习了有理数的加、减、乘、 除、乘方等运算,假设在一个算式里,含有以上的 混合运算,按怎样的顺序进展运算?
探究:
例1:计算以下各题:
〔1〕36(23)30.6
分析:算式里含有乘方和乘除运算,所以应先算乘方,
再算乘除。
36(27)3 85
3、如果有括号,就先算括号里面的. 小结:简单地说,有理数混合运算应按下面的运算顺序进展:
点评:在乘除运算中,一般把小数化成分数,以便约分。 再将(8,1)放入其中,得 注意: 将(-2,3)放入其中,得 2、同级运算,按照从左至右的顺序进展;
自我检测:
2
25 2
-54 B
4、
25
5、
A
6、
D
解:原式Leabharlann 36( 8 )3 27 5
32 5
探究: 〔2〕 (4)(5)(4)(1)3 7 72 分析:此题是含有乘方、乘、除、加减法的混合运算, 第一步,应将除法变为乘法和计算算式中的乘方; 第二步,计算乘法; 第三步,计算加减法,得出最后结果。
解:原式 (4)(5)(7)1
7 48
5 1 8
5 1 8
探究:
〔3〕 (23)22(3)332
分析:此题应先算乘方,再算加减。
解:( 23) 22 ( 3)3 32 8 4 27 9
24.
注意:
2 2 ( 2 )2, 2 2 4 , ( 3 )3 27
有理数的加减乘除乘方混合运算专题训练(带答案)【通用】.doc
1. 先乘方,再乘除,最后加减;2. 同级运算,从左到右进行;3. 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
1、12411 ()()()23523+-++-+-2、4(81)( 2.25)()169-÷-⨯-÷3、11(22)3(11)+--⨯-4、31(12)()15(1)45+⨯--⨯-5、2232[3()2]23-⨯-⨯--6、 33102(4)8-÷--7、)]21)21[(122--÷ 8、121)]3()2[(2⨯-⨯-9、)6(]32)5.0[(22-⨯-- 10、23533||()14714-⨯-÷223 3 22231113、199711(1)(10.5)()312----⨯÷- 14、33514(1)(8)(3)[(2)5]217---⨯+-÷-+15、-10 + 8÷(-2 )2 -(-4 )×(-3 ) 16、-49 + 2×(-3 )2 + (-6 )÷(-91)17、-14 + ( 1-0.5 )×31×[2×(-3)2] 18、(-2)2-2×[(-21)2-3×43]÷51.19、)8()4()6(52-÷---⨯ 20、0)132()43(2⨯+-+-35722523、)23232(21)21(2--⨯+- 24、[][]332)2(3)5(6)7(4-÷--+÷-⨯-25、6-(-12)÷2)2(- 26、(-48)÷ 8 -(-5)÷2)21(-27、42×)43()32(-+-÷ 0.25 28、()23)9181(-÷-29、()()333232÷---⨯- 30、(-5)×6+(-125) ÷(-5)331、)251(4)5(25.0-⨯⨯-⨯-- 32、22)3(61)2132(1-+÷-+-1、【基础题】计算:(1)618-÷)(-)(-312⨯; (2))(-+51232⨯;(3))(-)(-49⨯+)(-60÷12; (4)23)(-×[ )+(--9532 ].(1))(-)+(-2382⨯; (2)100÷22)(--)(-2÷)(-32;(3))(-4÷)(-)(-343⨯; (4))(-31÷231)(--3214)(-⨯.(1)36×23121)-(; (2)12.7÷)(-1980⨯;(3)6342+)(-⨯; (4))(-43×)-+(-31328;(5)1323-)(-÷)(-21; (6)320-÷34)(-81-;(7)236.15.02)-(-)(-⨯÷22)(-; (8))(-23×[ 2322-)(- ];(9)[ 2253)-(-)(- ]÷)(-2; (10)16÷)(-)-(-)(-48123⨯.(1)11+(-22)-3×(-11); (2)0313243⨯⨯)-(-)(-;(3)2332-)(-; (4)23÷[ )-(-)(-423];(5))-(8743÷)(-87; (6))+()(-654360⨯;(7)-27+2×()23-+(-6)÷()231-; (8))(-)-+-(-4151275420361⨯⨯.(1))-(-258÷)(-5; (2)-33121)(--⨯;(3)223232)-(-)(-⨯⨯; (4)0132432⨯⨯)+(-)(-;(5))(-+51262⨯; (6)-10+8÷()22--4×3;(7)-51-()()[]55.24.0-⨯-; (8)()251--(1-0.5)×31;(1)(-8)×5-40; (2)(-1.2)÷(-13)-(-2);(3)-20÷5×14+5×(-3)÷15; (4)-3[-5+(1-0.2÷35)÷(-2)];(5)-23÷153×(-131)2÷(132)2; (6)-52+(1276185+-)×(-2.4)参考答案1、-1/52、-13、224、95、96、 07、-488、-19、-15 10、-15/34311、-24 12、-89 13、3 14、2 15、-20 16、23 17、2 18、24 19、-28 20、9/16 21、1 22、10 23、-1/12 24、104/3 25、9 26、14 27、-31 28、-81又1/81 29、-9 30、-29 31、-1/5 32、91、【答案】 (1)17; (2)511; (3)31; (4)-112、【答案】 (1)-10; (2)22; (3)-16; (4)-253、【答案】 (1)1; (2)0; (3)42; (4)423; (5)18; (6)0; (7)-4.64;(8)37; (9)8; (10)-25.4、【答案】 (1)22; (2)0; (3)-17; (4)-423; (5)71; (6)-95; (7)-85;(8)6 .5、【答案】 (1)3; (2)1; (3)-54; (4)0; (5)526; (6)-20; (7)-2; (8)-67. 6、【答案】(1)-80; (2)5.6; (3)-2; (4)16; (5)-516; (6)-2.9复习 有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分) 1.3×(-2)=________,(-6)×(-31)=________. 2.(-3)2的底数是________,结果是________;-32的底数是________,结果是________.3.(-61)÷(+23)=________;-493÷(-176)=________;(+8)÷(-41)=________.4.23×(-41)3=________;(-91)÷(+34)2=________.5.(-32)×________=1;(-32)×________=-16.-65×(-2.4)×(-53)=________.7.-32×(-5)2÷(-21)3=________.8.我国台湾省的面积约为3600平方公里,用科学记数法表示为________. 9.+121的倒数是________;________的倒数是-54. 10.用“>”“<”填空: ①23________22②(21)2________(21)3③32________22④(-2)3________(-2)2二、判断题(每小题1分,共5分) 11.零除以任何数都得零( )12.互为相反数的两个数的积为负数( ) 13.如果ab >0,则a >0且b >0( )14.1除以一个非零数的商叫做这个数的倒数( )15.(-3)5表示5个-3相乘( )三、选择题(每小题3分,共21分) 16.下列说法,其中错误的有①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A .1个B .2个C .3个D .4个17.下列各对数:①1与1;②-1与1;③a -b 与b -a ;④-1与-1;⑤-5与|6|,其中互为倒数的是A .①②③B .①③⑤C .①③④D .①④ 18.下列各题中两个式子的值相等的是A .-23与(-2)3B .32与23C .(-2)2与 -22D .|-2|与-|-2| 19.下列结论中,其中正确的个数为①0的倒数是0;②一个不等于0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数等于自身的数是±1;④若a ,b 互为倒数,则-ab=-1.A .4B .3C .2D .1 20.下列各式中结果大于0的是A .1-910×3B .(1-910)×3C .1-(9×3)10D .(1-9)10×3 21.下列说法中正确的是 A .一个数的平方必为正数B .一个数的平方必小于这个数的绝对值C .一个数的平方必大于这个数D .一个数的平方不可能为负数22.用科学记数法表示的数2.89×104,原来是A .2890B .2890000C .28900D .289000四、计算题(共35分)23.(3分)(-3)×(-5)×(+12)×(-21) 24.(3分)-6÷(+3)÷(-4)×(+2) 25.(3分)-5-6÷(-3)26.(3分)(-81)÷241×91÷(-16)27.(3分)-22×(-3)÷5428.(3分)(-1)2000×(-1)2001×(-1)2002÷(-1)200329.(3分)(-2)×(-2001)×[-21-(-21)]×1-200230.(3分)-)45()45(5222-÷-⨯⨯31.(3分)(-5)2÷5×632.(3分)(-2.5)÷(-310)×(-3)33.(5分)30×(21-31+53-109)五、解答题(9分)34.已知A=a+a 2+a 3+……+a 2000(1)若a =1,求A 的值.(2)若a =-1,求A 的值.参考答案一、1.-6 2 2.-3 9 3 -9 3.-91 913 -32 4.-81 -161 5.-23 23 6.-1.2 7.1800 8.3.6×103平方公里 9.32 -141 10.> > > < 二、11.× 12.× 13.× 14.√ 15.√三、16.A 17.D 18.A 19.B 20.D 21.D 22.C四、23.-90 24.1 25.-3 26.41 27.15 28.1 29.-2002 30.1 31.30 32.-49 33.-4 五、34.(1)2000 (2)0。
有理数的加减乘除乘方混合运算专题训练带答案
有理数的加减乘除乘方混合运算专题训练带答案1.先进行乘方,再进行乘除,最后进行加减运算。
2.同级运算从左到右进行。
3.如果有括号,先进行括号内的运算,按照小括号、中括号、大括号的顺序进行。
1.2+(-1)+3-(-1)2.(-81)/(-2.25)*(-1)/163.11+(-22)-3*(-11)4.(12)*(-1)-15*(-1)5.-3/2*(-32*(-2/3)^2-2)6.-23/(-4)^3-1/87.12/((-11/2)^2-2)8.(-2)^2*(-3)/129.(-0.5)^2-2/3*(-62)10.-22-(-2)^2-23+(-2)^311.|-14|*(-3/7)/1412.-62*(-1/2)^2-(-3)^2/(-1/2)^3*(-3)13.(-1)^(1997)-(1-0.5)/(-1/4)14.(-1)^3-(-8)+(-3)^3/((-2)^5+5)15.-10+8/(-2)^2-(-4)*(-3)16.-49+2*(-3)^2-(-6)/(-1/9)17.-14+(1-0.5)*1/3*(2*(-3)^2)18.(-2)^2-2*((-2)^2-3*4)/519.5*(-6)-(-4)^2/(-8)20.(-3/4)^2+(-2/3+1)*821.(7/12-5/6+3/4)*(-12)/622.(-5)*(-4)^2-0.25*(-5)*(-4)^2/823.(-1)^2*(-2)24.-42*((-7)/6)+(-5)^3-3/(-2)^325.6-(-12)/(-2)^226.(-48)/8-(-5)/(-12)^227.42*(-2/3)+(-3/4)/0.2528.(-81/9)/(-3)^229.-2*((-3)^2)-((-3)^3)/330.(-5)*6+(-125)/(-5)^331.-0.25*(-5)*4*(-1/25)32.-12+((21-2)/6)+(-3)^21.18 - 6 ÷ 3Simplify: 18 - 2 = 162.3 + 22 × (-2) × (-3)Simplify: 3 + 132 = 1353.(-9) × (-4) + (-60) ÷ 12Simplify: 36 + (-5) = 314.8 + (-3) × 2 × (-2)Simplify: 8 + 12 = 205.(-4) ÷ (-3/4) × (-3)Simplify: 4 × (-3) = -126.36 × (11/22 - 3/5)Simplify: 36 × (1/2 - 3/5) = 36 × (-1/10) = -3.67.(-3)2 × [-2/3 + (-5/9)]Simplify: 9 × (-1/3) = -38.100 ÷ (-2)2 - (-2) ÷ (-2/3)Simplify: 100 ÷ 4 - 3 = 229.(-1/3) ÷ (-1/2/3) - 4 × (-1/3)2Simplify: (-1/3) ÷ (-2/3) - 4 × 1/9 = 3/2 - 4/9 = 17/1810.12.7 ÷ (-8/19) × 3Simplify: 12.7 ÷ (-24/19) = -9.962511.321/2 × 3 + 6Simplify: 160.5 × 3 + 6 = 481.512.(-) (-8 + (-5))Simplify: -(-13) = 1313.-2 - 3/2Simplify: -4.514.23 ÷ [-2 - (-4) × (5/8)] ÷ (-7/8)Simplify: 23 ÷ [-2 + 10/8] ÷ (-7/8) = 23 ÷ [-1/4] ÷ (-7/8) = -6415.-72 + 2 × (-3)2 + (-6) ÷ (-1/3)2Simplify: -72 + 18 + (-6) ÷ (1/9) = -72 + 18 - 54 = -10816.8 - (-25) ÷ (-5)Simplify: 8 - 5 = 317.(-2) × 32 - (-2 × 3)2Simplify: -64 - 36 = -10018.(-60) × (35/4 + 6)Simplify: -60 × 47/4 = -70519.(-1347/6 - 20 + 5 - 12) × (-15 × 4)Simplify: (-1347/6 - 27) × (-60) =20.-13 - 2 × (-1)3Simplify: -13 + 2 = -1121.(-3/4)2 × (-2/3 + 1) Simplify: 9/16 × 1/3 = 3/1622.6 + 22 × (-3)Simplify: 6 - 66 = -6023.-10 + 8 ÷ (-2) - 4 × 3 Simplify: -10 + 4 - 12 = -1824.-15 - [(-0.4) × (-2.5)]5 Simplify: -15 - 1 = -1625.(-8) × 5 - 40Simplify: -4026.-20 ÷ 5 × 1/4 + 5 × (-3) ÷ 15 Simplify: -4 + (-1) = -527.-23 ÷ 13 × (-11)2 ÷ (12)2 Simplify: -23/156 × 121/144 = -121/4828.(-1)25 - (1 - 0.5) × 1/3Simplify: -1 + 1/6 = -5/629.(-1.2) ÷ (-1/3) - (-2)Simplify: 3.6 + 2 = 5.630.-3[-5 + (1 - 0.2 ÷ 3/5) ÷ (-2)] Simplify: -3[-5 + (1 - 2/3)] = -3[-3/3] = 331.-2/5 + (517/8 - 6 + 12) × (-2.4) Simplify: -2/5 - 31.5 = -157/10复有理数的乘除、乘方运算测试题一、填空题(每小题3分,共30分)1.3×(-2)= -6,(-6)×(-1)= 6.2.(-3)^2的底数是3,结果是9;-3^2的底数是-3,结果是-9.3.(-)÷(+14)= -955.07,-(+8)÷(-1)= 8,(+)÷(-22)= -.4.(-1)÷(+3/14)= -22/3,(-49/3)÷(+22)= -49/66,(-2)÷(+5/3)^2= -18/25.5.(-1)×(-33)= 33,(-1)×(-53)= 53.6.-1×(-2.4)×(-6/5)= 2.88.7.-32×(-5)^2÷(-2)^3= -100.8.我国省的面积约为3.6×10^5平方公里.9.+1/14的倒数是14,-2的倒数是-1/2.10.用">" "<" 填空:① 23.22② (-2) < 3③ 32.22④ (-2)3.(-2)2二、判断题(每小题1分,共5分)11.错误,任何数除以0都是未定义。
有理数加减乘除乘方混合运算复习
25 6 9 21 10 ( ) ( ) 36 10 5 10 3
原式=
25 6 9 21 10 [( ) ( )] 36 10 5 10 3
25 6 10 9 10 21 10 = 36 ( 10 3 5 3 10 3 )
25 (2 6 7) = 36
5 7
4 7
1 2
结果。 (4) ( 5 ) ( 7 ) 1 7 4 8 解:原式=
5
=
1 8
=
1 5 8
(3) (23 ) 22 (3)3 32
分析:此题应先算乘方,再算加减。
解:(23) 22 ( 3)332 8 4 27 9 24.
例2:计算下列各题:
3 3 (1) ( ) 0.6 36 2
分析:算式里含有乘方和乘除运算,所以应先算乘方, 再算乘除。 解:原式
27 3 36 ( ) 8 5
8 3 36 ( ) 27 5
32 5
点评:在乘除运算中,一般把小数化成分数,以便约分。
(2) (4) ( ) ( ) ( ) 3 分析:此题是含有乘方、乘、除、加减法的混合运算,可将算式分 成两段。“-”号前边的部分为第一段,“-”号后边的部分为第二 段,运算时,第一步,应将第一段的除法变为乘法和计算第二段 中的乘方;第二步,计算乘法;第三步,计算加减法,得出最后
注意: 2 2 (2) 2 , 2 2 4 , (3) 3 27
(4)
3 1 1 5 ( ) 5 3 2 4
分析:先算括号里面的再算括号外面的。 解:原式
3 1 4 ( ) 5 6 5 2 25
七年级数学上册专题第4讲有理数的加减乘除乘方运算重点、考点知识总结及练习
第4讲有理数的加减乘除乘方运算知识点1 加减运算有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②异号两数相加,绝对值相等时,和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.有理数减法法则:减去一个数,等于加这个数的相反数. .有理数加法运算律:①加法交换律:两个加数相加,交换加数的位置,和不变.②加法结合律:三个数加,先把前两个数相加,或者先把后两个数相加,和不变.有理数加减混合运算的步骤:①把算式中的减法转化为加法; ②省略加号与括号;③利用运算律及技巧简便计算,求出结果. 加减混合运算技巧:把符号相同的加数相结合; 把和为整数的加数相结合;把分母相同或便于通分的加数相结合; 既有小数又有分数的运算要统一后再结合; 把带分数拆分后再结合; 分组结合; 先拆项后结合.【典例】⎧⎪⎨⎪⎩加减运算有理数的运算乘除运算乘方运算()a b a b -=+-a b b a +=+()()a b c a b c ++=++1.计算:(1)4+(﹣6);(2)(﹣116)+(-23);(3)-2-(﹣3.5);(4)|(﹣7)+(﹣2)|-(﹣3);(5)[1.4﹣(﹣3.6+5.2)﹣4.3]﹣(﹣1.5).【方法总结】考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.注意:绝对值有括号的作用.2.【题干】计算:(1)﹣2.4+3.5﹣4.6+3.5;(2)(−478)−(−512)+(−414)−(+3178);(3)−200956−(+200823)−(−401834)+(−112);(4)1+(﹣2)+3+(﹣4)…+2015+(﹣2016)+2017+(﹣2018).【方法总结】(1)把和为整数的数结合在一起;(2)把分母相同或容易通分的数结合在一起;(3)拆项法,把带分数拆成整数和分数,再把所有整数和分数分别结合在一起;(4)找规律,相邻两数之和为﹣1.本题考查的是有理数加减混合运算,掌握有理数加减混合运算的方法“将有理数加减法统一成加法”是解题的关键.能使用运算律的要使用运算律,以简化计算,减少计算错误. 【随堂练习】1.(2017秋•小店区校级月考)计算:(1)﹣3+(﹣4)﹣(﹣5); (2)1+(﹣2)+|﹣2|﹣5; (3)﹣5﹣(+11)+;(4).2.(2016秋•靖远县校级月考)计算题: (1)27﹣28+(﹣7)﹣32 (2)1+(﹣2)﹣(﹣3)﹣4; (3)0.5+(﹣)﹣(﹣2.75)+0.25 (4)3+(﹣1)+(﹣3)+1+2.知识点2 乘除运算有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同相乘,都得.有理数乘法的运算步骤:先确定积的符号,再确定积的绝对值. 多个有理数相乘:(1)几个不是的数相乘,负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数,即“奇负偶正”.(2)几个数相乘,如果其中有因数为,那么积等于. 有理数乘法运算律:(1)乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等.(2)乘法结合律:一般地,有理数乘法中,三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.00000ab ba(3)分配律:一般地,有理数乘法中,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.倒数的概念:乘积是的两个数互为倒数.整除:一个整数a 除以一个不为0的整数b ,商是整数,而没有余数,则我们说a 能被b 整除(或说b 能整除a ).【典例】1.计算:(1)(﹣2)×(﹣8); (2)(﹣8)÷(﹣1.25); (3)11÷17×(−411); (4)(−1.5)×45÷(−25)×34.【方法总结】(1)根据有理数的乘法运算法则进行计算即可得解; (2)根据有理数的除法运算法则进行计算即可得解;(3)把除法转化为乘法,然后根据有理数的乘法运算法则进行计算即可得解;(4)把小数转化为分数,除法转化为乘法,然后根据有理数的乘法运算法则进行计算即可得解.()()ab c a bc =()a b c ab ac +=+1本题考查了有理数的乘法和除法,熟记运算法则是解题的关键.2.计算:(1)37×(﹣45)×712×58;(2)292324÷(﹣112);(3)﹣5×(﹣115)+13×(﹣115)﹣3×(﹣115).【方法总结】(1)利用乘法交换律和乘法结合律,把分子或分母容易约分的因数结合;(2)先把除法转换为乘法,再利用乘法的分配律计算;(3)利用乘法分配律的逆运用,即可解答.本题考查了有理数的乘除法的运算,解决本题的关键是选用合适的乘法运算律进行计算.【随堂练习】1.(2017秋•夏邑县期中)小华在课外书中看到这样一道题:计算:()+().她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.2.(2017秋•兴化市期中)小明对小丽说:“请你任意想一个数,把这个数乘2后加12,然后除以6,再减去你原来所想的那个数与6的差的三分之一,我可以知道你计算的结果.”请你根据小明的说法探索:(1)如果小丽一开始想的那个数是﹣5,请列式并计算结果; (2)如果小丽一开始想的那个数是2m ﹣3n ,请列式并计算结果; (3)根据(1)、(2),尝试写出一个结论.3.(2017秋•盐都区校级月考)阅读下列材料: 计算:÷﹙﹣+﹚. 解法一:原式=÷﹣÷+÷=×3﹣×4+×12=.解法二:原式=÷﹙﹣+﹚=÷=×6=.解法三:原式的倒数=﹙﹣+﹚÷=﹙﹣+﹚×24=×24﹣×24+×24=4. 所以,原式=.(1)上述得到的结果不同,你认为解法 是错误的; (2)请你选择合适的解法计算:﹙﹣﹚÷﹙﹣+﹣﹚.知识点3 乘方乘方的概念:求个相同因数的积的运算叫做乘方,乘方的结果叫做幂.(1)一般地,个相同的因数相乘,即,记作,读作“的次方”;(2)在中,叫做底数,叫做指数;(3)当看作的次方的结果时,读作的次幂. 注意:,其底数为,;,其底数为,;,其底数为,; n n a n a a a a ⋅⋅⋅⋅⋅⋅⋅ 个n a a n n a a n n a a n a n ()224-=()2-()()()22224-=-⨯-=224-=-2()()222121224-=-⨯=-⨯⨯=-239=749⎛⎫⎪⎝⎭372333977749⎛⎫=⨯= ⎪⎝⎭,其底数为,; ,带分数的乘方运算,一定要先化成假分数后再运算.一个数可以看作这个数本身的一次方,例如,就是,指数通常省略不写. 正数的任何次幂都是正数;负数的奇数次幂是负数,负数的偶数次幂是正数.特别的,一个数的二次方,也称为这个数的平方;一个数的三次方,也称为这个数的立方. 科学记数法:把一个大于的数表示成的形式(其中,是正整数). 用科学记数法表示一个位整数,其中的指数是,的指数比整数的位数少. 万,亿 .【典例】1.一张纸的厚度为 0.09mm (毫米),将这张纸连续对折8次,这时它的厚度是多少?假设连续对折始终是可能的,那么对折15次后,所得的厚度是否可以超过你的身高?先猜猜,然后计算出实际答案.【方法总结】根据乘方的定义和题意可计算出折第一次、第二次、第三次、第四次得厚度,由此可算出折第8次的厚度.一张纸的厚度为0.09mm ,对折1次后纸的厚度为0.09×2mm ;对折2次后纸的厚度为0.09×2×2=0.09×22mm ;对折3次后纸的厚度为0.09×23mm ;对折n 次后纸的厚度为0.09×2n mm ,据此列出算式.即可求解.本题主要考查从实际问题中寻找规律的能力.乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.乘方的意义就是多少个某个数字的乘积. 2.若|x −2|+(y −23)2=0,则y x =__________.【方法总结】绝对值和偶次方具有非负性,由“若几个非负数的和为0,则这几个非负数都为0”可求出x 、y 的值,然后将x 、y 的值代入计算即可求解.239=77323339777⨯==221391224⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭51511010n a ⨯110a ≤<n n 101n -101410=810=3.德国科学家贝塞尔推算出天鹅座第61颗暗星距地球102000000000000km,比太阳到地球的距离还远690000倍.(1)用科学记数法表示出暗星到地球的距离;(2)用科学记数法表示出690000这个数;(3)如果光的速度大约是300000km/s,那么你能计算出从暗星发出的光线到地球需要多少秒吗?用科学记数法表示出来.【方法总结】用科学记数法表示较大数的形式为a×10n,其中1≤|a|<10,n为正整数.确定n的值时,要看由原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法,关键是要正确确定a的值以及n的值.【随堂练习】1.(2017秋•石景山区期末)(﹣1)2018÷.2.(2017秋•蚌埠期中)﹣32×(﹣)3=______.3.(2017秋•浦东新区期中)用简便方法计算:﹣35×(﹣)5×(﹣5)6(结果可用幂的形式表示)综合运用1.若|a|=2,b=﹣3,c是最大的负整数,a+b﹣c的值为_______.2.2.5+(﹣214)﹣1.75+(﹣12)=____.3.某外贸企业为参加2016年中国江阴外贸洽谈会,印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为___________.4.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第四次后剩下的绳子的长度是_______ 米;第n次后剩下的绳子的长度是_______ 米.5.将一张长方形的纸按如图对折,对折时每次折痕与上次的折痕保持平行,第一次对折后可得到1条折痕(图中虚线),第二次对折后可得到3条折痕,第三次对折后得到7条折痕,那么第10次对折后得到的折痕比第9次对折后得到的折痕多_______条.6.计算:(﹣0.5)+|0﹣614|﹣(﹣712)﹣(﹣4.75).7.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+18,﹣9,+7,﹣14,﹣3,+11,﹣6,﹣8,+6,+15.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车行驶每千米耗油量为a升,求这次养护小组的汽车共耗油多少升?8.计算下列各式:(1)(﹣14)×(﹣100)×(﹣6)×(0.01);(2)91819×15;(3)﹣100×18﹣0.125×35.5+14.5×(﹣12.5%);(4)(1﹣2)×(2﹣3)×(3﹣4)×(4﹣5)×…(19﹣20).9.已知(x+3)2+|3x+y+m|=0中,y的平方等于它本身,求m的值.。
有理数的加减乘除乘方混合运算
2 1 2 1 例1. − 1 × ( − ) ÷ 1 3 2 3 9 说明:1.进行含分数 小数的乘除运算, 进行含分数、 说明:1.进行含分数、小数的乘除运算, 一般要把小数化成分数、 一般要把小数化成分数、带分数化为假分 把除法化为乘法。 数,把除法化为乘法。 2.有理数的乘除运算先定符号 有理数的乘除运算先定符号, 2.有理数的乘除运算先定符号,再定绝对 值,结果中的负号不能丢. 结果中的负号不能丢. 7 1 3 练习:( 1 练习:(1) ÷ ( −10) × ( −3 ) ÷ ( −3 ) 8 3 4 17 1 3 11 ( 2) ( + 14.9) × [( − ) − 1 ] ÷ 20 7 7 56
第一章 有理数
有理数的混合运算
பைடு நூலகம்
有理数的混合运算顺序: 有理数的混合运算顺序:
(1)先算乘方,再算乘除,后算加减; 先算乘方,再算乘除,后算加减; 先算乘方 (2) 同级运算按从左到右的顺序行; 同级运算按从左到右的顺序行; (3) 如果有括号,就先算小括号的, 如果有括号,就先算小括号的, 再算中括号里的,然后算大括号里的. 再算中括号里的,然后算大括号里的
计算: 例2.计算: 1 1 2 − 2 − [( −3) − 2 × − 8.5] ÷ ( − ) 4 2
3 2 2
注意: ( 注意:1) ( −2) 2与 − 2 2的区别, ( −2) 2 = ( −2) × ( −2), − 2 = −( 2 × 2);
2
2 3 2 2 3 2 2 2 ( 2) ( ) 与 的区别, ) = ( ) × ( ) × ( ), 的区别, ( 3 3 3 3 3 3 3 2 2× 2× 2 . = 3 3
在进行有理数混合运算时, 在进行有理数混合运算时,要严格按 运算法则和运算顺序进行, 运算法则和运算顺序进行,同时注意正确 应用运算律简化运算. 应用运算律简化运算.
有理数加减乘除乘方计算题
有理数加减乘除乘方计算题一、有理数加法1. 计算:(-3)+5- 解析:异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
|5| = 5,| - 3|=3,5>3,所以结果为正,(-3)+5 = 5 - 3=2。
2. 计算:(-2)+(-3)- 解析:同号两数相加,取相同的符号,并把绝对值相加。
(-2)+(-3)=-(2 +3)=-5。
二、有理数减法3. 计算:4-(-2)- 解析:减去一个数等于加上这个数的相反数。
4-(-2)=4 + 2 = 6。
4. 计算:(-3)-5- 解析:(-3)-5=(-3)+(-5)=-8。
三、有理数乘法5. 计算:(-2)×3- 解析:两数相乘,异号得负,并把绝对值相乘。
(-2)×3=- (2×3)=-6。
6. 计算:(-2)×(-3)- 解析:两数相乘,同号得正,并把绝对值相乘。
(-2)×(-3)=2×3 = 6。
四、有理数除法7. 计算:6div(-2)- 解析:两数相除,异号得负,并把绝对值相除。
6div(-2)=-(6div2)= - 3。
8. 计算:(-6)div(-2)- 解析:两数相除,同号得正,并把绝对值相除。
(-6)div(-2)=6div2 = 3。
五、有理数混合运算(先乘除后加减)9. 计算:2×(-3)+4- 解析:先算乘法2×(-3)=-6,再算加法-6 + 4=-2。
10. 计算:(-2)×3-(-4)- 解析:先算乘法(-2)×3=-6,再算减法-6-(-4)=-6 + 4=-2。
六、有理数乘方11. 计算:2^3- 解析:2^3=2×2×2 = 8。
12. 计算:(-2)^3- 解析:(-2)^3=(-2)×(-2)×(-2)=-8。
七、综合运算13. 计算:2×(-3)^2+4- 解析:先算乘方(-3)^2=(-3)×(-3)=9,再算乘法2×9 = 18,最后算加法18+4 = 22。
有理数加减乘除乘方混合运算:
有理数加减乘除乘方混合运算:有理数加减乘除乘方混合运算有理数加减乘除乘方混合运算指在同一个运算中同时进行有理数的加法、减法、乘法、除法和乘方运算。
这种类型的运算涉及对有理数进行多个不同的运算,需要按照规定的顺序执行每个运算步骤。
加法和减法运算有理数的加法和减法运算是最基本的运算,其中加法运算表示将两个有理数相加,减法运算表示将一个有理数减去另一个有理数。
在混合运算中,加法和减法运算首先进行,按照运算符的顺序从左到右进行运算。
示例:3 + 2 - 4= 5 - 4= 1乘法运算有理数的乘法运算表示将两个有理数相乘。
在混合运算中,乘法运算在加法和减法运算之后进行,按照运算符的顺序从左到右进行运算。
示例:2 +3 * 4= 2 + 12= 14除法运算有理数的除法运算表示将一个有理数除以另一个有理数。
在混合运算中,除法运算在加法、减法和乘法运算之后进行,按照运算符的顺序从左到右进行运算。
示例:10 - 5 / 2= 10 - 2.5= 7.5乘方运算有理数的乘方运算表示将一个有理数乘以自身若干次。
在混合运算中,乘方运算在加法、减法、乘法和除法运算之后进行,按照运算符的顺序从左到右进行运算。
示例:2 *3 + 4^2= 2 * 3 + 16= 6 + 16= 22混合运算示例根据以上规则,以下是一个有理数加减乘除乘方混合运算的示例:5 + 2 * 3 - 4^2 / 2= 5 + 6 - 16 / 2= 5 + 6 - 8= 11 - 8= 3通过按照定义的顺序执行每个运算步骤,可以正确地进行有理数加减乘除乘方混合运算,得到最终结果。
13有理数的加减乘除混合运算知识讲解
13有理数的加减乘除混合运算有理数的加减乘除混合运算主讲:黄冈中学优秀数学教师余燕一、有理数的加减乘除混合运算1、在带有括号的运算中,先算小括号,再算中括号,最后算大括号.2、在没有括号的不同级运算中,先算乘方再算乘除,最后算加减,注意运算律.3、合理运用运算律合理运用运算律是提高有理数运算能力的基本保证,在运用时,首先要搞清楚各种运算律的名称和使用的方法.(1)加法交换律和结合律通常在加、减运算中同时使用,交换的目的在于结合,结合时一般是按正负结合,按相反数结合,总之,将容易计算的数进行结合.(2)乘法交换律和结合律通常在乘、除运算中使用,交换的目的同样是为了结合,结合时一般将能约分的数结合.(3)分配律是乘法对加法的分配,它既可以正用(即a(b+c)=ab+ac),也可以逆用(即ab+ac=a(b+c)),要特别注意除法对加法没有分配律,不要出现12÷(4+3)=12÷4+12÷3=3+4=7的错误.4、含多重括号时,要注意灵活去括号,没必要墨守成规,总是先去小括号,再去中括号,最后去大括号,也可以先去大括号,再去小括号.有理数的加减乘除混合运算,应按照“先乘除,后加减”的顺序进行.若有括号,则应先计算括号内的数.二、例题讲解例1、(1)若x·(-4)=,则x=__________;(2)已知a=-3,b=-2,c=5,则=__________;(3)等式[(-8)-△]÷(-2)=4中,△表示的数是_______.答案:(1);(2);(3)0例2、当a>b>0时,则__________0.答案:<例3、下列计算正确的是()A.(-1)÷(-7)×=1÷7×=1÷1=1B.12÷(3+4)=12÷3+12÷4=4+3=7C.()÷3=-66÷3-÷3=D.0÷(5-2+3-6)=0÷0=0答案:C例4、阅读下面解题过程:计算.解:原式=.回答:(1)上面解题过程有两个错误,第一处是第二步,错误的原因是运算顺序错了,第二处是第三步,错误的原因是结果错了.(2)求出正确的结果.解:原式=.例5、计算:答案:例6、在如图所示的运算流程中,若输出的数y=3,则输入的数x=_________.答案:6或5例7、小强在自学了简单的电脑编程后,设计了如图所示的程序,他若输入的数为-1,那么执行程序后输出的数是多少?答案:-105例8、计算:答案:(1);(2)1例9、某市质量监督局从某食品厂生产的罐头中,随意抽取20听进行检查,超过标准质量的用正数表示,不足标准质量的用负数表示,抽查的结果如下表:与标准质量的偏-10 -5 0 +5 +10 +15 差(单位:克)听数 2 5 4 6 2 1试问:这批样品的平均质量比标准质量多或者少多少克?解:[-10×2+(-5)×5+0×4+5×6+10×2+15×1]÷20=20÷20=1所以这批样品的平均质量比标准质量多1克.- 返回 -同步测试2、计算:__________,(-10)÷[(-2)-3]=__________.3、计算:5×(-3)+6÷(-2)=__________.4、受金融危机的影响,小明的爸爸返乡做生意,一次性投入资金4000元,最初两个月每月开支2000元,收入1000元.接着后三个月每月开支1000元,收入4000元.五个月后小明的爸爸是亏损还是盈利?__________,是__________元.5、要使等式[(-27)-□]÷3=-2成立,则“□”中应填的数是__________.隐藏答案答案:1、-16;-27;-92、-32;23、-184、盈利;30005、-216、下列正确的是()7、若a+b<0,,那么()A.a>0,b>0B.a<0,b<0C.a、b同号D.a、b异号且负数的绝对值较大8、若ab≠0,则的值是()A.0B.±1 C.±2D.±2,0 9、计算:(1)(-8)÷25×1.25×(-8)隐藏答案9、(1)3.2;(2);(3);(4);(5)5;(6)10、冷库的室温为-2℃,现存入一批食品,必须使室温为-20℃,若冷冻机每小时可使室温下降6℃,则要使冷库室温达到所需温度,需要多长时间?(列式解答)隐藏答案10、(小时)-END-课外拓展例、如果规定“⊙”为一种新的运算:a⊙b=a×b-a2+b2.例如:3⊙4=3×4-32+42=12-9+16=19,仿照例题计算:(1)(-2)⊙6;(2)(-2)⊙[(-3)⊙4].分析:根据规定的新运算,a⊙b等于两个数的乘积减去第一个的平方再加上第二个数的平方,(1)根据新运算的含义化简(-2)⊙6,然后根据有理数混合运算的顺序,先算乘方,计算出(-2)2和62的结果,然后算乘法计算出-2×6的结果,再根据减去一个数等于加上这个数的相反数,把减法运算化为加法运算后,利用同号两数相加的法则:取相同的符号,并把绝对值相加计算出-12+(-4)的结果,最后利用异号两数相加的法则:取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值计算出最后结果;(2)根据新运算的含义先化简中括号里面的(-3)⊙4,然后根据有理数混合运算的顺序,先算乘方,计算出(-3)2和42的结果,然后算乘法计算出-3×4的结果,再根据减去一个数等于加上这个数的相反数,把减法运算化为加法运算后,利用加法法则计算出中括号里面的结果为-5,然后再根据新运算的含义化简(-2)⊙(-5),同理也根据有理数混合运算的顺序以及法则进行正确的计算得出最后的结果.解:(1)(-2)⊙6=-2×6-(-2)2+62=-12-4+36=-12+(-4)+36=-16+36=20;(2)(-2)⊙[(-3)⊙4]=(-2)⊙[(-3)×4-(-3)2+42]=(-2)⊙(-12-9+16)=(-2)⊙(-21+16)=(-2)⊙(-5)=(-2)×(-5)-(-2)2+(-5)2=10-4+25=6+25=31.点评:此题根据定义的新运算间接的考查了有理数的混合运算,解此类题的关键是搞清新运算的含义,从而根据新运算表示的含义化简要求的式子,同时也要求学生掌握有理数混合运算的运算顺序以及各种运算法则.例2、某市有一块土地共100亩,某房地产商以每亩80万元的价格购得此地,准备修建“和谐花园”住宅区.计划在该住宅区内建造八个小区(A区,B 区,C区…H区),其中A区,B区各修建一栋24层的楼房;C区,D区,E区各修建一栋18层的楼房;F区,G区,H区各修建一栋16层的楼房.为了满足市民不同的购房需求,开发商准备将A区,B区两个小区都修建成高档,每层800m2,初步核算成本为800元/m2;将C区,D区,E区三个小区都修建成中档住宅,每层800m2,初步核算成本为700元/m2;将F区,G区,H区三个小区都修建成经济适用房,每层750m2,初步核算成本为600元/m2.整个小区内其他空余部分土地用于修建小区公路通道,植树造林,建花园,运动场和居民生活商店等,这些所需费用加上物业管理费,设置安装楼层电梯等费用共计需要9900万元.开发商打算在修建完工后,将高档,中档和经济适用房以平均价格分别为3000元/m2,2600元/m2和2100元/m2的价格销售.若房屋精品资料全部出售完,请你帮忙计算出房地产开发商的赢利预计是多少元?分析:计算出开发商的总销售额和总投资,二者之差即为盈利.解:开发商共投资:100×800000+24×800×800×2+18×800×700×3+16×750×600×3+99000000=26156(万元),房屋全部出售完可得:(2×24×800×3000+3×18×800×2600+3×16×750×2100)÷10000=30312(万元),房地产开发商的赢利预计:30312-26156=4156万元.所以房地产开发商的赢利预计是4156万元.点评:此题计算量不大,思维含量也较小,但是有很大的阅读量.从大量的信息中找到和解题相关的条件,去掉无关的条件是解答此题的关键.-END-仅供学习与交流,如有侵权请联系网站删除谢谢11。
有理数加减乘除乘方混合运算
有理数加减乘除乘方混合运算有理数是由整数(包括正整数、负整数和零)扩展而来的数集,它包括正有理数、负有理数和零。
有理数的加减乘除运算在数学中被广泛应用,掌握有理数的混合运算方法对于解决实际问题具有重要意义。
本文将介绍有关有理数加减乘除乘方的混合运算方法。
一、有理数加法运算有理数加法运算的基本法则是:符号相同的两个数相加,保留符号并将绝对值相加;符号不同的两个数相加,取绝对值较大的数的符号并将其绝对值减去绝对值较小的数的绝对值。
例如,计算-3 + 5:首先,判断两个数的符号不同,所以取绝对值较大的数的符号为结果的符号,即为正号;然后,将较大数的绝对值减去较小数的绝对值,即5 - 3 = 2。
所以-3 + 5 = 2。
二、有理数减法运算有理数减法运算可以转化为加法运算。
即将减法问题转化为加法问题,通过取相反数的方法,将减法变成加法。
例如,计算6 - (-4):首先,将减法转化为加法,即6 - (-4) = 6 + 4;然后,按照有理数加法运算的规则计算,6 + 4 = 10。
所以6 - (-4) = 10。
三、有理数乘法运算有理数乘法运算的基本法则是:同号相乘得正,异号相乘得负。
例如,计算(-2) × 3:首先,判断两个数的符号不同,所以乘积的符号为负号;然后,将绝对值相乘,即2 × 3 = 6。
所以(-2) × 3 = -6。
四、有理数除法运算有理数除法运算可以转化为乘法运算。
即将除法问题转化为乘法问题,通过求倒数的方法,将除法变成乘法。
例如,计算-8 ÷ (-2):首先,将除法转化为乘法,即-8 ÷ (-2) = -8 × (-1/2);然后,按照有理数乘法运算的规则计算,-8 × (-1/2) = 4。
所以-8 ÷ (-2) = 4。
五、有理数乘方运算有理数乘方运算是指将有理数进行连乘的操作,运算结果是将底数根据指数的次数进行连乘。
有理数加减乘除乘方的混合运算.
有理数加、减、乘、除、乘方的混合运算【本讲教育信息】一. 教学内容:有理数加、减、乘、除、乘方的混合运算二. 知识要点:1、有理数的混合运算法则:先算乘方,再算乘除,最后算加减;如果有括号先算括号里面的.2、有理数运算规律:(1)在有理数运算中,加减是一级运算,乘除是二级运算,乘方是三级运算.一个式子里三级运算都含有时,先做第三级运算,再做第二级运算,最后做第一级运算;同一级运算,按照从左到右的先后顺序进行运算;(2)有括号时按照小括号、中括号、大括号的顺序进行;(3)运算中应灵活运用运算律简化运算.三. 重点、难点、考点:1、重点:有理数的混合运算。
2、难点:有理数的混合运算顺序及符号的规律。
3、考点:有理数的加、减、乘、除、乘方的混合运算。
考点分析:有理数的加、减、乘、除、乘方的混合运算是历年中考必考的内容,本部分内容有时单独命题,有时与后面的其他知识综合命题,命题形式以解答题为主,有时也出填空题和选择题.【典例精析】例⒈计算:⑴×(1/3-1/2)×÷5/4⑵-10+8÷(-2)2―(―4)×(-3)解:⑴×(1/3-1/2)×÷5/4=×(-1/6)××4/5 先算括号里面的=-2/25 再算乘除⑵-10+8÷(-2)2―(―4)×(-3)=-10+8÷4―(―4)×(-3)先算乘方=-10+2-12 再算乘除=-20 最后算加减指导:解此题的关键是要严格按照混合运算的顺序进行运算.例2.计算:⑴-1 4―(0.5-2/3)÷1/3×[-2―(―3)3 ]-︱1/8—0.52︱⑵[35/3-(3/8+1/16-3/4)×(-4)3 ]÷5⑶-3 2 ×1.22 ÷0.32 +(-1/3)2×(-3)3 ÷(-1 )2003解:⑴-14―(0.5-2/3)÷1/3×[-2―(―3)3 ]-︱1/8-0.5 2 ︱=-1―(―1/6)×3×(-2+27)-︱1/8-1/4 ︱先算乘方=-1―(―1/6)×3×25-1/8 再算括号里的=-1+25/2-1/8 最后算加减=11.375⑵[35/3-(3/8+1/16-3/4)×(-4)3 ]÷5=[35/3-3/8×(-64)-1/16×(-64)+3/4×(-64)]÷5=[35/3+24+4-48 ]×1/5=[35/3-20]×1/5=35/3×1/5-20×1/5=7/3-4=-5/3⑶-3 2 ×1.2 2 ÷0.3 2 +(-1/3)2×(-3)3 ÷(-1)2003=-9×36/25×100/9+1/9×(-27)÷(-1)=-144+3=-141指导:有理数混合运算中应注意以下问题:⑴要注意运算顺序;⑵要灵活运用运算律进行简便计算,不要搞错符号,特别是乘方符号;⑶要灵活进行分数、小数的互化⑷互为相反数的和,互为倒数的积,有因数为0等特殊运算先行结合.本例中⑴小题按“+”“-”号分为三段,再分别计算每一段;⑵小题可灵活运用乘法的分配律;⑶小题中把小数化成分数后计算较为简便.例3.(2006,浙江)如果一个正整数能表示为两个连续偶数的平方差,那么这个正整数为神秘数.如:4=2 2-02 12=42-22 20=62 -42 因此4,12,20都是神秘数.(1)28和2012 这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?解:(1)因为28=4×7=82-62 ,2012=4×503=5042-5022,所以是神秘数。
有理数加减乘除、乘方、科学计数法
一、(一)有理数的加法法则:1、同号两数相加,取相同的符号,并把绝对值相加,如:(3)(9)(________)_______+++=+= (2)(5)(________)_______-+-=-=2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,如:(5)(7)__________________-++== (10)(8)__________________-++==3、互为相反的两个数相加得零。
如:(4)(4)_______-++=4、一个数与零相加,仍得这个数。
如:(6)0_______-+=(二)有理数加法仍然可以灵活运用加法运算律进行简化运算。
1、加法交换律:可用字母表示为:a +b =b +a 。
如:由(5)(7)______-+-=,(7)(5)______-+-=, 所以:(5)(7)____(7)(5)-+--+-2、加法结合律:可用字母表示为:(a +b )+c =a +(b +c )。
如:[][](2)(4)(9)(2)(4)(9)(2)(4)(9)__________-+-++=-+-++=-+-++=二、经典归纳考点一 有理数加法【例1】计算:(1))12()1(+++(2))19()4(-+-(3))9()4(++-【例2】41-的相反数与绝对值等于41的数的和应等于( )。
A .21B .0C .21-D .21或0【例3】若x 是-3的相反数,y =5,求x +y 的值。
【例4】若320a b ++-=,则a+b 的值为( ) A .5B .-1C .1D . -5考点二 简便计算【例1】利用运算律,用简便方法计算下列各题:(1)(6)539(4)(7)+++++---解:原式=[])935()7()4()6(+++-+-+-(2)4)5.0()5.2()7.3()5.2(+-+++-+-解:原式=考点三 实际应用【例】出租车司机小张某天下午营运全是在东西走向的大道上行驶的,如果规定向东为正,向西为负,这天下午行车里程如下:(单位:千米)+11, -2, +15, -12, +10, -11, +5, -15, +18, -16 (1)当最后一名乘客送到目的地时,距出车地点的距离为多少千米?(2)若每千米的收费标准为7元,这天下午的营业额为多少?(与路程有关,与方向无关)(3)若成本为1.5元/千米,这天下午他盈利为多少元?有理数减法和加减混合运算一、知识清单(一)探索新知在上一讲中,同学们已经学习了有理数的加法。
有理数的加减乘除乘方混合运算
11、 1 8 0 ( 2 )2 ( 4 ) ( 3 )
第十五页,编辑于星期三:五点 五十五分。
审选
定算 查改
第十六页,编辑于星期三:五点 五十五分。
定时作业:1、计算:
(1 )( 5 ) 2 ( - 4 )( - 2)3 5
( 2)- 3 2 5 (- - 2)4 4
(3) 6-(-12)÷(-3);
(4) 3·(-4)+(-28)÷7
(5) (-7)(-5)-90÷(-15);
第四页,编辑于星期三:五点 五十五分。
3、计算下列各式
(1)(-1)101;(2)-252; (3)(-2)3; (4)-72 ; (5)-(-7)2 ;(6)(-3)3
第五页,编辑于星期三:五点 五十五分。
有理数 的
混合运算
第一页,编辑于星期三:五点 五十五分。
我们学过的有理数 的运算律: 加法交换律:a+b=b+a;
加法结合律:(a+b)+c=a+(b+c); 乘法交换律:ab=ba;
乘法结合律:(ab)c=a(bc);
乘法分配律:a(b+c)=ab+ac. 第二页,编辑于星期三:五点 五十五分。
上面的计算中,你发现 了什么规律?
只有一级运算时,我们 从左向右运算
第六页,编辑于星期三:五点 五十五分。
有多级运算时呢?我们应该怎 样计算?
3+50÷22×(- 1/5)-1
第七页,编辑于星期三:五点 五十五分。
计算 :
运算
3+50÷22×(- 1/5)-1 加 除 乘方 乘 减
结果 和 商 幂 积 差
若 有 括 号, 先 算 内 部; 简 便 方 法, 优 先 采 用。