偏振原理及应用

合集下载

偏振的原理及应用

偏振的原理及应用

偏振的原理及应用1. 偏振的概念和基本原理偏振是指光波的振动方向在空间中的取向特性。

当光波在一个特定方向上振动时,我们称之为偏振光。

而光波在空间中的振动方向可以分为不同类型,包括水平、垂直、倾斜等。

偏振现象是由光波的电磁性质决定的。

光波是由电场和磁场相互作用而产生的,因此,在描述光的偏振时,我们需要考虑电场的振动方向。

根据这一原理,我们可以将偏振光分为水平偏振光、垂直偏振光和倾斜偏振光。

水平偏振光的电场振动方向与水平方向平行,垂直偏振光的电场振动方向与垂直方向平行,而倾斜偏振光的电场振动方向与水平和垂直方向有一个夹角。

2. 偏振的产生和检测方法2.1 光的偏振产生方法光的偏振可以通过多种方法实现。

其中最常见的方法是利用偏振片。

偏振片是由有机化合物或无机晶体制成的,具有选择性吸收特定方向的振动分量而使其通过的特性。

当光通过偏振片时,只有振动方向与偏振片允许的方向相一致的光能通过。

通过选择不同角度的偏振片,我们可以获得不同方向的偏振光。

另外一种常见的产生偏振光的方法是利用波片。

波片可以将线偏振光转化为旋转偏振光。

其中,四分之一波片将线偏振光转化为右旋偏振光,而半波片则可以将线偏振光转化为相反方向的线偏振光。

2.2 光的偏振检测方法检测光的偏振可以通过偏振片、偏振棱镜和偏振滤光片等器件实现。

这些器件可以选择特定方向的振动分量通过,从而判断光是否为偏振光,以及其偏振方向。

另外,还可以利用偏振仪进行偏振光的检测。

偏振仪通常由两个偏振片组成,其中一个偏振片称为偏振器,用于产生偏振光。

另一个偏振片称为偏振分析器,用于分析通过的光的偏振性质。

3. 偏振的应用领域3.1 光学领域偏振光在光学领域具有广泛的应用。

其中,偏振光可以用于显微镜、天文仪器以及光学通信等设备中。

在显微镜中,偏振光可以提高成像的清晰度和对比度,用于观察细胞、组织等微观结构。

在天文仪器中,偏振光用于研究天体的自转、磁场等性质。

在光学通信中,偏振光可以增加信息传输的容量和可靠性。

偏振片的原理及应用

偏振片的原理及应用

偏振片的原理及应用偏振片是一种广泛应用于光学领域的重要元件,它能够选择性地传递或阻挡特定方向的光波。

本文将介绍偏振片的原理以及它在不同领域中的应用。

一、偏振片的原理偏振片的工作原理基于光的偏振现象。

光波是由电场和磁场垂直于传播方向振动的电磁波,而偏振片则通过对电场方向进行选择性的筛选来实现偏振效果。

偏振片通常由有机高分子材料或无机晶体制成。

它们的分子结构或晶体结构决定了偏振片对不同方向的电场振动有不同的响应。

在偏振片中,只有与材料分子结构或晶体结构平行的电场方向的光能够通过,而垂直于该方向的光则被阻挡。

二、偏振片的应用1. 光学显示技术偏振片在光学显示器件中得到了广泛应用,如液晶显示屏。

在液晶显示器中,通过使用偏振片,能够实现对光的偏振控制,从而达到显示和调节亮度的效果。

同时,偏振片还可用于减少反射和增加对比度,提高显示屏的视觉效果。

2. 摄影和摄像在摄影和摄像领域中,偏振片常用于减少了镜头的光线反射和散射。

通过使用偏振片,可以削减非金属表面的光线反射,如水面或植物叶片上的反射光,从而获得更清晰和鲜艳的图像。

3. 光学仪器在光学仪器中,偏振片也有广泛的应用。

例如,偏振片可以用于偏振显微镜,通过选择性地阻挡或传递特定方向的偏振光,显微镜可以对样品进行更加清晰和详细的观察。

此外,偏振片还可以用于光谱仪、激光器等光学仪器中,提高仪器的测量精度和稳定性。

4. 光通信光通信是一种基于光传输数据的通信方式。

偏振片在光通信中起到了重要的作用。

通过使用偏振片,可以对光信号进行编码和解码,实现高速稳定的光信号传输。

偏振片还可以用于光纤通信中的光纤连接和信号调制,提高通信的稳定性和可靠性。

5. 光偏振控制除了上述应用,偏振片还用于光偏振控制领域。

通过调节偏振片的角度或结构,可以控制光的偏振方向和强度,从而实现对光波的精确控制和调节。

这一特性在光学器件研究、激光加工和光学测量等领域中有广泛的应用。

结语:偏振片作为一种重要的光学元件,具有广泛的应用前景。

光的偏振现象的原理和应用

光的偏振现象的原理和应用

光的偏振现象的原理和应用偏振现象的定义和原理光是一种电磁波,它的振动方向可以不受限制地摆动。

然而,当光传播过程中遇到特定的介质或物体时,它的振动方向会受到限制,这就是光的偏振现象。

光的波动形式分为纵波和横波,偏振现象主要发生在横波光中。

光的偏振现象可以通过以下两种方式实现:1.通过透射或反射产生偏振:当光从一个介质透射到另一个介质中时,根据两种介质的不同特性,光的振动方向会发生改变。

例如,当光从水中透射到空气中时,振动方向发生改变,产生偏振。

2.通过介质中的吸收和散射产生偏振:某些介质能够吸收特定方向的光,而将其他方向的光散射出来。

这样,散射出来的光就成为了偏振光。

光的偏振的分类根据光的振动方向和光传播方向之间的关系,光的偏振可以分为线偏振、圆偏振和椭偏振三种类型。

1.线偏振:光的振动方向只能在一个平面内,可以是水平方向、垂直方向或者在两者之间的任意方向。

2.圆偏振:光的振动方向随着时间呈现圆形轨迹。

3.椭偏振:光的振动方向随着时间呈现椭圆形轨迹。

光偏振的应用光的偏振现象在许多领域都有重要的应用。

以下是一些常见的应用:1.光学仪器:偏振片、偏振镜等光学元件常用于计量仪器和光学设备中,用于控制和分析光的偏振状态。

2.液晶显示技术:液晶分子具有偏振效应,利用液晶分子的偏振特性可以制造液晶显示器。

3.光通信:光纤传输中,利用光的偏振性质可以增加信息传输的容量,提高信号传输质量。

4.材料测试和表征:通过测试材料的偏振性质,可以了解材料的结构、性能等信息,对于材料的表征和研究具有重要意义。

5.生物医学成像:偏振光成像技术可以用于生物组织成像,通过对光的偏振变化进行分析,可以获取关于生物组织结构和功能的信息。

总结光的偏振现象是光学中的重要概念,它在许多领域都有广泛的应用。

通过透射、反射、吸收和散射等方式,光的振动方向可以受到限制,产生偏振。

根据振动方向和传播方向之间的关系,光的偏振可以分为线偏振、圆偏振和椭偏振三种类型。

偏振原理应用

偏振原理应用

偏振原理应用
偏振原理在多个领域都有应用,以下是一些主要的应用:
1.光学设计:在光学设计中,人们往往更多关注光的波长和强度,而忽略了其偏振指标。

然而,偏振是光的重要特性,利用光的偏振性可以实现多种应用。

2.天空散射:天空因为散射,不同方向偏振态不同。

可以用偏振片来观察这一现象。

3.液晶显示:手机屏幕、电脑屏幕、计算器等使用的都是液晶显示技术,这也是一种偏振光的应用。

4.探测外部星体:因为星体周围的尘埃而散射的光是偏振光,探测到偏振光就能知道星体的存在。

5.光纤通信:光纤可以利用两个不同的偏振态来提高传输信号的速度。

6.目标检测:有时候强度特征不明显的物体(例如树荫下的卡车)用普通拍照技术看不出来,但是偏振图片就非常明显,常用于军事。

7.质量检测:一些塑料产品是双折射材料,加在两个正交的偏振片中能看见不同的颜色。

8.疾病诊断:病变细胞和正常细胞在光照射下偏振状态不同。

9.动物世界:章鱼、蜜蜂和蜘蛛靠偏振光来行走。

偏振片的原理及应用

偏振片的原理及应用

偏振片的原理及应用偏振片是一种常见的光学材料,通过特殊的制作工艺,可以选择性地透过或阻挡特定方向上的光波,从而实现光的偏振控制。

它在各个行业中都有广泛的应用,如显示技术、光学仪器、摄影以及各种光学仪器等。

一、偏振片的原理偏振片的原理基于光的偏振现象,光波在传播过程中,振动方向不断变化,可以沿任意方向传播。

然而,当光通过特定的材料后,只有沿特定方向振动的分量能够透过,并抑制垂直于该方向的分量。

1. 介质的偏振特性介质对光的偏振特性可以通过材料的晶体结构或者分子构型来决定。

例如,结晶质材料如石英、云母等以及其他各种有机材料,都可以用来制作偏振片。

这些材料都有着特定的分子、原子排列方式,使得只有特定方向上的振动能够透过。

2. 线偏振片的制备制备偏振片的常用方法是将普通的自然光通过一个结晶质材料,让其只能通过特定方向的振动分量。

这个过程中,垂直于所选择方向的分量会被吸收或者散射掉,最终得到只有一个特定振动方向的纯偏振光。

二、偏振片的应用1. 光学显示领域在液晶显示屏中,偏振片被广泛应用。

液晶显示屏原理是通过控制液晶分子的排列来控制光的透过与阻挡,再加上前后两个交叉的偏振片,可以实现像素点的亮度调节,从而呈现出丰富的图像和色彩。

2. 摄影领域拍摄人物或者风景时,有时需要使用偏振片来减少或消除镜头反光和增加对比度。

通过调整偏振片的角度和方向,可以有效地控制逆光情况下的曝光和色彩平衡,提高照片的质量。

3. 光学仪器偏振片还广泛应用于各种光学仪器中,如显微镜、天文望远镜等。

在显微镜中,偏振片可以提高对物质的观察分辨率,帮助研究人员更好地观察样品中的细微结构。

而在天文望远镜中,偏振片可用于观测天体的磁场等特性。

4. 光学通信在光学通信中,光纤会对光信号进行传输,而光信号可以是偏振光。

偏振片可被用于调整和控制光信号的偏振状态,以提高通信的可靠性和传输效率。

5. 其他应用此外,偏振片还在3D电影、太阳能电池板、液晶电视、眼镜及护目镜等领域具有重要应用。

光的偏振现象的原理与应用

光的偏振现象的原理与应用

光的偏振现象的原理与应用光的偏振现象是指光在传播过程中振动方向的特性。

光波是一种横波,它在空间中以垂直于传播方向的振动方式传播。

当光波的振动方向被限制在特定的平面内时,就产生了偏振现象。

在本文中,我们将探讨光的偏振现象的原理以及其在实际应用中的重要性。

一、光的偏振现象的原理光的偏振现象的原理可以通过多种理论解释,其中最为基本和常用的是电磁波理论。

根据这一理论,光波是由电场(E)和磁场(H)构成的电磁波。

在传播的过程中,光波的电场和磁场垂直于传播方向,且两者方向相互垂直。

偏振光是指光波的电场振动方向被限制在某一特定平面内的光波。

这种限制可以通过介质的影响或者光的传播路径的几何特性来实现。

其中,介质对光的偏振性质的影响主要涉及介质的结构和特性,如朝向、形状和晶体结构等。

而光的传播路径的几何特性主要借助于偏振片、偏振镜等器件来实现。

二、光的偏振现象的应用1. 偏光滤波器的应用偏光滤波器是利用光的偏振性质来控制光的传播和传输方向的器件。

它们在实际应用中扮演着重要的角色。

例如,偏光滤波器广泛应用于液晶显示器中,通过控制光经过液晶显示屏的方向和速度,实现了显示屏的亮度和颜色的调节。

2. 光学显微镜的应用光学显微镜是一种基于光的偏振现象的应用的经典工具。

通过使用偏振镜等器件,显微镜可以观察和分析样品的光学性质,如晶体结构、纤维方向以及材料的应力状态等。

这些信息对于材料科学、生物学和地质学等领域的研究至关重要。

3. 偏振成像技术的应用偏振成像技术是一种通过光的偏振现象来获取图像信息的技术。

相比传统的光学成像技术,偏振成像技术可以提供更多的信息,如材料表面的形貌、组织的取向和材料的应力分布。

这一技术在材料表征、质量控制和医学成像等领域都有广泛的应用。

4. 光纤通信的应用光纤通信是一种基于光的偏振现象的数据传输技术。

光纤中的光信号可以通过控制光的偏振状态来实现信息的编码和传输。

这种技术具有高速、大容量和低衰减等优势,被广泛应用于电话、互联网和高速传输等领域。

偏振试验的原理和应用

偏振试验的原理和应用

偏振试验的原理和应用偏振试验的原理偏振试验是一种用于研究光的偏振性质的实验方法。

光是一种电磁波,在传播过程中,电矢量振动方向的取向决定了光的偏振状态。

偏振试验的目的是通过对光的偏振状态进行测量和分析,揭示光的特性和行为。

光的偏振状态可以用振动方向、振动方式和偏振度来描述。

振动方向是指光波电场矢量振动的方向,可以是沿水平、垂直或其他方向。

振动方式则取决于电场矢量振动的特点,可以是线偏振、圆偏振或椭圆偏振。

偏振度是一个量化光偏振性质的参数,描述了光波中偏振成分的相对强度。

偏振试验利用偏振片或其他偏振元件对光进行处理和分析。

常见的偏振片包括线偏振片、圆偏振片和旋转偏振片。

线偏振片只允许特定方向的振动通过,圆偏振片则将光波分为两个分量,其中一个分量的振动方向沿着光传播方向旋转。

旋转偏振片则可以改变光的偏振状态。

偏振试验的应用偏振试验在许多科学领域和工业应用中具有广泛的应用。

光学领域•材料研究:偏振试验可用于研究材料的光学特性和结构。

通过测量材料对不同偏振状态的光的吸收、反射和透射,可以获得材料的偏振特性和光学常数。

•显微镜观察:偏振显微镜结合偏振试验的原理,可以观察和分析材料的结构、晶体和纹理。

通过调整偏振片的角度,可以增强或消除显微镜下的样品对光的吸收和散射,提供更多关于样品的信息。

•生物医学研究:偏振试验可用于研究生物组织、细胞和药物的光学性质。

通过检测光的偏振状态在生物样品中的变化,可以提供关于生物组织结构、分子构成和疾病诊断的信息。

光通信和显示技术•光纤通信:偏振试验可以用于调制、解调和分析光纤通信中的光信号。

通过控制光的偏振状态,可以增加光纤通信的信号传输容量和稳定性。

•液晶显示器:液晶显示器利用偏振光的调制原理来显示图像。

通过在液晶屏幕中引入偏振片和偏振电场,可以控制光的偏振状态,实现图像的显示和切换。

光谱分析和光学测量•光谱分析:偏振试验可用于分析光的偏振特性与其频率的关系。

通过测量不同偏振状态下的光谱特性,可以揭示样品的结构和性质。

偏振原理及应用范文

偏振原理及应用范文

偏振原理及应用范文偏振原理是光学中的重要概念,它描述了光的振动方向的特性,对于解释光的传播、干涉、偏振、光学器件等方面都有着重要的应用。

下面将详细介绍偏振原理及其应用。

一、偏振原理的基本概念光的偏振是指光波中电场矢量的振动方向。

一般来说,自然光是各种方向上的电场振动方向都存在的混合光。

而偏振光则指只有一个特定方向的电场振动的光。

当光通过一个偏振片时,只有与偏振片同一方向的电场振动才能通过,与偏振片垂直方向的电场振动将被阻挡。

这样,通过偏振片的光就变成了偏振光。

当偏振片和自然光之间的角度为90°时,偏振片会完全阻挡光的传播,这时没有光通过,被称为“消光”。

二、偏振原理的产生机制光的偏振可以通过偏振片、介质的双折射等方式来实现。

1.偏振片:偏振片是由具有各向同性的材料制成。

这种材料通常是由大量的有机分子或者晶体结构形成的。

这些材料吸收其中一个方向上的电场振动,并且只允许与其方向一致的电场振动通过。

常见的偏振片有偏振玻璃、偏振片膜等。

2.双折射:双折射现象是指光线在介质中传播时,由于介质内电场分布不均匀导致的不同折射率,进而改变光线的传播方向和速度。

当光线入射到具有双折射性质的晶体或者液晶材料中时,会出现两个折射光线,它们的传播方向和速度不同。

此时,可以通过选择其中一个方向的折射光来获得偏振光。

三、偏振原理的应用1.光学显示器件:偏振原理在液晶显示器件中得到了广泛的应用。

在液晶显示屏中,通过透过垂直偏振片的白光,再通过液晶层的电场控制,使其偏振方向与第二个偏振片相匹配,从而实现显示效果。

2.偏光镜:偏光镜是利用偏振原理来选择和过滤特定方向的光,常见的有偏光片、偏振墨镜等。

它们可以有效地减少光的反射和散射,提高图像的对比度和清晰度,同时还可以过滤掉偏振方向不同的光,达到防眩光的效果。

3.光学仪器中的应用:偏振原理在光学仪器中也有重要的应用,如偏振显微镜、偏光光谱学、偏振拉曼光谱学等。

这些仪器利用了偏振原理可以提供更多的样品信息,特别适用于材料的结构分析和研究。

偏振片的原理及应用

偏振片的原理及应用

偏振片的原理及应用偏振片是一种能够选择性地通过某个特定方向的光线的光学器件。

它基于偏振现象而设计,通过改变光的偏振方向,实现对光的控制和调节。

本文将介绍偏振片的原理、结构以及常见的应用领域。

一、偏振片的原理偏振片的原理基于光的偏振特性。

光波是电磁波,其振动方向垂直于传播方向。

根据振动方向的不同,光可以分为两种类型:线偏振光和非偏振光。

线偏振光是指光波振动方向固定的光,可以视作波在平面上振动。

非偏振光是指振动方向随机分布的光,波在平面上振动的方向是随机的。

偏振片的工作原理就是通过选择性地吸收或透射特定振动方向的光,将非偏振光转化为线偏振光。

二、偏振片的结构偏振片主要由基板和偏振材料组成。

偏振材料是由有机高分子或无机晶体制成的,它具有特殊的光学性质,可以选择性地吸收或透射光。

基板是偏振片的支持层,通常采用透明的塑料或玻璃材料制成。

偏振材料被涂覆在基板表面上形成一层薄膜,该薄膜的结构决定了偏振片的偏振特性。

三、偏振片的应用1. 光学仪器领域偏振片在光学仪器中有着广泛的应用。

例如在相机镜头、望远镜和显微镜中,使用偏振片可以减少反射和散射,提高图像的清晰度和对比度。

此外,在光学显微镜中,偏振片还可以用于区分和分析材料的各向异性。

2. 液晶显示领域偏振片在液晶显示器中起到关键作用。

液晶显示器是一种利用液晶分子的偏振特性控制光的传输的设备。

液晶分子在电场的作用下可以改变偏振方向,通过控制偏振片的旋转角度,实现对液晶显示器的亮度和对比度的调节。

3. 偏光滤光片偏振片还可以用于制作偏光滤光片。

偏光滤光片可以选择性地透射某个特定方向的偏振光,而阻挡其他方向的光。

这在光学领域中有着广泛的应用,例如在3D电影中,通过佩戴偏光眼镜,观众可以看到立体效果。

4. 光学通信领域偏振片在光学通信中也有重要作用。

光纤传输使用的是光的偏振性质。

通过使用偏振片,可以调整光纤中的偏振方向,提高光信号的传输效率和质量。

结论偏振片是一种重要的光学器件,基于光的偏振特性,通过选择性地吸收或透射特定振动方向的光,实现对光的控制和调节。

光的偏振现象及应用

光的偏振现象及应用

目录1、工程概况 (1)2、监理工作范围 (1)3、监理工作目标 (1)4、监理细则编制依据 (2)5、监理工作内容 (2)6、监理方法和措施 (4)钟家沟住房项目围墙工程监理细则一、工程概况:1、工程名称:钟家沟住房项目围墙工程2、工程建设单位:青岛建融投资置业有限公司3、工程设计单位:青岛民用建筑设计院有限公司4、施工单位:青建集团有限公司5、监理单位:青岛华鹏建设工程咨询集团有限公司。

6、工程规模及结构:6.1围墙基础为钢筋砼,深度2.0~4.0米;上部为方管栏杆,其底座系压顶梁砼加素砼。

围墙每隔15米设置一道变形缝,围墙周围回填土压实系数不小于0.97,围墙地基处理采用级配砂石垫层厚200㎜,超出基础宽度100㎜,压实系数不小于0.97。

柱身干挂石材。

6.2围墙全长:360米。

二、监理工作范围围墙工程三、监理工作目标1、工程建设质量控制符合国家及行业的有关规范要求,达到业主满意,实现优质工程的目标;检验批、分项、分部工程合格率100℅;单位工程质量达到优良标准;2、工程进度工期控制满足建设单位总工期要求;3、工程投资控制在工程概算以内;4、安全控制;杜绝人身伤亡事故,重点控制基坑安全。

四、监理细则编制依据:1、国家、省市建设工程相关法律、法规及项目审批有关文件2、项目工程监理合同3、项目监理规划4、设计院图纸、甲方技术要求5、《混凝土结构施工及验收规范》GB50204-20156、设计文件:设计图纸及说明7、项目法人与承包商签订的施工合同及有关附件8、国家及行业颁发的其它现行建设工程相关规范、标准等.五、监理工作内容1、围墙工程自开工起至工程竣工验收资料移交为止的全过程质量控制、进度控制、投资控制、安全控制、合同管理、信息管理以及协调各有关方面的关系。

2、审查施工承包商、选择分包单位、试验单位、各种材料供应商等的资质并提出监理意见。

3、参与施工图纸技术交底和组织专业图纸会审。

4、审核确认设计变更单、工程联系单。

偏振片的原理及应用

偏振片的原理及应用

偏振片的原理及应用偏振片是一种光学元件,通过特殊的材料和结构使得只有特定方向的光可以通过,其他方向的光则被屏蔽或者衰减。

它在光学领域有广泛的应用,包括光电显示器件、相机镜头、3D影像技术等。

本文将就偏振片的原理和不同领域中的应用进行详细探讨。

一、偏振片的原理偏振片的原理基于光的波动性和偏振性质。

光是一种横波,振动方向垂直于光的传播方向。

而自然光中的光波振动方向是各向同性的,即各个方向的振动方向都有。

而偏振片则能够选择性地使特定方向的光通过,而把其他方向的光衰减或者消除。

偏振片的基本结构是通过将聚合物或者晶体材料拉伸形成的聚合方向与所选定的偏振方向平行,从而通过材料内部的分子结构来实现选择性透过或者屏蔽光的目的。

这样,只有振动方向与偏振片相一致的光能够透过,而振动方向与偏振片垂直的光则会被滤除。

二、偏振片的应用1. 光电显示器件偏振片在各类液晶显示器中起到至关重要的作用。

液晶显示器通过调节液晶分子的转动来控制光的透过与屏蔽,而偏振片则用来实现对光的极化调节。

在液晶屏的两侧分别放置两个偏振片,在两个偏振片之间夹着液晶分子层,通过调节层与层之间的电场来控制液晶的转动角度,从而达到控制光的透过程度和颜色的目的。

2. 相机镜头相机镜头中的偏振片主要起到两个作用。

首先,它能够帮助减少反射和散射现象,提高照片的清晰度和对比度。

其次,偏振片也可以用来改变光的特性,例如通过旋转偏振片可以调节光线的强弱和角度,从而实现不同的拍摄效果。

3. 3D影像技术偏振片在3D影像技术中也扮演重要角色。

一般而言,3D眼镜中会配备两个互相垂直的偏振片,通过与3D影像产生相应的光学关系,从而实现左右眼看到不同画面的效果。

这样,观众通过左右眼分别看到不同的画面,脑海中就能够合成出立体感强烈的影像效果。

4. 其他应用除了上述的应用领域,偏振片还广泛应用于其他方面,比如:太阳镜、汽车前挡风玻璃、光学测量仪器等。

它们在这些场合中主要起到屏蔽阳光的筛选或者过滤等作用,既能保护眼睛免受强光伤害,又能改善光线的质量和观察精度。

偏振光学原理及其应用

偏振光学原理及其应用

偏振光学原理及其应用光学是研究光的性质和相互作用的学科,是自然科学的重要分支之一。

在光学研究中,偏振光学是一个重要的分支,可以解释光的偏振现象和利用光的偏振来研究物质的性质。

本文将介绍偏振光学的原理和应用。

一、偏振光学原理偏振光是指只在一个平面上振动的光。

原本在任意方向散射光束变成了只在一个平面上偏振振动的现象,叫做光偏振。

光偏振可以用图示来表示,假如我们把一束无偏振的光通过一个偏振器(P),这个偏振器就会将光线的振动方向限制在一个特定的平面上,所产生的光就是偏振光。

不同类型的偏振器有不同的作用方式。

线偏器是最简单的偏振器,利用线状材料对垂直于线方向不同的两组振动方向的反射作出区别,将所在平面内与线方向平行的振动分选出来。

除线偏器之外,还有圆偏器、椭偏器等。

光线在空气中传播时通常是自然偏振的。

但是在经过许多特定的物体或许多情况下,光的偏振方向被限制在一个或多个平面上,导致偏振光的现象。

有多种机制会引起光偏振。

例如,当光经过一些物体时,其中的某些分子或原子只吸收其振动方向与其特殊方向相同的极化光,并反射和传播其余未被吸收的光。

这样,光的偏振方向就被限制了。

例如,一些晶体能够在一定方向上将振动分量通过,并阻挡垂直于此方向的振动分量,从而产生偏振现象。

此外,偏振光还可以通过一系列透过或反射器件(例如偏振板)来过滤掉非偏振光以产生。

二、偏振光学应用1. LCD液晶显示器偏振光学在LCD显示器中得到了广泛应用。

液晶显示器的原理是通过控制液晶单元的偏振方向来实现像素的开闭。

每个像素都由液晶单元和透明电极组成,透明电极能够控制单元中液晶分子的偏振方向,从而控制光的透过或阻挡。

逐行扫描和逐列扫描也可以控制像素的开闭,从而显示图像。

2. 光学偏振镜光学偏振镜是立体电影和3D电影中使用的常见设备。

偏振镜可以将光线的波动方向沿着特定方向偏振,然后被接收器接收。

正向传输呈现一个图像,反射传输呈现另一个图像。

这种技术利用了立体的原理,能够让观众看到比平面更多的细节和图像。

光的偏振及应用实验原理

光的偏振及应用实验原理

光的偏振及应用实验原理一、引言在光学中,光的偏振是指光波中的电场振动方向沿着特定方向传播的现象。

通过研究光的偏振现象,可以深入了解光的性质及其在实际应用中的表现。

本文将介绍光的偏振及其应用实验的原理。

二、光的偏振原理1. 光的偏振定义光的偏振是指在特定条件下,光的电场振动只沿着一个方向振动。

具体来说,光的电矢量将仅限于一个平面内的振动。

2. 偏振光的特性•具有方向性:光的偏振在特定平面内,只能沿着一个方向传播。

•具有振动方向:偏振光的电场振动方向与传播方向垂直。

•具有偏振状态:按照电场振动方向可分为线偏振光、圆偏振光和椭偏振光。

3. 光的偏振现象产生原理光的偏振可由于自然光通过偏振片、反射、散射、折射和干涉等现象引起。

其中,利用偏振片将自然光中的振动方向分离,从而得到偏振光。

三、光的偏振实验1. 实验仪器和材料准备•偏振片:用于分离光的偏振方向。

•光源:发出自然光。

•旋光仪:用于测量物质对光的旋光性质,判断光的偏振状态。

•光学台:用于放置实验仪器。

2. 实验步骤•步骤一:将光源放置在光学台上,并将偏振片放在光源前面。

调整偏振片的角度,观察光的强度变化。

•步骤二:使用旋光仪测量物质对光的旋光性质。

将样品放置在旋光仪中,调整角度,观察光的旋光现象及旋转角度。

•步骤三:将偏振片放在旋转角度固定的样品后面,观察光的偏振状态变化。

3. 实验结果分析通过实验观察和测量,可以得出以下结论:•偏振片在透过自然光后,能够将光的振动方向分离,产生偏振光。

•通过旋光仪测量物质的旋光性质,可以判断光的偏振状态。

•在旋转角度固定的样品后面放置偏振片,可以改变光的偏振状态。

四、光的偏振应用实验1. 偏振片的应用偏振片是光学实验中常用的器件之一,在以下实验和应用中得到广泛应用:•光的消光实验:通过逐渐旋转偏振片,使得自然光在特定角度下完全消光,从而实现光的消除。

•波片实验:配合偏振片使用,可以通过旋转偏振片和波片之间的角度关系,改变光的偏振状态。

偏振片的原理及应用

偏振片的原理及应用

偏振片的原理及应用偏振片是一种特殊的光学元件,在许多领域中得到广泛应用。

本文将介绍偏振片的原理和一些常见的应用。

一、偏振片的原理偏振片的原理基于光的波动性质。

光是一种电磁波,具有振动方向的特性。

偏振片的工作原理是通过选择特定方向的振动光,屏蔽或通过其他方向的振动光。

偏振片由多个平行排列的分子链组成。

这些分子链被定向排列,形成一个类似于栅栏的结构。

当光线射入偏振片时,垂直于链的振动方向的光将被完全屏蔽,只有平行于链的振动方向的光能够通过。

这种选择性透过和屏蔽的效果使偏振片成为一种有用的光学器件。

二、偏振片的应用1. 光学显微镜偏振片在光学显微镜中被广泛应用。

通过使用偏振片,可以增强显微镜中的对比度,并观察到一些无法在普通光下观察到的细节。

这对于生物学、材料科学等领域的研究非常有帮助。

2. 光电显示器在LCD显示器中,偏振片起到关键作用。

LCD显示器是由液晶分子组成的,这些液晶分子可以通过电场来控制光的透过程度。

通过在液晶层前后添加偏振片,在不同的电场作用下,可以控制光的旋转和透过程度,实现对像素点的控制,从而呈现出图像和色彩。

3. 摄影领域在摄影中,偏振片可用于增强颜色饱和度和对比度,减少反射和逆光问题。

通过使用偏振片滤镜,可以有效地屏蔽来自非金属表面的反射光,使拍摄的图像更加清晰和饱满。

4. 光通信在光通信领域,偏振片被用于控制光信号的传输方向和振动方向。

通过调整偏振片的角度,可以更好地控制光信号的传输质量,提高光纤通信的稳定性和可靠性。

5. 3D技术偏振片在3D影视技术中起到至关重要的作用。

3D眼镜中的偏振片能够解析左右眼不同的画面,并分别通过对应的眼睛观看,给人一种立体的视觉效果。

总结:以上所述为偏振片的原理及应用。

偏振片利用光的波动性质,通过屏蔽或透过特定方向的光,达到选择性处理光的目的。

在光学显微镜、光电显示器、摄影、光通信和3D技术等领域中,偏振片都发挥着重要的作用。

随着技术的发展,偏振片的应用范围还将不断扩大,为各行各业的发展带来更多的可能性。

偏振片的原理及应用

偏振片的原理及应用

偏振片的原理及应用偏振片是一种常见的光学元件,其原理和应用广泛存在于各个领域。

本文将详细介绍偏振片的原理及其在光学、电子、光通信、液晶显示等领域的应用。

一、偏振片的原理偏振片是一种具有特殊结构的光学材料,其原理基于光的电矢量振动方向。

一束自然光在传播过程中的光波,其电矢量在空间中沿任意方向振动。

而经过偏振片后,只有与偏振方向相同的光能够透过,其他方向的光则会被吸收或反射。

这是由于偏振片内部的分子结构可以选择性地吸收或透过特定方向的光。

为了实现光的偏振控制,常见的偏振片材料有偏振膜和偏振玻璃。

偏振膜是利用物质的吸收、透射、干涉等特性制成的薄膜,其在特定方向上具有选择性吸收或透过性能。

偏振玻璃则是在玻璃材料中加入特殊的折射晶体,通过折射效应实现光的偏振控制。

二、偏振片的应用1. 光学领域在光学实验和研究中,偏振片被广泛应用于光的偏振现象的展示和研究。

通过控制偏振方向,可以观察到光的传播特性,如马吕斯定律、布儒斯特定律、半波损失等。

同时,偏振片还可用于制作光栅、干涉仪、分光器等光学元件。

2. 电子领域在电子显示器中,液晶屏是一种常见的应用偏振片的技术。

液晶显示器利用液晶分子的旋转来控制光的透射和阻挡,从而实现图像的显示。

偏振片在液晶显示器的背光源和色彩滤波器中起到重要的作用,通过调节偏振片的方向,可以控制液晶分子的取向,进而控制显示的亮度和颜色。

3. 光通信领域光通信是一种基于光传输的高速通信技术,而偏振片则在光通信中起到重要的角色。

在光纤通信中,光信号的偏振方式直接影响了光信号的传输质量和距离。

通过使用偏振器和偏振保护器,可以有效地调节和保护光信号的偏振状态,提高光通信系统的稳定性和传输性能。

4. 其他领域的应用除了以上几个领域,偏振片在天文学、生物学、材料科学等领域也有着广泛的应用。

例如,天文学中利用偏振片观测星体的偏振光,可以获得关于星体形态和磁场方向的重要信息;生物学中通过偏振显微镜观察样本,可以增强细胞和组织的对比度和清晰度;材料科学中使用偏振片分析材料的结构和性质等。

偏振片的原理及应用

偏振片的原理及应用

偏振片的原理及应用偏振片是一种广泛应用于光学领域的器件,它能够通过选择性地传递或阻挡某一方向的光的振动。

它的原理基于光的电磁波性质,应用于许多光学设备和技术。

本文将介绍偏振片的原理和常见应用。

一、偏振片的原理偏振片的原理基于光的偏振性质。

正常光波是一个在所有方向上振荡的电磁波。

振动方向不受限制,呈各向同性。

然而,当光通过特定材料或被反射、折射时,会发生偏振现象。

偏振片利用这种现象实现光的偏振。

偏振片由分子或聚合物构成,能够选择性地吸收或透过特定方向的光。

它的结构呈现出周期性排列,使得只有特定振动方向的光能够通过。

按照光的传播方向,偏振片被分为线偏振片和圆偏振片两种类型。

线偏振片允许特定方向的光通过,而阻挡垂直于该方向的光。

它的结构是由一系列排列方向相同的导电分子构成,它们只允许平行于导向方向的光通过。

线偏振片常用于消除光的偏振干扰、减少光的反射以及在液晶显示器中控制光的传播方向。

圆偏振片可以将入射的线偏振光转换为圆偏振光。

它的结构由一系列环形排列的分子组成,可以将振动方向旋转一定角度。

圆偏振片在激光技术、光通信以及人工观察器械等领域有广泛应用。

二、偏振片的应用1. 光学仪器和设备偏振片在光学仪器和设备中有重要的应用。

例如,在摄影和摄像中,偏振片可用于减少反射和眩光,提高图像质量。

它还可用于显微镜、望远镜和光学测量装置中,帮助观察和测量具有特定光学特性的样品。

2. 液晶显示器液晶显示器(LCD)是现代电子设备中最常见的显示技术之一。

偏振片作为关键组件之一,帮助实现图像的显示。

在LCD中,两片偏振片夹持着液晶层,通过控制电场来控制偏振片的通光方向,从而改变透过液晶的光的偏振方向,实现图像的显示和刷新。

3. 光学滤波器偏振片还被广泛应用于光学滤波器。

它可以选择性地透过或吸收某一方向的光,用于调节光源的色彩、强度和光谱分布。

在摄影中,偏振滤镜可以增强云彩的层次感和颜色饱和度,减少反射和眩光。

在光谱分析中,偏振片滤光镜能够选择性地透过特定波长的光,实现光的分离和分析。

偏振片的原理及应用

偏振片的原理及应用

偏振片的原理及应用偏振片是一种广泛应用于光学领域的光学元件,其原理基于光的偏振性质。

本文将先介绍偏振片的原理,然后探讨其在不同领域的应用。

一、偏振片的原理偏振片是由一种特殊的材料制成的,其内部分子结构具有对光的选择性吸收和透过性。

当自然光通过偏振片时,只有沿特定方向的光能够透过,而垂直于该方向的光则被大部分吸收。

这种特性使得偏振片能够起到选择性透过、滤除或调整光的偏振方向的作用。

偏振片的原理可以通过偏振光与偏振子的相对位置关系来解释。

当偏振片的偏振子与入射光的偏振方向相同时,光能够完全透过偏振片。

而当偏振子旋转90度,与入射光垂直时,光将被完全吸收,实现了光的滤除。

通过调整偏振子的旋转角度,可以实现对透过光的强度和偏振方向的调控。

二、偏振片的应用1. 显示技术偏振片在液晶显示器中广泛应用。

液晶显示器借助偏振片的调控,能够实现对光的偏振状态的调整,控制出色彩鲜艳、对比度高的显示效果。

此外,偏振片还能够实现液晶显示屏幕角度的可视性调节,提高显示效果的观看体验。

2. 摄影与摄像偏振片在摄影与摄像领域有着重要的应用。

通过使用偏振片作为滤镜,可以调整进入相机镜头的光线的偏振方向,达到增强光线对比度、减少光线反射以及防止色彩过曝的效果。

此外,偏振片还可以用于特殊效果的创造,如模拟太阳光的反射和折射。

3. 光学显微镜偏振片在光学显微镜中的应用非常重要。

显微镜通过配合偏振片来观察材料的光学性质和结构。

偏振片能够选择性地过滤掉特定方向的光,使得显微镜观察者能够更加清晰地看到样品的细节和构造。

4. 光学测量偏振片在光学测量领域具有重要作用。

通过改变偏振片的角度,可以测量样品在不同偏振方向上的光学性质,如折射率、光学透明度等。

这种测量方法被广泛应用于材料科学、化学以及生物医学等领域中的实验室测量和研究。

5. 光学通信偏振片也被广泛应用于光学通信系统中。

光学通信利用光的偏振性质进行信息传输,通过偏振片的调整可以实现光信号的调制和解调。

偏振的应用和原理

偏振的应用和原理

偏振的应用和原理引言偏振现象是光学中的重要概念,它涉及到光波的振动方式。

了解偏振的应用和原理有助于我们进一步理解光的性质以及在各个领域中的应用。

本文将介绍偏振的基本原理和一些常见的应用。

偏振的基本原理1.光的电矢量振动方向:光是一种电磁波,它的电矢量振动方向决定了光的偏振性质。

光可以分为横向电场和纵向电场两种类型,分别对应于不同的偏振方式。

2.偏振器:偏振器是一种特殊的光学器件,可以选择性地通过或者阻挡特定方向的光波。

常见的偏振器有偏振片和偏振镜。

3.偏振的产生:偏振可以通过自然光的散射过程产生,也可以通过人工的方法产生。

例如,一束自然光经过偏振片后就会变成偏振光。

4.偏振的解析:偏振可以被解析为不同的方向,例如线性偏振、圆偏振和椭圆偏振等。

这取决于电矢量振动方向的分量比例。

偏振的应用领域1.光通信:在光纤通信中,使用偏振器可以控制光信号的传输方向和速度,提高传输效率和可靠性。

2.液晶显示技术:液晶显示器使用液晶分子的偏振特性来控制光的透过程度,实现显示效果。

3.偏振成像:偏振成像技术可以提供更多的图像信息,用于医学成像和工业检测等领域。

4.光学显微镜:偏振显微镜可以观察和分析材料的偏振特性,用于材料研究和品质检测。

5.太阳能电池:在太阳能电池中,使用偏振器可以增强光的入射效果,提高电池的转换效率。

6.光学薄膜:利用偏振性质,可以设计制备各种光学薄膜,用于反射、透射、吸收和滤波等应用。

偏振的未来发展1.偏振光源技术:随着偏振应用的广泛需求,偏振光源技术将进一步发展,提供更高质量和稳定的偏振光源。

2.偏振材料研究:研究新型的偏振材料和复合材料,扩展偏振技术在各个行业的应用。

3.偏振成像技术的改进:提高偏振成像技术的分辨率和灵敏度,实现更精准的成像效果。

结论偏振是光学中重要的概念,它涉及到光波的振动方式和传播特性。

了解偏振的基本原理和应用有助于我们理解光的性质以及在各个领域中的应用。

随着偏振技术的不断发展,相信在将来它会得到更广泛的应用和进一步的突破。

偏振片的原理及应用

偏振片的原理及应用

偏振片的原理及应用偏振片是一种具有特殊功能的光学器件,它利用光的偏振性质来调节、控制和分析光线。

本文将详细介绍偏振片的原理以及其在各个领域的应用。

一、偏振片的原理1. 偏振光的特性:光是由电磁波组成的,其振动方向决定了光的偏振性质。

正常光是无偏振光,其振动方向在各个方向上均匀分布。

而偏振光则是具有特定振动方向的光。

2. 偏振片的构造:偏振片通常是由一种特殊材料制成,其中包含有定向的微小结构。

这些结构可以选择性地吸收、透射或反射在不同方向上振动的光线,从而实现对光的偏振控制。

3. 线偏振片:线偏振片是最常见的偏振片类型,它可以将无偏振光转换为特定方向的线偏振光。

线偏振片通常采用玻璃或塑料材料,通过精确的制备工艺使得内部结构形成偏振轴,只允许特定方向的光通过。

4. 偏振片的工作原理:当无偏振光通过偏振片时,偏振片会选择性地吸收与其偏振轴垂直的振动光线,同时透射与其偏振轴平行的振动光线。

这样,输出的光就成为了特定方向的线偏振光。

二、偏振片的应用领域1. 光学领域:偏振片在光学领域有广泛的应用。

它们可以被用作摄影摄像中的滤镜,用于调整光线的偏振状态,使画面更加饱满。

此外,偏振片还可以用于显微镜、望远镜等光学仪器中,用于观察和分析偏振光与物质的相互作用。

2. 电子显示器:现代液晶显示器中常使用偏振片。

液晶分子的排列会受到电场的作用而改变,通过调节电场的强度来控制液晶分子的排列状态,从而改变通过液晶屏幕的光线的偏振方向,实现对显示器亮度和颜色的控制。

3. 3D影像技术:偏振片在3D影像技术中起到关键作用。

通过使用特定的偏振片和3D眼镜,可以使左眼和右眼观察到不同的偏振图像,从而产生立体感,提供更真实、沉浸式的观影体验。

4. 光通信:偏振片在光通信领域也具有重要应用。

通过控制光的偏振状态,可以实现光信号的调制、解调和传输,提高光通信系统的带宽和传输效率。

5. 偏振显微镜:偏振片也是偏振显微镜中不可或缺的一部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(C) (A) 玻璃门表面的 反光很强 (B)
用偏光镜减弱 了反射偏振光
用偏光镜消除了 反射偏振光 使 玻璃门内的人物 清晰可见
本堂课小结
一、光的偏振态 自然光、线偏振光、部分偏振光 二、线偏振光的获得 偏振片法、反射和折射法ຫໍສະໝຸດ 三、基本物理定律(光强变化)
1. 布儒斯特定律: 2. 马吕斯定律:
tgib n2 / n1
反射光 折射光都是部分偏振光
反射光中
垂直入射面振动占优
折射光中
平行入射面振动占优
2.特殊入射角的情况
n2 入射角满足 i0 tg (起偏角或布儒斯特角 ) n1
1
1 ) 两光偏振状态
反射光 -- 完全偏振光
折射光 -- 部分偏振光 2 )反射光线与折射光线 垂直
3、布儒斯特定律
光在两各向同性介质表面入射时
点击下图观看动画演示
• 当只有一块偏振片时,以 光的传播方向为轴旋转偏 振片,透射光的强度不 变.
当两块偏振片的透振方向 平行时,透射光的强度最 大,但是,比通过一块偏 振片时要弱. 当两块偏振片的透振方向 垂直时,透射光的强度最 弱,几乎为零.
3、产生上述现象的原因
1、太阳、电灯等普通光源发出的光,包含着在垂直 于传播方向上沿一切方向振动的光,而且沿着各个 方向振动的光波的强度都相同.这种光叫做自然 光.
如果入射角与两介质折射率存在下述关系
n2 i0 tg n1
1
反射光成为只有垂直振动的线偏振光 这就是布儒斯特定律
• 四、偏振光的应用 • 光的偏振在科学技术及工业生产中有 着广泛的应用。比如在机械工业中,利用 偏振光的干涉来分析机件内部应力分布情 况,这就是光测弹性力学的课题。在化工 厂里,我们可以利用偏振光测量溶液的浓 度。偏光干涉仪、偏光显微镜在生物学、 医学、地质学等方面有着重要的应用。在 航海、航空方面则制出了偏光天文罗盘。
• 1汽车车灯 汽车夜间在公路上行驶与对面的车辆相遇时,为 了避免双方车灯的眩目,司机都关闭大灯,只开 小灯,放慢车速,以免发生车祸。如驾驶室的前 窗玻璃和车灯的玻璃罩都装有偏振片,而且规定 它们的偏振化方向都沿同一方向并与水平面成45 度角,那么,司机从前窗只能看到自已的车灯发 出的光,而看不到对面车灯的光,这样,汽车在 夜间行驶时,即不要熄灯,也不要减速,可以保 证安全行车。另外,在阳光充足的白天驾驶汽车, 从路面或周围建筑物的玻璃上反射过来的耀眼的 阳光,常会使眼睛睁不开。由于光是横波,所以 这些强烈的来自上空的散射光基本上是水平方向 振动的。因此,只需带一副只能透射竖直方向偏 振光的偏振太阳镜便可挡住部分的散射光。
2、自然光通过第一个偏振片(叫做起偏器)之 后,只有振动方向跟偏振片的透振方向一致的 光波才能通过.也就是说,通过第一个偏振片 的光波,在垂直于传播方向的平面上,只沿着 一个特定的方向振动.这种光叫做偏振光.
横波只沿着 某一个特定的方 向振动,称为波 的偏振.只有横 波才有偏振现 象.
3、通过第一个偏振片的偏振光再通过第二个偏振片(称 为检偏器)时,如果两个偏振片的透振方向平行,那 么,通过第一个偏振光的振动方向跟第二个偏振片的 透振方向平行,透射光的强度最大.
I I 0 cos2
四、偏振光的应用实例
立体电影、汽车车灯、生物视觉、激光器的谐振腔、 等等
4 、如果两个偏振片的透振方向垂直,那么,偏 振光的振动方向跟第二个偏振片的透振方向垂 直,偏振光不能通过第二个偏振片,透射光的 强度为零.
所以,光是一种横波.
三、偏振光的获取
问题: 如何从普通光源中取得偏振光呢?
方法: (1)偏振片法 (2)反射折射法
方法: (1)用起偏器获取偏振光
检 偏
起偏器 检偏器
• 2、观看立体电影 • 在拍摄立体电影时,用两个摄影机,两个摄影 机的镜头相当于人的两只眼睛,它们同时分别拍 下同一物体的两个画像,放映时把两个画像同时 映在银幕上。如果设法使观众的一只眼睛只能看 到其中一个画面,就可以使观众得到立体感。为 此,在放映时,两个放放像机每个放像机镜头上 放一个偏振片,两个偏振片的偏振化方向相互垂 直,观众戴上用偏振片做成的眼镜,左眼偏振片 的偏振化方向与左面放像机上的偏振化方向相同, 右眼偏振片的偏振化方向与右面放像机上的偏振 化方向相同,这样,银幕上的两个画面分别通过 两只眼睛观察,在人的脑海中就形成立体化的影 像了。
光的偏振现象并不罕见.除了从光源(如 太阳、电灯等)直接发出的光以外,我们通常 看到的绝大部分光,都是偏振光.自然光射到 两种介质的界面上,如果光入射的方向合适, 使反射光与折射光之间的夹角恰好是90°,这 时,反射光和折射光就都是偏振的,并且偏振 方向互相垂直.
方法: (2)布儒斯特定律
1.一般入射角的情况
偏光镜头
立体电影
偏振现象的应用:拍摄
光的偏振现象有很多应用.如在拍摄日落 时水面下的景物、池中的游鱼、玻璃橱窗里的 陈列物的照片时,由于水面或玻璃表面的反射 光的干扰,常使景像不清楚.如果在照相机镜 头前装一片偏振滤光片,让它的透振方向与反 射光的偏振方向垂直,就可以减弱反射光而使 景像清晰.
橱窗设计
一、横波与偏振现象 光的波动性 光波是横波
机械横波与纵波的区别
光的干涉、衍射 . 光的偏振 .
机 械 波 穿 过 狭 缝
2、实验:
• 取一根软绳,一端固 定在墙上,手持另一 端上下抖动,就在软 绳上形成一列横波.
现在,让软绳穿过一块带有狭缝的木板,如果狭缝 与振动方向平行,则振动可以通过狭缝传到木板的 另一侧(图甲).如果狭缝与振动方向垂直,则振 动就被狭缝挡住而不能向前传播(图乙).
• 如果将这根绳换成细软的弹簧,前后推动弹簧 形成纵波,则无论狭缝怎样放置,弹簧上的纵 波都可以通过狭缝传播到木板的另一侧(如下 图).
受上面实验的启发,我们 可以利用类似的实验来判断光 波是横波还是纵波.
• 偏振片由特定的材料制成,它上面有一个特殊的 方向(叫做透振方向),只有振动方向与透振方 向平行的光波才能通过偏振片.偏振片对光波的 作用就像上图中的狭缝对于机械波的作用一样. • 现在利用偏振片代替上面的带有狭缝的木板,来 做光学实验.
相关文档
最新文档