苏教版数学九年级上册一元二次方程经典练习题(6套)附带详细答案
苏科版九年级上册数学第1章 一元二次方程 含答案
苏科版九年级上册数学第1章一元二次方程含答案一、单选题(共15题,共计45分)1、根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根2、下列一元二次方程中,没有实数根的是().A. B. C. D.3、电脑病毒传播快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.若每轮感染中平均一台电脑会感染x台电脑,则下面所列方程中正确的是()A.x(x+1)=81B.1+x+x 2=81C.(1+x)2=81D.1+(1+x)2=814、设a,b是方程x2+x﹣2012=0的两个根,则a2+2a+b的值为()A.2009B.2010C.2011D.20125、一元二次方程x2+2x-c=0中,c>0,该方程的解的情况是().A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根 D.不能确定6、下列说法错误的是()A.方程有一根为0B.方程的两根互为相反数C.方程的两根互为相反数D.方程无实数根7、一元二次方程2x2-x=1的常数项是()A.-1;B.1;C.0;D.2.8、若关于的一元二次方程有两个不相等的实数根,则的取值范围是()A. B. C. 且 D. 且9、一元二次方程x2-1=0的根是().A.x=1B.x=-1C.x1=1,x2=0 D.x1=1,x2=-110、由于受猪瘟的影响,今年9 月份猪肉的价格两次大幅上涨,瘦肉价格由原来每kg23 元,连续两次上涨后,售价上升到每kg40 元,则下列方程中正确的是()A. B. C.D.11、方程的根是()A. B. C. D.12、若关于x的方程x2+x﹣a+ =0有两个不相等的实数根,则实数a的取值范围是()A.a≥2B.a≤2C.a>2D.a<213、用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1B.(x+2)2=7C.(x+2)2=13D.(x+2)2=1914、下列方程是一元二次方程的是()A.x﹣y 2=1B. ﹣1=0C.5(x﹣1)2=3(x+2)2+2x 2D.=015、一元二次方程(x-5)2= x -5的解是()A.x=5B.x=6C.x=0D.x1=5,x2=6二、填空题(共10题,共计30分)16、已知α、β是方程x2+x﹣6=0的两根,则α2β+αβ=________.17、据媒体报道,我国公民出境旅游总人数5 000万人次,公民出境旅游总人数7 200万人次,则这两年我国公民出境旅游总人数的年平均增长率为________。
苏科版九年级上册数学第1章 一元二次方程含答案【完整版】
苏科版九年级上册数学第1章一元二次方程含答案一、单选题(共15题,共计45分)1、三角形两边的长是3和4,第三边的长是方程的根,则该三角形的周长为()A.10B.12C.14D.12或142、某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片。
如果全班有x名学生,根据题意,列出方程为()A.x(x-1)=2070B.x(x+1)=2070C.2x(x+1)=2070D.3、某药品经过两次降价,每瓶零售价由1000元降为640元,已知两次降价的百分率都为x,则x满足的方程是()A.1000(1+x)2=640B.1000(1﹣x)2=640C.1000(1﹣x%)2=640 D.1000x 2=6404、下列说法正确的是()A.x 2=4的根为x=2B. 是x 2=2的根C.方程的根为D.x 2=﹣a没有实数根5、要使方程(a-3)x2+(b+1)x+c=0是关于x的一元二次方程,则()A.a≠0B.a≠3C.a≠3且b≠-1D.a≠3且b≠-1且c≠06、一元二次方程(x+6)2﹣9=0的解是()A.x1=6,x2=﹣6 B.x1=x2=﹣6 C.x1=﹣3,x2=﹣9 D.x1=3,x2=﹣97、已知等腰三角形的腰和底的长分别是一元二次方程的根,则该三角形的周长是()A.5B.7C.5或7D.108、一元二次方程配方后可变形为().A. B. C. D.9、一元二次方程x2+x﹣1=0的两根分别为x1, x2,则=()A. B.1 C. D.10、关于x的一元二次方程有两个实数根,则m的取值范围是()A.m≤1B.m<1C.m<1且m≠0D.m≤1且m≠011、关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根0,则a值为()A.1或-1B.-1C.1D.012、若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则实数k的取值范围是()A.k>-1B.k<1且k≠0C.k≥-1且k≠0D.k>-1且k≠013、一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共有()人.A.12B.10C.9D.814、如果x2﹣x﹣1=(x+1)0,那么x的值为()A.2或﹣1B.0或1C.2D.-115、从﹣2,0,1,2,3中任取一个数作为a,既要使关于x一元二次方程ax2+(2a﹣4)x+a﹣8=0有实数解,又要使关于x的分式方程=3有正数解,则符合条件的概率是()A. B. C. D.二、填空题(共10题,共计30分)16、已知关于x的一元二次方程x2+bx+b﹣1=0有两个相等的实数根,则b的值是________.17、若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m﹣4,则=________.18、一种药品经过两次降价,药价从每盒100元调至每盒81元,则平均每次降价的百分率是________ .19、若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为________20、已知x=3是方程x2-6x+k=0的一个根,则k=________.21、方程(x-3)2=x-3的根是________.22、设等腰三角形的三条边长分别为a、b、c.已知a=4,b、c是关于x的方程x2−6x+m=0两个根,则m的值是________.23、已知方程x2﹣3x+k=0有两个相等的实数根,则k=________.24、关于x的方程kx2﹣4x﹣4=0有两个不相等的实数根,则k的最小整数值为________.25、已知是关于的方程的一个根,则________三、解答题(共5题,共计25分)26、解方程:27、阅读下面的例题:解方程解:当x≥0时,原方程化为x2– x –2=0,解得:x1=2,x2= - 1(不合题意,舍去)当x<0时,原方程化为x2 + x –2=0,解得:x1=1,(不合题意,舍去)x2= -2∴原方程的根是x1=2, x2= - 2请参照例题解方程28、解下列方程:(1)x(x﹣1)+2(x﹣1)=0;(2)x2+1.5=3x.29、阅读例题,解答下题.范例:解方程:x2+∣x+1∣﹣1=0解:⑴当x+1≥0,即x≥﹣1时,x2+x+1﹣1=0x2+x=0解得x1=0,x2=﹣1⑵当x+1<0,即x<﹣1时,x2﹣(x+1)﹣1=0x2﹣x﹣2=0解得x1=﹣1,x2=2∵x<﹣1,∴x1=﹣1,x2=2都舍去.综上所述,原方程的解是x1=0,x2=﹣1依照上例解法,解方程:x2﹣2∣x-2∣-4=0 30、求不等式组的整数解参考答案一、单选题(共15题,共计45分)1、B2、A3、B4、B5、B6、C8、A9、B10、D11、B12、D13、C14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
苏科版九年级上册数学第1章 一元二次方程 含答案
苏科版九年级上册数学第1章一元二次方程含答案一、单选题(共15题,共计45分)1、关于x的方程3x2+mx﹣8=0有一个根是,另一个根及m的值分别是()A.3、﹣5B.﹣4、10C.﹣4、﹣10D.3、52、一元二次方程3x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.3,﹣1B.3,﹣4C.3,4D.3x 2,﹣4x3、对于任意实数m,方程x2﹣(m﹣1)x﹣m=6的根的情况是()A.有两个相等的实数根B.没有实数根C.有实数根且都是正数 D.有两个不相等的实数根4、某种品牌手机经过二、三月份再次降价,每部售价由1000元降到810元,则平均每月降价的百分率为()A.20%B.11%C.10%D.9.5%5、已知关于的一元二次方程有一个根为1,则另一个根为()A. B. C. D.-16、已知,且,是关于的方程的两根,则的最小值是()A. B. C. D.7、关于x的一元二次方程的一个根为2,则的值是()A. B. C. D.8、一元二次方程(m-2)x2-4mx+2m-6=0有两个相等的实数根,则m等于()A.-6B.1C.-6或1D.69、要关于x的一元二次方程mx2+2x+1=0有两个不相等的实数根,那么m的值可以是()A.2B.1C.0D.﹣110、已知m 整数,且满足,则关于的一元二次方程m2x2-4x-2=(m+2)x2+3x+4 的解为()A.x1=-2,x2=- 或 x=- B.x1=2,x2= C.x=-D.x1=-2,x2=-11、若关于x的方程x2+4x+a=0有两个相等的实数根,则a的值为( )A.﹣4B.2C.4D.812、某产品的成本两年降低了75%,平均每年递降()A.50%B.25%C.37.5%D.以上答案都不对13、关于x的一元二次方程有一根为0,则m的值为()A.1B.-1C.1或-1D.14、若关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根,则k的取值范围是()A.k≥1B.k>1C.k<1D.k≤115、关于x的方程x2﹣2x+c=0有两个相等的实数根,则c的值为()A.1B.-1C.4D.-4二、填空题(共10题,共计30分)16、设x1, x2是方程x2+x﹣3=0的两个根,那么x13﹣4x22+19的值为________.17、已知2是关于x的一元二次方程x2+4x-p=0的一个根,则该方程的另一个根是________.18、若关于x的方程(x﹣1)2+m=0有解,则m的取值范围________.19、注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答.也可以选用其他的解题方案,此时不必填空,只需按照解答题的一般要求进行解答.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀多少个队参赛?解题方案:设比赛组织者应邀请x个队参赛,(1)用含x的代数式表示:那么每个队要与其他________ 个队各赛一场,又由于甲队对乙队的比赛和乙队对甲对的比赛是同一场比赛,所以全部的比赛一共有28 场;(2)根据题意,列出相应方程;________(3)解这个方程,得;________(4)检验:________ ;(5)答:________ .20、已知一元二次方程:x2﹣x﹣3=0的两根分别是x1, x2,则x1+x2=________.21、若一元二次方程2x2+4x+1=0的两根是x1、x2,则x1﹣x1x2+x2的值是________.22、如果x1, x2是方程2x2﹣3x﹣6=0的两个根,那么x1+x2=________;x1•x2=________23、已知实数m,n满足3m2+6m﹣5=0,3n2+6n﹣5=0,且m≠n,则________.24、某公司今年4月份营业额为60万元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为x,则可列方程为________.25、如果方程ax2+5=(x+2)(x﹣1)是关于x的一元二次方程,则a________.三、解答题(共5题,共计25分)26、解方程: (1)x(3x-2)=0 (2)2x(x-4)+3(x-4)=027、如果方程x2+px+q=0有两个实数根x1, x2,那么x1+x2=﹣p,x1x2=q,请根据以上结论,解决下列问题:(1)已知a、b是方程x2+15x+5=0的二根,则=?(2)已知a、b、c满足a+b+c=0,abc=16,求正数c的最小值.(3)结合二元一次方程组的相关知识,解决问题:已知和是关于x,y的方程组的两个不相等的实数解.问:是否存在实数k,使得y1y2﹣=2?若存在,求出的k值,若不存在,请说明理由.28、已知关于x的一元二次方程2x2-3k+4=0的一个根是1,求k的值和方程的另一根.29、已知关于x的一元二次方程x2+4x+m=O.(1)当m=1时,请用配方法求方程的根:(2)若方程没有实数根,求m的取值范围.30、阚疃金石中学为了鼓励学生好好读书,每年都投入一定的资金奖励品学兼优的学生.投入5000元,到总投入达18200元.问,投入资金的年平均增长率是多少?参考答案一、单选题(共15题,共计45分)1、B2、B3、D4、C5、B7、D8、C9、D10、A11、C12、A13、B14、D15、A二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、29、30、。
苏科版九年级数学上册《1.2一元二次方程的解法》练习题-带答案
苏科版九年级数学上册《1.2一元二次方程的解法》练习题-带答案基础巩固提优1.用公式法解一元二次方程3x²−4x=8时,化方程为一般式,当中的a、b、c 依次为( ).A. 3、一4、8B. 3、4、8C. 3、4、—8D. 3、—4、—82.以x=b±√b2−4c2为根的一元二次方程可能是( ).A.x²+bx+c=0B.x²+bx−c=0C.x²−bx+c=0D.x²−bx−c=03.把方程53x+13=x2−13化为一般形式是 ,其中 a= ,b= ,c=,b²−4ac=,方程的根是x₁=。
4.定义新运算“*”,规则为a∗b={a(a≥b),b(a<b),如3∗1=3,(−√5)∗√2=√2若x²+x−1=0的两根为x₁、x₂,则.x₁∗x₂= 5.用公式法解下列一元二次方程:(1)5x²+2x−1=0;(2)5x²−10x=−5。
6.解方程:(1)x²+2x−5=0;(2)2x²−3x−6=0;(3)10x²−9x+2=0;(4)6x²−4x+7=0。
7.当x为何值时,代数式5x²−x的值与4x—2的值互为相反数.思维拓展提优8. 下列方程适合用公式法解的是( ).A.(x−3)²=2B.325x²−326x+1=0C.x²−100x+2500=0D.2x²+3x−1=09.方程2x²−6x−1=0的负数根为 .10.已知a²+ab−b²=0且ab≠0,则 ba的值为 .11.用公式法解下列一元二次方程:(1)x2+118=23x;(2)3x²−2=2x。
(3)(x+1)(x—3)=1.12. 解关于x 的方程:(m−1)x²+2mx+m+3=013.对于实数a、b,新定义一种运算“※”:(a※b={ab−b2(a≥b),b2−ab(a<b),例如:∵4>1,∴4※1=4×1--1²=3.(1)计算:2※(--1)= ,(--1)※2= ;(2)若x₁和x₂是方程.x²−5x−6=0的两个根且x₁<x₂,,求x₁※x₂的值;(3)若x※2与3※x 的值相等,求x的值.14.有长为 30米的篱笆,一面利用墙(墙的最大可用长度为10米),围成中间隔有一道篱笆(平行于 AB)的矩形花圃,设花圃的一边 AB 为x 米,面积为y 平方米. (1)用含x 的代数式表示y ;(2)如果要围成面积为 63 平方米的花圃,AB 的长是多少?(3)能围成面积为 78平方米的花圃吗? 若能,求出AB 的长;若不能,请说明理由.延伸探究提优15.欧几里得的《几何原本》中记载了形如 x²−2bx +4c²=0(b ⟩2c >0)的方程根的图形解法:构造 Rt△BAC ,AD 为斜边中线,且 AD =12BC,作AE⊥AD,与BC 的延长线交于点E.设DE=b,AE=2c,则 x²−2bx +4c²=0较小的根是( ).A. BD 的长度B. CE 的长度C. AC 的长度D. AE 的长度 16.请阅读下列材料:我们规定一种运算: |a c bd |=ad −bc,例如: |2345|=2×5−3×4=10−12=−2,按照这种运算的规定,请解答下列问题. (1)直接写出 |−12−20.5|的计算结果;(2)当x取何值时,|x0.5−x12x|=0;(3)若直接写出x 和y的值.17.如图,在△ABC 中,已知∠BAC=45°,AD⊥BC,垂足为D,BD=2,DC=3,求AD的长.小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题:(1)分别以 AB、AC 为对称轴,画出△ABD、△ACD的轴对称图形,点D 的对称点分别为点E、F,延长EB、FC 相交于点G,求证:四边形 AEGF 是正方形;(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.中考提分新题18.一元二次方程x²+4x−8=0的解是( ).A.x1=2+2√3,x2=2−2√3B.x1=2+2√2,x2=2−2√2C.x1=−2+2√2,x2=−2−2√2D.x1=−2+2√3,x2=−2−2√3参考答案1. D [解析]3x²−4x=8,化为一般式为3x²−4x−8=0,则a=3,b=—4,c=—8.故选D.2. C [解析]由题意,可知二次项系数为1,一次项系数为--b,常数项为c.故选 C.3.3x²-5x-2=0 3 —5 —2 49-1324−1+√52[解析]x²+x−1=0∵a=1,b=1,c=-1∴△=1-4×(-1)=5>0.∴x=−b±√b2−4ac2a =−1±√52.∴x1=−1+√52,x2=−1−√52.∴−1+√52>−1−√52,∴x1∗x2=−1+√52.5.(1)x1=−1+√65,x2=−1−√65(2)x₁=x₂=16.(1)x1=−1+√6,x2=−1−√6(2)x1=3+√574,x2=3−√574(3)x1=25,x2=12(4)∵△=(−4)²−4×6×7=−152<0;∴原方程无解.7.由题意,得5x²−x+4x−2=0,即5x²+3x−2=0,∴x=−3±√9+4010=−3±710,∴x1=−1,x2=25.故当x=--125₅时,代数5x²−x的值与4x—2的值互为相反数.8. D [解析]根据方程的特点及各方法的优缺点解答即可.A.此方程适合直接开平方法求解;B.此方程不适合用公式法求解;C.此方程适合配方法求解;D.此方程适合公式法求解.9.3−√11210.1±√52 [解析]由题意,得a≠0,等式两边同除a²,得1+ba−(ba)2=0令ba=t,则t²−t−1=0,解得t=1±√52,故ba=1±√52.11.(1)整理,得18x²−12x+1=0,∴△=144-4×18×1=72∘x=12±√722×18=2±√26.∗x1=2+√26,x2=2−√26.(2)整理,得3x²−2x−2=0,∴△=(−2)²−4×3×(−2)=28>0.∴x=2±√282×3=1±√73.∴x1=1+√73,x2=1−√73.(3)x1=1+√5,x2=1−√512.当m-1=0,即m=1时,方程为一元一次方程,解得x=-2;当m—1≠0,即m≠1时,方程为一元二次方程①当Δ>0,即4m²-4(m--1)(m+3)>0时,解得m<32,此时x1=−m+√3−2mm−1x2=−m−√3−2mm−1;②当△=0,即m=32时此时x₁=x₂=−3;③当Δ<0,即m>32时,方程无解.解后反思本题考查了分类讨论的思想,考虑问题要全面.13.(1)—3 6 [解析]由题意,得2※(—1)=2×(-1)-(-1)²=-2-1=-3;(-1)※2=2²-(-1)×2=4+2=6.(2)解方程x²−5x−6=0,得x₁=−1,x₂=6,所以x₁※a x₂=(−1)×6=6²−(−1)×6=42.(3)当x<2时,2²−2x=3x−x²整理得x²−5x+4=0解得x₁=1,x₂=4(舍去);当2≤x≤3时,2x−2²=3x−x²整理,得x²−x−4=0,解得x1=1+√172,x2=1−√172(舍去);当x>3时,2x−2²=x²−3x整理,得.x²−5x+4=0解得x₁=1(舍去)x₂=4。
苏科版九年级上册数学第1章 一元二次方程 含答案
苏科版九年级上册数学第1章一元二次方程含答案一、单选题(共15题,共计45分)1、一元二次方程3x2﹣4x﹣5=0的一次项系数是()A.1B.3C.﹣4D.﹣52、设m、n是一元二次方程x2+2x﹣7=0的两个根,则m2+3m+n=()A.﹣5B.9C.5D.73、方程=0有两个相等的实数根,且满足=,则的值是()A.-2或3B.3C.-2D.-3或24、下列方程中,不是一元二次方程的是()A.x 2=﹣3B.﹣4x 2+2x+1=0C.3x 2﹣2x+1=0D.x 2+x=(x+1)(x﹣2)5、下列方程中,是一元二次方程的是()A.x+3=0B.x 2﹣3y=0C.x 2﹣2x+1=0D.x﹣=06、若x=1是方程的一个根,则m的值为()A.-3B.3C.-2D.27、方程 x2 = 3x的根是()A.x=3B.x= -3C.0或3D.无解8、若方程的两个实数根为α,β,则α+β的值为()A.12B.10C.4D.-49、一元二次方程的解是( )A.x1=1,x2=2 B. C. D.x1=0,x2=210、用配方法解方程2x2﹣4x+1=0时,配方后所得的方程为()A.(x﹣2)2=3B.2(x﹣2)2=3C.2(x﹣1)2=1D.11、关于x的一元二次方程kx2-(2k+1)x+k=0有两个实数根,则k的取值范围是()A.k>-B.k≥-C.k<- 且k≠0D.k≥- 且k≠012、关于x的一元二次方程的一个根是,则一元二次方程的根的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根 D.只有一个实数根13、为了迎接春节,某厂10月份生产春联万幅,计划在12月份生产春联万幅,设11、12月份平均每月增长率为x,根据题意,可列出方程为()A. B. C.D.14、方程x2-4x-12=0的解为()A. ,B. ,C. ,D.,15、关于的一元二次方程的一个根是2,则的值为()A. B. C.0 D.-2二、填空题(共10题,共计30分)16、一元二次方程3x2﹣x+9=0的一次项是________.17、已知一元二次方程x2+2x+m=0的一个根是-1,则m的值为________。
(精练)苏科版九年级上册数学第1章 一元二次方程含答案
苏科版九年级上册数学第1章一元二次方程含答案一、单选题(共15题,共计45分)1、用配方法解方程,变形后的结果正确的是().A. B. C. D.2、若是关于x的一元二次方程,则a的值是()A.0B.2C.-2D.±23、下列方程中有两个相等实数根的是()A.2x 2+4x+35=0B.x 2+1=2xC.(x﹣1)2=﹣1D.5x 2+4x=14、一元二次方程x(x-2)=2-x的根是()A.-1B.2C.1和2D.-1和25、下列方程一定是一元二次方程的是()A.x 2﹣1=0B.x+y=1C.D.6、一元二次方程的实数根是()A.0或1B.0C.1D.±17、关于的方程的两根的平方和是5,则的值是( )A.-1或5B.1C.5D.-18、关于x的一元二次方程有一个根是,则A.1B.-1C.±1D.09、若关于x的一元二次方程(k-1)x2+2x-2=0有两个不相等的实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1D.k≥ 且k≠110、一元二次方程化成一般形式是()A. B. C. D.11、下列方程中,是关于x的一元二次方程的是()A. +x=3B.x 2+2x﹣3=0C.4x+3=xD.x 2+x+1=x 2﹣2x12、方程(x﹣1)(x+2)=0的两根分别为()A.x1=﹣1,x2=2 B.x1=1,x2=2C.x1=﹣1,x2=﹣2 D.x1=1,x2=﹣213、用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4B.(x﹣3)2=4C.(x+3)2=5D.(x+3)2=±14、已知a,b,c是△ABC三条边的长,那么方程cx2+(a+b)x+=0的根的情况是( ).A.没有实数根B.有两个不相等的正实数根C.有两个不相等的负实数根D.有两个异号实数根15、一元二次方程x2-5x-6=0的根是()A.x1=1,x2=6 B.x1=2,x2=3 C.x1=1,x2=-6 D.x1=-1,x2=6二、填空题(共10题,共计30分)16、在平面直角坐标系中,如果存在一点P(a,b),满足ab =-1,那么称点P为“负倒数点”,则函数的图象上负倒数点的个数为________个.17、把方程(x﹣1)(x﹣2)=4化成一般形式是________.18、一元二次方程的两个根为,且则k=________。
苏教版数学九年级(上册)一元二次方程经典练习题(6套)附带详细答案
练习一一、选择题:(每小题3分,共24分) 1.下列方程中,常数项为零的是( )A.x 2+x=1 B.2x 2-x-12=12; C.2(x 2-1)=3(x-1) D.2(x 2+1)=x+22.下列方程:①x 2=0,② 21x-2=0,③22x +3x=(1+2x)(2+x),④32x -=0,⑤32x x -8x+ 1=0中,一元二次方程的个数是( )A.1个 B2个 C.3个 D.4个3.把方程(+(2x-1)2=0化为一元二次方程的一般形式是( )A.5x 2-4x-4=0 B.x 2-5=0 C.5x 2-2x+1=0 D.5x 2-4x+6=0 4.方程x 2=6x 的根是( )A.x 1=0,x 2=-6B.x 1=0,x 2=6C.x=6D.x=0 5.方2x 2-3x+1=0经为(x+a)2=b 的形式,正确的是( )A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C. 231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对6.若两个连续整数的积是56,则它们的和是( ) A.11 B.15 C.-15 D.±157.不解方程判断下列方程中无实数根的是( )A.-x 2=2x-1 B.4x 2+4x+5420x --= D.(x+2)(x-3)==-5 8.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( ) A.200(1+x)2=1000 B.200+200×2x=1000 C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000 二、填空题:(每小题3分,共24分)9.方程2(1)5322x x -+=化为一元二次方程的一般形式是________,它的一次项系数是______.10.关于x 的一元二次方程x 2+bx+c=0有实数解的条件是__________. 11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.13.如果关于x 的一元二次方程2x(kx-4)-x 2+6=0没有实数根,那么k 的最小整数值是__________.14.如果关于x 的方程4mx 2-mx+1=0有两个相等实数根,那么它的根是_______.15.若一元二次方程(k-1)x2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______.16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________.三、解答题(2分)17.用适当的方法解下列一元二次方程.(每小题5分,共15分)(1)5x(x-3)=6-2x; (2)3y2+1=; (3)(x-a)2=1-2a+a2(a是常数)18.(7分)已知关于x的一元二次方程x2+mx+n=0的一个解是2,另一个解是正数, 而且也是方程(x+4)2-52=3x的解,你能求出m和n的值吗?19.(10分)已知关于x的一元二次方程x2-2kx+12k2-2=0.(1)求证:不论k为何值,方程总有两不相等实数根.(2)设x1,x2是方程的根,且 x12-2kx1+2x1x2=5,求k的值.四、列方程解应用题(每题10分,共20分)20.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.21.某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每月销售额增长的百分率.答案一、DAABC,DBD 二、 9.x 2+4x-4=0,4 10. 240b c -≥ 11.因式分解法 12.1或2313.2 14.1815.115k >≠且k 16.30% 三、17.(1)3,25-;(2)3;(3)1,2a-118.m=-6,n=819.(1)Δ=2k 2+8>0, ∴不论k 为何值,方程总有两不相等实数根.(2) k = 四、 20.20% 21.20%练习二一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。
苏科版九年级上册数学第1章 一元二次方程 含答案
苏科版九年级上册数学第1章一元二次方程含答案一、单选题(共15题,共计45分)1、函数y=ax2+bx+c的图像如图所示,那么关于x的方程ax2+bx+c-4=0的根的情况是( )A.有两个不相等的实数根B.有两个异号的实数根C.有两个相等的实数根D.没有实数根2、关于x的方程有两个不相等的实数根,则k的取值范围是()A.k≥0B.k>0C.k≥﹣1D.k>﹣13、已知m、n是方程x2+3x-2=0的两个实数根,则m2+4m+n+2mn的值为()A.-5B.C.5D.04、关于x的一元二次方程x2+5x+m2﹣2m=0的常数项为0,则m的值为()A.1B.0或2C.1或2D.05、下列方程是一元二次方程的是()A.x+2y=1B.C.D.6、若一元二次方程x(kx+1)﹣x2+3=0有实数根,则k的最大整数值是()A.2B.1C.0D.﹣17、关于x的一元二次方程x2+4x﹣2k=0有两个实数根,则实数k的取值范围是()A.k≥﹣2B.k≤﹣2C.k>﹣2D.k=﹣28、方程x2-3x-5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.无法确定是否有实数根9、下列方程是一元二次方程的是()A. B. C. D.10、方程x2=2x的解是()A.x=2B.x1=2,x2=0 C.x1= ,x2=0 D.x=011、若t是一元二次方程ax2+bx+c=0(a≠0)的根,则判别式△=b2-4ac和完全平方式M=(2at+b)2的关系是()A.△=MB.△>MC.△<MD.大小关系不能确定12、三角形的两边长分别为3和6,第三边的长是方程x2-6x+8=0的一个根,则这个三角形的周长是()A.9B.11C.13D.11或1313、关于x的一元二次方程x2+(k2-4)x+k+1=0的两实数根互为相反数,则k 的值()A.2B.0C.±2D.-214、“五一”节老同学聚会,每两个人都握一次手,所有人共握手28次,则参加聚会的人数是()A.7B.8C.9D.1015、若方程x2+x﹣2=0的两个实数根分别是x1、x2,则下列等式成立的是()A.x1+x2=1,x1•x2=﹣2 B.x1+x2=﹣1,x1•x2=2 C.x1+x2=1,x1•x2=2 D.x1+x2=﹣1,x1•x2=﹣2二、填空题(共10题,共计30分)16、若关于x的一元二次方程有两个相等的实数根,则________.17、制造一种产品,原来每件的成本是100元,由于连续两次降低成本,•现在的成本是81元,则平均每次降低成本的百分率为________18、一元二次方程x2=3x的解是:________.19、己知m是关于x的方程x2﹣2x﹣7=0的一个根,则2(m2﹣2m)=________20、若关于 x 的一元二次方程 x2﹣(k+3)x+2k+2=0 有一根小于 1,一根大于1,则 k 的取值范围是________.21、若关于x的方程x2-3x+a=0有一个解是2,则3а+1的值是________.22、已知关于x的一元二次方程x2+bx+b﹣1=0有两个相等的实数根,则b的值是________.23、已知关于x的方程有两个不相等的实数根,则k的取值范围是________.24、关于x的一元二次方程(m﹣1)x2﹣x+m2﹣1=0的一个解是x=0,则m值是________.25、若关于x的一元二次方程没有实数根,则k的取值范围是________.三、解答题(共5题,共计25分)26、解方程:27、已知α,β是方程x2+2x﹣3=0的两个实数根,求下列各式的值.(1)α2+β2;(2)β2﹣2α28、已知关于x的方程kx2+(k+3)x+2=0,求证:不论k取任何非零实数,该方程都有两个不相等的实数根.29、已知关于x的一元二次方程(m+1)x2+x+m2﹣2m﹣3=0有一个根是0.(1)求m的值;(2)求方程的另一个根.30、如图,在宽为20 m、长为32 m的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分作为草坪,要使草坪的面积为540m2,求道路的宽.参考答案一、单选题(共15题,共计45分)1、D2、A3、A4、B5、B6、C7、A8、A9、B10、B11、A12、C13、D14、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、。
苏科版九年级数学上册《1.1 一元二次方程》练习题-附答案
苏科版九年级数学上册《1.1 一元二次方程》练习题-附答案基础巩固提优1.下列关于 x 的方程中,一定是一元二次方程的是( ).A.ax²+bx+c=0B.x²+1=(x+1)(x−2)C.3x²+1=0D.2x2−2x2.为增强学生体质,丰富学生的课外生活,为同学们搭建一个互相交流的平台,学校要组织一次篮球联赛,赛制为单循环(参赛的每两队间比赛一场),根据场地和时间等条件,学校计划安排15场比赛.设学校应邀请x 个队参赛,根据题意列方程为( ).A. x(x+1)=15B. x(x--1)=15C.12x(x+1)=15D.12x(x−1)=153.若关于 x 的一元二次方程2x²+(k+8)x−(2k—3)=0的各项系数之和为5,则k 的值为 .4. 已知方程ax²+bx−6=0与方程ax²+2bx−15=0有一个公共解是3,求a、b的值.5.如果关于x 的方程 (m −3)x |m−1|−x +3=0是一元二次方程,求m 的值.6.已知关于x 的方程( (m +1)x m 2+1+(m −3)x −1=0.(1)当m 取何值时,此方程是一元二次方程?(2)当m 取何值时,此方程是一元一次方程?思维拓展提优7.已知 2+√3是关于 x 的一元二次方程 x²−4x+m=0的一个实数根,则实数m 的值是( ).A. 0B. 1C. —3D. —18.已知 x²−3x −4=0,则代数式 xx 2−x−4的值是( ).A. 3B. 2 C 13 D 12实验班提优训练9.若实数x 满足x2−2√2x−1=0,则x2+1x2= .10.若9a-3b+c=0且a≠0,则一元二次方程ax²+bx+c=0必有一个根是 .11.已知关于x 的方程(k−1)x²+(k+2)x−3=0.(1)当k 为何值时,此方程为一元一次方程?并求出此方程的解.(2)若此方程为一元二次方程,求k 的取值范围.12.先化简,再求值:a−2a2−1÷(a−1−2a−1a+1),其中a是方程x²−x−1=0的根.13.已知关于x 的一元二次方程(x—1)(x-2)=m+1(m 为常数).(1)若它的一个实数根是关于x 的方程-3(x-m)+6=0的根,求m的值;(2)若它的一个实数根是关于x的方程2(x一n)-4=0的根,求证::m--n≥-1.14.如图,某小区规划在一个长为 40 m、宽为26m的矩形场地ABCD 上修建三条同样宽的甬路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草.若使每一块草坪的面积都为144 m²,求甬路的宽度.(根据题意列出方程即可)延伸探究提优15.教材或资料中会出现这样的题目:把方程12x2−x=2化为一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项.现把上面的题目改编为下面的两个小题,请解答.(1)下列式子中,哪几个是方程12x2−x=2所化的一元二次方程的一般形式? (答案只写序号)circle112x2−x−2=0;circle2−12x2+x+2=0;circle3x2−2x=4;circle4−x2+2x+4=0;circle5√3x2−2√3x−4√3=0.(2)方程12x2−x=2化为一元二次方程的一般形式后,它的二次项系数、一次项系数、常数项之间具有什么关系?16.请阅读下列材料:问题:已知方程x²+x−1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y,则y=2x,即x=y2.把x=y2代入已知方程,得(y2)2+y2−1=0,化简,得y²+2y−4=0,故所求方程为y²+2y−4=0.这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式):(1)已知方程x²+3x−2=0,求一个一元二次方程,使它的根分别为已知方程根的相反数;(2)已知关于 x 的一元二次方程ax²−bx+c=0(a≠0)有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.中考提分新题17.已知m为方程x²+3x−2022=0的根,那么m³+2m²−2025m+2022的值为( ).A. —2022B. 0C. 2 022D. 404418.若关于 x 的一元二次方程mx²+nx−1=0(m≠0)的一个根是x=1,则m+n的值是 .参考答案1. C [解析]A.当a=0时,不是一元二次方程,故本选项不符合题意;B.该方程化简后为−x−3=0,是一元一次方程,故本选项不符合题意;C.3x²+1=0是一元二次方程,故本是分式,不是方程,故本选项不符合题意.故选 C.选项符合题意;D.2x2−2x2. D [解析]利用安排比赛的场次数=邀请参赛的队伍数×(邀请参赛的队伍数−1)÷2,即可x(x 得出关于x的一元二次方程.由题意,得每队比赛的场次数为x−1,则总场次数为12−1)=15.故选 D.3.8 [解析]方程二次项系数、一次项系数和常数项分别为2、k+8、−(2k−3),根据二次项系数、一次项系数及常数项的和为5,得2+k+8−(2k−3)=5,解得k=8.4. ∵方程ax²+bx−6=0与ax²+2bx−15=0有一个公共解是3,∴ax²+2bx−15=ax²+bx−6.∴bx−9=0,∴3b−9=0,解得b=3.将x=3代入ax²+bx−6=0,得a×3²+3×3−6=0,解得a=−13,即a的值是−13,b的值是3.5. 由题意,得||m−1|=2且m−3≠0,解得m=−1.6.(1)当m²+1=2且m+1≠0,即m=1时,此方程是一元二次方程.(2)当m²+1=1且m+1+m−3≠0,或m+1=0且m−3≠0时,即m=0或−1时,此方程是一元一次方程.7. B [解析]根据题意,得(2+√3)2−4×(2+√3)+m=0,解得m=1.故选 B.8. D [解析]将x²−3x−4=0两边同时加上2x,得x²−x−4=2x,所以xx2−x−4=x2x=12.故选 D.9.10 [解析]·“x2−2√2x−1=0∴x−2√2−1x =0,⋯x−1x=2√2.C.(x−1x )2=8,即x2−2+1x2=8.∘x2+1x2=10.10.x=−311.(1)当k=1时,此方程为一元一次方程.此时3. x-3-0,解得x=1.(2)若此方程为一元二次方程,则A≠112. 原式=(a−3)(a+1)(a−1)+(4+1)(a−1)−(2a−1)a+1⋯=α−2(a+1)(a−1)⋅a+1a(a−2)=1a(a−1)=1a2−a∵a是方程x²−x−1=0的根a²−a−1=0a²−a=1,原式=11=113.(1)解关于x的方程-−3(x−m)+6=0得r=m+2,把.x=m+2代入方程(x−1)(x−2)=m+1得(m+2−1)(m+2−2)=m+1整理得m²=1,解得m=1或m=−1(2)解关于x的方程:2(x−n)−4=0得x=n+2,把x=n+2代入方程(x—1)(x—2)=m+1得(n+2-1)(n+2-2)=m+1整理得m=n²+n−1,所以m−n=n⁹−1.因为n²≥0,所以m-n的最小值为-114.设甬路的宽度为 xm,根据题意,得(40-2x)(26-x)=144×6化简,得2x²−92x+176=0即x²−46x+88=0.15.(1)①②④⑤(2)若设它的二次项系数为a(a≠0),则一次项系数为--2a,常数项为-4a.因此二次项系数:一次项系数:常数项=1:(-2):(-4).16.(1)设所求方程的根为y,则y=-x,即x=-y,把x=-y代入方程.x²+3x−2=0,得y²−3y−2=0,即所求方程为y²−3y−2=0.(2)设所求方程的根为y,则y=1x ,即x=1y.把x=1y 代入方程ax²−bx+c=0,得α•1y2−b⋅1y+c=0,整理,得cy²−by+a=0,即所求方程为cy²−by+a=0.17. B [解析]∵m为方程.x²+3x−2022=0的根∴m²+3m−2022=0,∴m²+3m=2022,∴原式=m³+3m²−m²−3m−2022m+2022=m(m²+3m)−(m²+3m)−2022m+2022=2022m−2022−2022m+2022=0.故选 B.18.1 [解析]把.x=1代入方程mx²+nx−1=0得m+n−1=0,解得m+n=1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习一一、选择题:(每小题3分,共24分) 1.下列方程中,常数项为零的是( )A.x 2+x=1 B.2x 2-x-12=12; C.2(x 2-1)=3(x-1) D.2(x 2+1)=x+22.下列方程:①x 2=0,② 21x-2=0,③22x +3x=(1+2x)(2+x),④32x -=0,⑤32x x -8x+ 1=0中,一元二次方程的个数是( )A.1个 B2个 C.3个 D.4个3.把方程(+(2x-1)2=0化为一元二次方程的一般形式是( )A.5x 2-4x-4=0 B.x 2-5=0 C.5x 2-2x+1=0 D.5x 2-4x+6=0 4.方程x 2=6x 的根是( )A.x 1=0,x 2=-6B.x 1=0,x 2=6C.x=6D.x=0 5.方2x 2-3x+1=0经为(x+a)2=b 的形式,正确的是( )A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C.231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对 6.若两个连续整数的积是56,则它们的和是( ) A.11 B.15 C.-15 D.±15 7.不解方程判断下列方程中无实数根的是( )A.-x 2=2x-1 B.4x 2+4x+54=0; C. 20x --= D.(x+2)(x-3)==-58.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( ) A.200(1+x)2=1000 B.200+200×2x=1000 C.200+200×3x=1000 D.200[1+(1+x)+(1+x)2]=1000 二、填空题:(每小题3分,共24分)9.方程2(1)5322x x -+=化为一元二次方程的一般形式是________,它的一次项系数是______.10.关于x 的一元二次方程x 2+bx+c=0有实数解的条件是__________. 11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________.13.如果关于x 的一元二次方程2x(kx-4)-x 2+6=0没有实数根,那么k 的最小整数值是__________.14.如果关于x 的方程4mx 2-mx+1=0有两个相等实数根,那么它的根是_______.15.若一元二次方程(k-1)x2-4x-5=0 有两个不相等实数根, 则k 的取值范围是_______.16.某种型号的微机,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______________.三、解答题(2分)17.用适当的方法解下列一元二次方程.(每小题5分,共15分)(1)5x(x-3)=6-2x; (2)3y2+1=; (3)(x-a)2=1-2a+a2(a是常数)18.(7分)已知关于x的一元二次方程x2+mx+n=0的一个解是2,另一个解是正数, 而且也是方程(x+4)2-52=3x的解,你能求出m和n的值吗?19.(10分)已知关于x的一元二次方程x2-2kx+12k2-2=0.(1)求证:不论k为何值,方程总有两不相等实数根.(2)设x1,x2是方程的根,且 x12-2kx1+2x1x2=5,求k的值.四、列方程解应用题(每题10分,共20分)20.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.21.某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3, 4月份平均每月销售额增长的百分率.答案一、DAABC,DBD 二、 9.x 2+4x-4=0,4 10. 240b c -≥ 11.因式分解法 12.1或2313.2 14.1815.115k >≠且k 16.30% 三、17.(1)3,25-;(2)3;(3)1,2a-118.m=-6,n=819.(1)Δ=2k 2+8>0, ∴不论k 为何值,方程总有两不相等实数根.(2) k = 四、 20.20% 21.20%练习二一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。
每题3分,共24分): 1.下列方程中不一定是一元二次方程的是( ) A.(a-3)x 2=8 (a ≠3) B.ax 2+bx+c=0232057x +-=2下列方程中,常数项为零的是( )A.x 2+x=1B.2x 2-x-12=12;C.2(x 2-1)=3(x-1)D.2(x 2+1)=x+2 3.一元二次方程2x 2-3x+1=0化为(x+a)2=b 的形式,正确的是( )A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C. 231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对4.关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 值为( ) A 、1 B 、1- C 、1或1- D 、125.已知三角形两边长分别为2和9,第三边的长为二次方程x 2-14x+48=0的一根, 则这个三角形的周长为( )A.11B.17C.17或19D.196.已知一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,则这个直角三角形的斜边长是( )A B 、3 C 、6 D 、97.使分式2561x x x --+ 的值等于零的x 是( )A.6B.-1或6C.-1D.-68.若关于y 的一元二次方程ky 2-4y-3=3y+4有实根,则k 的取值范围是( ) A.k>-74 B.k ≥-74 且k ≠0 C.k ≥-74 D.k>74且k ≠0 9.已知方程22=+x x ,则下列说中,正确的是( ) (A )方程两根和是1 (B )方程两根积是2(C )方程两根和是1- (D )方程两根积比两根和大210.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000 二、填空题:(每小题4分,共20分)11.用______法解方程3(x-2)2=2x-4比较简便.12.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为________. 13.22____)(_____3-=+-x x x14.若一元二次方程ax 2+bx+c=0(a ≠0)有一个根为-1,则a 、b 、c 的关系是______. 15.已知方程3ax 2-bx-1=0和ax 2+2bx-5=0,有共同的根-1, 则a= ______, b=______.16.一元二次方程x 2-3x-1=0与x 2-x+3=0的所有实数根的和等于____.17.已知是方程x 2+mx+7=0的一个根,则m=________,另一根为_______.18.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.19.已知是方程的两个根,则等于__________.20.关于x 的二次方程20x mx n ++=有两个相等实根,则符合条件的一组,m n 的实数值可以是m = ,n = . 三、用适当方法解方程:(每小题5分,共10分)21.22(3)5x x -+=22.230x ++=四、列方程解应用题:(每小题7分,共21分)23.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.24.如图所示,在宽为20m ,长为32m 的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570m 2,道路x x 12,x x 2210--=1112x x +应为多宽?25.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。
求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?26.解答题(本题9分)已知关于x 的方程222(2)40x m x m +-++=两根的平方和比两根的积大21,求m 的值《一元二次方程》复习测试题参考答案 一、选择题:1、B2、D3、C4、B5、D6、B7、A8、B9、C 10、D 二、填空题:11、提公因式 12、-23或1 13、94 ,32 14、b=a+c 15、1 ,-216、3 17、-6 ,3+2 18、x 2-7x+12=0或x 2+7x+12=0 19、-2 20、2 ,1(答案不唯一,只要符合题意即可)三、用适当方法解方程:21、解:9-6x+x 2+x 2=5 22、解:)2=0x 2(x-1)(x-2)=0 x 1=x 2 x 1=1 x 2=2 四、列方程解应用题:23、解:设每年降低x ,则有 (1-x)2=1-36% (1-x)2=0.64 1-x=±0.8 x=1±0.8x 1=0.2 x 2=1.8(舍去) 答:每年降低20%。
24、解:设道路宽为xm (32-2x)(20-x)=570 640-32x-40x+2x 2=570 x 2-36x+35=0 (x-1)(x-35)=0x 1=1 x 2=35(舍去) 答:道路应宽1m25、⑴解:设每件衬衫应降价x 元。
(40-x)(20+2x)=1200 800+80x-20x-2x 2-1200=0 x 2-30x+200=0 (x-10)(x-20)=0 x 1=10(舍去) x 2=20⑵解:设每件衬衫降价x 元时,则所得赢利为 (40-x)(20+2x) =-2 x 2+60x+800=-2(x 2-30x+225)+1250 =-2(x-15)2+1250所以,每件衬衫降价15元时,商场赢利最多,为1250元。
26、解答题:解:设此方程的两根分别为X 1,X 2,则 (X 12+X 22)- X 1X 2=21(X 1+X 2)2-3 X 1X 2 =21 [-2(m-2)]2-3(m 2+4)=21 m 2-16m-17=0 m 1=-1 m 2=17因为△≥0,所以m ≤0,所以m =-1练习三一、填空题1.方程的解是_____________. 2.已知方程的一个根是-2,那么a 的值是_____________,方程的另一根是_____________.3.如果互为相反数,则x 的值为_____________.4.已知5和2分别是方程的两个根,则mn 的值是_____________.5.方程的根的判别式△=_____________,它的根的情况是_____________. 6.已知方程的判别式的值是16,则m =_____________.7.方程有两个相等的实数根,则k =_____________.8.如果关于x 的方程没有实数根,则c 的取值范围是_____________. 9.长方形的长比宽多2cm ,面积为,则它的周长是_____________. 10.某小商店今年一月营业额为5000元,三月份上升到7200元,平均每月增长的百分率为_____________.二、选择题11.方程的解是( ) A .x =±1 B .x =0C .D .x =112.关于x 的一元二次方程有两个不相等的实数根,则k 的取值范围是( )A .k>9B .k<9C .k ≤9,且k ≠0D .k<9,且k ≠013.把方程化成的形式得( ) A .B .C .D .14.用下列哪种方法解方程比较简便( ) 3)5x (2=+02x 7ax 2=-+5x 2x 41x 222--+与0n mx x 2=++02x 3x 42=+-01mx x 22=++01k x )6k (x 92=+++-0c x 5x 2=++2cm 480x x 2=+1x 0x 21-==,01x 6kx 2=+-084x 8x 2=--n )m x (2=+100)4x (2=-100)16x (2=-84)4x (2=-84)16x (2=-4x 2)2x (32-=-A .直接开平方法B .配方法C .公式法D .因式分解法15.已知方程(x +y)(1-x -y)+6=0,那么x +y 的值是( )A .2B .3C .-2或3D .-3或2 16.下列关于x 的方程中,没有实数根的是( )A .B .C .D .17.已知方程的两根之和为4,两根之积为-3,则p 和q 的值为( )A .p =8,q =-6B .p =-4,q =-3C .p =-3,q =4D .p =-8,q =-618.若是方程的一个根,则另一根和k 的值为( )A .,k =-6B .,k =6C .,k =-6D .,k =619.两根均为负数的一元二次方程是( )A .B .C .D .20.以3和-2为根的一元二次方程是( )A .B .C .D .三、解答题21.用适当的方法解关于x 的方程(1);(2);(3);02x 4x 32=-+x 65x 22=+02x 62x 32=+-01mx x 22=-+0q px x 22=++53+-04kx x 2=++53x --=53x --=53x +=53x -=05x 12x 72=+-05x 13x 62=--05x 21x 42=++08x 15x 22=-+06x x 2=-+06x x 2=++06x x 2=--06x x 2=+-12)1x 2(4)1x 2(2=---6)1x ()3x 2(22=--+x 4)3x )(3x (=+-(4).22.已知,当x 为何值时,?23.已知方程的一个解是2,余下的解是正数,而且也是方程的解,求a 和b 的值.24.试说明不论k 为任何实数,关于x 的方程一定有两个不相等实数根.25.若方程的两个实数根的倒数和是S ,求S 的取值范围.26.已知Rt △ABC 中,∠C =90°,斜边长为5,两直角边的长分别是关于x的方程的两个根,求m 的值.27.某商场今年一月份销售额100万元,二月份销售额下降10%,进入3月份该商场采取措施,改革营销策略,使日销售额大幅上升,四月份的销售额达到129.6万元,求三、四月份平均每月销售额增长的百分率.027)1x 4(2=--7x y 3x 2x y 221+=--=,0y y 221=+0b ax x 2=++52x 3)4x (2+=+3k )3x )(1x (2-=+-01x )3m 2(x m 22=+--0)1m (4x )1m 2(x 2=-+--28.若关于x 的方程的两个根满足,求m 的值.参考答案【同步达纲练习】一、 1.2.4,3.1或4.-705.-23,无实数根 6. 7.0或248.9.28cm 10.20% 二、11.C 12.D 13.A 14.D 15.C 16.B 17.D 18.B 19.C20.C 三、 21.(1)用因式分解法; (2)先整理后用公式法;(3)先整理后用公式法; (4)用直接开平方法.22.x =1或.0m 3x )5m (x 22=---21x x 、43x x 21=35x 35x 21--=+-=,4132-62m ±=425c >21x 27x 21-==,3437x 3437x 21--=+-=,72x 72x 21-=+=,4133x 4133x 21+-=+=,2123.a=-6,b=8.24.解:,整理得.∵,∴不论k为任何实数,方程一定有两个不相等实数根.25.,且S≠-3.26.m=4.27.解:设增长的百分率为x,则.(不合题意舍去).∴增长的百分率为20%.28.解:提示:解,解得m=10,或.练习四◆基础知识作业1.利用求根公式解一元二次方程时,首先要把方程化为____________,确定__________的值,当__________时,把a,b,c的值代入公式,x1,2=_________________求得方程的解.2、把方程4 —x2 = 3x化为ax2 + bx + c = 0(a≠0)形式为,则该方程的二次项系数、一次项系数和常数项分别为。