七年级数学合并同类项与移项2
人教版数学七年级上册解一元一次方程(一)——合并同类项与移项课件
例2 在国庆节来临之际,七年级(1)班课外活动小组计划 做一批中国结.如果每人做6个,那么比计划多做7个;如 果每人做5个,那么比计划少做13个.该小组计划做多少 个中国结?
解:设该小组共有 x 名成员. 根据题意列方程,得 6x-7=5x+13. 移项,得 6x-5x=13+7.合并同类项,得 x=20. 所以 6x-7=113. 答:该小组计划做113个中国结.
3.2 解一元一次方程(一)
——合并同类项与移项
第4课时
初中数学 七年级上册 RJ
知识回顾
列一元一次方程解决实际问题的一般步骤:
审题 找等量关系
设未知数
列方程
写出答案
检验
解方程
注意:1. 列一元一次方程解决实际问题的关键是审题,
寻找等量关系.
2. 求出方程的解后要进行检验(检验的过程在草稿纸上
进行),既要检验所求出的解是不是方程的解,又要检
“盈不足”问题 “盈”是分配中的多余情况,“不足”是分配中的缺 少情况,有的题目不会出现“盈”或“不足”的字样. “盈不足”问题中,一般会给出两个条件:什么情况 下会“盈”,“盈”多少;什么情况下会“不足”, “不足”多少.
利用“表示同一个量的两个不同的式子相等”解应用 题的步骤: (1) 找出题中不变的量; (2)用两个不同的式子表示出这个量; (3)由表示同一个量的两个不同的式子相等列出方程; (4)解方程,并作答.
2.《九章算术》中有一道阐述“盈不足术”的问题,原 文如下:今有人共买物,人出八,盈三;人出七,不足 四.问人数、物价各几何?译文为:现有一些人共同买 一个物品,每人出8元,还盈余3元;每人出7元,则还 差4元.问共有多少人?这个物品的价格是多少?请解答 上述问题. 解:设共有 x 人. 根据题意,得 8x-3=7x+4. 移项,得 8x-7x=4+3.
砀山县第七中学七年级数学上册第三章一元一次方程3.2解一元一次方程一合并同类项与移项第2课时用移项的
求 B O D 的 度 数 。
D 解 .设 A O C 2 X 0, 则 A O D = 3 X 0
A
根据邻补角的定义可得方程:
2X+3X=1800
O
解 得 X=360
B
AOC 2X 720
C
在解决与角的计算 B O D A O C 7 2 0
有关的问题时 , 经 答 : B O D 的 度 数 为 7 2 0
4. 列方程解应用题的步骤: 一.设未知数 ; 二.分析题意找出等量关系 ; 三.根据等量关系列方程 ;
结束语
同学们,你们要相信梦想是价值的源泉,相信成 功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念,
考试加油!奥利给~
本章复习
知识结构
两条
邻补角、対顶角
対顶角相等
常用到代数方式。
例2.已知直线AB、CD、EF相交于点O ,
D O E 9 0 0 , A O E 3 6 0
求 B O E 、 B O C 的 度 数 。
E
D
解 . AOB是 直 线
O
AOE与 BOE是 互 为 邻 补 角
A
B AO E BO E 1800
C
F
又 AO E 360
即 : x =-2.
等式的性质2
即 : 等式两边都乘或除以 同一个不等于0的数 , 所得 结果仍是等式.
复习
合并同类项与系数化为1都是解一元一次方 程的重要步骤。
合并同类项 系数化为1
把方程化为ax=b〔a≠0〕 的形式。
把ax=b 〔a≠0〕化为x=m。
把一些图书分给某班学生阅读 , 如果每人分3本 , 那 么剩余20本 ; 如果每人分4本 , 那么还缺25本.这个班 有多少学生 ?
2024年湘教版七年级数学上册 3.2 第2课时 移项、合并同类项(课件)
(1) 7x=6x-5;
(2) 2x+80=110.
解:方程两边都减去 6x,得 解:方程两边都减去 80,得
7x-6x=6x-5-6x, 7x-6x=-5, 即 x=-5.
2x+80-80=110-80, 2x=110-80,
即 2x=30,
在方程两边都除以 2,得 x=15.
7x= 6x -5
①
7x -6x =-5
②
由方程① 到方程 ②,这个变形相当于把 ① 中 的“6x”这一项 从方程的右边移到了方程的左边.
“-6x”这项移动后,发生了什么变化?
改变了符号
2x +80 =110
③
2x= -80
④
由方程③ 到方程 ④,这个变形相当于把③中的 “ +80 ”这一项 从方程的左边移到了方程的右边. “-80 ”这项移动后,发生了什么变化?
(1) 5x - 7 = 2x - 10;
(2) -0.3x + 3 = 9 + 1.2x.
解:(1) 移项,得
(2) 移项,得
5x - 2x = -10 + 7, 合并同类项,得
3x = -3,
两边都除以 3,得 x = -1.
-0.3x - 1.2x = 9 - 3, 合并同类项,得
-1.5x = 6, 两边都除以 -1.5,得
难点:移项要变号.
我们在上节课学习了哪些等式的性质? 等式的性质1: 如果 a=b,那么__a_±___c_=___b_±___c_。
等式的性质2:
如果 如果
a=b,那么___a_c_=___b_c____; a=b (c ≠ 0),那么__ac_=___bc__。
1 用移项化简方程
人教版初中数学七年级上册教学课件 第三章 一元一次方程 解一元一次方程合并同类项与移项 (第2课时)
探究新知 做一做
下列移项正确的是 ( C ) A. 由2+x=8,得到x=8+2 B. 由5x=-8+x,得到5x+x= -8 C. 由4x=2x+1,得到4x-2x=1 D. 由5x-3=0,得到5x=-3
移项一定 要变号.
探究新知
素养考点 1
例1 解下列方程:
(1)3x 7 32 2x
合并同类项,得
你能说说由方程③到方
-3x = -21. 系数化为1,得
程④的变形过程中有什 么变化吗?
x = 7.
探究新知
移项的定义
一般地,把方程中的某些项改变符号后,从方程 的一边移到另一边,这种变形叫做移项.
移项的依据及注意事项 移项实际上是利用等式的性质1. 注意事项:移项一定要变号.
探究新知
5×21+45=150(元), 答:买羊人数为21人,羊价为150元.
课堂检测
基础巩固题
1.下列变形属于移项且正确的是( B ) A.由2x-3y+5=0,得5-3y+2x=0 B.由3x-2=5x+1,得3x-5x=1+2 C.由2x-5=7x+1,得2x+7x=1-5 D.由3x-5=-3x,得-3x-5-3x=0
探究新知
等量关系
调动前:阅B28题的教师人数=3×阅A18题的教师人数
调动后:阅B28题的教师人数-12=原阅A18题的教师人数÷2+3
探究新知
解:设原有教师x人阅A18题,则原有教师3x人阅B28题, 依题意,得 3x 12 1 x 3,
2
移项,得 3x 1 x 3 12,
2
合并同类项,得 5 x 15,
试一试
下列方程的变形,属于移项的是( D )
A.由 -3x=24得x=-8 B.由 3x+6-2x=8 得 3x-2x+6=8 C.由4x+5=0 得-4x-5=0 D.由2x+1=0得 2x=-1
人教版初一数学七年级上同步课件第三章 3-2解一元一次方程(一)——合并同类项与移项 第2课时
天运进 25 吨,__3__天后两仓库存煤相等.
8.(教材 P91 习题 T11 变式)《九章算术》中有这样一个问题,原文如下:“今有 共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?” 大意为: 几个人一起去购买某物品,如果每人出 8 钱则多了 3 钱;如果每人出 7 钱,则少 了 4 钱.问有多少人?物品的价格是多少钱?(注:“钱”为中国古代的货币单位) 请解答上述问题. 【解析】设有 x 人,依题意,得:8x-3=7x+4, 解得:x=7,所以 8x-3=53. 答:有 7 人,物品的价格是 53 钱.
m 的值是_-__4_.
4.解方程:
(1)5x-21=11x-3;
(2)2.5m+10m-15=6m-21.5;
4 (3)3
+121
y=3+8y.
【解析】(1)移项得:5x-11x=-3+21, (3)移项得:121 y-8y=3-43 ,
合并同类项得:-6x=18,
系数化为 1 得:x=-3.
小红: 50
= 55
.
[其中“□”表示运算符号,“( )”表示数字]
(1)小明所列的方程中,x 表示的意义是:______;小红所列的方程中,y 表示的 意义是:______. (2)请你把小明、小红所列的方程补充完整. (3)解小明所列的方程.
【解析】(1) 该校租的客车辆数该校七年级的学生人数 y-12 y+8
【解析】设该电饭煲的进价为 x 元,则标价为(1+50%)x 元,售价为 80%×(1+50%)x 元, 根据题意,得 80%×(1+50%)x-128=568,解得 x=580. 答:该电饭煲的进价为 580 元.
解一元一次方程(第二课时 移项与合并同类项)(课件)七年级数学上册(苏教版)
探索与思考
如何求方程3x+20=4x-25的解?
3x+20 = 4x-25
3x+20-4x-20=4x-25-4x-20
3x-4x=-25-20
-x=-45
x=45
把它变成x=a(常数)的形式
等式两边都含有
x的项和不含字母的常数项。
利用等式性质1,将等式
变为x=a(常数)的形式
合并同类项
探索与思考
数学(苏科版)
七年级 上册
第四章 一元一次方程
4.2 解一元一次方程
第二课时 移项与合并同类项
课前回顾
等式的两边都加上(或减去)同一个数(或同一个式子),所得的结
果仍是等式。
如果a=b,那么a±c=a±c
等式两边都乘以同一个数,或都除以同一个不为0的数,结果仍相等。
如果a=b,那么ac = bc
如果a=b,那么
因为这批书的总数是一个定值,
表示它的两个式子应相等
(2)每人分3本,还剩余20本,则这批书共
(3x+20)
_______ 本;
(3)每人分4本,还缺25本,则这批书共 (4x-25)
______本;
3x+20=4x-25
(4)根据题意可列方程为________________________
等式左右两边都有未知数,如何求得方程的解呢?
合并同类项: 7x=24
系数化为1 :
24
x= .
7
(4) x+ =
x-3
1
2
移项:x- x=-3-2
1
2
合并同类项: x=-5
系数化为1 :x=-10.
利用移项与合并同类项移项解方程
人教版七年级数学上册第三章 3.2.2 移项2
10.有两个仓库,A仓库存货30吨,B仓库存货50吨.A仓库每 天入货2吨,B仓库每天出货3吨.几天后两个仓库存货量相 等?
解:设x天后两个仓库存货量相等, 由题意,得30+2x=50-3x,∴x=4. 答:4天后两个仓库存货量相等.
7.【例4】一个长方形和一个正方形,长方形的长比正方形的 边长多4 cm,长方形的宽比正方形的边长少2 cm,长方形 的长、宽之比为5∶3,长方形的长、宽各是多少? 解:设长方形的长、宽分别为5x cm、3x cm, 由题意,得5x-4=3x+2,∴x=3.∴5x=15,3x=9. 答:长方形的长、宽分别为15 cm、9 cm. 小结:按长、宽之比分别表示出长为5x,宽为3x,再分别表 示出正方形的边长的两个不同式子,列等式.
知识点二:用移项法解一元一次方程 (1)移项的目的是把所有 未知项 移到方程的一边,把所有 常数项 移到方程的另一边. (2)一般地,把未知项移到方程的左边,常数项移到方程的右 边,这样就可以通过“合并”把方程转化为x=a形式. (3)解方程时经常要“合并同类项”和“移项”,前面提到的 古老的代数书中的“对消”和“还原”,指的就是“合并” 和“移项”.
5.【例2】解方程: (1)6x+2=5x;
x=-2
(3)13-2y=21; y=-112
(2)2t-5=8t+15; t=-130 (4)4-53m=-m. m=6
小结:解等号两边都有未知数的一元一次方程时,一般先移 项,再合并同类项,最后把未知数的系数化为1.
9.解方程:
(1)2x-3=5x; x=-1
(4)从8x=7x-2得到8x-7x=2. 不对,正确的应为8x-7x=-2
小结:移项要改变符号,不移动的项不改变符号.
变式练习
七年级数学上册教学课件《合并同类项与移项》
3. 随着农业技术的现代化,节水型灌溉得到了逐 步推广,喷灌和滴灌是比漫灌节水的灌溉方式, 灌溉三块同样大的实验田,第一块用漫灌方式, 第二块用喷灌方式,第三块用滴灌方式,后两种 方式用水量分别是漫灌的25%和15%.
(1)设第一块实验田用水x t,则另两块实 验田的用水量如何表示?
6x +6( x+1) + 6( x + 2) = 324. 解得 x = 17. 所以6x =102,6( x+1) = 108,6(x + 2) = 114. 即这三个数为102,108,114.
5. 有一列数:6,1的数的和能否等于84? 若能,求出这三个数;若不能,请说明理由.
【课本P88 练习 第1题】
(4)7x - 4.5x = 2.5×3 - 5 解:合并同类项,得
2.5x = 2.5 系数化为1,得
x= 1
【课本P88 练习 第2题】
某工厂的产值连续增长,去年是前年的1.5倍,今年是去年 的2倍,这三年的总产值为550万元.前年的产值是多少?
随堂演练
1.解下列方程: (1)2x + 3x + 4x = 18 解:合并同类项,得 9x = 18 系数化为1,得 x= 2
设前年这个学校购买了计算机x台,则去年 购买计算机 2x台,今年购买计算机4x台.
前年购买量+去年购买量+今年购买量=140台
根据题意,列得方程 x+2x+4x=140.
还有不同的设法吗? 还可以列怎样的方程?
方法二:设去年购买x台. 方法三:设今年购买x台.
x +x+2x=140 2
x + x +x=140 42
七年级数学第三章一元一次方程3.2解一元一次方程一合并同类项与移项第2课时移项导学案
3.2 解一元一次方程(一)—-合并同类项与移项第2课时移项一、新课导入1。
课题导入:前面,我们学习了利用合并同类项解一元一次方程,所见到的方程基本上都是含有未知数的项在等号的一边(左边),常数项在等号的另一边(右边),如果等号两边都有含有未知数的项和常数项,那么这样的方程该怎样求解呢?这节课我们继续学习解一元一次方程的方法——移项(板书课题)。
2。
三维目标:(1)知识与技能①会解“ax+b=cx+d”类型的一元一次方程.②建立方程解决实际问题.(2)过程与方法①通过分析实际问题中的数量关系,建立方程解决问题,进一步认识方程模型的重要性。
②掌握移项方法,学会解“ax+b=cx+d”类型的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想.(3)情感态度体会方程中蕴涵的化归思想。
3.学习重、难点:重点:确定实际问题中的相等关系,建立形如ax+b=cx+d的方程,并利用移项和合并同类项的方法解一元一次方程。
难点:确定相等关系并列出一元一次方程,正确地进行移项并解出方程。
二、分层学习1。
自学指导:(1)自学内容:教材第88页“问题2"至教材第89页例3之前的内容。
(2)自学时间:8分钟。
(3)自学指导:认真阅读“问题2"的问题分析和解题过程,认识“表示同一个量的不同的式子相等”这一相等关系,思考在解题过程中是如何“移项”的,以及“移项”起了什么作用?(4)自学参考提纲:①“问题2”是根据什么相等关系来列方程的?图书的本数是一定的.②课本上是怎样解方程3x+20=4x-25的?有哪几个步骤?移项;合并同类项;系数化为1。
③什么叫移项?移项的依据是什么?有何作用?把等式一边的某项变号后移到另一边,叫做移项.移项的依据是等式的性质1。
移项可以使方程变得更简单。
④仿照问题2中的解方程的过程,解下列方程.a.3x+7=32-2x;b。
x-3=3x+1.2解:a.x=5;b。
x=—8.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂了解学生自学情况和存在的问题。
【人教版七年级数学上册教案】3.2解一元一次方程(一)--合并同类项与移项(第2课时)
3.2 解一元一次方程(一) --合并同类项与移项第 2课时教课目标:1、经过解析实质问题中的数目关系,建立方程解决问题,进一步认识方程模型的重要性。
2、掌握移项方法,学会解“ax+b=cx+d ”种类的一元一次方程,理解解方程的目标,领悟解法中蕴涵的化归思想。
3、经过学生观察、独立思虑等过程,培育学生概括、概括的能力,进一步让学生感觉到并试试找寻不一样的解决问题的方法,初步领悟一元一次方程的应用价值,感觉数学文化。
教课重难点:要点:建立列方程解决实质问题的思想方法,学会移项,会解“ax+b=cx+d ”种类的一元一次方程。
难点:解析实质问题中的已经量和未知量,找出相等关系,列出方程,使使学生逐渐建立列方程解决实质问题的思想方法教课过程:一、创建情境,引入新课问题:课本问题 2:把一些图书分给某班学生阅读,假如每人分 3 本,则节余 20 本;假如每人分 4 本,则还缺 25 本,这个班有多少学生?学生思虑,而后谈论合作。
二、讲解新课问题 1:列方程解决实质问题的基本思路是什么?学生谈论、解析1、设未知数:设这个班有x 名学生2、找相等关系:这批书的总数是一个定值,表示它的两个等式相等3、列方程: 3x+20=4x-25问题 2:怎么解这个方程?它与上节课遇到的议程有什么不一样?学生谈论后发现:方程的两边都有含x 的项和常数项问题 3:如何才能使它向x=a 的形式转变?4x,为使方程的左侧没有学生思虑、探究:为使方程右侧没有含x 的项,等号两边同减去常数项,等号两边同减去20,即 3x-4x=- 25- 20问题 4:以上变形的依照是什么?学生:等式的性质1概括:像上边那样把等式一边的某项变号后移到另一边,叫做移项。
师生共同完成这道题的解题过程。
问题 5:以上解方程中的“移项”起了什么作用?学生谈论、回答,师生共同整理。
经过移项,含未知数的项与常数项分别位于方程左右两边,使方程更凑近于 x=a 的形式。
202年初中数学七年级上册第二单元一元一次方程03 一元一次方程(3)解法(一)移项合并同类项
3.2解一元一次方程(一)合并同项与移项一、解一元一次方程的方法1、合并同类项2、移项3、去括号去分母二、移项的定义:把等式一边的某项变号后移到另一边,叫做移项三、移项的性质:把某一项移到式子的另一边,要改变这一项的符号a+b=c → a=c-ba-b=c → a=c+b四、去括号去分母(1)如果括号前的符号是正号,去括号后原括号内各项的符号与原来的符号相同,+(x-3)=x-3(2)如果括号前的符号是负号,去括号后原括号内各项的符号与原来的符号相反。
-(x-3)=-x+3(3)(3)等式两边乘同一个数,结果仍相等。
五、解一元一次方程的一般步骤包括:去分母、去括号、移项、合并同类项、系数化为1概念题一、解一元一次方程的方法1、2、3、二、移项的定义:把等式叫做移项三、移项的性质:把某一项移到式子的另一边,要a+b=c → a=a-b=c → a=四、去括号去分母(1)如果括号前的符号是正号,去括号后原括号内各项的符号与原来的符号号,+(x-3)=(2)如果括号前的符号是负号,去括号后原括号内各项的符号与原来的符号号。
-(x-3)=(3)等式两边乘同一个数,结果仍。
五、解一元一次方程的一般步骤包括:、、、、。
3.2.1 解法(一)合并同类项一、合并下列各式中可以合并的项:(1)2x+3x-4x= (2)3y-2y+y=(3)8x+7+2x= (4)7x-4.5x=(5)15x+4x-10x= (6)-6ab+8ab+ab=(7) -p2-p2-p2-p2= (8) m-n2+m-n2=(9) 4(a+b)+(a+b)-7(a+b)=(10)2(x+y)2-7(x+y)2+9(x+y)2=二、完成下面的解题过程:(1)解方程-3x+0.5x=10. (2)解方程3x-4x=-25-20.解:合并同类项,得 . 解:合并同类项,得 .两边,得两边,得∴=x;x;∴=(3)9x—5x=8 (4)4x-6x-x =-15解:合并同类项得:=解:合并同类项得:=两边,得两边,得∴=x;x;∴=(5) 3+-6-xxx(6)4x+3-3x-2=0x-=5.1⨯4315-7⨯5.2解:合并同类项得:=解:合并同类项得:=两边,得两边,得∴=x;x;∴=三、用合并同类法解下列方程:(1)6x —x =4 (2)-4x +6x -0.5x =-0.3 (3)9x -5x =8(4)4x -6x -x =-15 (5)2y -25y =6-8 (6)14x +12x =3(7)3(x -7)+5(x -4)=15 (8)7232=+x x (9)314125=-x x(10) 21)15(51=+x (11)3x -1.3x +5x -2.7x =-12×3-6+43.2.2 解法(二)移项把某一项移到式子的另一边,要 一、选择题1.下列变形中属于移项的是( )A.由572x y -=,得275y x --+ B.由634x x -=+,得634x x -=+ C.由85x x -=-,得58x x --=-- D.由931x x +=-,得319x x -=+ 2.解方程6x +1=-4,移项正确的是( )A.6x =4-1B.-6x =-4-1C.6x =1+4D.6x =-4-1 3.解方程-3x +5=2x -1, 移项正确的是( )A.3x -2x =-1+5B.-3x -2x =5-1C.3x -2x =-1-5D.-3x -2x =-1-5 4.下列变形正确的是( ) A.由3921x +=,得3219x =+B.由125x-=,得110x -=C.由105x -=,得15x = D.由747x +=,得41x +=5.方程3412x x -=+,移项,得3214x x -=+,也可以理解为方程两边同时( ) A.加上()24x -+ B.减去()24x -+ C.加上()24x + D.减去()24x + 二、填空(1)方程3y =2的解是y = ; (2)方程-x =5的解是x = ; (3)方程-8t =-72的解是t = ; (4)方程7x =0的解是x = ; (5)方程34x =-12的解是x = ;三、填空:(只写移项的变化,不用计算结果) (1) x +7=13移项得 ; (2) x -7=13移项得 ; (3) 5+x =-7移项得 ; (4) -5+x =-7移项得 ; (5) 4x =3x -2移项得 ;(6) 4x =2+3x 移项得 ; (7) -2x =-3x +2移项得 ; (8) -2x =-2-3x 移项得 ; (9) 4x +3=0移项得 ; (10) 0=4x +3移项得 .四、将下列方程中含有未知数的项移到方程的左边,•将常数项移方程的右边:(1)6+x =10 (2)5433xx -=(3)7-6x =5-4x (4) 11522x x -=-+五.完成下面的解题过程:(1)解方程6x -7=4x -5. 解:移项,得 . 合并同类项,得 . 系数化为1,得 .(2)解方程3x -4x =-25-20. 解:合并同类项,得 .系数化为1,得 .(3).解方程2x +5=25-8x. 解:移项,得 . 合并同类项,得 . 系数化为1,得 .(5)解方程:5x +2=7x -8解: ,得5x -7x =-8-2. ,得-2x =-10. ,得x =5.3.用先移项后合并的方法解下列方程。
5.2 第2课时 利用移项与合并同类项解一元一次方程(课件)北师大版(2024)数学七年级上册
归纳: 把原方程中的某一项改变__符__号____后,从_方__程_____的一边移
到_另__一__边___,这种变形叫做移项.
移项要点: (1)移项的根据是等式的基本性质1. (2)移项要变号,没有移动的项不改变符号. (3)通常把含有未知数的项移到方程的左边,把常数项(不含未知 数的项)移到方程的右边.
4×(-7)+6=a×(-7)-1,解得 a=3.
把 a=3 代入 a-3a,得 a-3a=3-33=2.
做一做
3
二 列方程解决问题 例2 某制药厂制造一批药品,如果用旧工艺,则废水排量要
比环保限制的最大量还多200 t;如果用新工艺,则废水排量要比 环保限制的最大量少100 t.新旧工艺的废水排量之比为2 :5,两种 工艺的废水排量各是多少?
讲授新课
一 移项
合作探究
利用等式的基本性质,我们对两个方程进行了如下变换,观察并回答:
5x --22 = 8
7x = 33xx -5
5x
=8 +2
7x -3x = -5
(1)与原方程相比,哪些项的位置发生了改变?哪些没变?
(2)改变位置的项的符号是否发生了变化?没改变位置的项的符号是
否发生了变化?
(2)移项,得x=7+4. 化简,得x=11.
例2 解下列方程:
(1) 2x+6=1;
(2)3x+3=2x+7;
解:(1)移项,得 2x=1-6.
化简,得
2x=-5.
方程两边同除以2,得 x= .
5
2
(2)移项,得 3x-2x=7-3.
合并同类项,得
x=4.
(3) 1 x - 1 x 3.
4
人教版七年级上册数学课件:解一元一次方程——合并同类项与移项
.
⑶ 方程5x=x+1,移项得: 5x-x=1 .
⑷ 方程2x-7=-5x,移项得: 2x+5x=7 .
⑸ 方程4x=3x-8,移项得: 4x-3x=-8 .
⑹ 方程x=3x-5x-9,移项得: X-3x+5x=-9 .
注意:移项要改变符号;移项时含有未知数的项放在等号 左边,常数项放在等号右边,即“x=a”的情势。
x 8
解下列方程:(用移项,合并同类项法)
(1)6x 7 4x 5; (3)5x 2 7 x 8;
(2) 1 x 6 3 x
2
4
(4)1 3 x 3x 5 ;
2
2
4
已知x=1是关于x的方程3m+8x=m+x的解,求m的 值。 解 : 把 x = 1 代入方程, 得: 3m + 8 = m+1
把某项从等式 一边移到另一 边时有什么变 化?
3x+20 = 4x-25
把等式中 的某项移 到等式的 另一边时 需要变号。
3x-4x=-25-20
像上面那样,把等式一边的某项变号后,移 到另一边,叫做移项。
注意:关于移项
1. 所移的项一 定要变号; 2. 不能与加法交换律混淆; 3.根据是:等式的性质1; 4.目的是:为了得到形如ax=b的方程。
3m-m = 1- 8
2m =-7
m = -3.5
约公元825年,中亚细亚数学家阿 尔—花拉子米写了一本代数书,重 点论述怎样解方程。这本书的拉丁 译本为《对消与还原》。“对消” 与“还原”是什么意思呢?
其实所谓的“对消”简单的说就是 指“合并同类项”,“还原”是指“移 项”。
1.移项
(1)一般地,把方程中的某些项改变符号后,从方程的一 边移到另一边,这种变形叫做移项。
人教版七年级数学上册3.2.2《合并同类项与移项(第2课时)》教学设计
人教版七年级数学上册3.2.2《合并同类项与移项(第2课时)》教学设计一. 教材分析人教版七年级数学上册3.2.2《合并同类项与移项(第2课时)》这一节主要介绍了合并同类项和移项的方法。
合并同类项是指将同类项的系数相加减,字母和字母的指数不变;移项是指将方程中的一项移到另一边,移项时要变号。
这一节的内容是初中数学的重要基础知识,对于学生后续的学习和应用有着重要的意义。
二. 学情分析七年级的学生已经掌握了整式的加减法,对同类项有了初步的认识,但合并同类项和移项的方法还没有完全掌握。
因此,在教学这一节时,需要通过具体例子让学生理解合并同类项和移项的原理,并通过大量的练习让学生熟练掌握方法。
三. 教学目标1.知识与技能:理解合并同类项和移项的概念,掌握合并同类项和移项的方法。
2.过程与方法:通过观察、分析、归纳,培养学生的逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:合并同类项和移项的方法。
2.难点:如何判断哪些项是同类项,如何正确移项。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过具体例子引导学生观察、分析、归纳合并同类项和移项的规律,然后通过小组合作进行练习,巩固所学知识。
六. 教学准备1.课件:制作合并同类项和移项的PPT,包含具体的例子和练习题。
2.练习题:准备一些合并同类项和移项的练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)通过一个实际问题引入合并同类项和移项的概念,激发学生的兴趣。
2.呈现(10分钟)呈现PPT,展示合并同类项和移项的定义和规则,让学生观察、分析、归纳。
3.操练(10分钟)让学生进行合并同类项和移项的练习,教师巡回指导,及时纠正错误。
4.巩固(10分钟)让学生分组合作,共同完成一些合并同类项和移项的综合练习题。
5.拓展(10分钟)让学生思考:合并同类项和移项在实际生活中的应用,如何解决实际问题。
人教版数学七年级上册3.2 解一元一次方程(一)——合并同类项与移项 课件(共17张PPT)
B
知识点二 合并同类项
把方程两边的____同__类__项______分别合并,从而把方程转化 为_____a_x_=__b_____的形式,然后再转化为x=c的形式(其中 a,b,c是常数).
2. 解方程-7x+4x=9的步骤: (1)__合__并__同__类__项__,__得__-__3_x_=__9_______; (2)__系__数__化__为__1_,__得__x_=__-__3_________.
【例3】解下列方程: (1)3x+2x+x=24; 解:合并同类项,得6x=24. 系数化为1,得x=4.
(2)-3x+6x=18. 解:合并同类项,得3x=18. 系数化为1,得x=6.
思路点拨:先合并同类 项,再将系数化为1即 可.
解:合并同类项,得-x=-3. 系数化为1,得x=3.
【例4】有一列数,按一定的规律排列成-2,4,-8,16 ,…,其中某三个相邻的数的和为-384,求这三个数各为 多少.
第三章Байду номын сангаас一元一次方程
第27课时 解一元一次方程(一)——合并同类项
目录
01 本课目标 02 课堂导练
本课目标
1. 运用合并同类项解形如 ax+bx+cx=p的方程. 2. 经历运用方程解决实际问题的过程,体会方程是刻画现 实世界的有效数学模型.
知识点一 未知数系数化为1
把形如ax=b的方程,利用等式的性质,两边同时 ____除__以__a______,从而把方程转化为x=c的形式(其中a,b ,c是常数).
谢谢
课堂导练
解:系数化为1,得x=2. 思路点拨:利用将未知数系数化为1的方法解答即可.
解:系数化为1,得x=-3.
D
七年级数学上册 第三章 一元一次方程 3.2 解一元一次方程(一)—合并同类项与移项 第2课时 用移
3.2 解一元一次方程(一)——合并同类项与移项情景导入归纳导入类比导入悬念激趣问题1:上节课我们学习了利用等式的基本性质解方程,哪位同学能叙述一下等式的基本性质呢?问题2:上周在我校举办了全市的数学优质课评选,共有50名教师听课,已知男教师比女教师的4倍少5人,请问听课的教师中有多少名男教师,多少名女教师?(要求:只列方程)[说明与建议] 说明:此环节为本节课新知的学习做好铺垫,体会等式的基本性质在解方程的过程中的作用.同时让学生体会到数学来源于生活,激发学生探究新知的兴趣.建议:学生叙述等式的基本性质要准确,问题2可引导学生发散思维,一题多解.通过上节课的学习,同学们知道:可以利用等式的基本性质解方程,比如:5x -2=8.方程两边同时加上2,得5x -2+2=8+2. 也就是5x =10.方程两边同时除以5,得x =2.此种解法过程比较繁琐,还有没有更加简便的方法呢?[说明与建议] 说明:本环节既回顾了上节所学:等式的基本性质及解方程,又引出了新的问题,为下面的学习设置了疑问,激发学生的学习兴趣.建议:此方程可由学生独立完成,回顾上节课解题过程,让学生总结此种方法的不便之处,教师适时提出问题,引出新课.教材母题——教材第89页例3 解下列方程:(1)3x +7=32-2x ;(2)x -3=32+1.【模型建立】利用合并同类项与移项解一元一次方程,要注意以下几点:(1)移项时,从方程的一边移到另一边的项要变号.(2)方程中的项包括它前面的符号.(3)不要把移项和加法交换律混淆.(4)在解方程时,习惯上把含有未知数的项放在等号的左边,不含未知数的项放在等号的右边.【变式变形】1.下列变形符合移项法则的是(C )A .由5+3x =2,得3x =2+5B .由-10x -5=-2x ,得-10x -2x =5C .由7x +9=4x -1,得7x -4x =-1-9D .由5x +2=9,得5x =9+22.一元一次方程t -3=12t 化为t =a 的形式为__t =6__.3.当k =__-12__时,方程5x -k =3x +8的解是x =-2.4.如果5a 3b -m 与a 3b 6m -7是同类项,那么m 的值为( D ) A .-1 B .2 C .-2 D .15.解方程:(1)-9x -4x +8x =-3-7; (2)3x -4=8-x ; (3)-3m +1=9-m ; (4)0.6x -4.1=3.9-1.4x.[答案:(1)x =2 (2)x =3 (3)m =-4 (4)x =4][命题角度1] 用合并同类项解一元一次方程用合并同类项法解一元一次方程的步骤:(1)合并同类项;(2)系数化为1.如素材二变式变形第5(1)题.[命题角度2] 用合并同类项与移项解一元一次方程利用合并同类项与移项解一元一次方程,要注意以下几点:(1)移项时,从方程的一边移到另一边的项要变号.(2)方程中的项包括它前面的符号.(3)不要把移项和加法交换律混淆.(4)在解方程时,习惯上把含有未知数的项放在等号的左边,不含未知数的项放在等号的右边.如素材二变式变形第5(2)(3)(4)题.[命题角度3] 利用一元一次方程解决和差倍分问题解这类题的关键是根据题意找出题目中的和差倍分的等量关系.增长量=原有量×增长率.注意:要恰当地设未知数,这样可以简化运算.题目中等量关系可能不止一个,有时会有多个,要根据具体情况恰当地选择等量关系.解完方程后要检验,避免出现不符合实际的答案.例 如果甲、乙、丙三个村合修一条水渠,计划出工60人,甲村出工人数是乙村出工人数的13,丙村出工人数是乙村出工人数的2倍,求乙村出工人数.解:设乙村出工人数为x ,则甲村出工人数为13x ,丙村出工人数为2x.根据题意,得x +13x +2x =60.合并同类项,得103x =60.系数化为1,得x =18.答:乙村出工的人数为18.[命题角度4] 利用一元一次方程解决盈亏问题 盈亏问题的等量关系:(1)“盈”是分配中的多余情况,“亏”是分配中的缺少情况; (2)一般会给出两个条件:什么情况下会“盈”,盈多少?什么情况下会“亏”,亏多少?这两个条件都可以用来列式子,然后利用相等关系列方程.例 某小组计划做一批“中国结”,如果每人做5个,那么比计划多做了9个;如果每人做4个,那么比计划少做了15个.小组成员共有多少名?解:设小组成员共有x 名,由题意,得5x -9=4x +15. 移项,得5x -4x =15+9. 合并同类项,得x =24. 答:小组成员共有24名.[命题角度5] 利用一元一次方程解决比例分配问题甲∶乙∶丙=a∶b∶c,设其中一份为x ,由已知部分量在总量中的比例,可得表示各部分份量的式子,相等关系:各部分量之和=总量.例 已知a∶b∶c=2∶3∶4,a +b +c =27,求a -2b -2c 的值. 解:因为a∶b∶c=2∶3∶4,所以设a =2m ,b =3m ,c =4m. 代入a +b +c =27,得2m +3m +4m =27, 即9m =27,所以m =3. 所以a =6,b =9,c =12.所以a -2b -2c =6-2×9-2×12=-36. [命题角度6] 利用一元一次方程解决日历问题 日历中的相等关系:(1)日历中同一行中相邻的两数相差1,同一列中相邻的两数相差7.(2)用字母表示相邻三个数时,有多种表示方法,一般设中间一个数为a ,利用相反数的性质,能使计算过程简便.例 [利川校级一模] 图3-2-2是2014年6月的日历表,在日历表上可以用一个方框圈出3×3个位置相邻的数(如11,12,13,18,19,20,25,26,27),若圈出的9个数的和为99,则方框中心的数为( A )图3-2-2A .11B .12C .16D .18P88练习1.解下列方程:(1)5x -2x =9; (2)x 2+3x2=7;(3)-3x +0.5x =10; (4)7x -4.5x =2.5×3-5.[答案] (1)x =3;(2)x =3.5;(3)x =-4;(4)x =1.2.某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元.前年的产值是多少?解:设前年的产值是x 万元,根据题意,得 x +1.5x +1.5x ×2=550. x +1.5x +3x =550.合并同类项得5.5x =550. 系数化为1.得x =100.答:前年的产值是100元. P90练习1.解下列方程:(1)6x -7=4x -5; (2)12x -6=34x .[答案] (1)x =1;(2)x =-24.2.王芳和李丽同时采摘樱桃,王芳平均每小时采摘8 kg ,李丽平均每小时采摘7 kg.采摘结束后王芳从她采摘的樱桃中取出0.25 kg 给了李丽,这时两人的樱桃一样多.她们采摘用了多少时间?解:设她们采摘用了x 小时,根据题意,得8x -0.25=7x +0.25. 8x -7x =0.25+0.25. x =0.5.答:他们采摘用了0.5小时. P91习题3.2 复习巩固1.解下列方程: (1)2x +3x +4x =18; (2)13x -15x +x =-3;(3)2.5y +10y -6y =15-21.5;(4)12b -23b +b =23×6-1. [答案] (1)x =2;(2)x =3;(3)y =-1;(4)b =3.6.2.举例说明解方程时怎样“移项”,你知道这样做的根据吗?[答案] 例如解方程5x +3=2x ,把2x 改变符号后移到方程左边,同时3改变符号移到方程右边,即5x -2x =-3.移项的根据是等式的基本性质.3.解下列方程: (1)x +3x =-16;(2)16y -2.5y -7.5y =5; (3)3x +5=4x +1; (4)9-3y =5y +5.[答案] (1)x =-4;(2)y =56;(3)x =4;(4)y =12.4.用方程解答下列问题:(1)x 的5倍与2的和等于x 的3倍与4的差,求x ; (2)y 与-5的积等于y 与5的和,求y . [答案] (1)x =-3;(2)y =-56.5.小新出生时父亲28岁,现在父亲的年龄是小新年龄的3倍,求现在小新的年龄. 解:设小新现在的年龄是x 岁,根据题意,得 3x -x =28;合并同类项,得2x =28. 系数化为1,得x =14.答:现在小新的年龄是14岁.6.洗衣机厂今年计划生产洗衣机25 500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量比为1∶2∶14,计划生产这三种洗衣机各多少台?[答案] Ⅰ型,Ⅱ型,Ⅲ型各1500台,3000台,21 000台.7.用一根长60 m的绳子围出一个长方形,使它的长是宽的1.5倍,长和宽各应是多少?[答案] 长18 m,宽12 m.综合运用8.随着农业技术的现代化,节水型灌溉得到逐步推广.喷灌和滴灌是比漫灌节水的灌溉方式.灌溉三块同样大的实验田,第一块用漫灌方式,第二块用喷灌方式,第三块用滴灌方式.后两种方式用水量分别是漫灌的25%和15%.(1)设第一块实验田用水x t,则另两块实验田的用水量各如何表示?(2)如果三块实验田共用水420 t,每块实验田各用水多少吨?解:(1)设第一块实验田用水x t,第二块实验田的用水量为0.25x t,第三块实验田用水0.15x t;(2)根据题意,得x+0.25x+0.15x=420,1.4 x=420,x=300.300×0.25=75(t),300×0.15=45(t).答:三块实验田用水各300 t,75 t,45 t.9.某造纸厂为节约木材,大力扩大再生纸的生产.它去年10月生产再生纸2050 t,这比它前年10月再生纸产量的2倍还多150 t.它前年10月生产再生纸多少吨?[答案] 950吨.10.把一根长100 cm的木棍锯成两段,要使其中一段长比另一段长的2倍少5 cm,应该在木棍的哪个位置锯开?[答案] 35 cm处.11.几个人共同种一批树苗,如果每人种10棵,则剩下6棵树苗未种;如果每人种12棵,则缺6棵树苗.求参与种树的人数.[答案] 6人.拓广探索12.在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为30?如果能,这三个数分别是多少?[答案] 3,10,17.13.一个两位数的个位上的数的3倍加1是十位上的数,个位上的数与十位上的数的和等于9,这个两位数是多少?[答案] 72.[当堂检测]第1课时用合并同类项解一元一次方程1.下面由(1)到(2)的变形是合并同类项的是()A.(1)3x-2=6,(2)3x=82B.(1)-12x=8 ,(2)x=-3C.(1)2x–4x –3x = 6 ,(2)-5x = 6D.(1)2(3x+2) =4x,(2)6x+4 =4x2.下面变形正确的是()A. 由3x- x +4x= 8 得:3+4x=8B. 由2x – 4x –x = 8+2 得:-3x =10C. 由– 6x-3x = 5 得: -3x = 5D. 13x +2x -8x = -3 -5 得:7x = -23. 方程4x-m=3的解是x=m,则:m 的值是( )A .m=-1B .m=1C .m=-2D .m=2 4. 小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x 张,根据题意,请你能帮小悦列出方程为__________________(不需要求解). 5. 用合并同类项解方程: (1)4x –7x=4+2×3;(2)4x -2.5x +5x –1.5x=-8-7.参考答案: 1. C 2. B 3. B4. x+5(12-x )=48 ;5. 解:(1)-3x=10,x=310 ; (2)5x=-15,x= -3 .第2课时 用移项、合并同类项解一元一次方程 1.列变形中属于移项的是( )A .由5x -7y =2,得-2=-7y +5xB .由6x -3=x +4,得6x -3=4+xC .由8-x =x -5,得-x -x =-5-8D .由x +9=3x -1,得3x -1=x +92. 在解方程3x+5=-2x-1的过程中,移项正确的是( )C A .3x-2x=-1+5 B .-3x-2x=5-1 C .3x+2x= -1-5 D .-3x-2x=-1-53. 请把下列解方程:5x-2=7x+8的过程补完整. 解:移项得:5x-7x =___ 合并同类项得:___=10 系数化为一得:x =____4. 练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好用去14元.如果设水性笔的单价为x 元,那么由题意列方程是___________ .5. 解方程:(1)3x+3-4=6x+1 ; (2)12x-4-3x+3=12x+17. 参考答案: 1. C ; 2. C ;3. 8+2 -2x -54. 5(x-2)+3x=145.(1)x =-32 (2)x = -6[能力培优]专题一 利用合并同类项与移项解方程 1.解下列方程(1)12884x x +=-;(2)233234x x +=-.2. 已知方程4x +2m =3x +1和方程3x +2m =6x +1的解相同,求这个相同的解.3.规定新运算符号*的运算过程为b a b a 4131*-=,则求: (1)求5*(-5);(2)解方程2*(2*x )=1*x .4.关于x 的方程kx +2=4x +5 ()4≠k 有正整数解,求满足条件的k 的正整数值.专题二 列方程解和、差、倍分问题5.小明编了这样一道题:我是四月出生的,我的年龄的2倍加上8,正好是我出生那一月的总天数,那么你认为小明是几岁 ( )A.18岁B.11岁C.19岁D.21岁6.某会议厅主席台上方有一个长12.8m 的长条形(矩形)会议横标框,铺红色衬底.开会前将会议名称用白色厚纸或不干胶纸刻出来贴于其上.但会议名称不同,字数一般每次都多少不等,为了制作及贴字时方便美观,会议厅工作人员对有关数据作了如下规定:边空:字宽:字距=9:6:2,如图所示.根据这个规定,求会议名称的字数为18时,边空、字宽、字距各是多少?7.(2012·长沙)以“开放崛起,绿色发展”为主题的第七届“中博会”已于2012年5月20日在湖南长沙圆满落幕,作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省外境内投资合作项目多51个. (1)求湖南省签订的境外、省外境内的投资合作项目分别有多少个?(2)若境外、省外境内投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元,求在这次“中博会”中,东道主湖南省共引进资金多少亿元? 专题三 列方程解盈余不足问题8.(2012·铜仁)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A.5(x+21-1)=6(x-1) B.5(x+21)=6(x-1)C. 5(x+21-1)=6xD. 5(x+21)=6x9.在“读书月”活动中,学校把一些图书分给某班学生阅读,若每个人分3本,则剩余20本;若每个人分4本,则还缺少25本.这个班有多少名学生?10.某学校组织学生春游,如果租用若干辆45座的客车,则有15个人没有座位,如果租用同数量的60座的客车,则多出1辆,其余车恰好坐满,已知租用45座的客车日租金为每辆车250元,60座的客车日租金为300元,问租用哪种客车更合算,租几辆车?专题四日历中的方程11.如图是某月的日历表,在此日历表上可以用一个长方形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数的和为144,那么最小的一个数为()A.7 B.8 C.9 D.1012日历表中,任意圈出的同一竖列上相邻的3个数的和能否是21?如果能,请求出这三个数,如果不能,请说明理由?13.日历表中,小亮圈出同一竖列上相邻的4个数的和是50,这四天分别是几号?知识要点:1.把等式一边的某项变号后移到另一边,叫做移项.2.移项的目标:将方程中的所有含未知数的项都集中到方程的左边,常数项都集中到方程的右边,便于合并同类项.3.移项的理论依据:移项相当于利用等式性质1,方程两边同时加上或减少同一个数或式.4.“表示同一个量的两个不同的式子相等”是一个基本的相等关系,常用来列方程.方法技巧:1.两个方程同解问题解题思路:如果两个方程中只有一个方程含有参数,那么我们先求出不含参数的方程的解,然后将方程的解代入另一个方程得到一个关于参数的方程,从而求出参数的值;如果两个方程都含有参数,那么我们将参数看作已知数,分别解出这两个方程,然后根据两个解相等,列出一个关于参数的方程,从而求出参数的值.2.日历中同一竖列上相邻的两个日期之间相差7天;日历中同一横行上相邻的两个日期之间相差1天;日历中2×2个数之间交叉相加和相等.3.盈余不足问题常常利用“表示同一个量的两个不同的式子相等”来列方程.4.新定义运算的题目只要将新定义的符号按照题目指明的运算进行就ok,其他的运算不变.答案:1. 解:(1)12884x x +=-, 移项,得:12848x x -=--, 合并同类项,得:412x =-, 系数化为1,得:x =-3.(2)233234x x +=-,移项,得:232334x x -=--,合并同类项,得:1512x -=-, 系数化为1,得:x =60.2. 解:4x +2m =3x +1的解为:x =1-2m , 3x +2m =6x +1的解为:x =213m -, 所以1-2m =213m -, 解得m =12, 把m =12代入x =1-2m ,得x =0. 3. 解析:(1)5*(-5)=115(5)34⨯-⨯-=1235;(2)因为2*x =2134x -,所以2*(2134x -)=2121()3434x --,1*x =1134x -.所以2121()3434x --=1134x -,解得:158-=x .4. 解析:移项,得kx -4x =5-2,合并同类项,得(k -4)x =3, 因为k -4≠0,所以系数化为1,得34x k =-. 因为34k -为正整数,所以k -4=1或者k -4=3.解得75==k k 和. 5. B 解析:设小明x 岁,由题意得2x +8=30, 解得x =11.6. 解析:设边空、字宽、字距分别为9x (cm )、6x (cm )、2x (cm ),则: 9x ×2+6x ×18+2x (18﹣1)=1280, 解得:x =8.答:边空为72cm ,字宽为48cm ,字距为16cm .7. 解析:(1)设湖南省签订的境外投资合作项目有x 个,那么省外境内投资合作项目 (512-x )个,由题意得: 348512=-+x x ,解得133=x ,512-x =215; (2)215×7.5+133×6=2410.5(亿元).答:(1)湖南省签订的境外、省外境内的投资合作项目分别有133个、215个. (2)在这次“中博会”中,东道主湖南省共引进资金2410.5亿元.8.A 解析:如果每隔5米栽1棵,则树苗缺21棵,故道路长为5(x +21-1);如果每隔6米栽1棵,则树苗正好用完,故道路长为6(x -1).因路长相等,所以5(x +21-1)=6(x -1).9. 解析:设这个班有x 名学生,由题意得320425x x +=-,解得45x =, 答:这个班有45名学生.10. 解析:设租45座的客车x 辆,根据题意得:45x+15=60(x-1),解得:x=5,所以租45座的客车的租金应为:250×(5+1)=1500(元), 租60座的客车的租金应为:300×(5-1)=1200(元), 所以租用60座的客车更合算,租4辆.11.B 解析:根据图可以得出,圈出的9个数中最大数与最小数的差为16,设最中间一个数为x ,则其他各数为x ±1,x ±7,x ±8,x ±6.这9个数的和为9x,由题意得9x=144,所以x=16,所以最小的数是16-8=8.12. 解:设圈出的三个数中中间日期为x 号,由题意得: (x-7)+x+(x+7)=21.解得x=7, x-7=7-7=0,x+7=7+7=14.因为日历中最小日期为0号,所以不符合题意,不存在这样的情况. 答:不可能存在三天日期和为21的情况.13. 解:设从前面数第二个日期是x 号,则另三个日期为(x-7)、(x+7)、(x+14)号,由题意得:(x-7)+x+(x+7)+(x+14)=50,解得 x=9, x-7=9-7=2,x+7=9+7=16,x+14=9+14=23. 答:这四天分别是2号,9号,16号,23号.解一元一次方程的“八项注意”革命歌曲<<三大纪律,八项注意>>想必同学们都知道吧,尤其是”八项注意”可以说是耳熟能详了.那么在学习解一元一次方程时,为了避免同学们在解方程时发生错误,特提出以下八个注意点:第一,注意解方程的格式.解方程的每一步都必须是方程,因此同学们在初学时出现的“连等式”或“解原式=”这些解题格式均是错误的。
人教版七年级上册数学课件:解一元一次方程(一)——合并同类项与移项2(第二课时21张)
6(x+1)=9(x-1)
得出 x=5
6× (5+1)=36(人)
答:这个班共有36人.涉及去括号了,应将书本例 题放入
1.有一个班的同学去划船,他们算了一下, 如果增加一条船,正好每条船坐6人,如果 减少一条船 ,正每条船坐9人,问:这个 班共多少同学?
解法二:解:设这个班共有同学x人.则
缺的部分补充完整.
某手工小组计划教师节前做一批手工品赠给老师,如
果每人做5个,那么就比计划少2个;
.请问
手工小组有几人?(设手工小组有x人)
解析:如果每人做6个,那么就比计划多做8个.
答案:如果每人做6个,那么就比计划多做8个.
5.某班开展为贫困山区捐书活动,捐的书比平均每人捐3 本多21本,比平均每人捐4本少27本,求这个班有多少名 学生? 解:设这个班有x名学生,由题意得 3x+21=4x-27 解得 x=48 答:这个班有48名学生.
(3)32 2x 4x 2
(2)2x 3 5x 9
(4) 1 x 3 8 3 x
2
4
3.已知5是关于x的方程 3x 2a 7
的解,则a的
值为_____a=7,解得a=4
答案:4
4.小明根据方程5x+2=6x-8编写了一道应用题.请你把空
1. 解方程的步骤:
移项
(等式性质1)
合并同类项
系数化为1 (等式性质2)
2. 列方程解应用题的步骤:
一.设未知数:
二.分析题意找出等量关系:
三.根据等量关系列方程:
1.有一个班的同学去划船,他们算了一下, 如果增加一条船,正好每条船坐6人,如果 减少一条船 ,正好每条船坐9人,问:这 个班共多少同学?
5.2 解一元一次方程(1)——合并同类项与移项 课件 人教版(2024)七年级数学上册
9
10
D. -4
11
12
13
14
15
16
17
18
19
20
5.2
分层检测
解一元一次方程(1)——合并同类项与移项
17. 解下列方程:
(1)2 x +1=7;
(2)2 x -8=4- x ;
(1)解:移项,得2 x =7-1,合并同类项,得2 x =6,
系数化为1,得 x =3;
(2)解:移项,得2 x + x =4+8,合并同类项,得3 x =12,
A. 2 x +3 x =7+5
B. 2 x -3 x =-7+5
C. 2 x -3 x =7-5
D. 2 x -3 x =7+5
)
4. 下列解方程的过程中,移项错误的是( B )
A. 由2 x +6=-3得2 x =-3-6
B. 由4 x -2=3 x +7得4 x -3 x =-7+2
C. 由3 x =4- x 得3 x + x =4
5.2 解一元一次方程(1)——合并同类项与移项
1
课前预习
2
3
分层检测
课堂学练
5.2
解一元一次方程(1)——合并同类项与移项
1. 合并:8 x +2 x =
10 x
x =3
2. 方程2 x =6的解是
=5的解是
x =5
课前预习
,2 x -3 x +4 x =
1
, x =-4的解是
2
3x
x =-8
,3 x -2 x
(2)10 x -13 x +5 x =-6.
解:合并同类项,得2 x =-6,系数化为1,得 x =-3.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3
3x 0.5 x 10
(4)6m 1.5m 2.5m 3
合并同类项,得
合并同类项,得 2.5x 10
系数化为1,得
2m 3
系数化为1,得
x 4
(5)3 y 4 y 25 20
合并同类项,得
3 m 2
y 45
系数化为1,得
下课了!
结束寄语
• 宝剑锋从磨砺出,
• 梅花香自苦寒来。
y 5
试一试:
洗衣厂今年计划生产洗衣机25500台,其中Ⅰ型,Ⅱ型,Ⅲ 型三种洗衣机的数量之比为1:2:14,这三种洗衣机计划 各生产多少台?
解:设Ⅰ型
x 台,Ⅱ型 2x台,Ⅲ型 14 x
台,则:
x 2x 14x 25500
合并, 得17 x 25500
系数化1, 得x 1500
思考:怎样解 这个方程呢?
“总量=各部分量的和”是一个基本的相等关系.
x 2x 4x 140
合并
分析:解方程,就是把
7 x 140
系数化为1
方程变形,变为 x = a (a为常数)的形式.
x 20
想一想:
解方程中“合并”起了什么作用?
解方程中的“合并”是利用分配律将含有未知数 的项和常数项分别合并为一项。它使方程变得简 单,更接近x = a的形式
例1:解方程
3x 2x 8x 7
合并, 得 3x 7
解:
7 系数化1, 得x 3小试牛刀Fra bibliotek解下列方程
1 5x 2 x 9
2
1 3 x x 7 2 2
解:(1)合并同类项,得
你一定会! 系数化为1,得
3x 9 x3
(2)合并同类项,得 2x 7 系数化为1,得
问题1: 某校三年共购买计算机140台,去年购买数量是 前年的2倍,今年购买数量又是去年的2倍,前年这 个学校购买了多少台计算机? 设前年购买x台。可以表示出:去年购买计算 机 2 x 台,今年购买计算机 4 x 台。 你能找出问题中的相等关系吗?
前年购买量+去年购买量+今年购买量=140台
x+2x+4x=140
答: Ⅰ型1500台,Ⅱ型3000台,Ⅲ型21000台。
活动:归纳总结 巩固发展
小结
本 节 课 学 了 哪 些 内 容? 哪 些 方 法?
内容 列方程 列一元一次方程.
解方程 解一元一次方程
合并同类项 把未知项和已知项 合并成一项
系数化为1 方程两边同时除以未知数系数a.
作业:
P93 习题3.2第1题
3.2解一元一次方程
(一)
合并同类项与移项
复习导入
1、什么是同类项,怎样合并同类项? 2、合并同类项要注意什么? 所含字母相同,并且相同字母的指数也相同 的项叫同类项。合并同类项时,把系数相加 减,字母和指数不变。 系数相加,“两”不变。
约公元825年,中亚细亚 数学家阿尔—花拉子米写 了一本代数书,重点论述 怎样解方程。这本书的拉 丁译本为《对消与还原》。 “对消”与“还原”是什 么意思呢?
合并同类项 (1) x 5 x 3
(3) y 5 y 2 y
(2)-3x 7 x
1 2 3 2 2 (4) x y x y x y 2 2
解:(1)3x 5x (3 5) x 2 x
(2) 3x 7 x (3 7) x 4 x (3) y 5 y 2 y (1 5 2) y 4 y 1 2 3 2 1 3 2 (4) x y x y x y ( 1) x 2 y x 2 y 2 2 2 2