6.教师版:直线与圆方程解答题提高

合集下载

人教A版高中数学选修一第二章《直线和圆的方程》提高训练题 (5)(含答案解析)

人教A版高中数学选修一第二章《直线和圆的方程》提高训练题 (5)(含答案解析)
A. 的最大值是
B. 的最大值是
C.过点 做 的切线,则切线方程为
D.过点 做 的切线,则切线方程为
19.已知直线 : 与 : 平行,则 的值可能是()
A.1B.2C.3D.5
三、填空题
20.已知 方程为 ,过点 的直线与 交于 , 两点,则弦 中点 的轨迹方程为___________.
21.圆 关于直线 对称的圆的方程为___________.
2.C
【解析】
先写出两圆的圆心的坐标,再求出两圆的连心线所在直线的方程即得解.
圆 : 的圆心坐标为 ,圆 : 的圆心为 ,
由题得线段 的垂直平分线就是两圆的连心线,
所以 ,
所以线段 的垂直平分线为 .
所以线段 的垂直平分线为 .
故选:C
方法点睛:求直线的方程常用的方法是:待定系数法,先定式,后定量.要根据已知条件灵活选择方法求解.
8.D
【解析】
由|PA|=2|PB|得动点 的轨迹方程为圆 ,将题意转化为两圆有交点,根据两圆的位置关系列出关于 的不等式解出即可.
设 的坐标为 ,
因为|PA|=2|PB|,A(-2,0),B(1,0),即 ,
化简得: ,
又因为点 在圆 上,
所以 , ,解得 ,
故选:D.
关键点点睛:(1)根据题意得出动点的轨迹为圆;
(2)当 时, 为方程 表示曲线上的任意一个点,求 到直线 距离的最大值.
39.(1)求过点 且与原点距离为2的直线方程;
(2)求过直线 与 的交点,并且与 垂直的直线方程.
40.已知圆 经过 , , 三点,直线 过定点 .
(1)求圆 的标准方程;
(2)若直线 与圆 相切,求直线 的方程;

直线与圆的方程 解答题(八大题型,均为不同类型题)(学生版)24-25学年高二数学期中(人教选修一)

直线与圆的方程 解答题(八大题型,均为不同类型题)(学生版)24-25学年高二数学期中(人教选修一)

特训06 直线与圆的方程 解答题(八大题型,均为不同类型题)目录:题型1:直线的倾斜角、斜率,方程题型2:交点、距离问题题型3:对称,将军饮马问题题型4:求圆的方程(含轨迹)题型5:直线与圆综合题型6:直线与圆的实际应用题型7:圆与圆综合题型8:难点分析题型1:直线的倾斜角、斜率,方程1.(23-24高二上·新疆伊犁·期中)已知直线1:(31)(3)300l a x a y ++-+=,直线2:(1)390l a x y -++=.(1)若12//l l ,求实数a 的值;(2)若12l l ^,求实数a 的值.2.(22-23高二上·甘肃武威·期中)已知坐标平面内两点()()3,25,2,1M m m N m ++-.(1)当m 为何值时,直线MN 的倾斜角为锐角?(2)当m 为何值时,直线MN 的倾斜角为钝角?3.(23-24高二上·四川·期中)已知()4,0A ,()1,2B ,(),C m m ,()7,1D -.(1)若直线AB 与CD 平行,求m 的值;(2)若ABC V 为直角三角形,求m 的值.4.(20-21高二上·黑龙江哈尔滨·期中)已知ABC V 的三个顶点的坐标分别为()3,8A ,()3,2B -,()3,0C -.(1)求AB 边上中线CM 所在直线的方程;(2)求BC 边上高AD 所在直线的方程.5.(23-24高二上·浙江·期中)已知()2,3A ,()4,1B -,()0,3C -.(1)求直线AB 和AC 的斜率;(2)若点D 在线段BC (包括端点)上移动时,求直线AD 的斜率的变化范围.6.(23-24高二上·江苏盐城·期中)在平面直角坐标系xOy 中,设直线l :()()()121740R k x k y k k -+--+=Î.(1)求证:直线l 经过第一象限;(2)当原点O 到直线l 的距离最大时,求直线l 的方程.7.(23-24高二上·浙江嘉兴·期中)已知直线:210l x y +-=和点()1,2A (1)请写出过点A 且与直线l 平行的直线;(2)求点A 关于直线l 的对称点的坐标.8.(21-22高二上·云南·期中)已知直线l :()12(3)(4)0x y l l l ++--+=,()()1,3,3,2A B -(1)证明无论l 取何值,直线l 恒过一定点,并求出该定点坐标;(2)若l 与线段AB 有公共点,求l 斜率k 的取值范围.题型2:交点、距离问题9.(23-24高二上·浙江温州·期中)已知直线2310x y --=和直线30x y +-=的交点为P .(1)求过点P 且与直线210x y --=平行的直线1l 的方程;(2)求线段OP (O 为原点)的垂直平分线2l 的方程.10.(23-24高二上·广东茂名·期中)已知直线1l :23180x y ++=,2l :2380x y +-=,在1l 上任取点A ,在2l 上任取点B ,过线段AB 的中点作2l 的平行线3l .(1)求直线1l 与2l 之间的距离;(2)求直线3l 的方程.11.(23-24高二上·浙江绍兴·期中)已知直线1l 的方程为240x y +-=,若直线2l 在x 轴上的截距为32,且12l l ^.(1)求直线1l 和直线2l 的交点坐标;(2)已知不过原点的直线3l 经过直线1l 与直线2l 的交点,且在y 轴上截距是在x 轴上的截距的2倍,求直线3l 的方程.12.(23-24高二上·河南开封·期中)已知ABC V 的顶点()2,0A ,()0,4B ,且重心G 的坐标为24,33æö-ç÷èø.(1)求C 点坐标:(2)数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,这条直线被后人称之为三角形的欧拉线.求ABC V 的欧拉线的一般式方程.题型3:对称,将军饮马问题13.(2020高三·全国·专题练习)已知直线:2310l x y -+=,点()1,2--A .求:(1)点A 关于直线l 的对称点A ¢的坐标;(2)直线:3260m x y --=关于直线l 的对称直线m ¢的方程;(3)直线l 关于点()1,2--A 对称的直线l ¢的方程.14.(21-22高一下·江西宜春·阶段练习)已知直线1:30l x y -+=及点(4,7)A -和点(1,8)B ,Q 为1l 上一动点.(1)求AQ BQ +的最小值并求出此时点Q 的坐标;(2)在(1)的条件下,直线2l 经过点Q 且与x 轴正半轴、y 轴正半轴分别交于C 、D 两点,当直线2l 与两坐标轴围成的三角形面积取得最小值时,求直线2l 的方程.题型4:求圆的方程(含轨迹)15.(23-24高二上·辽宁·期中)分别求满足下列条件的圆的标准方程:(1)经过点()()3,2,2,3A B ,圆心在x 轴上;(2)经过直线230x y ++=与230x y -+=的交点,圆心为点()2,1C -.16.(23-24高二上·河北保定·期中)已知()()2,0,2,0A B -,动点M 与点A 的距离是它与点B 倍.(1)求点M 的轨迹方程;(2)倍改成(0)k k >倍,求点M 的轨迹.17.(23-24高二上·广东佛山·期中)已知ABC V 的三个顶点分别是(5,1)A ,(7,3)B -,(8,2)C -.(1)求BC 边上的高所在的直线方程;(2)求ABC V 的外接圆的标准方程.18.(23-24高三上·山西大同·阶段练习)已知线段AB 的端点B 的坐标为()1,3,端点A 在圆()22:14C x y ++=上运动.(1)求线段AB 的中点M 的轨迹方程;(2)已知点(),P x y 为(1)所求轨迹上任意一点,求22x y +的最大值.19.(22-23高二上·四川成都·期中)已知直线l 的倾斜角为135o ,且过点(3,3),直线l 分别与x 轴、y 轴交于A ,B 两点,圆C 是以AB 为直径的圆.(1)求圆C 的标准方程;(2)分别判断点M (6,4),点N (-1,1)与圆C 的位置关系.20.(22-23高二上·四川成都·阶段练习)设()3,0A -,()3,0B 为两定点,动点P 到A 点的距离与到B 点的距离的比为定值2.(1)求P 点的轨迹E 方程;(2)求ABP △面积的最大值.21.(22-23高二上·北京怀柔·期中)在平面直角坐标系中,已知点(0,3)A ,(4,0)B ,(1,0)M -,(1,0)N ,O 为原点,以MN 为直径作圆C .(1)求圆C 的方程;(2)设P 是圆C 上的动点,求22S PA PB =+的最大值和最小值.题型5:直线与圆综合22.(23-24高二上·云南昆明·期中)已知两直线1:20l x y ++=和2:3210l x y -+=的交点为P .(1)直线l 过点P 且与直线310x y ++=平行,求直线l 的一般式方程;(2)圆C 过点()1,0且与1l 相切于点P ,求圆C 的一般方程.23.(23-24高二下·四川·阶段练习)已知圆C 和直线12:240,:20l x y l x y --=--=,若圆C 的圆心为(0,0),且圆C 经过直线1l 和2l 的交点.(1)求圆C 的标准方程;(2)过定点(1,2)的直线l 与圆C 交于M ,N 两点,且MN =l 的方程.24.(23-24高二上·江苏宿迁·期中)已知圆C 的圆心在直线y x =上,且过点()()3,0,2,1-(1)求圆C 的方程;(2)已知直线l 经过()0,3,并且被圆C 截得的弦长为2,求直线l 的方程.25.(23-24高二上·贵州·期中)已知直线l 经过点()2,1A -,且与直线2210x y +-=平行.(1)求直线l 的方程;(2)已知圆C 与y 轴相切,直线l 被圆C 截得的弦长为1y x =-上,求圆C 的方程.26.(21-22高二上·安徽芜湖·期中)已知直线:(21)(1)85l m x m y m +++=+,圆22:(1)(2)25C x y -+-=.(1)证明:直线与圆总有两个交点,与m 的取值无关.(2)是否存在m ,使得直线l 被圆C 截得的弦长为m 的值;若不存在,请说明理由.27.(23-24高二上·江西南昌·期中)已知圆心为C 的圆经过点()1,1A -和()2,2B --,且圆心在直线:10l x y +-=,求:(1)求圆心为C 的圆的标准方程:(2)设点()1,1P 在圆C 内,过点P 的最长弦和最短弦分别为AC 和BD ,求四边形ABCD 的面积题型6:直线与圆的实际应用28.(23-24高二上·湖北黄冈·期中)为了保护河上古桥OA ,规划建一座新桥BC ,同时建立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直,保护区的边界为圆心M 在线段OA 上,并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不小于94m .经测量点A 位于点O 正北方向40m 处,点C 位于O 正东方向220m 处(OC 为河岸),3tan 4BCO Ð=.(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区面积最大.29.(23-24高二上·四川成都·期中)如图所示,有一个矩形坐标场地ABCD (包含边界和内部,A 为坐标原点),AD 长为8米,在AB 边上距离A 点4米的F 处放置一个行走仪,在距离A 点2米的E 处放置一个机器人,机器人行走速度为v ,行走仪行走速度为2v ,若行走仪和机器人在场地内沿直线方向同时到达场地内某点M ,那么行走仪将被机器人捕获,称点M 叫捕获点.(1)求在这个矩形场地内捕获点M 的轨迹方程;(2)若N 为矩形场地AD 边上的一点,若行走仪在线段FN 上都能逃脱,问:N 点的位置应在何处?题型7:圆与圆综合30.(23-24高二上·福建泉州·期中)已知圆221:2280C x y x y +++-=与圆222:210240C x y x y +-+-=相交于A ,B 两点.(1)求公共弦AB 的长;(2)求圆心在直线y x =-上,且过A ,B 两点的圆的方程;31.(23-24高二上·江西·期中)已知圆1C :222210x y x y +--+=,圆2C :()()22245x y r -+-=(0r >).(1)若圆1C 与圆2C 相外切,求r 的值;(2)若圆1C 与圆2C 有两个公共点,求r 的取值范围.32.(23-24高二上·江苏常州·期中)已知圆22:48120C x y x y +--+=,(2,0)A -,O 为坐标原点.(1)若P 为圆C 上的动点,当PAO Ð最大时,求直线PA 的斜率;(2)若圆M 过点O 及点A ,且与圆C 外切,求圆M 的方程.33.(23-24高二上·广东江门·期中)已知圆22:4O x y +=.(1)直线430x y a -+=截圆O 的弦长为a 的值.(2)记圆O 与x 、y 轴的正半轴分别交于,A B 两点,动点Q Q 的轨迹与圆O 是否有两个公共点?若有,求出公共弦长;若没有,说明理由.题型8:难点分析34.(23-24高二上·浙江杭州·期中)已知圆C 过点()2,6A ,圆心在直线1y x =+上,截y 轴弦长为(1)求圆C 的方程;(2)若圆C 半径小于10,点D 在该圆上运动,点()3,2B ,记M 为过B 、D 两点的弦的中点,求M 的轨迹方程;(3)在(2)的条件下,若直线BD 与直线:2l y x =-交于点N ,证明:BM BN ×恒为定值.35.(22-23高二上·湖北武汉·期中)如图,已知圆22:1O x y +=,点P 为直线20x y +-=上一动点,过点P 作圆O 的切线,切点分别为M 、N ,且两条切线PM 、PN 与x 轴分别交于A 、B 两点.(1)当P 在直线y x =上时,求PA PB -的值;(2)当P 运动时,直线MN 是否过定点?若是,求出该定点坐标;若不是,请说明理由.36.(22-23高三上·辽宁·阶段练习)已知在平面直角坐标系xOy 中,(0,1),(0,4),A B 平面内动点P 满足2PA PB =.(1)求点P 的轨迹方程;(2)点P 轨迹记为曲线τ,若C ,D 是曲线τ与x 轴的交点,E 为直线:4l x =上的动点,直线CE ,DE 与曲线τ的另一个交点分别为M ,N ,直线MN 与x 轴交点为Q ,求2211MQ NQ +的最小值.。

人教A版高中数学选修一第二章《直线和圆的方程》提高训练题 (1)(含答案解析)

人教A版高中数学选修一第二章《直线和圆的方程》提高训练题 (1)(含答案解析)

选修一第二章《直线和圆的方程》提高训练题 (1)一、单选题1.如图,在棱长为2的正方体1111ABCD A B C D -中,E 为棱1CC 的中点,P 、Q 分别为面1111D C B A 和线段1B C 上的动点,则EPQ △周长的最小值为( )A .BC .D .2.已知直线l 过定点()0,1,则“直线l 与圆()2224x y -+=相切”是“直线l 的斜率为34”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.一束光线,从点A (-2,2)出发,经x 轴反射到圆C :()()22331x y -+-=上的最短路径的长度是( )A .1B .1C .1D .14.已知圆224x y +=和圆224440x y x y ++-+=关于直线l 对称,则直线方程为( ) A .1y x =-+ B .1y x =+ C .2y x =-+ D .2y x =+5.已知点集()()(){}2222,cos sin 1,S x y x y R ααα=-+-≤∈,当α取遍任何实数时,S 所扫过的平面区域面积是( )A .πB .2π+C .1π+D .4π+6.已知点(7,3)P ,Q 为圆22:210250M x y x y +--+=上一点,点S 在x 轴上,则||||SP SQ +的最小值为( ) A .7B .8C .9D .107.已知直线()10,0ax by c b c ++-=>经过圆22250x y y +--=的圆心,则41b c+的最小值是( ). A .9 B .8 C .4 D .28.在[2-,2]上随机取一个数k ,则事件“直线y kx =与圆(224x y -+=有公共点”发生的概率为( ) A .14B .12C .23D .349.在平面直角坐标系xOy 中,已知圆()22:29C x y -+=,,E F 是直线:2l y x =+上的两点,若对线段EF 上任意一点P ,圆C 上均存在两点,A B ,使得cos 0APB ∠≤,则线段EF 长度的最大值为( )A .2BC .D .4二、多选题10.定义点()00,P x y 到直线l :()2200ax by c a b ++=+≠的有向距离为=d 已知点12,P P 到直线l 的有向距离分别是12,d d .以下命题不正确的是( ) A .若121d d ==,则直线12PP 与直线l 平行 B .若11d =,21d =-,则直线12PP 与直线l 垂直 C .若120d d +=,则直线12PP 与直线l 垂直 D .若120d d ⋅≤,则直线12PP 与直线l 相交11.已知直线l :20ax y +-=与C :()()2214x y a -+-=相交于,A B 两点,若△ABC 为钝角三角形,则满足条件的实数a 的值可能是( ) A .12B .1C .2D .412.已知直线l 1:ax -y +1=0,l 2:x +ay +1=0,a ∈R ,以下结论正确的是( ) A .不论a 为何值时,l 1与l 2都互相垂直B .当a 变化时,l 1与l 2分别经过定点A (0,1)和B (-1,0)C .不论a 为何值时,l 1与l 2都关于直线x +y =0对称D .如果l 1与l 2交于点M ,则|MO |13.古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现;平面内到两个定点A 、B 的距离之比为定值(1)λλ≠的点所形成的图形是圆.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,()2,0A -,()4,0B .点P 满足||1||2PA PB =,设点P 所构成的曲线为C ,下列结论正确的是( ) A .C 的方程为()22416x y ++=B .在C 上存在点D ,使得D 到点()1,1的距离为3 C .在C 上存在点M ,使得2MO MA =D .C 上的点到直线34130x y --=的最小距离为114.已知点P 在圆C :()()22455x y -+-=上,点()4,0A ,()0,2B ,则下列说法中正确的是( )A .点P 到直线AB 的距离小于6 B .点P 到直线AB 的距离大于2C .cos APB ∠的最大值为45D .APB ∠的最大值为2π 15.(多选题)下列说法正确的是( )A .直线20x y -+=与两坐标轴围成三角形的面积是2B .过()()1122,,,x y x y 两点的直线方程为112121y y x x y y x x --=-- C .点(1,1)关于直线10x y -+=的对称点为(0,2)D .经过点(3,4)P ,且在两坐标轴上的截距都是非负整数的直线条数共有6条三、填空题16.如图,射线OA ,OB 分别与x 轴正半轴成45和30角,过点()1,0P 作直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线12y x =上时,则直线AB 的方程是______.17.已知点Q 是直线l :40x y --=上的动点,过点Q 作圆O :224x y +=的切线,切点分别为A ,18.已知直线:l y x b =+,曲线:C y b 的取值范围是______. 19.已知()3,1A -,()5,2B -,点P 在直线0x y +=上,若使PA PB +取最小值,则点P 的坐标是___________.20.已知圆心为()()1,0m m <的圆与x 轴相切,且与直线20x y -=相交于,A B 两点,若AB 4=,则实数m =___________.21.已知直线l 经过点()4,3P ,且在两坐标轴上的截距相等,则直线l 的方程______. 22.已知(),P x y 为圆221x y +=上的动点,则3410x y ++的最大值为________.23.设点P (x ,y )是圆C :x 2+(y -2)2=1上的动点,定点A (1,0),B (-1,0),则PA PB ⋅的最大值为_____24.已知(),0C m ,若以C 为圆心的圆C 与直线310x y +-=相切于点()1,T n ,则圆C 的标准方程是______.25.点P 在曲线21y x =+上,当点P 到直线25y x =-的距离最小时,P 的坐标是______. 26.已知直线:(1)(1)(3)0l m x m y m ++-+-=,则原点到直线l 的距离的最大值等于___________. 27.已知复数z 满足1i z z -=-(其中i 为虚数单位),则2i z +-的最小值为________. 28.设直线:(1)(21)30()l m x m y m m R -+++=∈与圆222(1)(0)x y r r -+=>交于A ,B 两点,C 为圆心,当实数m 变化时,ABC 面积的最大值为4,则2mr =______.29.圆2221: 290C x y ax a +++-=和圆2222: 4140C x y by b +--+=只有一条公切线,若a R ∈,b R ∈,且0ab ≠,则2241a b +的最小值为___________. 30.阿波罗尼斯(古希腊数学家,约公元前262—190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k (0k >且1k ≠)的点的轨迹是圆,后人将这个圆称为阿氏圆,现有ABC ,6AC =,sin 2sin C A =,则当ABC 的面积最大时,BC 的长为______.四、解答题31.已知点(P 在以坐标原点为圆心的圆O 上,直线1l 0y +-=与圆O 相交于A ,B 两点,且A 在第一象限(1)求圆O 在点P 处的切线方程;(2)设()()000,1Q x y x ≠±是圆O 上的一个动点,点Q 关于原点O 的对称点为1Q ,点Q 关于x 轴的对称点为2Q ,如果直线1AQ ,2AQ 与y 轴分别交于()0,m 和()0,n 两点,问mn 是否为定值?若是,求出定值;若不是,说明理由.32.已知点()1,3M ,圆C :()()22214x y -++=.(1)若直线l 过点M ,且被圆C 截得的弦长为l 的方程;(2)设O 为坐标原点,点N 在圆C 上运动,线段MN 的中点为P ,求点P 的轨迹方程. 33.已知圆C :22230x y x ++-=.(1)求斜率为1且与圆C 相切的直线l 的方程;(2)已知点()4,0A ,()0,4B ,P 是圆C 上的动点,求ABP △面积的最大值.34.以三角形边BC ,CA ,AB 为边向形外作正三角形BCA ',CAB ',ABC ',则AA ',BB ',CC '三线共点,该点称为ABC 的正等角中心.当ABC 的每个内角都小于120º时,正等角中心点P 满足以下性质: (1)120APBAPC BPC ;(2)正等角中心是到该三角形三个顶点距离之和最小的点(也即费马点).35.在平面直角坐标系中,已知矩形ABCD 的长AB 为2,宽AD 为1,AB ,AD 边分别为x 轴正半轴,y 轴正半轴,以A 为坐标原点,将矩形折叠,使A 点落在线段DC 上(包括端点).(1)若折痕所在直线的斜率为k ,求折痕所在直线方程;(2)当20k -+≤≤时,求折痕长的最大值;(3)当21k -≤≤-时,折痕为线段PQ ,设()221t k PQ =-,试求t 的最大值36.已知圆C 经过()2,4,()1,3两点,圆心C 在直线10x y -+=上,过点()0,1A 且斜率为k 的直线l 与圆C 相交于M ,N 两点. (1)求圆C 的方程;(2)若12OM ON ⋅=(O 为坐标原点),求直线l 的方程. 37.如图,已知圆()22:19M x y -+=,点()2,1A -.(1)求经过点A 且与圆M 相切的直线l 的方程;(2)过点()3,2P -的直线与圆M 相交于D 、E 两点,F 为线段DE 的中点,求线段AF 长度的取值范围.38.已知直线l :450x ay +-=与直线l ′:20x y -=相互垂直,圆C 的圆心与点(2,1)关于直线l 对称,且圆C 过点M (-1,-1). (1)求直线l 与圆C 的方程.(2)过点M 作两条直线分别与圆C 交于P ,Q 两点,若直线MP ,MQ 的斜率满足k MP +k MQ =0,求证:直线PQ 的斜率为1.39.已知直线l :10x y -+=,点()12,A --. (1)求过点A 且与l 垂直的直线方程; (2)求点A 关于直线l 的对称点A '的坐标;40.已知直线180l mx y n ++=:,直线2210l x my +-=:,12//l l ()(00)A m n m n >>,,的直线l 被1l 、2l(1)A 点坐标; (2)直线l 的方程.41.已知点(1,0),(4,0)A B ,曲线C 上任意一点P 满足2PB PA =. (1)求曲线C 的方程;(2)设点(3,0)D ,问是否存在过定点Q 的直线l 与曲线C 相交于不同两点E ,F ,无论直线l 如何运动,x 轴都平分∠EDF ,若存在,求出Q 点坐标,若不存在,请说明理由.42.已知在平面直角坐标系xOy 中,点()30A -,. (1)设动点(),M x y ,满足2=MA MO ,求动点M 的轨迹C 的方程; (2)已知Q 点的坐标为()3,3-,求过点Q 且与C 相切的直线方程.43.已知圆C 经过两点(1,3),(3,1)P Q ---,且圆心C 在直线240x y +-=上,直线l 的方程为(1)2530k x y k -++-=.(1)求圆C 的方程;(2)证明:直线l 与圆C 一定相交; (3)求直线l 被圆C 截得的弦长的取值范围.44.如图直线l 过点(3,4),与x 轴、y 轴的正半轴分别交于A 、B 两点,AOB 的面积为24.点P 为线段AB 上一动点,且//PQ OB 交OA 于点Q .(1)求直线AB 斜率的大小; (2)若APQ 的面积APQS与四边形OQPB 的面积OQPB S 满足:13APQ OQPB S S =△时,请你确定P 点在AB 上的位置,并求出线段PQ 的长;(3)在y 轴上是否存在点M ,使MPQ 为等腰直角三角形,若存在,求出点M 的坐标;若不存在,说明理由.45.已知ABC 的三个顶点()30A -,,2(3)B -,,(01)C ,. (1)求ABC 外接圆的方程; (2)求ABC 内切圆的方程.46.已知曲线22:20(1,2,)n C x nx y n -+==.从点(1,0)P -向曲线n C 引斜率为(0)n n k k >的切线n l ,切点为(),n n n P x y .(1)求切点1P 坐标和切点n P 的坐标;(2)已知()f x x x =在0,4π⎛⎫⎪⎝⎭n n x y <.47.如果()2,0A ,()1,1B ,()1,1C -,()2,0D -,CD 是以OD 为直径的圆上一段圆弧,CB 是以BC 为直径的圆上一段圆弧,BA 是以OA 为直径的圆上一段圆弧,三段弧构成曲线Ω,(1)求AB 所在圆与CB 所在圆的公共弦方程; (2)求CB 与BA 的公切线方程.48.如图所示,甲船由A 岛出发向北偏东45︒的方向做匀速直线航行,速度为/小时,在甲船从A 岛出发的同时,乙船从A 岛正南40海里处的B 岛出发,朝北偏东1tan 2θθ⎛⎫= ⎪⎝⎭的方向作匀速直线航行,速度为/小时.(1)求出发后3小时两船相距多少海里? (2)求两船出发后多长时间距离最近?49.已知圆()22:11M x y -+=,15,22A ⎛⎫ ⎪⎝⎭,()0,B t ,()()0,404C t t -<<,直线,PB PC 都是圆M 的切线,且点P 在y 轴右侧.(1)过点A 的直线l 被圆M l 的方程; (2)当1t =时,求点P 的横坐标; (3)求PBC 面积的最小值.五、双空题50.已知直线1:30l x y -+=,2:20l x y +=相交于点A ,则点A 的坐标为_________,圆22:+C x y 2410x y -++=,过点A 作圆C 的切线,则切线方程为__________.【答案与解析】1.B 【解析】先分析出P 在B 1C 1上时,△PEQ 的周长更短.过E 点作关于B 1C 1的对称点N ,关于B 1C 的对称点M ,则,EQ MQ EP NP ==,过P 作在平面BCC 1B 1的投影P ',连接,P Q P E '',则,PQ P Q PE P E ''>>,所以只有P 在B 1C 1上时,△PEQ 的周长更短.过E 点作关于B 1C 1的对称点N ,关于B 1C 的对称点M ,则,EQ MQ EP NP ==,把△PEQ 的周长转化为PQ PN QM ++,当,,,N P Q M 共线时,周长最短,即可求解.所以△PEQ 的周长可以转化为PQ PN QM ++. 当,,,N P Q M 共线时,周长最短.则=PQ PN QM MN ++.因为E 为中点,所以111,1C N C E CM CE ====,所以△PEQ 的周长为MN即EPQ △. 故选:B距离的计算方法有两类:(1)几何法:利用几何图形求最值;(2)代数法:把距离表示为函数,利用函数求最值. 2.B 【解析】首先根据题意求直线l ,再判断充分,必要条件. 当直线斜率存在时,直线l 的方程是1y kx =+,圆心()2,0到直线10kx y -+=的距离2d =,解得:34k =,当直线斜率不存在时,直线l 的方程是0x =与圆()2224x y -+=相切,综上可知,“直线l 与圆()2224x y -+=相切”是“直线l 的斜率为34”的必要不充分条件.故选:B 3.A 【解析】求出点A 关于x 轴对称点A ',再求点A '与圆C 上的点距离最小值即可. 依题意,圆C 的圆心(3,3)C ,半径1r =,点A (-2,2)关于x 轴对称点(2,2)A '--,连A C '交x 轴于点O ,交圆C 于点B ,如图,圆外一点与圆上的点距离最小值是圆外这点到圆心距离减去圆的半径,于是得点A '与圆C 上的点距离最小值为1A B A C r ''=-=1=, 在x 轴上任取点P ,连,,AP A P PC ',PC 交圆C 于点B ',而,AO A O AP A P ''==,AO OB A O OB A B A C r A P PC r AP PB '''''+=+==-≤+-=+,当且仅当点P 与O 重合时取“=”,所以最短路径的长度是1. 故选:A 4.D 【解析】本题首先可求出两圆的圆心,然后根据题意得出直线l 过两圆心连接而成的线段的中点且互相垂直,最后根据直线的点斜式方程即可得出结果. 224x y +=,圆心为()0,0,半径为2,224440x y x y ++-+=,即()()22224x y ++-=,圆心为()2,2-,半径为2,因为圆224x y +=和圆224440x y x y ++-+=关于直线l 对称, 所以直线l 过两圆心连接而成的线段的中点且互相垂直, 则直线l 过点()1,1-,斜率112020k,故直线方程为11y x -=+,即2y x =+, 故选:D. 5.A 【解析】根据题意S 中的元素组成以()22cos ,sin αα为圆心的圆心,半径为1的圆及其内部,当α取遍任何实数时,点集S 对应的图形如图,为矩形与两个半圆的组合图形,从而可得答案. 根据题意,点集()()(){}2222,cos sin 1,S x y x y R ααα=-+-≤∈,S 中的元素组成以()22cos ,sin αα为圆心的圆心,半径为1的圆及其内部,设M ()22cos ,sin αα又由22220cos 10sin 1sin cos 1a a αα⎧≤≤⎪≤≤⎨⎪+=⎩,则圆心M 在线段()101x y x +=≤≤上,则点集S 对应的图形如图,为矩形ABCD 与两个半圆的组合图形, 其中AB=2,BC ,则当α取遍任何实数时,S 所扫过的平面区域面积S=2ππ=;故选:A .6.C【解析】本题目是数形结合的题目,根据两点之间线段最短的原则,可以将SP 转换为'SP ,连接'MP ,找到S 点的位置,从而求出线段和的最小值将圆方程化为标准方程为:()()22151x y -+-=,如下图所示:作点(7,3)P 关于x 轴的对称点'(7,3)P -,连接'MP 与圆相交于点Q ,与x 轴相交于点S ,此时,||||SP SQ +的值最小,且'''||||||||SP SQ SP SQ P Q P M r +=+==-,由圆的标准方程得:M 点坐标为()1,5,半径1r =,所以'10P M ==,'9P M r -=,所以||||SP SQ +最小值为9 故选:C 7.A 【解析】直线过圆心,先求圆心坐标,利用1的代换,以及基本不等式求最小值即可.解:圆22250x y y +--= 即22(1)6x y +-=,表示以(0,1)C 的圆. 由于直线()10,0ax by c b c ++-=>经过圆22250x y y +--=的圆心,故有1b c +=.∴()()5414152494c b c b b c b cb c +=+=++++= 当且仅当223b c ==时,取等号, 故41b c+的最小值为9, 故选:A . 8.B 【解析】先求出直线与圆有公共点的k 值区间,再利用几何概型即可求出概率.显然,圆(224x y -+=的圆心坐标为0),半径为2,直线y kx =与圆(224x y -+=2≤,解得11k -≤≤,在[2-,2]上随机取一个数k 的试验的全部结果构成的区间长度为4,“直线y kx =与圆(224x y -+=有公共点”的事件A 的区间长度为2,于是得21()42P A ==,事件“直线y kx =与圆(224x y -+=有公共点”发生的概率为12.故选:B 9.C 【解析】设圆的切线为PM 、PN ,由cos 0APB ∠≤得90APB ∠≥,即90MPN ∠≥, 再求得PC 的取值范围,求得点P 的坐标,即可求得EF 的最大值. 由题意,圆心到直线:2l y x =+的距离为3d =<(半径)故直线l 和圆相交;当点P 在圆外时,从直线上的点向圆上的点连线成角, 当且仅当两条线均为切线时,APB ∠才是最大的角,不妨设切线为PM ,PN ,则由cos 0APB ∠≤, 得90APB ∠≥, 90MPN ∴∠≥;当90MPN ∠=时,32sin sin 452MPC PC ∠===,PC ∴=设()00,2P x x +,PC ==解得:0x =设())2,2E F,如图,EF 之间的任何一个点P ,圆C 上均存在两点,A B ,使得90APB ∠≥,线段EF 长度的最大值为EF ==故选:C 10.BCD 【解析】要理解题目中有向距离的概念,点在直线上方时为正,下方时为负,绝对值代表点到直线的距离,根据各选项判断即可 设()111,P x y , ()222,P x y ,选项A, 若121d d ==, 则1122ax by c ax by c ++=++=则点12,P P 在直线的同一侧,且到直线距离相等,所以直线12PP 与直线l 平行, 所以正确;选项B, 点12,P P 在直线l 的两侧且到直线l 的距离相等, 直线12PP 不一定与l 垂直, 所以错误; 选项C, 若120d d ==, 满足120d d +=, 即11220ax by c ax by c ++=++=, 则点12,P P 都在直线l 上, 所以此时直线12PP 与直线l 重合, 所以错误; 选项D, 若120d d ⋅≤, 即()()11220ax by c ax by c ++++≤, 所以点12,P P 分别位于直线l 的两侧或在直线l 上, 所以直线12PP 与直线l 相交或重合, 所以错误. 故选:BCD 11.AC 【解析】根据ABC 的形状先判断出CAB ∠的大小,然后结合圆心到直线的距离d 以及sin CAB ∠的取值范围求解出a 的取值范围.由题意,圆C 的圆心为()1,a ,半径为2r,由于△ABC 为等腰三角形,若该三角形为钝角三角形,则045CAB ︒<∠<︒, 设圆心C 到直线l 的距离为d,则d =则0sin 2d CAB r <∠==<, 且直线不经过圆心,即20a a +-≠,整理可得24101a a a ⎧-+<⎨≠⎩,解得22a <<+,且1a ≠.所以()(21,2a ∈⋃. 故选:AC. 12.ABD 【解析】对A ,根据斜率相乘为1-可判断;对B ,可直接求出定点可判断;对C ,取特殊的点代入即可判断;对D ,联立直线求出交点即可表示出MO 即可求出最值.对于A ,1(1)0a a ⨯+-⨯=恒成立,l 1与l 2互相垂直恒成立,故A 正确;对于B ,直线l 1:ax -y +1=0,当a 变化时,x =0,y =1恒成立,所以l 1恒过定点A (0,1);l 2:x +ay +1=0,当a 变化时,x =-1,y =0恒成立,所以l 2恒过定点B (-1,0),故B 正确. 对于C ,在l 1上任取点(,1)x ax +,关于直线x +y =0对称的点的坐标为(1,)ax x ---,代入l 2:x +ay +1=0,则左边不等于0,故C 不正确;对于D ,联立1010ax y x ay -+=⎧⎨++=⎩,解得221111a x a a y a --⎧=⎪⎪+⎨-+⎪=⎪+⎩,即2211,11a a M a a ---+⎛⎫ ⎪++⎝⎭,所以MO MO,故D 正确. 故选:ABD. 13.ABD 【解析】对于A ,设点(),P x y ,由||1||2PA PB =结合两点间的距离公式化简即可判断,对于B ,由A 可知曲线C 的方程表示圆心为()4,0-,半径为4的圆,从而可求出圆上的点到点()1,1的距离的范围,进而进行判断,对于C ,设()00,M x y ,由2MO MA =,由距离公式可得方程,再结点()00,M x y 在曲线C 上,得到一个方程,两方程联立求解判断,对于D ,由于曲线C 的方程表示圆心为()4,0-,半径为4的圆,所以只要求出圆心到直线的距离减去圆的半径可得答案由题意可设点(),P x y ,由()2,0A -,()4,0B ,||1||2PA PB =,12=,化简得2280x y x ++=,即22(4)16x y ++=,所以选项A 正确;对于选项B ,曲线C 的方程表示圆心为()4,0-,半径为4的圆,点()1,1与圆心的距离为44,而34]∈,所以选项B 正确;对于选项C ,设()00,M x y ,由2MO MA =,又()2200416x y ++=,联立方程消去0y 得02x =,解得0y 无解,所以选项C 错误; 对于选项D ,C 的圆心()4,0-到直线34130x y --=的距离为|3(4)13|55d ⨯--==,且曲线C 的半径为4,则C 上的点到直线34130x y --=的最小距离541d r -=-=故选项D 正确; 故选:ABD . 14.BCD 【解析】首先求出线段AB 的中点,即可求出线段AB 的垂直平分线,再由圆心在直线上,即可求出P 到直线AB 的距离的最值,当ABP △的外接圆与圆C 相内切时,APB ∠最小,当ABP △的外接圆与圆C 相外切时,APB ∠最大,数形结合即可求出cos APB ∠的最大值; 解:(4,0)A ,(0,2)B ,所以线段AB 的中点为()2,1M ,201042AB k -==--,所以线段AB 的垂直平分线为()122y x -=-,即23y x =-,因为圆C :()()22455x y -+-=,圆心()4,5C ,半径r = 又点()4,5C 恰在直线23y x =-上,所以点P 到直线AB 的距离最小值为2CM r -=,最大值为6CM r +=,由正弦定理可知,当ABP △的外接圆与圆C 相内切时,APB ∠最小,此时cos APB ∠最大,此时P 恰在23y x =-与()()22455x y -+-=的一个交点上,由()()2245523x y y x ⎧-+-=⎪⎨=-⎪⎩解得57x y =⎧⎨=⎩或33x y =⎧⎨=⎩,所以()5,7P ,所以AP =PMcos PM APM AP ∠==24cos cos 22cos 15APB APM APM ∠=∠=∠-=,当ABP △的外接圆与圆C 相外切时,APB ∠最大,此时2APB π∠=,故C 、D 正确;故选:BCD15.AC 【解析】选项A 先求出直线20x y -+=与两坐标轴的交点坐标,再求面积;选项B 利用直线方程的条件限制判定;选项C 利用求一点关于直线对称的点的步骤求解;选项D 分截距为零和截距不为零讨论,对于截距不为零的利用截距式方程求解.选项A :因为直线20x y -+=与两坐标轴的交点为()2,0A -,()0,2B ,所以直线20x y -+=与两坐标轴围成三角形的面积是12222⨯-⨯=,故选项A 正确;选项B :直线方程写成11y y x x y y x x --=--的条件为1212,y y x x ≠≠,故选项B 错误;选项C :设点(1,1)关于直线10x y -+=的对称点为(),m n ,由1110,221111m n n m ++⎧-+=⎪⎪⎨-⎪⋅=-⎪-⎩,解得0,2m n =⎧⎨=⎩,故选项C 正确;选项D :当截距为零时,有一条43y x =;当截距不为零时,设直线方程为1x ya b+=, 因为过定点(3,4)P ,所以341a b +=,即1243b a =+-,又a ,b 均为正整数,所以3a -必为12的正因数1,2,3,4,6,12,共6种情况, 故综合起来应该有7条,故选项D 错误. 故选:AC.16.(3230x y -- 【解析】先求出射线OA ,OB 的方程,(),A m m,(),B n ,可得点C 的坐标,利用点C 在直线12y x =以及Ap BP k k =列方程组可得m 的值,再求出Ap k ,由点斜式可得直线方程. 由题意可得tan 451OA k ==,()3tan 18030tan1503OB k =-==-,所以直线OA 的方程:y x =,直线OB 的方程:y =, 设(),A m m ,(),B n ,所以AB 的中点2m n C ⎫+⎪⎪⎝⎭, 由点C 在直线12y x =上,且,,A P B 三点共线得:12201m n m m ⎧+=⎪⎪⎨-⎪=⎪-⎩解得:m ,所以A又()1,0P,所以AB AP k k =,所以直线AB 的方程是:)1y x =-,即(3230xy --=, 故答案为:(3230x y --=. 17.(1,-1) 【解析】恒过的定点坐标.由题意可设Q 的坐标为(m ,n ),则m -n -4=0,即m =n +4,过点Q 作圆O :224x y +=的切线,切点分别为A ,B ,则切点弦AB 所在直线方程为mx +ny -4=0,又由m =n +4,则直线AB 的方程变形可得nx +ny +4x -4=0,则有0440x y x +=⎧⎨-=⎩,解得11x y =⎧⎨=-⎩,则直线AB 恒过定点(1,-1).故答案为:(1,-1).18.1b ≤<【解析】由直线、曲线方程画出对应的图形,应用数形结合法,确定对应图形有两个交点时参数b 的取值范围.y x b =+表示斜率为1的平行直线系;y x 轴及其上方的半圆,如图所示.当l 通过()1,0A -,()0,1B 时,l 与C 有两交点,此时1b =,记为1l ;当l 与半圆相切时,此时b =2l ; 当l 夹在1l 与2l 之间时,l 和C 有两个不同的公共点.综上,1b ≤<故答案为:1b ≤<19.1313,55⎛⎫- ⎪⎝⎭【解析】求出点A 关于直线0x y +=的对称点E ,则直线BE 与0x y +=的交点即为所求. 点()3,1A -关于直线0x y +=的对称点为()1,3E -,又()5,2B -, 则直线BE 的方程为135123x y -+=--+,即4130x y --=,联立41300x y x y --=⎧⎨+=⎩,解得135x =,135y =-,所以使PA PB +取最小值的点P 的坐标是1313,55⎛⎫- ⎪⎝⎭.故答案为:1313,55⎛⎫- ⎪⎝⎭.20.-7 【解析】根据题意可知半径r m =-,进而算出圆心到直线的距离,再根据弦长为4,通过勾股定理列出等式即可解出.因为圆心为()()1,0m m <的圆与x 轴相切,所以半径r m =-,圆心到直线20x y -=的距离d =又因为AB 4=,由()2222212||425m AB r d m -⎛⎫=+⇒=+ ⎪⎝⎭,因为0m <,所以7m =-. 故答案为:-7.21.7y x =-+或34y x = 【解析】直线在两坐标轴上的截距相等,有两种情况,斜率为1-,或直线过原点,结合直线过点()4,3P 即可求解,有两种情况因为直线与坐标轴的截距相等,则直线的斜率为1-,或直线过原点,当直线斜率为1-时,因为直线过点()4,3P ,根据点斜式,直线方程为:()34y x -=--,化简得:7y x =-+; 当直线过原点时,34k =,所以直线方程为34y x =故答案为:7y x =-+或3y x =22.15 【解析】设3410t x y =++,即34100x y t ++-=,由直线与圆相切可得t 的范围,即可求解. 设3410t x y =++,则34100x y t ++-=,直线与圆相切时圆心()0,0到直线34100x y t ++-=的距离1d =,1=,解得:5t =或15t =,所以515t ≤≤,所以5341015x y ≤++≤, 所以3410x y ++的最大值为15, 故答案为:15. 23.8 【解析】用点P 的坐标表示出PA ,PB ,再求出PA PB ⋅并借助点P 在圆C 上的条件即可作答. 因点(,)P x y 在圆C 上,即22(2)1x y +-=,则22(1)2x y =--,且13y ≤≤, 而(1,),(1,)P PA x y x y B =--=---,于是得22221(2)44PA x y y y y PB ⋅=-+=--+=-,显然44y -在[1,3]y ∈上单调递增,则当3y =时,max (44)8y -=,即max ()8P PA B ⋅=, 所以PA PB ⋅的最大值为8. 故答案为:824.()22740x y -+=. 【解析】根据题意直接可求出n ,再根据切线的性质可得直线CT 与直线310x y +-=垂直,从而求出m ,进而求得半径,即可得出答案.解:根据题意,圆C 与直线310x y +-=相切于点()1,T n , 则()1,T n 在直线310x y +-=上,则有310n +-=,解可得2n =-, 又由圆心C 的坐标为(),0m ,直线310x y +-=的斜率为3-, 则有0113n m -=-,解可得7m =,圆的半径r TC == 故圆C 的标准方程是()22740x y -+=; 故答案为:()22740x y -+=. 25.(1,2) 【解析】任取曲线上一点()00,x y ,利用点到直线的距离公式可得d =求出d 取最小值时,01x =,即可得到答案;解:任取曲线上一点()00,x y ,则0021y x =+直线:25,l y x =-即250x y --= 点()00,x y 到直线l的距离为d===()20150y x =-+>在01x =时,min d ==02y =,故答案为:(1,2) 26【解析】根据题意,设原点到直线的距离为d ,将直线变形分析可得直线经过定点(1,2),设M (1,2),分析可得d OM ≤,即可得答案.根据题意,设原点到直线的距离为d .直线()()():1130l m x m y m ++-+-=,即()130m x y x y -+++-=则有1030x y x y -+=⎧⎨+-=⎩,解得12x y =⎧⎨=⎩,即直线l 恒过定点(1,2).设M (1,2),则d OM ≤即原点到直线l故答案为:.27【解析】由复数的几何意义可得满足题意的复数z 对应的点P 到复数1和i 对应点(1,0)A ,(0,1)B 距离相等,即轨迹为线段AB 的垂直平分线,则2i z +-的最小值即可转化为点(2,1)-到垂直平分线的距离求解.如图所示,设复数z ,1,i 对应的点分别为(),P x y ,(1,0)A ,(0,1)B , 由题意1i z z -=-得PA PB =即点P 的轨迹为线段AB 的垂直平分线l ,由平面几何知识可求得垂直平分线l 的方程为:0x y -=, 由|i 2i ||(2)(1)i |2i z x y x y =++-=+-++-,所以2i z +-的最小值即为点(2,1)C -到直线l 的距离,则由d CP ==,即2i z +-的故答案为:本题考查了复数的几何意义,复数模的几何意义及其运算,重点考查了运算能力,属于中档题. 28.4-或28-. 【解析】求出圆心C 到直线l 的距离,利用勾股定理求出弦长,计算ABC 的面积,从而求出直线的斜率与方程.解:直线:(1)(21)30()l m x m y m m R -+++=∈, 直线l 的方程可化为:()(23)0x y m x y -++++=, 可得230y xx y =⎧⎨++=⎩,直线恒过:(1,1)--.圆222(1)(0)x y r r -+=>的圆心(1,0),半径为:r . 圆心C 到直线l 的距离为:d ;所以三角形ABC 的面积为211||22ABCS AB d r =⋅⋅≤,2142r =,解得r =2d =.2,解得12m =-或72m =-所以,24mr =-或28-. 故答案为:4-或28-. 29.4 【解析】首先将两圆方程配成标准式,即可得到圆心坐标与半径,依题意可得两圆相内切,即可得到31-,从而得到2244a b +=,再利用乘“1”法及基本不等式计算可得;解:因为圆2221:290C x y ax a +++-=和圆2222:4140C x y by b +--+=,所以圆()221:9C x a y ++=和圆()222:21C x y b +-=,圆心分别为()1,0C a -,()20,2C b ,半径分别为3和1,依题意可知两圆31=-,所以2244a b +=,因为a R ∈,b R ∈,且0ab ≠,所以()22222222224416411111884444a b a b a a b b a b ⎛⎛⎫⎛⎫+=+=++≥+= ⎪ ⎪ ⎝⎭⎝+⎝⎭,当且仅当222216b a a b =时,等号成立,所以2241a b +的最小值为4; 故答案为:430.【解析】建立直角坐标系,根据条件将B 点轨迹转化为阿氏圆的问题来解决如上图所示,以AC 的中点为原点,AC 边所在直线为x 轴建立直角坐标系,因为6AC =,所以()30A -,,()3,0C ,设点(),B x y ,因为sin 2sin C A =,由正弦定理可得:2c a =,即2AB BC =, 所以:()()22223434x y x y ++=-+,化简得:()22516x y -+=,且1x ≠,9x ≠, 圆的位置如上图所示,圆心为()5,0,半径4r =,观察可得,三角形底边长AC 不变的情况下,当B 点位于圆心D 的正上方时,高最大, 此时ABC 的面积最大,B 点坐标为()5,4,所以BC ==故答案为:31.(1)40x -=;(2)是定值,理由见解析. 【解析】(1)算出OP k ,然后可算出答案;(2)可得()100,Q x y --,()200,Q x y -,22004x y +=,然后表示出直线1AQ ,2AQ 的方程,然后可得0m =n =,然后可算出mn 的值.(1)因为OP k ==O 在点P处的切线斜率为所以圆O在点P处的切线方程为)1y x =-,即40x -= (2)是定值,理由如下解方程组224y x y +-=+=⎪⎩,可得A , 因为()000,(1)Q x y x ≠±,所以()100,Q x y --,()200,Q x y -,22004x y +=,由10:1)AQ y x -,令0x=,得0m =由20:1)AQ y x -,令0x =,得0n =∴2020004(1)41x mn x --===-. 32.(1)158390x y +-=或1x =;(2)()223112x y ⎛⎫-+-= ⎪⎝⎭.【解析】(1)由条件求出圆心到直线l 的距离,然后分直线l 的斜率不存在、直线l 的斜率存在两种情况求解即可;(2)设()00,N x y ,(),P x y ,然后由()()2200214x y -++=,中点坐标公式可得答案.(1)因为直线l 被圆C截得的弦长为所以圆心到直线l1=当直线l 的斜率不存在时,其方程为1x =,满足 当直线l 的斜率存在时,则其方程为()13y k x =-+所以1518d k ==⇒=-,此时直线方程为158390x y +-= 综上:直线方程为158390x y +-=或1x = (2)设()00,N x y ,(),P x y 则()()2200214x y -++= 因为P 是MN 中点,则满足000012122332x x x x y y y y +⎧=⎪=-⎧⎪⇒⎨⎨=-+⎩⎪=⎪⎩代入方程得:()223112x y ⎛⎫-+-= ⎪⎝⎭33.(1)1y x =±;(2)10+【解析】(1)设直线方程为:y x b =+,根据直线与圆相切,由圆心到直线的距离等于圆的半径求解. (2)易得点P 到直线AB 的距离的最大值为圆心到直线的距离d 与圆的半径之和,即max h d r =+,然后()()max12ABP SAB d r =⨯⨯+求解. (1)设直线方程为:y x b =+, 圆C :()2214x y ++=, 因为直线与圆相切,所以圆心到直线的距离等于圆的半径,即21d b ==⇒=±,所以直线l 方程为:1y x =±.(2)AB == 直线AB 的方程为:4y x =-+,圆心到到直线AB 的距离为:d ==所以点P 到直线AB 的距离的最大值为max 2h d r =+,所以()max 12102ABP S⎫=⨯=+⎪⎪⎝⎭.34.2【解析】由题可知,所要求的代数式恰好表示平面直角坐标系中三个距离之和,所以首先要把代数式中三个距离的对应的点找到,再根据题干所述找到相应的费马点,即可得出结果. 根据题意,在平面直角坐标系中,令点(0,1)A ,(0,1)B -,(2,0)C ,(,)x y 到点A 、B 、C 的距离之和,因为ABC 是等腰三角形,AC BC =,所以C '点在x 轴负半轴上,所以CC '与x 轴重合, 令ABC 的费马点为(,)P a b ,则P 在CC '上,则0b =,因为ABC 是锐角三角形,由性质(1)得120APC ∠=︒,所以60APO ∠=︒,所以1a =a =P ⎫∴⎪⎪⎝⎭到A 、B 、C 的距离分别为PA PB =2PC =,,即为费马点P 到点A 、B 、C 的距离之和,则2PA PB PC ++=35.(1)2122k y kx =++;(2)2;(3)-【解析】(1)根据对折的对称性可得,若折叠后A 点落在G 点,则斜率相乘为1-,从而得到G 点的坐标关于k 的表达式,写出折痕所在的直线方程(2)当20k -+≤≤,分析可得折痕交在BC 和y 轴上,求出交点坐标,求出折痕长度关于k 的表达式,结合k 的范围求出最大值(3)当21k -≤≤-时,折痕交在DC 和x 轴上,求出PQ 的表达式,代入求出t 关于k 的表达式,结合k 的范围求出t 的最大值(1)①当0k =时,此时A 点与D 点重合,折痕所在的直线方程12y =; ②当0k ≠时,将矩形折叠后A 点落在线段DC 上的点记为(),1G a , 所以A 与G 关于折痕所在的直线对称, 有111OG k k k a k a⋅=-⇒⋅=-⇒=-, 故G 点坐标为(),1G k -,从而折痕所在的直线与OG 的交点坐标,即线段OG 的中点为122k M ⎛⎫- ⎪⎝⎭,,折痕所在的直线方程122k y k x ⎛⎫-=+ ⎪⎝⎭,即2122k y kx =++,由①②得折痕所在的直线方程为:2122k y kx =++;(2)当0k =时,折痕的长为2,当折痕刚好经过B 点时,将()2,0代入直线方程得:2410k k ,2k =-+2k =-时,A 点不在线段DC 上,舍)当20k -<时,折痕两个端点一定在BC 和y 轴上,直线交BC 于点212,222k P k ⎛⎫++ ⎪⎝⎭,交y轴于210,2k Q ⎛⎫+ ⎪⎝⎭,(22222211||224444732222k k PQ k k ⎡⎤⎛⎫+=+-++=+≤+-=-⎢⎥ ⎪⎝⎭⎣⎦∴2= ,而22>,故折痕长度的最大值为2;()3当21k -≤≤-时,折痕的两个端点一定在DC 和x 轴上,直线交DC 于1,122kP k ⎛⎫-⎪⎝⎭,交x 轴于21,02k Q k ⎛⎫+- ⎪⎝⎭,2222111||11222k k PQ k k k ⎡⎤+⎛⎫=---+=+⎢ ⎪⎥⎝⎭⎣⎦,22(2||1)t k PQ k k∴=-=+, 21k -≤≤-,2k k∴+≤-当且仅当()21k =--,时取“=”号),∴当k =t 取最大值,t 的最大值是-本题综合考查了直线方程、函数的最值、均值不等式,考查了数形结合和分类讨论的数学思想,属难题.36.(1)()()22231x y -+-=;(2)1y x =+. 【解析】(1)设圆C 的圆心和半径,根据已知条件用待定系数法列方程求解(2)设设直线方程1y kx =+,11(,)M x y ,22(,)N x y ,则121212OM ON x x y y ⋅=+=,所以需要含参直线与圆联立方程,根据韦达定理进行计算,一个方程求解一个未知数 解:(1)设圆C 的方程为()()222x a y b r -+-=,则依题意,得()()()()22222224,13,10,a b r a b r a b ⎧-+-=⎪⎪-+-=⎨⎪-+=⎪⎩解得2,3,1,a b r =⎧⎪=⎨⎪=⎩∴圆C 的方程为()()22231x y -+-= (2)设直线l 的方程为1y kx =+,设11(,)M x y ,22(,)N x y ,将1y kx =+,代入22(2)(3)1x y -+-=并。

人教版高中数学必修二第三章直线与圆课后提升作业二十一 3.2.3 含解析

人教版高中数学必修二第三章直线与圆课后提升作业二十一 3.2.3 含解析

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

课后提升作业二十一直线的一般式方程(30分钟60分)一、选择题(每小题5分,共40分)1.直线2x+ay+3=0的倾斜角为120°,则a的值是( )A. B.- C.2 D.-2【解析】选A.因为直线的倾斜角为120°,所以直线的斜率k=-,即-=-,所以a=.【补偿训练】平面直角坐标系中,直线x+y+2=0的斜率为( ) A. B.- C. D.-【解析】选B.将直线化为斜截式y=-x-.故斜率为-.2.(2016·海淀高一检测)已知直线l经过点P(2,1),且与直线2x-y+2=0平行,那么直线l的方程是( )A.2x-y-3=0B.x+2y-4=0C.2x-y-4=0D.x-2y-4=0【解析】选A.由题意可设所求的方程为2x-y+c=0,代入已知点 (2,1),可得4-1+c=0,即c=-3,故所求直线的方程为2x-y-3=0.3.直线3x+4y+5=0的斜率和它在y轴上的截距分别为( )A.,B.-,-C.-,-D.,【解析】选C.根据斜率公式k=-=-,令x=0,则y=-,即在y轴上的截距为-.4.若三直线l1:2x+3y+8=0,l2:x-y-1=0,l3:x+ky+k+=0能围成三角形,则k不等于( )A. B.-2C.,-1D.,-1,-【解析】选 D.由得交点P(-1,-2),若P在直线x+ky+k+=0上,则k=-,此时三条直线交于一点;k=时,直线l1与l3平行;k=-1时,直线l2与l3平行,综上知,要使三条直线能围成三角形,应有k≠-,和-1.5.(2016·杭州高一检测)已知直线l:ax+y-2-a=0在x轴和y轴上的截距相等,则a的值是( )A.1B.-1C.-2或-1D.-2或1【解析】选D.当截距都为0时,-2-a=0即a=-2;当截距都不为0即a ≠-2时,直线方程可变形为:+=1,由已知有=a+2,得a=1.6.(2016·北京高一检测)已知直线ax+by+c=0的图象如图,则( )A.若c>0,则a>0,b>0B.若c>0,则a<0,b>0C.若c<0,则a>0,b<0D.若c<0,则a>0,b>0【解析】选D.由ax+by+c=0,得斜率k=-,直线在x,y轴上的截距分别为-,-.如题图,k<0,即-<0,所以ab>0,因为->0,->0,所以ac<0,bc<0.若c<0,则a>0,b>0;若c>0,则a<0,b<0.7.(2016·威海高一检测)直线l过点(-1,2)且与直线2x-3y+4=0垂直,则l的方程是( )A.3x+2y-1=0B.3x+2y+7=0C.2x-3y+5=0D.2x-3y+8=0【解析】选A.由直线l与直线2x-3y+4=0垂直,可知直线l的斜率是-,由点斜式可得直线l的方程为y-2=-(x+1),即3x+2y-1=0.【补偿训练】过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0D.x+2y-1=0【解析】选A.设所求直线的方程为x-2y+m=0,把点(1,0)代入,得m=-1,故选A.8.已知m≠0,直线ax+3my+2a=0在y轴上的截距为2,则直线的斜率为( )A.1B.-C.-D.2【解析】选A.令x=0,得y=-,因为直线在y轴上的截距为2,所以-=2,所以a=-3m,原直线化为-3mx+3my-6m=0,所以k=1.【延伸探究】把题中的“在y轴上的截距为2”改为“在两坐标轴上的截距之和为2”,则直线的斜率为( )A.1B.-C.-D.2【解析】选D.令x=0,得y=-,令y=0,得x=-2,因为在两坐标轴上的截距之和为2,所以-+(-2)=2,所以a=-6m,原直线化为-6mx+3my-12m=0,所以k=2.二、填空题(每小题5分,共10分)9.(2016·广州高一检测)垂直于直线3x-4y-7=0,且与两坐标轴围成的三角形的面积为6的直线在x轴上的截距是________.【解析】设直线方程是4x+3y+d=0,分别令x=0和y=0,得直线在两坐标轴上的截距分别是-,-.所以6=××=.所以d=±12,则直线在x轴上的截距为3或-3.答案:3或-310.若方程(2m2+m-3)x+(m2-m)y-4m+1=0表示一条直线,则实数m的取值范围是______________.【解题指南】求x,y的系数不同时为0的m值即可,即先求出x与y 的系数均为零时m的值,再取补集即可.【解析】由得m=1,故要使方程表示一条直线,需2m2+m-3与m2-m不同时为0,故m≠1.答案:m≠1三、解答题11.(10分)求与直线3x-4y+7=0平行,且在两坐标轴上截距之和为1的直线l的方程.【解析】方法一:由题意知:可设l的方程为3x-4y+m=0,则l在x轴,y轴上的截距分别为-,.由-+=1知,m=-12.所以直线l的方程为:3x-4y-12=0.方法二:设直线方程为+=1,由题意得解得所以直线l的方程为:+=1.即3x-4y-12=0.【补偿训练】(2016·大连高一检测)已知直线2x+(t-2)y+3-2t=0,分别根据下列条件,求t的值.(1)过点(1,1).(2)直线在y轴上的截距为-3.【解析】(1)因为直线2x+(t-2)y+3-2t=0过点(1,1),所以2+(t-2)+3-2t=0,即t=3.(2)令x=0,得y==-3,解得t=.关闭Word文档返回原板块附赠材料答题六注意:规范答题不丢分提高考分的另一个有效方法是减少或避免不规范答题等非智力因素造成的失分,具体来说考场答题要注意以下六点: 第一,考前做好准备工作。

圆与方程 解答压轴题(六大题型)(教师版) 2024-2025学年高二数学期中期末挑战(人教选修一)

圆与方程 解答压轴题(六大题型)(教师版) 2024-2025学年高二数学期中期末挑战(人教选修一)

特训04 圆与方程 解答压轴题(六大题型)题型1:定值问题1.已知圆C 过点()2,6A ,圆心在直线1y x =+上,截y 轴弦长为.(1)求圆C 的方程;(2)若圆C 半径小于10,点D 在该圆上运动,点()3,2B ,记M 为过B 、D 两点的弦的中点,求M 的轨迹方程;(3)在(2)的条件下,若直线BD 与直线:2l y x =-交于点N ,证明:BM BN ×恒为定值.因为直线l 的斜率为1,则所以,CBM NBF △∽△,因此,又E 到l 的距离2321BF -=所以,122BM BN ×=×【点睛】方法点睛:求定值问题常见的方法有两种:2.在平面直角坐标系xOy 中,已知圆心在x 轴上的圆C 经过点()3,0A ,且被y 轴截得的弦长为坐标原点O 的直线l 与圆C 交于,M N 两点.(1)求圆C 的方程;(2)求当满足20OM ON +=uuuu r uuu r r时对应的直线l 的方程;(3)若点()5,0P -,直线PM 与圆C 的另一个交点为R ,直线PN 与圆C 的另一个交点为S ,分别记直线l 、直线RS 的斜率为1k ,2k ,求证:21k k 为定值.由20OM ON +=uuuu r uuu r r得到,DN =所以2223CN CD CO -=即22431CD CD -=-,【点睛】关键点睛:本题第二问的关键是采用设点法,再得到直线方程与圆方程联立求出,R S的坐标,最后得到斜率表达式并化简即可.6,4,端点A的运动轨迹是曲线C,线段AB的中点M的轨迹方程是3.已知线段AB的端点B的坐标是()()()22421x y -+-=.(1)求曲线C 的方程;(2)已知斜率为k 的直线l 与曲线C 相交于两点E ,F (异于原点O )直线OE ,OF 的斜率分别为1k ,2k ,且125k k =,①证明:直线l 过定点P ,并求出点P 的坐标;②若BD EF ^,D 为垂足,证明:存在定点Q ,使得||DQ 为定值.因为65BP =为定值,且BD 所以当点Q 是BP 的中点时,此时因为(6,4)B ,(1,0)P -,所以由中点坐标公式得所以存在定点5,22Q æöç÷èø使得|DQ 题型2:定点问题4.已知线段AB 的端点B 的坐标是()64,,端点A 的运动轨迹是曲线C ,线段AB 的中点M 的轨迹方程是()()22421x y -+-=.(1)求曲线C 的方程;(2)已知斜率为k 的直线l 与曲线C 相交于异于原点O 的两点E F ,,直线OE OF ,的斜率分别为1k ,2k ,且122k k =.证明:直线l 恒过定点.【答案】(1)()2224x y -+=(2)证明见解析【分析】(1)利用中点坐标公式以及求轨迹方程的方法求解;(2)利用韦达定理结合题意求解.5.为了保证我国东海油气田海域的海上平台的生产安全,海事部门在某平台O的正东方向设立了两个观测站A 和B (点A 在点O 、点B 之间),它们到平台O 的距离分别为1海里和4海里,记海平面上到两观测站的距离,PA PB 之比为12的点P 的轨迹为曲线E ,规定曲线E 及其内部区域为安全预警区(如图).(1)以O 为坐标原点,1海里为单位长度,AB 所在直线为x 轴,建立平面直角坐标系,求曲线E 的方程;(2)海平面上有巡航观察点Q 可以在过点B 垂直于AB 的直线L 上运动.(i )若M 为PB 的中点,求PM PQ +的最小值;(ii )过Q 作直线,QC QD 与曲线E 相切于点,C D .证明:直线CD 过定点.PM PQ PA PQ AQ \+=+³当,,A P Q 三点共线且,Q B 重合时,(ii )设()4,Q t ,()11,C x y ,当10x =时,OC 斜率不存在,此时过点题型3:最值问题6.已知以点()2,0C t t t æö>ç÷èø为圆心的圆经过原点O ,且与x 轴交于点A ,与y 轴交于点B .(1)求证:AOB V 的面积为定值.(2)设直线240x y +-=与圆C 交于点M ,N ,若=OM ON ,求圆C 的方程.(3)在(2)的条件下,设P ,Q 分别是直线:20l x y ++=和圆C 上的动点,求PB PQ +的最小值及此时点P 的坐标.Q \原点O 在线段MN 的垂直平分线上,设线段MN 的中点为H ,则又OC 的斜率22k t =,()2221t æö\´-=-ç÷èø,解得2t =±,由(2)可知:圆心()2,1C ,半径7.已知圆C :2220x y tx y +--=(0t >)分别与x 轴、y 轴交于点P ,Q (均异于坐标原点O ),过点()1,0E 作两条直线1l ,2l ,斜率分别为1k ,2k ,且121k k =-,直线1l 与y 轴交于点F ,直线2l 与圆C 交于A ,B 两点.(1)若()6,0P ,6AB =,求直线2l 的方程;(2)若原点O 到直线PQ ABF △面积的最小值.因为6AB =,所以2162r =-故直线2l 的方程为4340x y --=(2)令0x =,0y =,得(,0P t 所以直线PQ 方程为1x y +=,即所以11222ABF S AB EF =×=´△222224211444k k k æö=++=++ç÷èø所以ABF △面积的最小值为1528.如图,已知圆M :22430x y x +-+=,点()1,P t -为直线l :1x =-上一动点,过点P 引圆M 的两条切线,切点分别为A ,B .(1)1t =时,求PA 、PB 方程(点A 在点B 上方);(2)求线段AB 中点的轨迹方程;(3)若两条切线PA ,PB 与y 轴分别交于S ,T 两点,求ST 的最小值.当,H F 不重合时,则HF 又5,03H æöç÷èø,()2,0M ,故该圆圆心为11,06æöç÷èø,半径9.如图,在平面直角坐标系中,P 为直线4y =上一动点,圆22:4O x y +=与x 轴的交点分别为,M N 点,圆O 与y 轴的交点分别为,S T 点.(1)若MTP △为等腰三角形,求P 点坐标;PT PS分别交圆O于,A B两点.(2)若直线,①求证:直线AB过定点,并求出定点坐标;②求四边形ASBT面积的最大值.【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.题型4:取值范围问题10.如图,经过原点O 的直线与圆()22:14M x y ++=相交于A ,B 两点,过点()1,0C 且与AB 垂直的直线与圆M 的另一个交点为D .(1)当点B 坐标为()1,2--时,求直线CD 的方程;(2)记点A 关于x 轴对称点为F (异于点A ,B ),求证:直线BF 恒过x 轴上一定点,并求出该定点坐标;(3)求四边形ABCD 的面积S 的取值范围.11.已知在平面直角坐标系xOy 中,椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为1F ,2F,离心率e =P 为椭圆C 上任意一点,12PF F V 面积的最大值为2.(1)求椭圆C 的方程;(2)若斜率为k 的直线l 与圆221x y +=相切,且l 与椭圆C 相交于M ,N 两点,若弦长MN的取值范围为83éêë,求OM ON ×uuuu r uuu r 的取值范围.42)设直线l 的方程为y kx m =+,M (x 1,y 由直线l 与圆221x y +=相切,可得22142y kx mx y =+ìïí+=ïî,消去y 并整理得题型5:存在性问题12.已知圆22:4O x y +=和圆22:(4)1C x y +-=.(1)判断圆O 和圆C 的位置关系;(2)过圆C 的圆心C 作圆O 的切线l ,求切线l 的方程;(3)过圆C 的圆心C 作动直线m 交圆O 于A ,B 两点.试问:在以AB 为直径的所有圆中,是否存在这样的圆P ,使得圆P 经过点(2,0)M 若存在,求出圆P 的方程;若不存在,请说明理由.斜式设出切线方程,然后用点线距离公式建立关于的方程;【点睛】关键点睛:本题第三问的关键是利用设线法,展开化简,将韦达定理式整体代入求出直线方程,同时不忘考虑直线斜率不存在的情况13.在平面直角坐标系xOy 中,已知两点()()4,0,1,0S T ,动点P 满足2PS PT =,设点P 的轨迹为C .如图,动直线l 与曲线C 交于不同的两点,A B (,A B 均在x 轴上方),且180ATO BTO Ð+Ð=o .(1)求曲线C 的方程;(2)当A 为曲线C 与y 轴正半轴的交点时,求直线l 的方程;(3)是否存在一个定点,使得直线l 始终经过此定点?若存在,求出定点的坐标;若不存在,请说明理由.(2)由题意知()0,2A ,设B (x 2,y 2),依题意可知直线l 的斜率存在,设直线由180ATO BTO Ð+Ð=o ,得AT BT k k +则22222014y x x y ì-+=ï-íï+=î,所以2202x y =ìí=-î(舍去(3)设直线l 方程为y kx b =+联立方程224x y y kx b ì+=í=+î,得(2k 212122224,,11kb b x x x x k k --\+==++180,ATO BTO Ð+Ð=o Q AT k \【点睛】求解曲线的方程,可以有以下两种方法:一是根据圆锥曲线的定义,求得曲线的方程;另一个是题型6:其他问题14.已知圆O 的方程为224x y +=.(1)求过点()2,1-的圆O 的切线方程;(2)已知两个定点(),2A a ,(),1B m ,其中R a Î,0m >.P 为圆O 上任意一点,PA n PB=(n 为常数),①求常数n 的值;②过点(),E a t 作直线l 与圆22:C x y m +=交于M 、N 两点,若M 点恰好是线段NE 的中点,求实数t 的取值范围.附:可能用到的不等关系参考:(1)若0a >,0b >,1ba£,则b a £;(2)若a b >,且()()0x a x b --£,则有b x a ££.(2)①设点P (x,y ),则2x +()()222,PA x a y PB =-+-PAn PB=Q ,222PA n PB =×②由①知,2a =,1m =,设00(,)M x y ,M 是线段NE 又M ,N 在圆C 上,即关于【点睛】方法点睛:求解圆的切线方程,首先要判断题目所给点是在圆上还是在圆外,如果所给点在圆上,则切线方程只有一条,如果所给点在圆外,则切线方程有两条切线的斜率是否存在.15.平面直角坐标系中,圆(1)求圆M的标准方程;(2)设D(0,1),过点D作直线1l,交圆M于PQ两点,PQ不在y轴上.①过点D作与直线1l垂直的直线2l,交圆M于EF两点,记四边形EPFQ的面积为S,求S的最大值;②设直线OP,BQ相交于点N,试证明点N在定直线上,求出该直线方程.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明(2)“一般推理,特殊求解再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点(00,x y16.公元前3世纪,古希腊数学家阿波罗尼斯在《平面轨迹》一书中,曾研究了众多的平面轨迹问题,其中有如下结果:平面内到两定点距离之比等于已知数的动点轨迹为直线或圆,后世把这种圆称之为阿波罗尼斯圆.已知平面直角坐标系中()()2,0,1,0A B -且2PA PB =.(1)求点P 的轨迹方程;(2)若点P 在(1)的轨迹上运动,点M 为AP 的中点,求点M 的轨迹方程;(3)若点(),P x y 在(1)的轨迹上运动,求46y t x +=-的取值范围.。

高教版数学基础模块(下册)第6章《直线与圆的方程》练习题、习题及复习题

高教版数学基础模块(下册)第6章《直线与圆的方程》练习题、习题及复习题

高教版数学基础模块(下册)第6章《直线与圆的方程》练习题、习题及复习题练习6.11.如图6-7所示,写出点M、N、P、Q的坐标.2求下列两点间的距离和以两点为端点的线段的中点坐标.(1)A(-1,0),B(2,3):(2)C(4,3),D(7.-1):(3)P(0,3),Q(0,-2)3.如图6-8所示,已知△ABC的三个顶点分别是A(2,2),B(2.0)、C(0,2).(1)求BC边上的中点D的坐标;(2)计算BC边上中线AD的长度.4.已知点A(3a,3b),B(3b,3a),求A,B两点间的距离和线段AB的中点坐标.6.1A知识巩固1.填空题.(1)已知点A(-1,-7)、B(3,-1),则|AB|= .(2)已知点A-2,2)、B(2,-1)、C(-1,-3),则|AB|= ,|BC|= ,|AC|= .(3)已知点A(-2,3)、B(4,-5),则线是AB时中点坐标为 .(4)已知点A(2.-1)、B(-5,4),则|AB|= ,线段AB的中点坐标为 .2求x轴上一点P,使点P与点A(2,-5)的距离等于8.3.已知点P(a,b),Q (-a,b),求P,Q两点间的距离和线段PQ中点的坐标.4.已知点P1(−4,−5),线段P1P2的中点坐标是P(1,-2),求线段端P2点的坐标.5.已知点A(0,2)、B(1,1)、C(2,2),判断△ABC是否为直角三角形,并说出的你的理由。

B能力提升1,已知点P(m,4)、Q(2,n)、R(0,-2),且点Q是线段PR的中点,求m与n的值.2.已知点A(2,1)与点B关于点M(-1,3)对称,点B的坐标.3.已知等边△ABC的两个顶点为A(2,0)、B(-2,0),求顶点C的坐标.4.已知△ABC的三边AB,BC、CA的中点坐标分别为(2.4),(-3.1)、(1,2),求△ABC三个顶点的坐标.C学以致用在平面直角坐标系中画出A(4,5)、B(0,2)、C(-4,-1)三个点,并求证这三点共线。

解析几何中韦达定理初学(直线与圆,含基础+重点+难点)(教师版)25学年高二数学期中(人教选修一)

解析几何中韦达定理初学(直线与圆,含基础+重点+难点)(教师版)25学年高二数学期中(人教选修一)

特训05 解析几何中韦达定理初学(直线与圆,含基础+重点+难点)一、解答题1.已知点32,2P æöç÷èø,圆C :226210x y x y +--+=.(1)求圆C 过点P 的最短弦所在的直线方程;(2)若圆C 与直线0x y a -+=相交于A ,B 两点,O 为原点,且OA OB ^,求a 的值.2.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程.(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.【答案】(1)x 2+y 2=4.(2)存在,(4,0)【解析】解:(1) 设圆心C (a ,0)(a >-),则=2,解得a =0或a =-5(舍去).所以圆C 的方程为x 2+y 2=4.(2) 当直线AB ⊥x 轴时,x 轴平分∠ANB ,此时N 可以为x 轴上任意一点.当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1)(k ≠0),点N (t ,0),A (x 1,y 1),B (x 2,y 2),由得(k 2+1)x 2-2k 2x +k 2-4=0,经检验Δ>0,所以x 1+x 2=,x 1x 2=.若x 轴平分∠ANB ,则kAN=-kBN ,即+=0,则+=0,即2x 1x 2-(t +1)(x 1+x 2)+2t =0,即-+2t =0,解得t =4,所以当点N 坐标为(4,0)时,能使得∠ANM =∠BNM 总成立.【考查意图】与圆有关的定点问题.3.已知圆C :()2215x y +-=,直线l :10mx y m -+-=与圆C 交于两点A ,B .(1)若AB =m 的值;(2)若点P 为直线l 所过定点,且2PB AP =,求直线l 的方程.【答案】(1)1m =±(2)0x y -=或20x y +-=【分析】(1)根据点到直线的距离公式,结合圆的弦长公式即可求解,(2)Q 直线l 的方程:mx \直线l 过定点()1,1P ,且设,,uuu r 4.已知圆2212200x y x +-+=,过点()4,2M 的直线与圆交于,A B 两点,线段AB 的中点为N .(1)若点N 的坐标为()4,0,求AB ;(2)若线段MN 的垂直平分线经过点()2,0P ,求直线AB 的方程.当直线AB 的斜率存在时,设直线AB 的方程为联立()222412200y k x x y x ì-=-í+-+=î,得()21k x +225.在平面直角坐标系中,直线0x y ++=与圆C 相切,圆心C 的坐标为(1,1)-.(1)求圆C 的方程;(2)设直线y x m =+与圆C 交于,M N 两点,且OM ON ^,求m 的值.6.已知动点E 与两定点()44,,5,555A B æöç÷èø的距离之比为25(1)求动点E 的轨迹C 的方程;(2)过点()2,2P 作两条直线分别与轨迹C 相交于,M N 两点,若直线PM 与PN 的斜率之积为1,试问线段MN 的中点是否在定直线上,若在定直线上,请求出直线的方程;若不在定直线上,请说明理由.7.圆C :()2210x a x y ay a -++-+=.(1)若圆C 与y 轴相切,求圆C 的方程;(2)已知1a >,圆C 与x 轴相交于两点M 、N (点M 在点N 的左侧).过点M 任作一条直线与圆O :229x y +=相交于两点A 、B 问:是否存在实数a ,使得ANM BNM Ð=Ð?若存在,请说明理由.【答案】(1)220x y x +-=或225440x y x y +--+=.(2)存在,理由见解析.8.已知圆M经过((()(),,4,0,A B C D --中的三点,且半径最大.(1)求圆M 的方程;(2)过点()2,0E 的直线与圆M 交于,P Q 两点(P 在x 轴上方),在x 轴上是否存在定点N ,使得x 轴平分PNQ Ð若存在,请求出点N 的坐标;若不存在,请说明理由.【点睛】关键点睛:本题的关键是利用圆的几何性质确定圆,由成立.9.已知圆C :()2241x y ++=和点()1,0A ,P 为圆C 外一点,直线PQ 与圆C 相切于点Q ,=PQ .(1)求点P 的轨迹方程;(2)记(1)中的点P 的轨迹为T ,是否存在斜率为1-的直线l ,使以l 被曲线T 截得得弦MN 为直径得圆过点()2,0B -?若存在,求出直线l 的方程;若不存在,说明理由.(2)设直线l 方程为y =-联立方程()22649y x t x y =-+ìïí-+=ïî【点睛】关键点点睛:本题的关键是利用直径所对圆周角为直角、一元二次方程根与系数关系进行求解10.已知圆C :()()22231x y -+-=与圆C ¢:()2215x y +-=.(1)求C 与C ¢相交所得公共弦长;(2)若过点()0,1A 且斜率为k 的直线l 与圆C 交于P ,Q 两点,其中O 为坐标原点,且12OP OQ ×=uuu r uuu r,求.PQ uuu r11.已知圆C的圆心在x轴上,且过(-.(1)求圆C的方程;P-的直线与圆C交于,E F两点(点E位于x轴上方),在x轴上是否存在点A,使得当直线变(2)过点(1,0)Ð=Ð?若存在,求出点A的坐标;若不存在,请说明理由.化时,均有PAE PAF12.已知圆A :22(2)25x y ++=,A 为圆心,动直线l 过点(2,0)P ,且与圆A 交于B ,C 两点,记弦BC 的中点Q 的轨迹为曲线E .(1)求曲线E 的方程;(2)过A 作两条斜率分别为1k ,2k 的直线,交曲线E 于M ,N 两点,且123k k =-,求证:直线MN 过定点.所以AQ BC ^,即AQ PQ ^所以点Q 的轨迹为以AP 为直径的圆,所以曲线(2)当直线MN 的斜率存在时,设直线MN 的方程为y kx =+代入224x y +=,得22(1)k x +设11(,)M x y ,22(,)N x y ,则x 则0D >,12221kt x x k +=-+,y y kx t +与曲线E 的方程联立,可得故直线MN 的方程为=1x -,恒过点综上,直线MN 过定点(1,0)-13.已知圆()22:1C x a y -+=与直线1y x --=交于M 、N 两点,点P 为线段MN 的中点,O 为坐标原点,直线OP 的斜率为13-.△的面积;(1)求a的值及MON(2)若圆C与x轴交于,A B两点,点Q是圆C上异于,A B的任意一点,直线QA、QB分别交:4l x=-于,R S 两点.当点Q变化时,以RS为直径的圆是否过圆C内的一定点,若过定点,请求出定点;若不过定点,请说明理由.14.已知圆2216260C x y x y ++-+=:和圆2222:810410C x y x y r +--+-=(0)r >.(1)若圆1C 与圆2C 相交,求r 的取值范围;(2)若直线:1l y kx =+与圆1C 交于P ,Q 两点,且4OP OQ =×uuu r uuu r,求实数k 的值;(3)若2r =,设P 为平面上的点,且满足:存在过点P 的无穷多对互相垂直的直线1l 和2l ,它们分别与圆1C 和圆2C 相交,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,试求所有满足条件的点P 的坐标.设点P 坐标为(,)m n ,直线1l 、即:0kx y n km -+-=,1xk --因为直线1l 被圆1C 截得的弦长与直线15.已知动点(,)P x y 与两定点(1,0)A -,(2,0)B 的距离的比为12.(1)求动点P 的轨迹方程并说明是什么图形;(2)过点B 作直线l ,l 与点P 的轨迹C 相交于M 、N 两点,已知(2,0)Q -,若MNQ S =V l 的方程.16.如图,已知圆C 与y 轴相切于点()02T ,,与x 轴的正半轴交于M ,(N 点M 在点N 的左侧两点,且3MN =.(1)求圆C 的方程;(2)过点M 任作一直线与圆O :224x y +=相交于A ,B 两点,连结AN ,BN ,试探究:直线AN 与直线BN 的斜率的和AN BN k k +是否为定值?17.已知点A ,B 是圆221:(2)(2)1C x y -+-=上的动点,且1120AC B Ð=°,直线PA ,PB 为圆1C 的切线,当点A ,B 变动时,点P 的轨迹为曲线2C .(1)求曲线2C 的方程;(2)过点()3,0G ,斜率为k 的直线与曲线2C 交于点M ,N ,点Q 为曲线2C 上纵坐标最大的点,求证:直线MQ ,NQ 的斜率之和为定值.【点睛】直线与圆锥曲线弦的问题包括求弦的方程、弦长、弦中点坐标轨迹等问题,解决这些问题的总体思路是设相关量,找等量关系,使问题解决.18.如图,经过原点O 的直线与圆()22:14M x y ++=相交于A ,B 两点,过点()1,0C 且与垂直的直线与圆M 的另一个交点为D .(1)当点B 坐标为()1,2--时,求直线的方程;(2)记点A 关于x 轴对称点为F (异于点A ,B ),求证:直线BF 恒过x 轴上一定点,并求出该定点坐标;(3)求四边形ABCD 的面积S 的取值范围.19.在平面直角坐标系xOy 中,已知两点()()4,0,1,0S T ,动点P 满足2PS PT =,设点P 的轨迹为C .如图,动直线l 与曲线C 交于不同的两点,A B (,A B 均在x 轴上方),且180ATO BTO Ð+Ð= .(1)求曲线C 的方程;(2)当A 为曲线C 与y 轴正半轴的交点时,求直线l 的方程;(3)是否存在一个定点,使得直线l 始终经过此定点?若存在,求出定点的坐标;若不存在,请说明理由.【答案】(1)224x y +=(2)由题意知()0,2A ,设,依题意可知直线l 的斜率存在,设直线由180ATO BTO Ð+Ð= ,得AT BT k k +则2222201y x ì-+=ï-íï,所以2202x y =ìí=-î(舍去(3)设直线l 方程为y kx b =+联立方程224x y y kx bì+=í=+î,得(2k 212122224,,11kb b x x x x k k --\+==++180,ATO BTO Ð+Ð= Q AT k \【点睛】求解曲线的方程,可以有以下两种方法:一是根据圆锥曲线的定义,求得曲线的方程;另一个是。

第12讲 直线和圆的方程(解析版)

第12讲 直线和圆的方程(解析版)

第12讲 直线和圆的方程【考点梳理】一、直线与方程 1.直线的倾斜角(1)定义:x 轴正向与直线向上的方向所成的角叫做这条直线的倾斜角,规定与x 轴平行或重合的直线的倾斜角为零度角.(2)规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0; (3)范围:直线的倾斜角α的取值范围是[0,π). 2.直线的斜率(1)定义:直线y =kx +b 中的系数k 叫做这条直线的斜率,垂直于x 轴的直线斜率不存在. (2)计算公式:若由A (x 1,y 1),B (x 2,y 2)确定的直线不垂直于x 轴,则k =y 2-y 1x 2-x 1(x 1≠x 2).若直线的倾斜角为θ(θ≠π2),则k =tan__θ.3.直线方程的五种形式名称 几何条件 方程适用条件 斜截式 纵截距、斜率 y =kx +b 与x 轴不垂直的直线点斜式 过一点、斜率 y -y 0=k (x -x 0) 两点式过两点y -y 1y 2-y 1=x -x 1x 2-x 1与两坐标轴均不垂直的直线截距式 纵、横截距x a +y b=1 不过原点且与两坐标轴均1.两条直线平行与垂直的判定 (1)两条直线平行对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.特别地,当直线l 1,l 2的斜率都不存在时,l 1与l 2平行. (2)两条直线垂直如果两条直线l 1,l 2斜率都存在,设为k 1,k 2,则l 1⊥l 2⇔k 1·k 2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直. 2.两直线相交直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应.相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解; 重合⇔方程组有无数个解. 3.距离公式(1)两点间的距离公式平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式为|P 1P 2|特别地,原点O (0,0)与任一点P (x ,y )的距离|OP |(2)点到直线的距离公式平面上任意一点P0(x 0,y 0)到直线l :Ax +By +C =0的距离d (3)两条平行线间的距离公式一般地,两条平行直线l1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d 三、圆的方程 1.圆的定义和圆的方程2.点与圆的位置关系平面上的一点M (x 0,y 0)与圆C :(x -a )2+(y -b )2=r 2之间存在着下列关系: (1)|MC |>r ⇔M 在圆外,即(x 0-a )2+(y 0-b )2>r 2⇔M 在圆外;(2)|MC |=r ⇔M 在圆上,即(x 0-a )2+(y 0-b )2=r 2⇔M 在圆上;(3)|MC |<r ⇔M 在圆内,即(x 0-a )2+(y 0-b )2<r 2⇔M 在圆内.四、直线与圆、圆与圆的位置关系 1.直线与圆的位置关系设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0,圆心C (a ,b )到直线l 的距离为d ,由⎩⎪⎨⎪⎧(x -a )2+(y -b )2=r 2,Ax +By +C =0 消去y (或x ),得到关于x (或y )的一元二次方程,其判别式为Δ.2.圆与圆的位置关系设两个圆的半径分别为R ,r ,R >r ,圆心距为d ,则两圆的位置关系可用下表来表示:【解题方法和技巧】1.求倾斜角的取值范围的一般步骤(1)求出斜率k=tan α的取值范围.(2)利用三角函数的单调性,借助图象,确定倾斜角α的取值范围.求倾斜角时要注意斜率是否存在.2.已知两直线的一般方程两直线方程l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0中系数A1,B1,C1,A2,B2,C2与垂直、平行的关系:A1A2+B1B2=0⇔l1⊥l2;A1B2-A2B1=0且A1C2-A2C1≠0⇔l1∥l2.3.判断直线与圆的位置关系常见的方法:(1)几何法:利用d与r的关系.(2)代数法:联立方程随后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.4.求圆的弦长的常用方法(1)几何法:设圆的半径为r,弦心距为d,弦长为l,则()2=r2-d2.(2)代数方法:运用根与系数的关系及弦长公式:设直线与圆的交点为A(x1,y1),B(x2,y2),则|AB|=|x1-x2|=.5.(1)判断两圆的位置关系常用几何法,即用两圆圆心距与两圆半径和与差之间的关系,一般不采用代数法.(2)当两圆相交时求其公共弦所在直线方程或是公共弦长,只要把两圆方程相减消掉二次项所得方程就是公共弦所在的直线方程,再根据其中一个圆和这条直线就可以求出公共弦长.6.在解决直线与圆的位置关系时要充分考虑平面几何知识的运用,如在直线与圆相交的有关线段长度计算中,要把圆的半径、圆心到直线的距离、直线被圆截得的线段长度放在一起综合考虑,不要单纯依靠代数计算,这样既简单又不容易出错.【考点剖析】【考点1】直线的倾斜角与斜率一、单选题1.(2022·上海·高三专题练习)“21a =”是“直线1x ay +=与1ax y +=平行”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【分析】首先根基两直线平行求出a 的值,再根据小范围推大范围选出答案. 【详解】因为直线1x ay +=与1ax y +=平行, 所以0a ≠ 且两直线的斜率相等即1a a-=解得1a =±; 而当1a =时直线1x ay +=为1x y +=,同时1ax y +=为1x y +=,两直线重合不满足题意;当1a =-时,1x y -=与1x y -+=平行,满足题意;故1a =-,根据小范围推大范围可得:21a =是1a =-的必要不充分条件. 故选:B【点睛】(1)当直线的方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件.(2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论. (3)两直线平行时要注意验证,排除掉两直线重合的情况.2.(2022·上海市实验学校模拟预测)已知点(,)M a b 与点(0,1)N -在直线3450x y -+=的两侧,给出以下结论:①3450a b -+>;②当0a >时,a b +有最小值,无最大值; ③221a b +>; ④当0a >且1a ≠时,11b a +-的取值范围是93(,)(,)44-∞-+∞. 正确的个数是( ) A .1 B .2 C .3 D .4【答案】B【分析】由M 与N 的位置关系有3450a b -+<,数形结合法判断M 位置,结合11b a +-的几何意义判断a b +、11b a +-的范围,应用点线距离公式有222a b +>判断③. 【详解】将(0,1)N -代入有304(1)590⨯-⨯-+=>,而M 与N 在3450x y -+=的两侧,则3450a b -+<,①错误;由上知:3450a b -+<且0a >,则M 在直线上方与y 轴右侧部分, 所以54a b +>,故a b +无最值,②错误; 由上图知:M 在直线左上方,则22222(134a b +>=+,③正确; 由3450x y -+=过5(0,)4且0a >且1a ≠,即M 在直线上方与y 轴右侧部分,而11b a +-表示(1,1)-与M 连线的斜率,由图知:193(,)(,)144b a +∈-∞-⋃+∞-,④正确. 故选:B 二、填空题3.(2022·上海·华师大二附中模拟预测)直线2380ax y -+=与直线10x y --=垂直,则=a ______. 【答案】32-【分析】根据两直线垂直得230a +=,即可求出答案.【详解】由直线2380ax y -+=与直线10x y --=垂直得,32302a a +=⇒=-.故答案为:32-.4.(2022·上海·高三专题练习)过圆2240x y x +-=的圆心且与直线20x y +=垂直的直线方程为___________ 【答案】220x y --=【分析】根据圆的方程求出圆心坐标,再根据两直线垂直斜率乘积为1-求出所求直线的斜率,再由点斜式即可得所求直线的方程.【详解】由2240x y x +-=可得()2224x y -+=, 所以圆心为()2,0,由20x y +=可得2y x =-,所以直线20x y +=的斜率为2-,所以与直线20x y +=垂直的直线的斜率为12, 所以所求直线的方程为:()1022y x -=-,即220x y --=, 故答案为:220x y --=.5.(2022·上海·高三专题练习)求直线2x =-与直线310x y -+=的夹角为________. 【答案】6π【分析】先求出直线的斜率,可得它们的倾斜角,从而求出两条直线的夹角. 【详解】解:直线2x =-的斜率不存在,倾斜角为2π, 直线310x y -+=的斜率为3,倾斜角为3π, 故直线2x =-与直线310x y -+=的夹角为236πππ-=,故答案为:6π.6.(2022·上海·高三专题练习)已知双曲线22145x y Γ-=:的左右焦点分别为1F 、2F ,直线l 与Γ的左、右支分别交于点P 、Q (P 、Q 均在x 轴上方).若直线1PF 、2QF 的斜率均为k ,且四边形21PQF F 的面积为206,则k =___________. 【答案】2±【解析】斜率相等,两条线平行,然后用余弦定理求出1PF 和2QF ,根据四边形 21PQF F 的面积为206建立等式解出tan θ即可.【详解】按题意作出图如下:由双曲线方程可得:2a =,3c =,因为直线1PF 、2QF 的斜率均为k ,所以直线1PF ∥2QF ,在三角形12QF F 中,设2QF x =,则124QF a x x =+=+, 设2QF 的倾斜角为θ,则由余弦定理得()()22364cos 26x x x πθ+-+-=⨯,解得2523cos QF x θ==-,同理可得:1523cos PF θ=+,所以四边形21PQF F 的面积()121221155sin 6sin 2223cos 23cos S PF QF F F θθθθ⎛⎫=+⨯⨯=+⨯⨯=⎪+-⎝⎭解得sin θ=sin θ=tan k θ==故答案为:【点睛】两直线平行转化为:斜率相等或者向量平行; 两直线垂直转化为:斜率之积为1-或者向量数量积为0; 三、解答题7.(2022·上海·高三专题练习)已知函数()22x xf x -=-.(1)设()()()112212,,,A x y B x y x x ≠是()y f x =图象上的两点,直线AB 斜率k 存在,求证:0k >;(2)求函数()()()22224x xg x mf x m R -=+-∈在区间0,1上的最大值.【答案】(1)证明见解析;(2)当38m ≥时,max ()2g x =;当38m <时,max 17()64g x m =-. 【分析】(1)由解析式判断()f x 的单调性,进而判断k 的符号,即可证结论.(2)由题设整理()g x ,令322[0,]2x xt --∈=有2()()42g x h t t mt ==-+,根据二次函数的性质可求区间最大值.【详解】(1)∵2x y =单调递增,2x y -=单调递减,∴()22x xf x -=-在定义域上是单调增函数,而2121y y k x x -=-, ∴0k >恒成立,结论得证.(2)由题意,有()222224(22)(22)4(22)2x x x x x x x xg x m m ----=+-⋅-=--⋅-+且[]0,1x ∈,令322[0,]2x xt --∈=,则2()42h t t mt =-+,开口向上且对称轴为2t m =,∴当324m ≤,即38m ≤时,max 317()()624h t h m ==-,即max 17()64g x m =-;当324m >,即38m >时,max ()(0)2h t h ==,即max ()2g x =;【考点2】直线的方程一、单选题1.(2022·上海·高三专题练习)若点1(,)M a b和1(,)N b c 都在直线:1l x y +=上,又点1(.)P c a 和点1(,)Q b c ,则A .点P 和Q 都不在直线l 上B .点P 和Q 都在直线l 上C .点P 在直线l 上且Q 不在直线l 上D .点P 不在直线l 上且Q 在直线l 上【答案】B【详解】由题意得:1111a bb c ⎧+=⎪⎪⎨⎪+=⎪⎩,易得点1,Q b c ⎛⎫⎪⎝⎭满足1 1b c += 由方程组得1111b a b c b ⎧=⎪⎪-⎨⎪=⎪-⎩,两式相加得11c a +=,即点1,P c a ⎛⎫⎪⎝⎭ 在直线:1l x y +=上,故选B.2.(2022·上海·高三专题练习)如下图,直线l 的方程是( )A 330x y -B 3230x y -C 3310x y --=D .310x -=【答案】D【分析】由图得到直线的倾斜角为30,进而得到斜率,然后由直线l 与x 轴交点为()1,0求解. 【详解】由图可得直线的倾斜角为30°, 所以斜率3tan 30k =︒=所以直线l 与x 轴的交点为()1,0, 所以直线的点斜式方程可得l :)301y x -=-,即310x y --=. 故选:D3.(2022·上海市七宝中学高三期中)在平面直角坐标系中,函数+=+1()1x f x x 的图象上有三个不同的点位于直线上,且这三点的横坐标之和为0,则这条直线必过定点( ) A .1,02⎛⎫- ⎪⎝⎭B .()10-, C .()1,1-- D .()1,1【答案】A【分析】画出函数图像,由图可知,直线0k ≠,当0x ≥时,由1kx b =+,解得其中一根, 当0x <时,联立直线和函数方程,由韦达定理及三根之和为0,即可求解. 【详解】解:当0x ≥,1()1,1x f x x +==+ 当()1220,()1,11x x f x x x --++<==---+-所以1,0()21,01x f x x x ≥⎧⎪=⎨--<⎪-⎩,画出图像:设直线方程为:y kx b =+,当0k =时,直线l 与函数()f x 的图像的交点个数不可能是3个, 故0k ≠,依题意可知,关于x 的方程()f x kx b =+有三个不等实根, 当0x ≥时,由1kx b =+,可解得1b x k -=,不妨令31bx k-=, 当0x <时,由211kx b x --=+-可得, 2(1)10(*)kx b k x b ++-+-=,则关于x 的方程(*)有两个不等负实根12,x x , 则由韦达定理可得,121211,k b bx x x x k k---+==, 依题意可知123110k b b x x x k k---++=+=, 则2k b =,直线方程为:()21y kx b b x =+=+,故直线恒过定点1,02⎛⎫- ⎪⎝⎭,故选:A.4.(2022·上海·高三专题练习)设{}n a 是公比为()1q q ≠,首项为a 的等比数列,n S 是其前n 项和,则点()1,n n S S +( )A .一定在直线y qx a =-上B .一定在直线y ax q =+上C .一定在直线y ax q =-上D .一定在直线y qx a =+上【答案】D【分析】由于()()111111n n n n a q a q S qS qa qq++---=-=--,即可得出.【详解】∵()()111111n n n n a q a q S qS qa qq++---=-=--,∴1n n S qS a +=+,∴点()1,n n S S +一定在直线y qx a =+上. 故选:D.【点睛】本题考查了等比数列的前n 项和公式、直线的方程,考查了推理能力与计算能力,属于中档题. 二、填空题5.(2022·上海奉贤·二模)构造一个二元二次方程组()(),0,0f x y g x y ⎧=⎪⎨=⎪⎩,使得它的解恰好为1112x y =⎧⎨=⎩,2234x y =⎧⎨=-⎩,要求(),0f x y =与(),0g x y =的每个方程均要出现x ,y 两个未知数.答:________. 【答案】()()2235021100x y x y +-=⎧⎪⎨-++-=⎪⎩【分析】不妨令(),0f x y =为过()1,2、()3,4-两点的直线,(),0g x y =为以()1,2、()3,4-两点为直径的圆,即可满足题意.【详解】过()1,2、()3,4-两点的直线为214231y x --=---,整理得350x y +-= ()1,2、()3,4-()1,2、()3,4-两点的中点坐标为()2,1-则以()1,2、()3,4-两点为直径的圆为()222(1)10x y -++=则可令(),0f x y =为350x y +-=,(),0g x y =为()222(1)10x y -++=故答案为:()()2235021100x y x y +-=⎧⎪⎨-++-=⎪⎩6.(2022·上海·高三专题练习)在△ABC 中,3AC =,4AB =,5BC =,P 为角平分线AT 上一点,且在△ABC 内部,则P 到三边距离倒数之和的最小值为________ 【答案】1927012+ 【分析】先根据题意建立平面直角坐标系,求出BC 所在直线的方程为134x y+=和角A平分线AT 的方程为y x =,求出交点的坐标,令(,)P m m ,依题意知1207m <<,根据点到直线的距离表示出P 到三边的距离的倒数和,构造函数25()127f m m m =+-,1207m <<,利用导数求出函数的最小值. 【详解】由3AC =,4AB =,5BC =可知△ABC 为直角三角形,以A 为原点,以直角边AC 为x 轴,直角边AB 为y 轴建立平面直角坐标系,易知(0,4)B ,(3,0)C ,角A 平分线AT 的方程为y x =,由截距式知BC 所在直线的方程为134x y+=,即43120x y +-=,43120y x x y =⎧⎨+-=⎩ 解得1212(,)77T ,令(,)P m m 依题可知1207m <<, 由点到直线的距离公式知P 到BC 的距离为1275m-, 则P 到三边距离倒数之和为11525127127m m m m m++=+-- 令25()127f m m m =+-,1207m <<,则'22235()(127)f m m m =-+-,令'()0f m =,即有m =(该极值点在区间1207m <<上),当 0m <<'()0f m <,则()f m 递减;127m <<时,'()0f m >,则()f m 递增,min ()f m f ∴==【点睛】本题考查了点到直线的距离公式、导数和函数的最值关系,培养了学生的计算能力、转化能力,属于中档题.7.(2022·上海·高三专题练习)已知直线l 过点(2,1)P -,直线l 的一个方向向量是()3,2d =-,则直线l 的点方向式方程是___________. 【答案】2132x y +-=- 【分析】利用直线的点方向式方程可得出结果.【详解】因为直线l 过点(2,1)P -,它的一个方向向量为()3,2d =-, 所以,直线l 的点方向式方程为2132x y +-=-. 故答案为:2132x y +-=-. 8.(2022·上海·复旦附中模拟预测)经过点1,0A 且法向量为()2,1n =的直线l 的一般式方程是______. 【答案】220x y +-=【分析】由法向量的定义求出直线方程法向式再化为一般式.【详解】设(,)P x y 是直线上任一点,则由0AP n ⋅=得直线方程为2(1)0x y -+=,即220x y +-=. 故答案为:220x y +-=.【考点3】两直线的位置关系一、单选题1.(2021·上海市七宝中学模拟预测)“2m =-”是“直线()230m x my -++=与直线30x my --=垂直”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【分析】利用两直线垂直可求得m 的值,再利用集合的包含关系判断可得出结论. 【详解】若直线()230m x my -++=与直线30x my --=垂直,则220m m --=, 即220m m +-=,解得2m =-或1,因为{}2- {}2,1-,所以,“2m =-”是“直线()230m x my -++=与直线30x my --=垂直”的充分非必要条件. 故选:A. 二、填空题2.(2022·上海徐汇·二模)已知m ∈R ,若直线1l :10mx y ++=与直线2l :9230x my m +++=平行,则m =______________.【答案】3【分析】根据两条直线平行的充要条件列方程组求解即可得答案.【详解】解:因为直线1l :10mx y ++=与直线2l :9230x my m +++=平行,所以()29101231m m m ⎧-⨯=⎪⎨⨯+≠⨯⎪⎩,解得3m =,故答案为:3.3.(2022·上海市行知中学高二期中)若直线1:210l ax y -+=与2:(1)10l x a y +++=互相垂直,则=a ______. 【答案】2-【分析】根据两个直线垂直的公式代入计算即可.【详解】因为直线1:210l ax y -+=与2:(1)10l x a y +++=互相垂直, 所以()()1210a a ⨯+-⨯+=,解得2a =-, 故答案为:2-.4.(2022·上海宝山·二模)已知直线20x y ++=与直线0x dy -+=互相平行且距离为m .等差数列{}n a 的公差为d ,且7841035,0a a a a =+<,令123||||||||n n S a a a a =++++,则m S 的值为__.【答案】52【分析】根据平行线的距离求出d 和m 的值,利用等差数列的定义和性质求出通项公式,进而求和即可. 【详解】由题意知,0d ≠,因为两直线平行,所以121d =≠-2d =-,由两平行直线间距离公式得10m ==,由78a a ⋅=77(2)35a a ⋅-=,解得75a =-或77a =. 又410720a a a +=<,所以75a =-,即7165a a d =+=-, 解得17a =,所以1(1)29n a a n d n =+-=-+. 所以1012310S a a a a =++++|7||5||3||1||1||3||5||7||9|=++++-+-+-+-+-|11|52+-=.故答案为:52.5.(2022·上海·同济大学第一附属中学高二阶段练习)若直线1:210l ax y a ++-=与直线2:230l x ay a ++-=平行,则1l 与2l 之间的距离为______.【分析】利用直线平行可求得2a =-,代入距离公式即可得出结果.【详解】根据两直线平行,可得22(1)2(3)a a a a a ⋅=⨯⎧⎨-≠-⎩,解得2a =-,所以两直线的方程为:12:2230,:2250l x y l x y -+=-+=,根据平行线间的距离公式可得,两平行线间的距离2d =,【考点4】直线与圆的位置关系一、单选题1.(2022·上海·模拟预测)设集合(){}222Ω(,)()4,x y x k y kk k =-+-=∈Z ①存在直线l ,使得集合Ω中不存在点在l 上,而存在点在l 两侧;②存在直线l ,使得集合Ω中存在无数点在l 上:( ) A .①成立②成立 B .①成立②不成立 C .①不成立②成立 D .①不成立②不成立【答案】B【分析】根据圆与圆的位置关系及直线与圆的位置关系一一判断即可; 【详解】解:若①成立,则相邻两圆外离,不妨设相邻两圆方程为()222(4)k x k y k -+-=,圆心为()2,k k,半径1r =()()()2224111x k y k k -++=-+-,圆心为()()21,1k k ++,半径2r =2>当4k =时(222282360⎡⎤-=-->⎣⎦,2>成立,所以结论①成立;对于②,设直线l 的方程为y mx t =+,则圆心()2,k k到直线l 的距离d =,当k →∞时d r >,所以直线l 只能与有限个圆相交,所以结论②不成立; 故选:B2.(2022·上海·高三专题练习)直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“OAB ∆的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件【答案】A试题分析:由1k =时,圆心到直线:1l y x =+的距离d =.所以11222OAB S ∆==.所以充分性成立,由图形的对成性当1k =-时, OAB ∆的面积为12.所以不要性不成立.故选A. 考点:1.直线与圆的位置关系.2.充要条件. 二、填空题3.(2022·上海·模拟预测)设直线系:(1)cos (2)sin 1(02)M x y θθθπ-+-=≤≤,对于下列四个命题: ①M 中所有直线均经过一个定点; ②存在定点P 不在M 中的任一条直线上;③对于任意整数(3)n n ≥,存在正n 边形,使其所有边均在M 中的直线上; ④M 中的直线所能围成的正三角形面积都相等.其中真命题的序号是_________(写出所有真命题的序号) 【答案】②③【分析】令1cos 2sin x y θθ-=⎧⎨-=⎩,消去θ,即可得到直线系M 表示圆()()22121x y -+-=的切线的集合,即可判断①②③,再利用特殊值判断④;【详解】解:由直线系:(1)cos (2)sin 1(02)M x y θθθπ-+-=≤≤,可令1cos 2sin x y θθ-=⎧⎨-=⎩,消去θ可得()()22121x y -+-=,故直线系M 表示圆()()22121x y -+-=的切线的集合,故①不正确; 因为对任意θ,存在定点()1,2不在直线系M 中的任意一条上,故②正确;由于圆()()22121x y -+-=的外切正n 边形,所有的边都在直线系M 中,故③正确;M 中的直线所能围成的正三角形的边长不一定相等,故它们的面积不一定相等,如图中等边三角形ABC 和ADE 面积不相等,故④不正确.综上,正确的命题是②③. 故答案为:②③.4.(2022·上海·高三开学考试)已知点P 是直线3420x y +-=上的点,点Q 是圆22(1)(1)1x y +++=上的点,则PQ 的最小值是___________. 【答案】45【分析】由题意可得PQ 的最小值为圆心到直线的距离减去半径即可 【详解】圆22(1)(1)1x y +++=的圆心为(1,1)--,半径为1, 则圆心到直线3420x y +-=的距离为223429534d ---==+,所以PQ 的最小值为94155-=,故答案为:455.(2022·上海·高三专题练习)若直线:5l x y +=与曲线22:16C x y +=交于两点11(,)A x y 、22(,)B x y ,则1221x y x y +的值为________.【答案】16【分析】直接利用圆与直线的位置关系,建立一元二次方程根与系数的关系,进一步求出结果. 【详解】解:直线:5l x y +=与曲线22:16C x y +=交于两点11(,)A x y 、22(,)B x y , 则:22516x y x y +=⎧⎨+=⎩所以:221090x x -+=, 则125x x +=,1292x x , 则()()1112221255x x x y x y x x =-+-+121252x x x x25916故答案为:16【点睛】本题考查的知识要点:直线与曲线的位置关系的应用,一元二次方程根与系数的关系的应用. 6.(2022·上海·高三专题练习)过原点且与圆22420x y x y ++-=相切的直线方程为_______. 【答案】20x y -=【分析】切线的斜率显然存在,设出切线方程,利用圆心到直线的距离等于半径,列方程可解得答案. 【详解】由22420x y x y ++-=得22(2)(1)5++-=x y ,所以圆心为(2,1)-,因为圆心到y 轴的距离为2,所以所求切线的斜率一定存在, 所以设所求切线方程为y kx =,即0kx y ,解得2k =,所以所求切线方程为20x y -=. 故答案为:20x y -=.【点睛】本题考查了求圆的切线方程,属于基础题.7.(2022·上海·高三专题练习)在平面直角坐标系xOy 中,过点(3,)P a -作圆2220x y x +-=的两条切线,切点分别为11(,)M x y ,22(,)N x y .若21212121()()()(2)0x x x x y y y y -++-+-=,则实数a 的值等于____________. 【答案】4.【分析】取MN 中点Q ,设()1,0,(0,1)A B ,则利用斜率公式转化条件得1MN BQ k k ⋅=-,再结合圆的切线性质得1MN PA k k ⋅=-,即得BQ PA k k =,最后根据三点共线求结果.【详解】由2220x y x +-=得()2211x y -+=,圆心为1,0A ,设()0,1B ,取MN 中点Q ,由题意得1MN PA k k ⋅=-, 因为21212121()()()(2)0x x x x y y y y -++-+-= 所以21212121()(2)1()()y y y y x x x x -+-=--+,则1MN BQ k k ⋅=-因此BQ PA k k =,从而,,P A B 三点关系,即13110a -=---得4a = . 故答案为:4.【点睛】关键点点睛:本题的关键在于利用斜率关系转化为三点共线问题求解.8.(2022·上海·y 轴交于点A ,与圆()2211x y +-=相切于点B ,则AB =____________.【分析】设直线AB的方程为y b =+,则点()0,A b ,利用直线AB 与圆()2211x y +-=相切求出b 的值,求出AC ,利用勾股定理可求得AB .【详解】设直线AB的方程为y b =+,则点()0,A b ,由于直线AB 与圆()2211x y +-=相切,且圆心为()0,1C ,半径为1,则112b -=,解得1b =-或3b =,所以2AC =, 因为1BC =,故AB ==9.(2021·上海·高三专题练习)过直线:2l x y +=上任意点P 向圆22:1C x y +=作两条切线,切点分别为,A B ,线段AB 的中点为Q ,则点Q 到直线l 的距离的取值范围为______.【答案】 【分析】设P (t ,2﹣t ),可得过O 、A 、P 、B 的圆的方程与已知圆的方程相减可得AB 的方程,进而联立直线方程解方程组可得中点Q 的坐标,由点Q 到直线的距离公式和不等式的性质可得. 【详解】∵点P 为直线:2l x y +=上的任意一点,∴可设(),2P t t -,则过O A P B 、、、的圆的方程为()2222212224t t x y t t -⎛⎫⎛⎫⎡⎤-+-=+- ⎪ ⎪⎣⎦⎝⎭⎝⎭, 化简可得()2220x tx y t y -+--=,与已知圆的方程相减可得AB 的方程为()21tx t y +-=, 由直线OP 的方程为()20t x ty --=, 联立两直线方程可解得2244tx t t =-+,22244t y t t -=-+,故线段AB 的中点222,244244t t Q t t t t -⎛⎫⎪-+-+⎝⎭,∴点Q 到直线l的距离2122d t t ==--+,∵()2222111t t t -+=-+≥,∴210122t t <≤-+, ∴211022t t -≤-<-+,∴2112222t t ≤-<-+,∴21222t t -<-+d ∈⎣故答案为⎣ 【点睛】本题考查直线与圆的位置关系,涉及圆的相交弦和点到直线的距离公式,以及不等式求函数的值域,属中档题.10.(2022·上海交大附中高三期中)圆C 的圆心C 在抛物线22y x =上,且圆C 与y 轴相切于点A ,与x 轴相交于P 、Q 两点,若9OC OA ⋅=(O 为坐标原点),则PQ =______.【答案】【分析】不妨设点C 在第一象限,设()2000,02y C y y ⎛⎫> ⎪⎝⎭,则()00,A y ,根据9OC OA ⋅=求出0y ,从而可求得圆C 的方程,求出,P Q 的坐标即可得解. 【详解】解:不妨设点C 在第一象限, 设()2000,02y C y y ⎛⎫> ⎪⎝⎭,则()00,A y , 故()2200009,0,2y y OC y y OA ⎛⎫=⋅= ⎪⎝⎭⋅=,解得03y =, 故圆心9,32C ⎛⎫⎪⎝⎭,所以圆C 的半径等于92,所以圆C 的方程为()22981324x y ⎛⎫-+-= ⎪⎝⎭,当0y =时,3592x +=或3592-+, 所以3593593522PQ -++=-=. 故答案为:35.11.(2022·上海·高三专题练习)已知圆221:1x y ω+=,圆222:4x y ω+=,P 为1ω上的动点,M 、N 为2ω上的动点,满足23MN =PM PN ⋅的取值范围是___________. 【答案】[3,1]-【分析】先由勾股定理得出MN 的中点Q 的轨迹,再结合向量的运算得出23PM PN QP ⋅=-,最后由2[0,4]QP ∈得出PM PN ⋅的取值范围.【详解】设MN 的中点Q ,22||2(3)1OQ =-=,即MN 的中点Q 的轨迹是221x y +=,所以222()()3PM PN QM QP QN QP QP QM QP ⋅=-⋅-=-=-,又 220,2QP ⎡⎤∈⎣⎦,所以[3,1]PM PN ⋅∈-故答案为:[3,1]-12.(2022·上海·华师大二附中模拟预测)已知曲线29C y x =--:,直线2l y =:,若对于点(0,)A m ,存在C 上的点P 和l 上的点Q ,使得0AP AQ +=,则m 取值范围是_________. 【答案】1,12⎡⎤-⎢⎥⎣⎦【分析】通过曲线方程判断曲线特征,通过0AP AQ +=,说明A 是PQ 的中点,结合y 的范围,求出m 的范围即可. 【详解】解:曲线2:9C y x =--,是以原点为圆心,3为半径的半圆(圆的下半部分), 并且[3P y ∈-,0],对于点(0,)A m ,存在C 上的点P 和l 上的Q 使得0AP AQ +=, 说明A 是PQ 的中点,Q 的纵坐标2y =,21[,1]22py m +∴=∈-.故答案为:1[,1]2-.【点睛】本题考查直线与圆的位置关系,函数思想的应用,考查计算能力以及转化思想. 三、解答题13.(2022·上海·模拟预测)如图,由半圆()22200,+=≤>x y r y r 和部分抛物线()()2100y a x y a =-≥>,合成的曲线C 称为“羽毛球开线”,曲线C 与x 轴有AB 、两个焦点,且经过点()23.,(1)求a r 、的值;(2)设()02N ,,M 为曲线C 上的动点,求MN 的最小值;(3)过A 且斜率为k 的直线l 与“羽毛球形线”相交于点、、P A Q 三点,问是否存在实数k ,使得QBA PBA ∠=∠?若存在,求出k 的值;若不存在,请说明理由.【答案】(1)11a r =⎧⎨=⎩;(2)min MN =3)存在,且1k =【分析】(1)将()23,代入()21=-y a x 求出1a =,再由21y x =-与x 轴交点坐标,代入圆的方程,即可求出1r =;(2)先设00(,)M x y ,得到=MN 00≤y ,和00≥y 两种情况,由抛物线与圆的方程,即可求出结果;(3)先由题意得到PQ 的方程,与抛物线联立,求出2(1,2)--Q k k k ;与圆联立,求出22212,11⎛⎫-- ⎪++⎝⎭k k P k k ,根据QBA PBA ∠=∠得到=-BP BQ k k ,化简得到关于k 的方程,求解,即可得出结果.【详解】(1)由题意,将()23,代入()21=-y a x ,得到1a =;所以抛物线21y x =-; 又21y x =-与x 轴交于()1,0±,所以(1,0)(1,0)、-A B ,代入圆的方程,可得1r =; 所以1a =,1r =;(2)设00(,)M x y ,因为()02,N ,则MN当00≤y 时,22001=-x y ,所以=MN所以00y =时,min =MN当00≥y 时,2001=+x y ,=MN所以032=y 时,minMN<MN (3)由题意,可得:PQ 的方程为(1)y k x =-,由2(1)1y k x y x =-⎧⎨=-⎩,整理得:210x kx k -+-=, 解得1x =或1=-x k ,即2(1,2)--Q k k k ;由22(1)1y k x x y =-⎧⎨+=⎩,整理得:2222(1)210+-+-=k x k x k 解得:1x =或2211-=+k x k ,则22212,11⎛⎫-- ⎪++⎝⎭k k P k k ,由QBA PBA ∠=∠,可得=-BP BQ k k ,即2222221111--+=--++kk k k k kk ,整理得2210--=k k,解得1=k因此,存在实数1k =QBA PBA ∠=∠.【点睛】本题主要考查圆与圆锥曲线的综合,熟记直线与圆位置关系,以及直线与抛物线物位置关系即可,属于常考题型.14.(2022·上海·高三专题练习)某景区欲建造同一水平面上的两条圆形景观步道1M 、2M (宽度忽略不计),已知AB AC ⊥,60AB AC AD ===(单位:米),要求圆1M 与AB 、AD 分别相切于点B 、D ,2M 与AC 、AD 分别相切于点C 、D ,且90CAD BAD ︒∠+∠=.(1)若60BAD ︒∠=,求圆1M 、圆2M 的半径(结果精确到0.1米);(2)若景观步道1M 、2M 的造价分别为每米0.8千元、0.9千元,如何设计圆1M 、圆2M 的大小,使总造价最低?最低总造价为多少(结果精确到0.1千元)? 【答案】(1)圆1M 、圆2M 的半径分别为34.6米、16.1米;(2)1M 的半径与圆2M 的半径分别为30米与20米时,总造价最低,最低总造价为84263.9π≈千元. 【分析】(1)直接利用锐角三角函数的定义可计算出两圆的半径; (2)设1M ADα,可得24M ADπα,其中0,4πα⎛⎫∈ ⎪⎝⎭,然后得出总造价y (千元)关于α的函数表达式,并利用基本不等式可求出y 的最小值,利用等号成立求出对应的tan α的值,即可计算出两圆的半径长.【详解】(1)依题意,圆1M的半径1tan 306034.6M B AB =⋅==(米), ()tan 60tan 4531tan15tan 604521tan 60tan 4513--=-===++圆2M 的半径(260tan1560216.1M C =⋅=≈(米) ,答:圆1M 、圆2M 的半径分别为34.6米、16.1米; (2)设1M ADα,则24M ADπα,其中0,4πα⎛⎫∈ ⎪⎝⎭,故景观步道的总造价为260tan 0.8260tan 0.94y ππαπα⎛⎫=⋅⋅⋅+⋅⋅-⋅ ⎪⎝⎭.1tan 2128tan 9128tan 911tan 1tan απαπααα⎡⎤-⎛⎫⎛⎫=+⋅=+-+ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦()()18181281tan 1712281tan 17841tan 1tan παπαπαα⎡⎤⎡⎤=++-≥⋅+⋅=⎢⎥⎢⎥++⎣⎦⎣⎦(当且仅当()1tan 0,12α=∈时取等号), 当()1tan 0,12α=∈时,1tan 1tan 41tan 3πααα-⎛⎫-== ⎪+⎝⎭, 答:设计圆1M 的半径与圆2M 的半径分别为30米与20米时,总造价最低,最低总造价为84263.9π≈(千元).【点睛】本题考查直线与圆的位置关系,考查利用基本不等式求最值,解题的关键就是建立函数模型的解析式,考查分析问题和解决问题的能力,属于中等题.【考点5】圆与圆的位置关系一、单选题1.(2020·上海·高三专题练习)已知,x y R ∈,且2220x y x ++<,则( ). A .22680x y x +++< B .22680x y x +++> C .22430x y x +++< D .22430x y x +++>【答案】B【分析】借助圆与圆关系确定选择. 【详解】222212(1)0x y x x y ++<∴++<,表示圆心为1(1,0)C -,半径为11r =的圆内部的点,范围记为P2222680(3)1x y x x y +++<∴++<表示圆心为2(3,0)C -,半径为21r =的圆内部的点,因为1212||2C C r r ==+,所以两圆外切,P 在A 中所表示的点的范围外,所以A 不成立; 2222680(3)1x y x x y +++>∴++>表示圆心为2(3,0)C -,半径为21r =的圆外部的点,因为1212||2C C r r ==+,所以两圆外切,P 在B 中所表示的点的范围内,所以B 成立; 2222430(2)1x y x x y +++<∴++<表示圆心为3(2,0)C -,半径为31r =的圆内部的点,因为121312||||1r r C C r r -<=<+,所以两圆相交,P 中有些点在C 中所表示的点的范围外,所以C 不恒成立; 2222430(2)1x y x x y +++>∴++>表示圆心为3(2,0)C -,半径为31r =的圆外部的点,因为121312||||1r r C C r r -<=<+,所以两圆相交,P 中有些点在D 中所表示的点的范围外,所以D 不恒成立; 故选:B【点睛】本题考查两圆位置关系,考查综合分析判断能力,属中档题.2.(2022·上海·高三专题练习)若圆221:1C x y +=和圆222:680C x y x y k +---=没有公共点,则实数k 的取值范围是( ) A .(9,11)-B .(25,9)--C .(,9)(11,)-∞-+∞D .(25,9)(11,)--+∞【答案】D【分析】求出两圆的圆心坐标与半径,再由圆心距与半径间的关系列式求解. 【详解】化圆C 2:x 2+y 2﹣6x ﹣8y ﹣k =0为(x ﹣3)2+(y ﹣4)2=25+k ,则k >﹣25,圆心坐标为(3,4 圆C 1:x 2+y 2=1的圆心坐标为(0,0),半径为1.要使圆C 1:x 2+y 2=1和圆C 2:x 2+y 2﹣6x ﹣8y ﹣k =0没有公共点,则|C 1C 2|1或|C 1C 2|1,即51或51, 解得﹣25<k <﹣9或k >11.∴实数k 的取值范围是(﹣25,﹣9)∪(11,+∞). 故选:D .【点睛】本题考查圆与圆位置关系的判定及应用,考查数学转化思想方法,考查计算能力,是基础题.3.(2022·上海黄浦·模拟预测)已知圆C :25cos 35sin x y θθ=-+⎧⎨=+⎩(θ为参数),与圆C 关于直线0x y +=对称的圆的普通方程是( ). A .22(3)(2)25x y ++-= B .22(2)(3)25x y -++= C .22(3)(2)5x y ++-= D .22(3)(2)5x y ++-=【答案】A【分析】根据题意得圆C 的普通方程为22(2)(3)25x y ++-=,与圆C 对称的圆的圆心和圆C 的圆心关于直线0x y +=对称,半径和圆C 相同,求解计算即可.【详解】圆C :25cos 35sin x y θθ=-+⎧⎨=+⎩(θ为参数)转化为普通方程为22(2)(3)25x y ++-=,圆心为(2,3)-,半径为5,设圆C 关于直线0x y +=对称的圆的圆心为(,)a b ,半径为5, 所以点(2,3)-与点(,)a b 关于0x y +=对称,所以()230223112a b b a -+⎧+=⎪⎪⎨-⎪⨯-=-⎪+⎩,解得32a b =-⎧⎨=⎩, 所以对称的圆的圆心为(3,2)-,半径为5, 故对称的圆的普通方程是22(3)(2)25x y ++-=. 故选:A. 二、填空题4.(2020·上海·高三专题练习)若圆2225x y +=与圆22680x y x y m +-++=的公共弦长为8,则m =________.【答案】55-或5【分析】将两圆的方程相减即可得到两圆公共弦所在的直线方程,根据弦长与半径以及弦心距之间的关系即可得到d =|25|10m +=3.从而解得m =﹣55或5. 【详解】解:x 2+y 2=25① x 2+y 2﹣6x +8y +m =0② 两式相减得6x ﹣8y ﹣25﹣m =0.圆x 2+y 2=25的圆心为(0,0),半径r =5.。

第2章 直线和圆的方程 章末测试(提升)(原卷版)

第2章 直线和圆的方程 章末测试(提升)(原卷版)

第2章 直线和圆的方程章末测试(提升)一、单选题(每题只有一个选项为正确答案,每题5分,8题共40分)1.(2021·乌鲁木齐市第二十中学)方程 22240x y ax by ++-+=表示圆心为 (2,2)C ,半径为 2的圆,则 a , b 的值依次为( )A .2,4B .2-,4C .2,4-D .2,4-2.(2021·乌鲁木齐市第二十中学)若两条平行直线1:20(0)l x y m m -+=>与2:30l x ny +-=之间的m n +=( )A .0B .1C .2-D .1-3.(2021·广东)过圆224x y +=上一点P 作圆222:()0O x y r r +=>的两条切线,切点分别为,A B ,若2APB π∠=,则r =( )A .1B .2CD 4.(2021·全国高三其他模拟(文))若圆22()(21)9x a y a -+-+=上有且仅有两个点到直线34120x y +-=的距离等于2,则实数a 的取值范围是( )A .41,11∞⎛⎫- ⎪⎝⎭ B .9,11∞⎛⎫-+ ⎪⎝⎭C .93141,2,111111⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭D .92141,1,111111⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭5.(2021·江西省万载中学)直线:3250l x y -+=,()P m n ,为直线l 上动点,则()221m n ++的最小值为( )A B C .413 D .3136.(2021·河南)已知()0,0O ,)P ,()14cos 4sin Q θθ+,[]0,2θπ∈,则OPQ △面积的最大值为( )A .4B .5C .D7.(2021·安徽)在平面直角坐标系中,四点坐标分别为()((2,0,3,2,1,2,A B C -()4,D a ,若它们都在同一个圆周上,则a 的值为( )A .0B .1C .2D 8.(2021·河南洛阳市)从直线34:15x l y +=上的动点P 作圆221x y +=的两条切线,切点分别为C 、D ,则CPD ∠最大时,四边形OCPD (O 为坐标原点)面积是( )A B .C .D .2二、多选题(每题至少有两个选项为正确答案,每题5分,4题共20分)9.(2021·广东实验中学高三其他模拟)已知直线:cos sin 1l x y αα+=与圆22:6O x y +=交于A ,B 两点,则( )A .线段AB 的长度为定值 B .圆O 上总有4个点到l 的距离为2C .线段AB 的中点轨迹方程为221x y +=D .直线l 的倾斜角为2πα+ 10.(2021·全国高考真题)已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,PB =D .当PBA ∠最大时,PB =11.(2021·广东深圳市)设直线():1l y kx k =+∈R 与圆22:5C x y +=,则下列结论正确的为( )A .l 与C 可能相离B .l 不可能将C 的周长平分C .当1k =时,l 被C 截得的弦长为2D .l 被C 截得的最短弦长为412.(2021·广东潮州市)已知圆222:210C x ax y a -++-=与圆22:4D x y +=有且仅有两条公共切线,则实数a 的取值可以是( )A .3-B .3C .2D .2-三.填空题(每题5分,4题共20分)13.(2021·黑龙江哈尔滨市)已知直线230x y +-=与圆C :()()22239x y -+-=相交于A ,B 两点,则ABC 面积为___________.14.(2021·福建省福州第一中学)写出一个关于直线10x y +-=对称的圆的方程___________.15.(2021·辽宁)已知圆心为(),0a 的圆C 与倾斜角为56π的直线相切于点(3,N ,则圆C 的方程为___________16.(2021·江苏南京市)直线y x =+D :(()2213x y +-=交与A ,B 两点,则直线AD 与BD 的倾斜角之和为_____________.四.解答题(17题10分,其余每题12分,7题共70分)17.(2021·江西赣州市)如图,在平面直角坐标系xOy 中,已知圆22:3O x y +=,过点()3,0P-的直线与圆O 相交于不同的两点A ,B .(1)求OAB 面积的最大值;(2)若AB =,求直线AB 的方程.18.(2021·江西省万载中学)已知直线l 经过点()2,3P --.(1)若原点到直线l 的距离为2,求直线l 的方程;(2)若直线l 被两条相交直线220x y --=和10x y +-=所截得的线段恰被点P 平分,求直线l 的方程.19.(2021·浙江高二期末)已知圆C 与y 轴相切,圆心C 在射线()20y x x =+≥上,且截直线220x y --=. (1)求圆C 的方程;(2)已知点()1,4P -,直线(1) (45) 10m x m y -+-+=与圆C 交于A 、B 两点,是否存在m 使得PA PB =,若存在,求出m 的值;若不存在,说明理由.20.(2021·玉林市第十一中学)如图,已知圆O ∶224x y +=,过点E (1,0)的直线l 与圆相交于A ,B 两点.(1)当|AB l 的方程;(2)已知D 在圆O 上,C (2,0),且AB ⊥CD ,求四边形ACBD 面积的最大值.21.(2021·浙江)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P ,Q ,并修建两段直线型道路PB ,QA ,规划要求:线段PB QA 上所有点到点O 的距均不小于圆O 的半径.已知点A ,B 到直线l 的距离分别为A C 和BD (C ,D 为垂足),测得10 , 6,12AB AC BD ===(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由.22.(2021·重庆巴蜀中学)已知P 为直线:40l x y +-=上一动点,过点P 向圆()22:15C x y ++=作两切线,切点分别为A 、B .(1)求四边形ACBP 面积的最小值及此时点P 的坐标;(2)直线AB 是否过定点?若是,请求出该点坐标;若不是,请说明理由.。

5.教师版:直线与圆方程解答题

5.教师版:直线与圆方程解答题

直线与圆方程解答题B 组练习1.已知圆M: 223330x y x y +--+=,圆N :22220x y x y +--=,求两圆的公共弦所在的直线方程及弦长。

答案:-3x y +=2.求过点P (6,-4)且被圆2220x y +=截得长为的弦所在的直线方程.解:设弦所在的直线方程为4(6)y k x +=-,即640kx y k ---=①则圆心(0,0)到此直线的距离为d =构成Rt △,所以2220+=.由此解得717k =-或1k =-. 代入①得切线方程776()401717x y ---⨯--=或6(1)40x y ---⨯--=,即717260x y ++=或20x y +-=.3.(一中)已知两圆222210:22140.M x y N x y x y +=+++-=:和(1)求两圆的公共弦所在的直线方程;(2)求过两圆交点且圆心在230x y +-=上的圆的方程。

解:(1)两个方程联立即可得到直线方程为x+y-2=0(2)设经过两圆交点的圆的方程为22222214+(10)0.x y x y x y λ+++-+-= 整理可得222214100.1+1+1x y x y λλλλ++++-=+ 圆心坐标为11(,)11λλ--++由于圆心在直线230x y +-=上,代入可得=-2.λ 所以圆的方程为22(1)(1)8.x y -+-=4.已知直线0382:=---m y mx l 和圆C :02012622=++-+y x y x .(1)时,证明l 与C 总相交。

(2)取何值时,l 被C 截得弦长最短,求此弦长。

【答案】(1)将直线整理成点斜式方程,则直线过定点,斜率为. 将圆整理为标准方程,则圆心,半径.∵ . ∴点在圆C 内,故时, 与C 总相交。

(2)由,当与C 垂直时,被C 截得弦长最短,∴当123k m ==-即16m =-时,弦长最短,设弦端点为P 、Q ,则,即最短弦长为。

直线与圆的位置关系典例+讲解+习题+答案

直线与圆的位置关系典例+讲解+习题+答案

4.2.1 直线与圆的位置关系直线与圆的位置关系(典例)已知圆C:(x-a)2+(y-b)2=r2(r>0),直线L:Ax+By+C=01.位置关系的判定:判定方法1:联立方程组得到关于x(或y)的方程(1)△>0相交;(2)△=0相切;(3)△<0相离。

判定方法2:若圆心(a,b)到直线L的距离为d(1)d<r相交;(2)d=r相切;(3)d>r相离。

例1、判断直线L:(1+m)x+(1-m)y+2m-1=0与圆O:x2+y2=9的位置关系。

法一:直线L:m(x-y+2)+x+y-1=0恒过点,∵点P在圆O内,∴直线L与圆O相交。

法二:圆心O到直线L的距离为当d<3时,(2m-1)2<9(2m2+2),∴14m2+4m+17>0∴m∈R所以直线L与直线O相交。

2.切线问题:例3:(1)已知点P(x0,y)是圆C:x2+y2=r2上一点,求过点P的圆C的切线方程;(xx+yy=r2)法一:∵点P(x,y)是圆C:x2+y2=r2上一点,∴当x≠0且y≠0时,∴切线方程为当P为(0,r)时,切线方程为y=r,满足方程(1);当P为(0,-r)时,切线方程为t=-r,满足方程(1);当P为(r,0)时,切线方程为x=r,满足方程(1);当P为(-r,0)时,切线方程为x=-r,满足方程(1);综上,所求切线方程为x0x+yy=r2法二:设M(x,y)为所求切线上除P点外的任一点,则由图知|OM|2=|OP|2+|PM|2,即x2+y2=r2+(x-x0)2+(y-y)2∴x0x+yy=r2且P(x,y)满足上面的方程。

综上,所求切线方程为x0x+yy=r2。

(2)已知圆O:x2+y2=16,求过点P(4,6)的圆的切线PT的方程。

解:当PT方程为x=4时,为圆O的切线,满足题意:设PT的方程为y-6=k(x-4),即kx-y-4k+6=0则圆心O到PT的距离为所以PT的方程为综上,切线PT的方程为x=4,5x-12y+52=0 例4、求过下列各点的圆C:x2+y2-2x+4y-4=0的切线方程:(1);(2) B(4,5)解:(1)圆C:(x-1)2+(y+2)2=9,圆心C(1,-2),r=3,且点A在圆C上,法一:设切线方程为,则圆心到切线的距离为,∴所求切线方程为法二:∵AC⊥l,∴所求切线方程为(2)点B在圆外,所以过B点的切线有两条设切线方程为y=k(x-4)+5,则圆心C到切线的距离为又直线x=4也是圆的切线方程,∴所求切线方程为例5、设点P(x,y)是圆x2+y2=1上任一点,求的取值范围。

人教A版高中数学选修一第二章《直线和圆的方程》提高训练题 (4)(含答案解析)

人教A版高中数学选修一第二章《直线和圆的方程》提高训练题 (4)(含答案解析)

选修一第二章《直线和圆的方程》提高训练题 (4)一、单选题1.已知A 、B 是圆O :224x y +=上两个动点,点P 的坐标为(2,1),若PA PB ⊥,则线段AB 长度的最大值为( )A .3B .2C .D 2.在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 边上异于AB 的一点,光线从点P 出发,经BC ,CA 反射后又回到点P (如图),若光线QR 经过△ABC 的重心,则三角形PQR 周长等于( )A B C .D3.直线:20+=l x ,若1l l ⊥,则1l 的倾斜角是( ) A .30B .60︒C .120︒D .150︒4.若直线y kx =与曲线2y =k 的取值范围是( ) A .41,3⎡⎫⎪⎢⎣⎭B .40,3⎛⎫ ⎪⎝⎭C .14,33⎡⎤⎢⎥⎣⎦D .1,13⎛⎤ ⎥⎝⎦5.已知直线:sin cos 1l x a y a -=,其中a 为常数且[0,2)a π∈.有以下结论: ①直线l 的倾斜角为a ;②无论a 为何值,直线l 总与一定圆相切;③若直线l 与两坐标轴都相交,则与两坐标轴围成的三角形的面积不小于1; ④若(,)p x y 是直线l 上的任意一点,则221x y +≥. 其中正确结论的个数为( ) A .1B .2C .3D .46.设点(,1)M m ,若在圆22:1O x y +=上存在点N ,使得45OMN ∠=︒,则m 的取值范围是( )A .[]1,1-B .11,22⎡⎤-⎢⎥⎣⎦C .[]22-,D .⎡⎢⎣⎦7.直线:cos 0l x θ=被圆22650x y x +-+=截得最大弦长为( )A B C D .38.《米老鼠和唐老鸭》这部动画给我们的童年带来了许多美好的回忆,令我们印象深刻.如图所示,有人用3个圆构成米奇的简笔画形象.已知3个圆方程分别为: 圆 22:(3)9,Q x y ++= 圆224:(4)L x y ++=,圆 22:(4)4,S x y -+=若过原点的直线 l 与圆L 、S 均相切,则l 截圆Q 所得的弦长为( )A .3B .2C .32D .19.直线330kx y k -+-=与曲线2y =k 的取值范围是( ) A .1[,)4+∞B .3(,)4-+∞C .(]31,44-D .31(,)0,44⎡⎤-∞-⋃⎢⎥⎣⎦10.已知直线10x y ++=与圆C 相切,且直线()210mx y m m R ---=∈始终平分圆C 的面积,则圆C 的方程为( )A .()()22211x y -+-= B .()()22211x y -++= C .()()22212x y -+-=D .()()22212x y -++=11.已知直线1:0()l kx y k R +=∈与直线2:220l x ky k -+-=相交于点A ,点B 是直线30x y --=的动点,()0,1C ,则BA BC +的最小值为( )A .B .C .7D .512.已知直线20x ay +-=与圆C :()()2214x a y -++=相交于A ,B 两点,且ABC 为等边三角形,则实数a =( )A .BC .D 13.古希腊数学家阿波罗尼奧斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数k (0k >且1k ≠)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知()0,0O ,()3,0A ,圆C :()()22220y x r r +=->上有且仅有一个点P 满足2PA PO =,则r 的取值可以为( ) A .1或3B .2C .5D .1或514.已知点P 0y =上的动点,则点P 到直线34100x y --=距离的取值范围是( ) A .71,5⎡⎤⎢⎥⎣⎦B .[]1,3C .713,55⎡⎤⎢⎥⎣⎦D .7,35⎡⎤⎢⎥⎣⎦15.如图,棱长为2正方体1111ABCD A B C D -,O 为底面AC 的中心,点P 在侧面1BC 内运动且1D O OP ⊥,则点P 到底面AC 的距离与它到点B 的距离之和最小是( )A .85B .125C D .16.直线()():2311l a y a x -=--不过第二象限,则a 的取值范围为( ) A .2a <B .23a -≤≤C .2a ≥D .4a ≥17.已知直线2y kx =-上存在点P ,满足过P 点作圆224240x y x y +--+=的两条切线,切点分别为A ,B ,且60APB ∠=︒,则实数k 的最小值为( ) A .512-B .1-C .1D .512二、填空题18.设m R ∈,过定点A 的动直线20mx y m --=和过定点B 的动直线10x my +-=相交于P 点(点P 与点A B ,不重合),则PAB △的面积的最大值为_________.19.若直线y kx =与曲线2y =k 的取值范围是________.20.圆224230x y x y +-+-=上恰好有两点到直线0x y a +-=a 的取值范围是___________.21.若直线1y kx =+与函数()2,0224x x f x x -≤≤⎧⎪=⎨<≤⎪⎩的图象恰有3个不同的交点,则k 的取值范围为__________.22.过点P 的直线l 与曲线y A ,B 两点,若25PA AB =,则直线l 的斜率为____________. 23.已知直线11:42k l y kx =-+,直线()22224:40l y x k k k=-++≠,若直线1l ,2l 与两坐标轴围成一个四边形,则当4k >时,这个四边形面积的取值范围是___________.24.平面内,动点P 到点()0,2A 的距离与点Р到点()0,6B -的距离之比为13,且点P 又在直线(y k x =-上,则k 的最小值是__________.25.已知点()3,0A 、()0,4B ,点P 在圆221x y +=上运动,则点P 到直线AB 的距离的最小值为________.26.设圆222:()0O x y r r +=>,定点(6,8)A -,若圆O 上存在两点到A 的距离为2,则r 的取值范围是_______.27.若圆22:1C x y +=被直线:l y x m =+m =________三、解答题28.求圆心在直线40x y --=上,并且经过圆22640x y x ++-=与圆226280x y y ++-=的交点的圆的方程.29.已知圆221:2310C x y x y ++++=,圆222:4320C x y x y ++++=,证明圆1C 与圆2C 相交,并求圆1C 与圆2C 的公共弦所在直线的方程.30.赵州桥的跨度是37.4m ,圆拱高约为7.2m .求这座圆拱桥的拱圆的方程.31.求与圆22:20C x y x y +-+=关于直线:10l x y -+=对称的圆的方程.32.某圆拱桥的水面跨度20 m ,拱高4 m ,现有一船,宽10m ,水面以上高3m ,这条船能否从桥下通过?33.如图,某台机器的三个齿轮,A 与B 啮合,C 与B 也啮合.若A 轮的直径为200 cm ,B 轮的直径为120 cm ,C 轮的直径为250 cm ,且45A ∠=︒.试建立适当的坐标系,用坐标法求出A ,C两齿轮的中心距离(精确到1 cm ).34.求下列条件确定的圆的方程,并画出它们的图形: (1)圆心为()3,5M -,且与直线720x y -+=相切; (2)圆心在直线y x =上,半径为2,且与直线6y =相切;(32360x y -+=相切于点()3,4.35.己知圆22:2410++-+=C x y x y ,O 为坐标原点,动点P 在圆C 外,过P 作圆C 的切线,切点为M .(1)若点()1,3P ,求此时的切线l 的方程;(2)当PM PO =时,求P 点的轨迹方程. 36.已知直线1l :20mx y m +--=,2l : 340x y n +-=.(1)求直线1l 过的定点P ,并求出直线2l 的方程,使得定点P 到直线2l 的距离为85; (2)过点P 引直线l 分别交x ,y 轴正半轴于A 、B 两点,求使得AOB 面积最小时,直线 l 的方程.37.已知直线:270l ax y +-=与圆()()22:129C x y -+-=交于A ,B 两点. (1)若直线l 与直线320x y -+=平行,求直线l 的方程;(2)若AB =,求直线l 的方程.38.分别写出满足下列条件的直线方程,并化成一般式. (1)经过点(2,0)和(4,)1-;(3)经过点(1,2)且与直线10x y -+=垂直.39.已知点(1,0)M ,(1,3)N ,圆22:1C x y +=,直线l 过点N . (1)若直线l 与圆C 相切,求l 的方程;(2)若直线l 与圆C 交于不同的两点A ,B ,设直线MA ,MB 的斜率分别为1k ,2k ,证明:12k k +为定值.40.已知圆1O 经过点()4,1A 、()2,1B -两点,且圆心在直线2380x y --=上,圆2O :224210x y x y ++++=(1)求圆1O 的标准方程; (2)求圆1O 与圆2O 的公共弦长41.已知圆C 过点()0,1A ,()2,1B --,且圆心C 在直线3y x 上.(1)求圆C 的标准方程;(2)过点(4,2)P -的直线l 与圆C 相切,求直线l 的方程.42.已知直线():1l y kx k =+∈R 与圆()()22:231C x y -+-=相交于A ,B 不同两点.(1)若*k ∈N ,求k 的值;(2)设M 是圆C 上的一动点(异于A ,B ),O 为坐标原点,若12AO BO ⋅=,求MAB △面积的最大值.43.在平面直角坐标系xOy 中,点(2,4),(2,2),(5,5)D E F ---都在圆C 上. (1)求圆C 的方程;(2)直线0x y m -+=与圆C 交于A B ,两点,OA OB ⊥时,求m 值.44.已知一个动点P 在圆220432x y y -+=+上移动,它与定点()6,0Q 所连线段的中点为M . (1)求点M 的轨迹方程;(2)过定点()0,3-的直线l 与点M 的轨迹方程交于不同的两点()11,A x y ,()22,B x y ,且满足1221212x x x x +=,求直线l 的方程. 45.已知圆经过(11)A , 和(2,2)B -两点,且圆心C 在直线10x y -+=上. (1)求圆C 的方程.(2)若过点(6,4)M -的直线l 与圆C 相交于,P Q 两点,且8PQ =,求直线l 的方程. 46.圆心为C 的圆经过点(4,1)A -,(3,2)B -,且圆心C 在:20l x y --=上,(1)求圆C 的标准方程;(2)过点(3,1)P -作直线m 交圆C 于MN 且||8MN =,求直线m 的方程.47.如图,已知以点(1,2)A -为圆心的圆与直线1:270l x y ++=相切.过点(2,0)B -的动直线l 与圆A 相交于,M N 两点.(1)求圆A 的方程;(2)当MN =l 的方程.48.如图,ABC 中,顶点()1,2A ,BC 边所在直线的方程为310x y ++=,AB 边的中点D 在y 轴上.(1)求AB 边所在直线的方程;(2)若AC BC =,求AC 边所在直线的方程.49.已知圆()22:210C x y x ay a +-++=∈R ,圆心C 在直线30x y -=上.(1)求圆C 的标准方程;(2)求直线:0l x y -=被圆C 截得的弦AB 的长.50.在平面直角坐标系xOy 中,点A 的坐标为()1,1,动点P 满足|||PO PA =.(2)若直线l 过点()4,6Q 且与轨迹C 相切,求直线l 的方程.【答案与解析】1.D 【解析】先根据题意设出Q 的坐标,根据勾股定理得到Q 的轨迹方程,求出PQ 的最大值,根据||2||AB PQ =即可求解. 解:如图所示:取AB 的中点Q ,连OQ 、PQ , 由圆的性质可知OQ AB ⊥, 由PA PB ⊥可知:2AB PQ =, 设点Q 的坐标为(,)x y ,在Rt OBQ 中,222OB OQ PQ =+, 即 ,整理为22224210x y x y +--+=,可化为2213(1)24x y ⎛⎫-+-= ⎪⎝⎭,故Q 的轨迹为以11,2⎛⎫ ⎪⎝⎭PQ =故||2||AB PQ =≤. 故选:D.2.A 【解析】建立如图所求的直角坐标系,得(4,0),(0,4)B C ,设(,0)P a ,求出P 关于直线BC 的对称点1P 坐标,P 关于y 轴对称性2P 坐标,由反射性质12,,,P Q R P 四点共线,求得直线QR 方程,由G 在直线QR 上可求得a ,然后计算12PP 即得.建立如图所求的直角坐标系,得(4,0),(0,4)B C ,直线BC 方程为4x y +=,ABC 的重心为44(,)33G ,设(,0)P a ,P 关于直线AB 的对称为1(,)P x y , 则04220(1)1x a y y x a++⎧+=⎪⎪⎨-⎪⋅-=-⎪-⎩,解得44x y a =⎧⎨=-⎩,则1(4,4)P a -, 易知P 关于y 轴的对称点为2(,0)P a -,根据光线反射原理知12,,,P P Q R 四点共线, ∴直线QR 的方程为[]40()4()a y x a a --=----,即4()4a y x a a -=++,又直线QR 过44(,)33G ,∴444343a a a -⎛⎫=⨯+ ⎪+⎝⎭,解得43a =或0a =(舍去),4,03P ⎛⎫ ⎪⎝⎭, ∴184,3P ⎛⎫⎪⎝⎭,24(,0)3P -,12PP == 故选:A .关键点点睛:本题考查直线方程的应用,解题关键是利用对称性,把PQR 的三边转化为到同一条直线上,利用直线方程求得P 点位置,然后得路程的最小值. 3.B 【解析】根据两直线垂直得出1l 的斜率,即可得倾斜角.因为直线:20+=l x ,所以k = 又1l l ⊥,所以1l 的斜率为1k = 因为倾斜角的范围[0,)π, 所以1l 的倾斜角为3π, 故选:B 4.A 【解析】对曲线2y =()4,2为圆心,2为半径在直线2y =上方的半圆,然后求出当直线与该半圆相切、当直线过点()2,2时对应的k 的值,然后可得答案.曲线2y =()()()224242x y y -+-=≥,它表示以()4,2为圆心,2为半径在直线2y =上方的半圆,且左侧端点坐标为()2,2,直线()0y kx k =>过原点()0,0,当直线与该半圆相切时(即图中虚线),由2=43k =;当直线过点()2,2时(即图中实线),1k =,故要使直线与曲线有两个不同交点,则413k ≤<. 故选:A.5.C 【解析】根据直线的性质及直线与圆的关系对选项一一判断即可.对于①,直线l 的倾斜角的取值范围为[0,)π,与角a 的不同,故①错误; 对于②,(0,0)1=,则无论a 为何值,直线l 总与221x y +=相切,故②正确;对于③,若直线l 与两坐标轴都相交,则截距分别为1sin a ,1cos a-,则与两坐标轴围成的三角形的面积为111112sin cos sin 2a a a⋅=≥,故③正确; 对于④,由②知直线l 总与221x y +=相切,则直线l 上的点到原点的距离大于等于1,即221x y +≥,故④正确;综上所述,②③④共3个正确; 故选:C 6.A 【解析】当M 确定时,易知直线MN 与圆O 相切时,OMN ∠最大,若在圆上存在点N ,使得45OMN ∠=︒,即令相切时,45OMN ∠≥即可,sin ON OM OMN =≤=∠M 点坐标,求得m 的范围. 当M 确定时,易知直线MN 与圆O 相切时,OMN ∠最大,若在圆上存在点N ,使得45OMN ∠=︒,即令相切时,45OMN ∠≥即可,则sin ON OM OMN =≤=∠2,解得[]1,1m ∈- 故选:A 7.C 【解析】计算出圆心到直线l 的距离的最小值,利用勾股定理可求得结果.圆22650x y x +-+=的标准方程为()2234x y -+=,圆心为()3,0C ,半径为2,圆心C 到直线l的距离为3,32d ⎡⎤=⎢⎥⎣⎦,所以,直线l 被圆C截得最大弦长为故选:C.8.A 【解析】设直线:l y kx =,利用直线与圆相切,求得斜率,再利用弦长公式求弦长 设过点O 的直线:l y kx =.由直线l 与圆L 、圆 S2, 解得 213k =(1).设点Q 到直线l 的距离为1,d 则1d (2).又圆Q 的半径3r =直线l 截圆Q 所得弦长 1l = 结合(1)(2)两式,解得1 3.l = 9.C 【解析】将曲线方程化为半圆方程,求得直线的定点为()3,3,作草图确定有两个交点的临界位置,即可求解参数范围. 如图所示:由直线330kx y k -+-=得()330k x y --+=得直线过定点为()3,3C ,由2y =()()()22214,2y x y -+-=≥当直线与半圆相切时,则2d r ===解得34k =-当直线过点()1,2A -时,则2330k k --+-=得14k = 由于直线与曲线有两个不同交点,故3144k -<≤故选:C本题的解题关键在于求出直线的定点及将曲线化为半圆方程,通过草图确定临界位置. 10.D 【解析】根据直线()210mx y m m R ---=∈始终平分圆C 的面积,可得圆C 的圆心,再根据直线10x y ++=与圆C 相切,可得圆C 的半径,进而可得圆C 的方程. ∵直线()210mx y m m R ---=∈始终平分圆C 的面积,∴直线()210mx y m m R ---=∈始终过圆C 的圆心()21-,, 又圆C 与直线10x y ++=相切,则圆的半径r == ∴圆C 的方程为()()22212x y -++=. 故选:D. 11.D 【解析】由题意可知点A 为圆22(1)(1)2x y -+-=上的点,由于,A C 两点在直线30x y --=的同侧,所以求出点C 关于直线30x y --=的对称点为(,)D m n ,则BA BC BA BD =++,然后利用两点间线段最短可得答案解:由1:0()l kx y k R +=∈,得yk x=-,由2:220l x ky k -+-=,得22x k y -=-,所以22x yy x-=--,化简得22(1)(1)2x y -+-=, 所以点A 为圆22(1)(1)2x y -+-=上的点, 设点C 关于直线30x y --=的对称点为(,)D m n , 则1113022n mm n -⎧=-⎪⎪⎨+⎪--=⎪⎩,解得43m n =⎧⎨=-⎩,即(4,3)D -因为CB DB =,所以当点,,A B D 共线,且过点(1,1)时,BA BC +取最小值, 所以BA BC +5=故选:D关键点点睛:此题考查直线与圆的应用,考查距离问题,解题的关键是求出点C 关于直线30x y --=的对称点为(,)D m n ,将BA BC +的最小值转化为BA BD +的最小值,属于中档题 12.A 【解析】a 的值.由题意知,等边ABC 边长为2,所以圆心(),1C a -到直线20x ay +-==,解得213a =,即a =故选:A. 13.D 【解析】设出动点P 的坐标,利用已知条件列出方程,化简可得点P 的轨迹方程,由点P 是圆222:(2)(0)C x y r r -+=>上有且仅有的一点,可得两圆相切,进而可求得r 的值.解:设(,)P x y ,由||2||PA PO =,得2222(3)44x y x y -+=+,整理得22(1)4x y ++=,又点P 是圆222:(2)(0)C x y r r -+=>上有且仅有的一点, 所以两圆相切,圆22(1)4x y ++=的圆心坐标为(1,0)-,半径为2,圆222:(2)(0)C x y r r -+=>的圆心坐标为(2,0),半径为r , 两圆的圆心距为3,当两圆外切时,23r +=,得1r =, 当两圆内切时,|2|3r -=,得=5r . 故选:D . 14.D 【解析】0y =与直线34100x y --=的图象,利用点到直线的距离公式可求得结果.0y =可得y 0y ≥,在等式y 221x y +=,0y =为圆221x y +=的上半圆,该圆的半径为1r =,0y =与直线34100x y --=的图象如下图所示:原点O 到直线34100x y --=2=,设点P 到直线34100x y --=的距离为d ,当点P 的坐标为()1,0,d 取最小值,即min 75d ==,由图象可知,max 2213d r =+=+=,因此,点P 到直线34100x y --=的距离的取值范围是7,35⎡⎤⎢⎥⎣⎦.故选:D.关键点点睛:解本题的关键在于以下两点:(10y =化简变形为221x y +=,确定曲线为圆的一半,数形结合求解; (2)当直线l 与圆相离时,圆心到直线l 的距离为d ,则圆上一点到直线l 的距离的最大值为d r +,最小值为d r -(其中r 为圆的半径). 15.A 【解析】先确定动点在平面内所在的线段,再根据对称性原理找最小值.取1BB 中点F ,连接,,,AC FA FC BD ,则1D DO OBF ,1D O OF ⊥,又AC ⊥平面11BDD B ,1D O ⊂平面11BDD B ,所以1AC D O ⊥,AC OF O ⋂=,1D O ⊥平面ACF , 因为1D O OP ⊥,所以OP ⊂平面ACF ,P ∈平面ACF因为点P 在侧面1BC 内,所以P ∈平面ACF ⋂平面11BCC B CF =; 在平面11BCC B 内作B 关于直线FC 对称的点B ',连接,B F B C '',,PB PB ' 则BCF B CF '≅,PB PB '=所以1B F '=,2B C '=,作PH BC ⊥, 则PB PH PB PH '+=+当B '、P 、H 三点共线时,PB PH +取最小值, 此时因为1BB CF ⊥,B BHCFB ',所以2B H BH '=,2HC BH =-,Rt B HC '中,222HC B H B C ''+=,即()()222222BH BH -+=,得45BH =,故85B H '=, 即点P 到底面AC 的距离与它到点B 的距离之和最小是85.故选:A. 关键点睛:(1)找出动点在平面内的所在的线段;(2)作出对称点,把问题转化为求动点到定直线的最短距离. 16.C 【解析】分20a -=、20a -≠两种情况讨论,结合已知条件可得出关于实数a 的不等式(组),由此可解得实数a 的取值范围.若20a -=,可得2a =,直线l 的方程为15x =,该直线不过第二象限,合乎题意;若20a -≠,可得0a ≠,直线l 的斜截式方程为31122a y x a a -=---,若直线l 不过第二象限,则3102102a a a -⎧≥⎪⎪-⎨⎪-<⎪-⎩,解得2a >.综上所述,2a ≥. 故选:C.关键点点睛:解本题的关键在于对直线的斜率是否存在进行分类讨论,在斜率存在的前题下,一般从直线的斜率与纵截距或直线在两坐标轴上的截距来进行分析,结合已知条件列不等式(组)求解. 17.D 【解析】由圆224240x y x y +--+=,先找圆心C 和半径,根据题意,分析出P 的轨迹为圆,利用≤d R ,解出k 的范围.将圆224240x y x y +--+=化为标准方程:22(2)(1)1x y -+-=, 故圆心C (2,1),半径r =1,在△PCA 中,30,90APC ACP ∠=︒∠=︒,∴PC =2P A =2∴P 的轨迹为以C 为圆心,半径R =2的圆,其方程为22(2)(1)4x y -+-=. 而圆心C 到直线2y kx =-的距离d =只需要2≤d2≤,解得:512k ≥所以实数k 的最小值为512.故选:D与圆的切线方程有关问题的思路通常有两种: (1)几何法:用圆心到直线的距离等于半径; (2)代数法:直线方程与圆的方程联立,利用Δ=0. 18.1 【解析】由题知,A ,(1,0)B ,且两动直线互相垂直,P 点的轨迹是以AB 为直径的圆,P 点到AB 的距离的最大值为圆的半径,从而求得PAB △面积的最大值.由题知,A ,(1,0)B,2AB =,且两动直线互相垂直, 则AP BP ⊥,P 点的轨迹是以AB 为直径的圆,则P 点到AB 的距离的最大值为112AB =故PAB △面积的最大值为12112⨯⨯=故答案为:1 19.41,3⎡⎫⎪⎢⎣⎭【解析】先对曲线2y = 进行化简,画出图形,数形结合即可求解.解:曲线2y =()()()224242x y y -+-=≥,如图所示:它表示以()4,2为圆心,2为半径在直线2y =上方的半圆,直线y kx =过原点()0,0,当直线与该半圆相切时(即图中虚线),43k =; 当直线过点()2,2时(即图中实线),1k =, 故要使直线与曲线有两个不同交点,则413k ≤<. 故答案为:41,3⎡⎫⎪⎢⎣⎭.20.()()5,13,7--【解析】把圆的方程化为标准方程,得到圆心坐标,由与直线0x y a +-=圆相交,一条与圆相离可得,由已知得到关于a 的不等式,解不等式即可得解. 把圆的方程化为标准式为()()22218x y -++=,所以圆心坐标为()2,1-,半径r =则圆心到直线0x y a +-=的距离d ==由题意得<,即12124a a ⎧->⎪⎨--<⎪⎩,即216a <-<解得:51a -<<-或37a <<,即实数a 的取值范围为()()5,13,7-- ,故答案为:()()5,13,7--.21.31,42⎛⎫-- ⎪⎝⎭【解析】结合()f x 的图象和直线1y kx =+过定点,当直线1y kx =+与圆()2231x y -+=的下半部分相切和经过点()2,0时,可得答案.()f x 的图象如图所示,直线1y kx =+过定点()0,1,当直线1y kx =+与圆()2231x y -+=的下半部分相切时,1d ==解得34k =-或0k =(舍去),当直线1y kx =+经过点()2,0时,12k =-.数形结合可得31,42k ⎛⎫∈-- ⎪⎝⎭.故答案为:31,42⎛⎫-- ⎪⎝⎭本题考查了直线和圆的位置关系,关键点是作出图象找出临界值,考查了数形结合思想、计算的能力. 22.2 【解析】由题意画出图形,由切割线定理求得PA ,进一步得到AB,数形结合求得直线的倾斜角,则斜率可求.解:设PQ与曲线y Q,曲线y 2213x y +=的上半部分,圆的半径r ,圆心坐标为()0,0,因为25PA AB =,P ,所以PO =则22227||||||||(||||)||||||355PQ PA PB PA PA AB PA PO OQ =⋅=⋅+==-=.||5PA ∴=,||2AB =,O到弦AB的距离d=,所以1sin 2APO ∠== 30APO ∴∠=︒,由45POx ∠=︒所以直线l 的倾斜角为453015︒-︒=︒,斜率为1tan15tan(4530)2︒=︒-︒==故答案为:2.23.17,84⎛⎫ ⎪⎝⎭【解析】由直线1l ,2l 过定点()2,4B ,再分别求出直线1l 、2l 与x 轴、y 轴的交点,将四边形AOCB 分成一个梯形和一个直角三角形,根据面积公式结合二次函数的性质得出四边形面积的取值范围.直线14(2):422l k k y x k x =-+=-+,过定点()2,4B ,与x 轴的交点为28,0k A k -⎛⎫⎪⎝⎭直线()222:24l y x k =--+,过定点()2,4B ,与y 轴的交点为240,4C k ⎛⎫+ ⎪⎝⎭过点B 作y 轴的垂线交于点D ,如下图所示 将四边形AOCB 分成一个梯形和一个直角三角形 则122114424422S DB DC k k⎛⎫=⨯=⨯⨯+-= ⎪⎝⎭2112816()24822k S OA DB OD k k -⎛⎫=+⨯=+⨯=- ⎪⎝⎭则四边形AOCB 的面积为212241618428S S S k k k ⎛⎫=+=-+=-- ⎪⎝⎭因为4k >,所以110,4k ⎛⎫∈ ⎪⎝⎭,则17,84S ⎛⎫∈ ⎪⎝⎭故答案为:17,84⎛⎫⎪⎝⎭关键点睛:解决本题的关键是得出直线1l ,2l 过定点()2,4B ,以此画出图象得出四边形面积的取值范围. 24.【解析】先求点P 的轨迹方程,再利用直线与圆的位置关系,求k 的最小值.设点(),P x y ,13PA PB =,13=,化简得()2239x y +-=, 点P 又在直线(y k x=-上,∴直线与圆相交, 圆心()0,3到直线(y kx =-的距离3d ≤,得20k +≤解得:0k ≤,所以k 的最小值是故答案为:方法点睛:一般求曲线方程的方法包含以下几种: 1.直接法:把题设条件直接“翻译”成含的等式就得到曲线的轨迹方程.2.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.3.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法. 25.75【解析】求出直线AB 的方程,求出圆心到直线AB 的距离,进而可得出点P 到直线AB 的距离的最小值. 圆221x y +=的圆心为原点O ,半径为1r =,直线AB 的方程为134x y+=,即43120x y +-=,原点到直线AB 的距离为125d ==,所以,直线AB 与圆221x y +=相离, 因此,点P 到直线AB 的距离的最小值为127155d r -=-=. 故答案为:75.结论点睛:若直线AB 与半径为r 的圆C 相离,且圆心C 到直线AB 的距离为d ,则圆C 上一点到直线AB 的距离的最小值为d r -,最大值为d r +. 26.(8,12) 【解析】由以A 为圆心2为半径的圆与圆O 相交可得.由题意以A 为圆心2为半径的圆与圆O 相交,.∴22r r -<+,解得812r <<. 故答案为:(8,12).本题考查圆与圆的位置关系,解题关键是把问题转化为两圆相交.圆与圆的位置关系: 两圆圆心距离为d ,半径分别为,r R ,则相离d R r ⇔>+,外切d R r ⇔=+,相交R r d R r ⇔-<<+,内切d R r ⇔=-,内含d R r ⇔<-. 27.±1 【解析】求出圆心到直线的距离,由圆的半径、弦心距、弦长的一半构成的直角三角形可得答案.圆心()0,0C ,半径为1,圆心到直线的距离为1OC =<,解得m 2CB =,因为222OB OC CB =+,所以221=+⎝⎭, 解得1m =±,符合题意. 故答案为:±1.本题考查了直线和圆的位置关系,关键点是利用由圆的半径、弦心距、弦长的一半构成的直角三角形解题,判断直线和圆的位置关系有①几何法,就是利用圆心到直线的距离和半径大小;②代数法,就是利用圆的方程和直线方程联立后的判别式求解. 28.227320x y x y +-+-= 【解析】设两圆交点系方程为2222+64+(+628)0x y x x y y λ+-+-=,求得圆心坐标代入直线40x y --=求得圆的方程.设经过两圆交点的圆的方程为2222+64+(+628)0x y x x y y λ+-+-=,即22(1)(1)+662840x y x y λλλλ++++--=,圆心坐标为33(,)11λλλ--++ ,将其代入直线40x y --=解得7λ=- .所以圆的方程为227320x y x y +-+-=. 故所求圆方程为:227320x y x y +-+-=29.证明见解析,公共弦所在直线的方程为210x +=. 【解析】依题意求得圆1C 和圆2C 的圆心和半径,进而根据圆心距和两圆半径的关系可证得结果;将两圆方程相减可得公共弦所在直线的方程.圆1C 的标准方程为()2239124x y ⎛⎫+++= ⎪⎝⎭,所以圆心为131,2C ⎛⎫-- ⎪⎝⎭,半径132r =;圆2C 的标准方程为()22317224x y ⎛⎫+++= ⎪⎝⎭,所以圆心为232,2C ⎛⎫-- ⎪⎝⎭,半径2r =两圆圆心距121d C C ==,1232r r +=1232r r -=,所以1212r r d r r -<<+,圆1C 和圆2C 相交.将圆2C 和圆1C 的方程相减,得两圆的公共弦所在直线的方程为210x +=. 30.()22220.6827.88x y ++= 【解析】根据题意以拱高所在直线为y ,如图建立平面直角坐标系,再求圆的方程. 解:根据题意,以拱高所在直线为y ,如图建立平面直角坐标系,根据题意得:7.2OC =,18.7OB OA ==,此时圆心在y 轴上,圆心为D ,半径为r ,则7.2OD r OC r =-=-, 所以在Rt OBD △中,222BD OD OB =+,即()2227.218.7r r =-+, 解得:27.88r =,所以7.220.68OD r =-= 设所求圆的方程为()22220.6827.88x y ++=, 即拱圆的方程为:()22220.6827.88x y ++= 31.()2235224x y ⎛⎫++-= ⎪⎝⎭【解析】先求出圆22:20C x y x y +-+=的圆心和半径,利用对称求出对称圆的圆心,即可写出对称圆的方程.圆22:20C x y x y +-+=可化为:()2215124x y ⎛⎫-++= ⎪⎝⎭,所以其圆心112⎛⎫- ⎪⎝⎭,,半径254r =. 设对称的圆的圆心(),a b ,则有:1·1112112122b a a b +⎧=-⎪-⎪⎪⎨⎪+-⎪=+⎪⎩,解得:232a b =-⎧⎪⎨=⎪⎩,所以对称的圆的方程为:()2235224x y ⎛⎫++-= ⎪⎝⎭.32.该船可以从桥下通过 【解析】建立适当平面直角坐标系,如图所示,得出A B P D E ,,,,各点的坐标,设出圆的标准方程,将A B P ,,坐标代入确定出这座圆拱桥的拱圆方程,把D 横坐标代入求出纵坐标,与3比较即可作出判断.建立如图所示的坐标系.依题意,有A (-10,0),B (10,0),P (0,4),D (-5,0),E (5,0).设所求圆的方程是222()(0)=()x a y b r r -->+, 于是有()()()22222222210,10,4,a b r a b r a b r ⎧++=⎪⎪-+=⎨⎪+-=⎪⎩解此方程组,得a =0,b =-10.5,r =14.5,所以这座圆拱桥的拱圆的方程是x 2+(y +10.5)2=14.52(0≤y ≤4). 把点D 的横坐标x =-5代入上式,得y ≈3.1.由于船在水面以上高3 m ,3<3.1,所以该船可以从桥下通过. 33.260cm【解析】根据题意,以点A 为坐标原点,AB 所在直线为x 建立平面直角坐标,进而得直线AC 的方程为y x =,故设(),,0C t t t >,再结合圆与圆的位置关系求解即可得答案.解:根据题意,以点A 为坐标原点,AB 所在直线为x 建立平面直角坐标系,如图,则160AB =,()0,0A ,()160,0B ,由于45CAB ∠=,所以直线AC 的方程为y x =, 故设(),,0C t t t >,则()12501201852BC =+=,由于圆B 与圆C 相外切,故BC =,解方程得183.5t ≈所以259.5260AC cm ==≈cm.故A ,C 两齿轮的中心距离约为260cm .34.(1)()()223532x y -++=;(2)()()22444x y -+-= 或()()22884x y -+-=;(3)22(5)(1)13x y -+-= 或 22(1)(7)13x y -+-=.【解析】(1)根据点到直线的距离求得半径,进而得答案;(2)设圆心坐标为(),a a ,再根据题意得62r a =-=,解得4a =或8a =,进而求得答案;(3)设圆心坐标为(),a b ,则4332b a -⎧=-⎪-⎪⎨=51a b ⎧=⎨=⎩或17a b =⎧⎨=⎩,进而求得答案.解:(1)因为圆M 与直线720x y -+=相切,所以点()3,5M -到直线720x y -+=的距离即为圆M 的半径, 所以r == 所以圆M 的方程为:()()223532x y -++=, 图像如图:(2)因为圆心在直线y x =上,半径为2, 所以设圆心坐标为(),a a , 又因为所求圆与直线6y =相切, 所以62r a =-=,解得4a =或8a =,所以所求圆的方程为 ()()22444x y -+-= 或()()22884x y -+-=, 图像如图:(32360x y -+= 相切于点()3,4,所以设圆心坐标为(),a b ,则4332b a -⎧=-⎪-⎪⎨=51a b ⎧=⎨=⎩或17a b =⎧⎨=⎩,所以所求圆的方程为:22(5)(1)13x y -+-= 或 22(1)(7)13x y -+-=, 图像如下:35.(1)34150x y +-=或1x =;(2)()()22126x y -++=. 【解析】(1)利用几何法分别判断切线斜率存在即斜率不存在是切线情况; (2)(),P x y,根据PM ,及222PM PC CM =-进行化简即可.(1)圆的标准方程为()()22124x y ++-=,当切线斜率不存在时,直线为1x =,此时该直线是圆的切线,满足条件.当切线斜率存在时,切线方程可以设为,():31l y k x -=-,即30kx y k -+-=,圆心()1,2C -到切线l 的距离2==d ,解得:34k =-,:34150∴+-=l x y ,∴切线方程为:34150x y +-=或1x =;(2)设(),P x y ,PM =, 又222222=+PO x y222PM PC CM ∴=-()()22124=++--x y 222=PM PO 知222410+-+-=x y x yP ∴的轨迹方程为:()()22126x y -++=36.(1)(1,2)P ,2l :3430x y +-=或34190x y +-=(2)240x y +-= 【解析】(1)利用直线系求出定点,根据点到直线距离求出2l ;(2)由题意直线斜率存在,设出直线方程,求出截距,表示出三角形面积,利用均值不等式求最值.(1)由20mx y m +--=可得(1)20m x y -+-=, 所以直线1l 的定点(1,2)P ,(1,2)P 到直线2l :340x y n +-=的距离|11|855n d -===, 解得3n =或19n =,所以直线2l :3430x y +-=或34190x y +-= (2)由题意,设直线l :2(1)y k x -=-, 因为直线l 分别交x ,y 轴正半轴于A 、B 两点, 所以0k <令0,20x y k ==->,20,10y x k==->,所以122(2)(1)22422AOB k S k k k =--=--≥+△,当且仅当2k =-时等号成立,故所求直线方程为22(1)y x -=--,即240x y +-=关键点点睛:直线系过定点问题,需将直线化为含参数与不含参数的部分,如(1)20m x y -+-=,可根据此形式直接写出定点;直线与坐标轴围成三角形的面积,可利用截距表示. 37.(1)6270x y -+=;(2)512420x y +-= 【解析】(1)因为直线l 与直线320x y -+=平行得直线l 的斜率,可得答案;(2)圆的半径、圆心到直线的距离和弦长的一半构成的直角三角形,利用勾股定理可得答案. (1)因为直线l 与直线320x y -+=平行,所以直线l 的斜率3k =, 则32a-=,解得6a =-, 故直线l 的方程为6270x y -+-=,即6270x y -+=. (2)由题意可知圆C 的圆心坐标为()1,2,半径为3,因为AB =C 到直线l 的距离1d =,解得56a =, 故直线l 的方程为52706x y +-=即512420x y +-=.38.(1)220x y +-=;(2)3260x y --=;(3)30x y +-=. 【解析】(1)用两点式写出直线方程并化简为一般式; (2)用截距式写出直线方程交化简为一般式;(3)由垂直求出直线斜率,设出直线方程的斜截式,代入点的坐标可得结论.然后方程化为一般式.解:(1)所求的直线方程为021042--=---y x , 整理得220x y +-=. (2)所求的直线方程为123x y +=-, 整理得3260x y --=.(3)因为直线10x y -+=的斜率为1,所以所求直线的斜率为1-, 设所求直线方程为y x b =-+,将(1,2)代入可得123=+=b , 所以所求的直线方程为3y x =-+,即30x y +-=.思路点睛:本题考查求直线方程,直线方程有形式多种多样:点斜式,斜截式,两点式,截距式,一般式,可以根据不同的条件写出直线方程,然后转化为一般式. 39.(1)1x =或4350x y -+=;(2)证明见解析. 【解析】(1)若直线l 的斜率不存在,则l 的方程为1x =,此时直线l 与圆C 相切,故1x =符合条件;若直线l 的斜率存在,设斜率为k ,其方程为(1)3y k x =-+,由直线l 与圆C1=,解得43k =,进而可得直线方程;(2)由(1)可知,l 与圆C 有两个交点时,斜率存在,此时设l 的方程为30kx y k --+=,设()11,A x y ,()22,B x y ,联立直线与圆的方程,根据判别式求得斜率的取值范围,又由韦达定理可知12x x +,12x x ,所以121221213(2)22()13k k x x k x x x x +-==--++++.(1)若直线l 的斜率不存在,则l 的方程为1x =, 此时直线l 与圆C 相切,故1x =符合条件.若直线l 的斜率存在,设斜率为k ,其方程为(1)3y k x =-+, 即30kx y k --+=.由直线l 与圆C 相切,圆心(0,0)到l 的距离为1,1=,解得43k =.所以直线l 的方程为4(1)33=-+y x ,即4350x y -+=,综上,直线l 的方程为1x =或4350x y -+=.(2)由(1)可知,l 与圆C 有两个交点时,斜率存在,此时设l 的方程为30kx y k --+=,联立22301kx y k x y --+=⎧⎨+=⎩, 消去y 可得()()2222126680kx kk x k k +--+-+=,则()()()2222264168∆=--+-+k k k k k 24320=->k .解得43k >. 设()11,A x y ,()22,B x y ,则2122261k k x x k -+=+,2122681k k x x k -+=+,(*)所以()1121212113111-++=+=---k x y y k k x x x ()221213332111-++=++---k x k x x x()()1212123221+-=+-++x x k x x x x ,将(*)代入上式整理得121862293--+=+=-k k k k , 故12k k +为定值23-.过一定点,求圆的切线时,首先判断点与圆的位置关系.若点在圆外,有两个结果,若只求出一个,应该考虑切线斜率不存在的情况. 40.(1)22(1)(2)18x y -++=;(2. 【解析】(1)设圆1O 的标准方程为222()()x a y b r -+-=,根据题意可得三个关于,,a b c 的方程,解出三个未知数即可;(2)首先判断两圆的位置关系是相交,联立方程组解出交点坐标16251135x x y y ⎧=-⎪=-⎧⎪⎨⎨=⎩⎪=-⎪⎩或,利用两点间距离公式求出公共弦长即可.(1)设圆1O 的标准方程为222()()x a y b r -+-= ,过点()4,1A 、()2,1B -两点,且圆心在直线2380x y --=上, 所以2222222380(4)(1)(2)(1)a b a b r a b r --=⎧⎪-+-=⎨⎪--+-=⎩,解得12a b r ⎧=⎪=-⎨⎪=⎩ ,所以圆1O 的标准方程为22(1)(2)18x y -++=.(2)圆2O :224210x y x y ++++=,即22(2)(1)4+++=x y ,因为两圆圆心距离为2d =<2 , 所以两圆相交,联立22(1)(2)18x y -++=与22(2)(1)4+++=x y ,解得16251135x x y y ⎧=-⎪=-⎧⎪⎨⎨=⎩⎪=-⎪⎩或 ,=. 41.(1)22(2)(1)4x y ++-=;(2)4x =-或34200x y -+=.。

2020_2021学年新教材高中数学第二章直线和圆的方程测评课后提升训练含解析选择性第一册

2020_2021学年新教材高中数学第二章直线和圆的方程测评课后提升训练含解析选择性第一册

第二章测评(时间:120分钟 满分:150分)一、单选题(共8小题,每小题5分,共40分) 1.直线x-√3y-1=0的倾斜角α的大小为( ) A 。

30°B .60°C 。

120°D 。

150°x-√3y-1=0的斜率为k=√33,故tan α=√33.∵0°≤α<180°,∴α=30°。

2.圆x 2+y 2—4x=0在点P (1,√3)处的切线方程为( ) A 。

x+√3y-2=0B .x+√3y-4=0C 。

x-√3y+4=0D 。

x-√3y+2=0点P (1,√3)在圆x 2+y 2—4x=0上,∴点P 为切点。

从而圆心与点P 的连线应与切线垂直。

又圆心为(2,0),设切线斜率为k ,∴0-√32-1·k=—1,解得k=√33.∴切线方程为x —√3y+2=0。

3.已知A、B为圆x2+(y-1)2=4上关于点P(1,2)对称的两点,则直线AB的方程为()A。

x+y—3=0 B。

x—y+3=0C.x+3y—7=0D.3x-y-1=0=1,∴k AB=—1,C(0,1),由题意CP⊥AB,k CP=2-11-0又∵直线AB过点P(1,2),∴直线AB的方程为y-2=—(x—1),即x+y—3=0,故选A.4。

当点P(3,2)到直线mx-y+1—2m=0的距离最大时,m的值为()A。

√2 B.0C。

-1 D.1mx—y+1—2m=0过定点Q(2,1),所以点P(3,2)到直线mx-y+1-2m=0的距离最大时PQ垂直于直线mx-y+1—2m=0,=-1,所以m=-1,故选C.即m·2-13-25。

已知点A(—1,1)和圆C:(x—5)2+(y-7)2=4,一束光线从A 经x轴反射到圆C上的最短路程是()A.6√2-2 B。

8C.4√6D.10A关于x轴对称点A'(—1,-1),A’与圆心(5,7)的距离为√(5+1)2+(7+1)2=10。

高中数学圆与直线知识点与各类提高习题(附答案)-11(精选.)

高中数学圆与直线知识点与各类提高习题(附答案)-11(精选.)

2 2 2(Xa) (y b) r(圆心为 A(a,b),半径为 r )X 2 y 2 DXEyF 0( D 2 E 2 4F O )点与圆的位置关系的判断方法:根据点与圆心的距离 d与r 在大小关系判断直线与圆的位置关系判断方法(1) 几何法:由圆心到直线的距离和圆的半径的大小关系来判断。

d=r 为相切,d>r 为相交,离。

适用于已知直线和圆的方程判断二者关系,也适用于其中有参数,对参数谈论的问题。

禾U 用这种方 法,可以简单的算出直线与圆相交时的相交弦的长,以及当直线与圆相离时,圆上的点到直线的最远、 最近距离等。

(2) 代数法:由直线与圆的方程联立得到关于 X 或y 的一元二次方程,然后由判别式△来判断。

相切,△ >0为相交,△ <0为相离。

禾U 用这种方法,可以很简单的求出直线与圆有交点时的交点坐标。

4. 圆与圆的位置关系判断方法(1)几何法:两圆的连心线长为 I ,则判别圆与圆的位置关系的依据有以下几点:1)当l r1 r2时,圆CI与圆C 2相离;2)当l r1 r2时,圆C I 与圆C 2外切;3)当|r1 r 21 l r1 r2时,圆C I 与圆C 2相交;4)当l |r1 r 21时,圆CI 与圆C 2内切;5)当l |r1 r2 |时,圆CI与圆C 2内含;(2)代数法:由两圆的方程联立得到关于 X 或y 的一元二次方程,然后由判别式△来判断。

△ 切或内切,△ >0为相交,△ <0为相离或内含。

若两圆相交,两圆方程相减得公共弦所在直线方程。

5. 直线与圆的方程的应用:利用平面直角坐标系解决直线与圆的位置关系知识点圆与直线圆心(-2,-2 )半径√D 2E 24F圆的方程:(1)标准方程:(2)圆的一般方程:d<r 为相=0为=0为外选择题1•圆(X 1)2(y 3)21的切线方程中有一个是()A . x—y= 0B . x+ y = 0 C. X= 0 D. y= 02.若直线ax 2y 1 0与直线x y 2 0互相垂直,那么a的值等于()1 2A. 1B. -C. -D. 23 33.设直线过点(0, a),其斜率为1 ,且与圆x2y2 2相切,则a 的值为()A. 4B. 2.2C. 2D.4 .平面的斜线AB交于点B ,过定点A的动直线I与AB垂直,且交于点C , 则动点C的轨迹是( )A .一条直线B .一个圆C. 一个椭圆D. 双曲线的一支X 5.参数方程2(为参数)所表示的曲线是( )y ta n COtA .圆B .直线C.两条射线 D .线段6.如果直线h,∣2的斜率分别为二次方程x2 4x 1 0的两个根,那么h与J的夹角为()A .B .—3 4 C . D .-6 87.已知M {(x, y)| y 9 x2 ,y 0}, N {(x, y) | y X b},若MnN ,则b( )A . [3ι2,3ι2]B . (3 一2,3「2)C . (3,3 &]D . [3,3、&]( ) A. 4 B . 5 C. 32 1 D . 2.69.若直线ax 2by 2 0(a,b 0)始终平分圆 2 2Xy 4x12y 8 0的周长,贝U -2a b的最小值为( )A. 1 B . 5 C. 42 D. 3 22& 一束光线从点A( 1,1)出发,经X轴反射到圆C :(X 2)2(y 3)21上的最短路径是穷多个点x, y可使目标函数Z X my取得最小值,则m ( )A . 2B . 1C . 1D . 410.已知平面区域D由以A 1,3、B 5,2、C 3,1为顶点的三角形内部和边界组成11、设M2000102001101,N 2001 ’10 12002101O20009102001 10010 20019102002100则M与N、P与Q的大小关系为( )A. M N, P QB. M N, P QC.M N, P QD. M N,P Q12、已知两圆相交于点A(1,3和点B(m, 1),两圆圆心都在直线I:XyC 0上,贝U m C的值等于A .-1B . 2C . 3D .013、三边均为整数且最大边的长为11的三角形的个数为A.15B.30C.36D.以上都不对14、设m 0 ,则直线.2( X y) m 1 0与圆X22y m的位置关系为A.相切 C.相切或相离相交或相切B. 相交 D.15、已知向量(2cos ,2sin ), (3cos ,3sin ),若的夹角为60 ,则直线.若在区域D上有无它与两定点A(4, - 1), B(3, 4)的距离之差最大,贝U P 点坐标是2y 1 2 ,则C 上各点到l 的距离的最大值与最小值之差为l : XCoS ysin交但不过圆心 B1 2 2 1-0与圆C : (X cos ) (y Sin ) —的位置关系是(2 2•相交过圆心 C •相切 D •相离 )A •相2 2 -6、已知圆 O: (X 3) (y 5) 536和点A(2,2), B( 1, 2),若点C 在圆上且 ABC 的面积为兰,则满2( )A.1B.2C.3D.4 17、若圆 G : (X a)2 (y b)2足的关系是A • a 22a 2b 3 0 C • a 2 2b 2 2a 2b 1 0 足条件的点C 的个数是 18、在平面内,与点A(1,2)距离为 2 2b 1始终平分圆C 2: (X 1) (y ()2 B • a 2a 2b 5 0D • 3a 2 2b 22a 2b 1 1,与点B(3,1)距离为2的直线共有 21) 4的周长,则实数a, b 应满A.1 条B. 2条 C. 3 条 D. 4 条 填空题X 4、直线 2 1t 2(t 为参数)被圆1 1t 2 X 24截得的弦长为5、已知圆M :(X cos )2 (y Sin )2直线l :y kx ,以下命题成立的有①对任意实数 ,直线I 和圆M 相切;②对任意实数 ,直线I 和圆M 有公共点;③对任意实数,必存在实数k ,使得直线I 和圆 M 相切④对任意实数 k ,必存在实数 ,使得直线I 和圆 M 相切1、直线2x - y -4=0上有一点 P ,2、设不等式2x 1 m(x 21)对一切满足m2的值均成立,贝U X 的范围为3、已知直线l : X y 40与圆C :6、点A(— 3, 3)发出的光线I射到X轴上被X轴反射,反射光线与圆C :x2 y2 4x 4y 7 0相切,则光线I所在直线方程为一r , ∩∏ 2 27、直线y X与圆X y mx ny 4 O交于M、N两点,且M、N关于直线X y 0对称,2则弦MN的长为____________________ 。

直线与圆常考6种题型总结(解析板)--2024高考数学常考题型精华版

直线与圆常考6种题型总结(解析板)--2024高考数学常考题型精华版

直线与圆常考6种题型总结【考点分析】考点一:圆的定义:在平面上到定点的距离等于定长的点的轨迹是圆考点二:圆的标准方程设圆心的坐标()C a b ,,半径为r ,则圆的标准方程为:()()222x a y b r -+-=考点三:圆的一般方程圆的一般方程为220x y Dx Ey F ++++=,圆心坐标:()22D E --,,半径:r =注意:①对于F E D 、、的取值要求:2240D E F +->当2240D E F +-=时,方程只有实数解22D E x y =-=-,.它表示一个点()22D E--,当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.②二元二次方程220Ax Bxy Cy Dx Ey F +++++=,表示圆的充要条件是22040A C B D E AF =≠⎧⎪=⎨⎪+->⎩考点四:以1122()()A x y B x y ,,,为直径端点的圆的方程为1212()()()()0x x x x y y y y -⋅-+--=考点五:阿波罗尼斯圆设A B ,为平面上相异两定点,且||2(0)AB a a =>,P 为平面上异于A B ,一动点且||||PA PB λ=(0λ>且1λ≠)则P 点轨迹为圆.考点六:直线与圆的位置关系设圆心到直线的距离d ,圆的半径为r ,则直线与圆的位置关系几何意义代数意义公共点的个数①直线与圆相交r d <0>∆两个②直线与圆相切r d =0=∆一个③直线与圆相离r d >0<∆0个注:代数法:联立直线方程与圆方程,得到关于x 的一元二次方程2Ax Bx C ++=考点七:直线与圆相交的弦长问题法一:设圆心到直线的距离d ,圆的半径为r ,则弦长222d r AB -=法二:联立直线方程与圆方程,得到关于x 的一元二次方程20Ax Bx C ++=,利用韦达定理,弦长公式即可【题型目录】题型一:圆的方程题型二:直线与圆的位置关系题型三:直线与圆的弦长问题题型四:圆中的切线切线长和切点弦问题题型五:圆中最值问题题型六:圆与圆的位置关系问题【典型例题】题型一:圆的方程【例1】AOB 顶点坐标分别为()2,0A ,()0,4B ,()0,0O .则AOB 外接圆的标准方程为______.【答案】()()22125x y -+-=【解析】设圆的标准方程为()()222x a y b r -+-=,因为过点()2,0A ,()0,4B ,()0,0O 所以()()()()()()222222222200400a b r a b r a b r ⎧-+-=⎪⎪-+-=⎨⎪-+-=⎪⎩解得2125a b r =⎧⎪=⎨⎪=⎩则圆的标准方程为()()22125x y -+-=故答案为:()()22125x y -+-=【例2】已知圆22(1)(2)4x y +++=关于直线()200,0ax by a b ++=>>对称,则12a b+的最小值为()A .52B .92C .4D .8故选:B【例3】过点(1,1),(3,5)A B -,且圆心在直线220x y ++=上的圆的方程为_______.【例4】设甲:实数3a <;乙:方程2230x y x y a +-++=是圆,则甲是乙的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【例5】苏州有很多圆拱的悬索拱桥(如寒山桥),经测得某圆拱索桥(如图)的跨度100AB =米,拱高10OP =米,在建造圆拱桥时每隔5米需用一根支柱支撑,则与OP 相距30米的支柱MN 的高度是()米.(注意:≈3.162)A .6.48B .5.48C .4.48D .3.48【答案】A【解析】以O 为原点,以AB 所在直线为x 轴,以OP 所在直线为y 轴建立平面直角坐标系.设圆心坐标为(0,a ),则P (0,10),A (-50,0).可设圆拱所在圆的方程为()222x y a r +-=,由题意可得:()()222221050a r a r ⎧-=⎪⎨-+=⎪⎩解得:2120,16900a r =-=.所以所求圆的方程为()2212016900x y ++=.将x =-30代入圆方程,得:()290012016900y ++=,因为y >0,所以12040 3.162120 6.48y =≈⨯-=.故选:A.【例6】阿波罗尼斯(约公元前262-190年)证明过这样一个命题:在平面内到两定点距离之比为常数(0,1)k k k >≠的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 满足||||PA PB =,则PAB △面积的最大值是()AB .2C.D .4【答案】C【解析】设经过点A ,B 的直线为x 轴,AB的方向为x 轴正方向,线段AB 的垂直平分线为y 轴,线段AB 的中点O 为原点,建立平面直角坐标系.则()1,0A -,()10B ,.设(),P x y,∵PA PB==两边平方并整理得22610x y x +-+=,即()2238x y -+=.要使PAB △的面积最大,只需点P到AB (x 轴)的距离最大时,此时面积为122⨯⨯故选:C.【题型专练】1.设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.2.经过三个点00()(02)()0A B C -,,,,的圆的方程为()A .(()2212x y ++=B .(()2212x y +-=C .(()2214x y ++=D .(()2214x y +-=中的三点的一个圆的方程为____________.【答案】22420x y x y +--=或22460x y x y +--=或22814033x y x y +--=或2216162055x y x y +---=(答案不唯一,填其中一个即可)【解析】设圆的方程为220x y Dx Ey F ++++=若圆过(0,0),(4,0),(4,2)三点,则0164020420F D F D E F =⎧⎪++=⎨⎪+++=⎩,解得420D E F =-⎧⎪=-⎨⎪=⎩,故圆的方程为22420x y x y +--=;若圆过(0,0),(4,0),(1,1)-三点,则0164020F D F D E F =⎧⎪++=⎨⎪-++=⎩,解得460D E F =-⎧⎪=-⎨⎪=⎩,故圆的方程为22460x y x y +--=;若圆过(0,0),(1,1)-,(4,2)三点,则02020420F D E F D E F =⎧⎪-++=⎨⎪+++=⎩,解得831430D E F ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,故圆的方程为22814033x y x y +--=;若圆过(4,0),(1,1)-,(4,2)三点,则16402020420D F D E F D E F ++=⎧⎪-++=⎨⎪+++=⎩,解得1652165D E F ⎧=-⎪⎪=-⎨⎪⎪=-⎩,故圆的方程为2216162055x y x y +---=.4.已知“m t ≤”是“220x y m ++=”表示圆的必要不充分条件,则实数t 的取值范围是()A .()1,-+∞B .[)1,+∞C .(),1-∞D .(),1-∞-5.若两定点()1,0A ,()4,0B ,动点M 满足2MA MB =,则动点M 的轨迹围成区域的面积为().A .2πB .5πC .3πD .4π6.古希腊著名数学家阿波罗尼斯发现:平面内到两定点A ,B 的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy 中,A (-2,0),B (4,0),点P 满足PA PB=12.设点P 的轨迹为C ,则下列结论正确的是()A .轨迹C 的方程为(x +4)2+y 2=9B .在x 轴上存在异于A ,B 的两点D ,E 使得PD PE=12C .当A ,B ,P 三点不共线时,射线PO 是∠APB 的平分线D .在C 上存在点M ,使得2MO MA =【答案】BC【分析】根据阿波罗尼斯圆的定义,结合两点间距离公式逐一判断即可.设MA MO,则在O,A,M三点所能构成7.已知动点M与两个定点O(0,0),A(3,0)的距离满足2=的三角形中面积的最大值是()A.1B.2C.3D.4易知90MBO ∠=︒时,MOA S △取得最大值3.故选:C .题型二:直线与圆的位置关系【例1】直线:10l kx y k -+-=与圆223x y +=的位置关系是()A .相交B .相离C .相切D .无法确定【例2】(黑龙江哈尔滨市)若过点()4,3A 的直线l 与曲线()()22231x y -+-=有公共点,则直线l 的斜率的取值范围为()A .⎡⎣B .(C .,33⎡-⎢⎣⎦D .,33⎛⎫- ⎪ ⎪⎝⎭【答案】C【解析】由题意知,直线的斜率存在,设直线的斜率为k ,则直线方程为()43-=-x k y ,即043=-+-k y kx ,圆心为()3,2,半径为1,所以圆心到直线得距离1211433222+≤-⇒≤+-+-=k k k kk d ,解得3333≤≤-k【例3】直线:20l kx y --=与曲线1C x -只有一个公共点,则实数k 范围是()A .(3,)(,3)+∞-∞- B .3,2⎡⎫+∞⎪⎢⎣⎭C .4(2,4]3⎧⎫⎨⎬D .(-由图知,当24k <≤或故选:C【例4】已知直线2:0l ax by r +-=与圆222:C x y r +=,点(),A a b ,则下列说法正确的是()A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相交C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切【答案】AD【分析】根据直线与圆的位置关系相应条件判断即可.【题型专练】1.直线():120l kx y k k R -++=∈与圆22:5C x y+=的公共点个数为()A .0个B .1个C .2个D .1个或2个【答案】D【解析】将直线l 变形为()012=+-+y x k ,令⎩⎨⎧=+-=+0102y x ,解得⎩⎨⎧=-=12y x ,所以直线过定点()1,2-P ,因为()51222=+-,所以点P 在圆上,所以直线与圆相切或者相交2.已知关于x 的方程2(3)1k x ++有两个不同的实数根,则实数k 的范围______.当直线与半圆相切时,圆心O 到直线1l 的距离d 解得:13265k -=(舍),或13265k +=当直线过点(2,0)-时,可求得直线2l 的斜率2k =则利用图像得:实数k 的范围为3261,5⎡⎫+⎪⎢⎪⎣⎭故答案为:3261,5⎡⎫+⎪⎢⎪⎣⎭3.(2022全国新高考2卷)设点A (-2,3),B (0(x +3)2+(y +2)2=1有公共点,则a 的取值范围为_______.【答案】13,32⎡⎤⎢⎥⎣⎦【解析】()2,3A -关于y a =对称的点的坐标为()2,23A a '--,()0,B a 在直线y a =上,所以A B '所在直线即为直线l ,所以直线l 为32a y x a -=+-,即()3220a x y a -+-=;圆()()22:321C x y +++=,圆心()3,2C --,半径1r =,依题意圆心到直线l 的距离1d =≤,即()()2225532a a -≤-+,解得1332a ≤≤,即13,32a ⎡⎤∈⎢⎥⎣⎦;故答案为:13,32⎡⎤⎢⎥⎣⎦题型三:直线与圆的弦长问题【例1】已知圆C :()()22210x y a a +-=>与直线l :x -y -1=0相交于A ,B 两点,若△ABC 的面积为2,则圆C 的面积为()A .πB .2πC .4πD .6π【答案】C 【解析】如图,由圆C 方程可知圆心()0,1C ,半径为a ,由点到直线的距离公式可知圆心C到直线l 的距离d =又△ABC 的面积为11222S AB d =⋅==,解得AB =2222a ⎛+= ⎝⎭,则a =2,即圆C 的半径为2.则圆C 的面积为24S a ππ==.故选:C.【例2】已知圆22:60M x y x +-=,过点()1,2的直线1l ,2l ,…,()*n l n ∈N 被该圆M 截得的弦长依次为1a ,2a ,…,n a ,若1a ,2a ,…,n a 是公差为13的等差数列,则n 的最大值是()A .10B .11C .12D .13【答案】D【分析】求出弦长的最小和最大值,根据等差数列的关系即可求出n 的最大值此时,直线DE 的解析式为:3y x =-+直线BC 的解析式为:=+1y x 圆心到弦BC 所在直线的距离:AM 连接BM ,由勾股定理得,()22=322=1AB -x y+=交于,A B两点,过,A B分别作l的垂线与x轴交于【例3】已知直线:10l mx y+--=与圆2216,C D两点,则当AB最小时,CD=()A.4B.C.8D.故选:D【例4】(多选题)若直线l 经过点0(3,1)P -,且被圆2282120x y x y +--+=截得的弦长为4,则l 的方程可能是()A .3x =B .3y =C .34130x y --=D .43150x y --=【题型专练】1.直线:l y x m =+与圆224x y +=相交于A ,B 两点,若AB ≥m 的取值范围为()A .[]22-,B .⎡⎣C .[]1,1-D .,22⎡⎤⎢⎥⎣⎦【答案】B【解析】令圆224x y +=的圆心(0,0)O 到直线l 的距离为d ,而圆半径为2r =,弦AB 长满足AB ≥,则有1d =,又d =1≤,解得m -≤≤所以实数m 的取值范围为⎡⎣.故选:B2.在圆22420x y x y +-+=内,过点()1,0E 的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为()A .B .C .D .【答案】D【解析】圆22420x y x y +-+=化简为22(2)(1)5x y -++=可得圆心为(2,1),r -=易知过点()1,0E 的最长弦为直径,即||AC =而最短弦为过()1,0E 与AC 垂直的弦,圆心(2,1)-到()1,0E 的距离:d ==所以弦||BD ==所以四边形ABCD 的面积:12S AC BD =⋅=故选:D.3.若直线1y kx =+与圆221x y +=相交于B A ,两点,且60AOB ∠= (其中O 为原点),则k 的值为()A .3-或3B .3C .D 4.直线l :()()2110m x m y -+-+=与圆C :2260x x y -+=相交于A ,B 两点,则AB 的最小值是()A .B .2C .D .4【答案】D【解析】分别取1,2m m ==,则1010x y -+=⎧⎨-+=⎩,得11x y =⎧⎨=⎩,即直线l 过定点(1,1)P ,将圆C 化为标准方程:22(3)9x y -+=,圆心为(3,0),半径3r =.如图,因为AB =,所以当圆心到直线距离最大时AB 最小.当CP 不垂直直线l 时,总有d CP <,故当CP l ⊥时AB 最小,因为CP =所以AB的最小值为4=.故选:D题型四:圆中的切线切线长和切点弦问题【例1】直线l 过点(2,1)且与圆22:(1)9C x y ++=相切,则直线l 的方程为______________.【例2】已知圆C :228240x y y +--+=,且圆外有一点()0,2P ,过点P 作圆C 的两条切线,且切点分别为A ,B ,则AB =______.【例3】点P 在圆C :()()22334x y -+-=上,()2,0A ,()0,1B ,则PBA ∠最大时,PB =___________.【答案】3【分析】根据题意PBA ∠最大时,直线【详解】点P 在圆C :()23x -+如图将BA 绕点B 沿逆时针方向旋转,当刚好与圆当旋转到与圆相切于点2P 时,∠【例4】过点()2,1P 作圆O :221x y +=的切线,切点分别为,A B ,则下列说法正确的是()A.PA B .四边形PAOB 的外接圆方程为222x y x y +=+C .直线AB 方程为21y x =-+D .三角形PAB 的面积为85【题型专练】1.过点(0,2)作与圆2220x y x +-=相切的直线l ,则直线l 的方程为()A .3480x y -+=B .3480x y +-=C .0x =D .1x =2.直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,过点()1,P b --作圆C 的一条切线,切点为Q ,则PQ =()A .5B .4C .3D .2【答案】B【详解】圆222:2250C x y bx by b +---+=的圆心为(,)C b b ,半径为r =因为直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,所以直线40x y +-=经过(,)C b b ,所以40b b +-=,故2b =,由已知()1,2P --,(2,2)C ,||PC ,圆的半径为3,所以4PQ =,故选:B.3.过点(2,2)P作圆224x y+=的两条切线,切点分别为A、B,则直线AB的方程为_______.题型五:圆中最值问题【例1】已知l:4y x=+,分别交x,y轴于A,B两点,P在圆C:224x y+=上运动,则PAB△面积的最大值为()A.8-B.16-C.8+D.16+【答案】C【解析】如图所示,以AB 为底边,则PAB △面积最大等价于点P 到l 距离最大,而点P 到l 距离最大值等于O 到l 的距离加半径看,O 到l 的距离d =O 的半径2r =,()4,0A -,()0,4B ,则AB =PAB △面积的最大值为()1282⨯=+故选:C【例2】已知点P 是圆()()2241625x y -+-=上的点,点Q 是直线0x y -=上的点,点R 是直线125240x y -+=上的点,则PQ QR +的最小值为()A .7B .335C .6D .295由对称性可知CQ EQ =,点E 到直线125240x y -+=的距离为的交点以及点【例3】已知直线:320l x y ++=与x 、轴的交点分别为A 、B ,且直线1:310l mx y m --+=与直线2:310l x my m +--=相交于点P ,则PAB 面积的最大值是()A .103+B .103+C D【例4】已知圆()()22:254C x y -+-=的圆心为C ,T 为直线220x y --=上的动点,过点T 作圆C 的切线,切点为M ,则TM TC ⋅的最小值为()A .10B .16C .18D .20()2TM TC TC CM TC TC CM ⋅=+⋅=+ CM TM ⊥ ,CM CT CM CT ∴⋅=⋅ 24TM TC TC ∴⋅=- ,【例5】已知复数z 满足1i 1z +-=(i 为虚数单位),则z 的最大值为()A .2B 1C 1D .1【答案】B【解析】令i z x y =+,x ,y ∈R ,则()1i 11i 1z x y +-=++-=,即()()22111x y ++-=,表示点(),x y 与点()1,1-距离为1的点集,此时,i z x y =-()()22111x y ++-=上点到原点距离,所以z 的最大值,即为圆上点到原点的距离的最大值,,且半径为1,1.故选:B .【例6】若0x =,则2yx -的取值范围为【答案】11[,]22-【解析】因为0x +=x =-所以()2210x y x +=≤如图,此方程表示的是圆心在原点,半径为1的半圆,2yx -的几何意义是点(),x y 与点()2,0连线的斜率如图,()()0,1,0,1A B -,()2,0P101022PA k -==--,101022PB k --==-所以2y x -的取值范围为11[,]22-故选:D【例】AB 为⊙C :(x -2)2+(y -4)2=25的一条弦,6AB =,若点P 为⊙C 上一动点,则PA PB ⋅的取值范围是()A .[0,100]B .[-12,48]C .[-9,64]D .[-8,72]【答案】D 【解析】【分析】取AB 中点为Q ,利用数量积的运算性质可得2||9PA PB PQ ⋅=- ,再利用圆的性质可得||PQ 取值范围,即求.【详解】取AB 中点为Q ,连接PQ2PA PB PQ ∴+= ,PA PB BA -= 221()()4PA PB PA PB PA PB ⎡⎤∴⋅=+--⎣⎦ 2214||||4PQ BA ⎡⎤=-⎣⎦ ,又||6BA = ,4CQ =2||9PA PB PQ ∴⋅=-,∵点P 为⊙C 上一动点,∴max min ||9,|5|15PQ Q P C Q Q C =+=-==PA PB ∴⋅的取值范围[-8,72].故选:D.【题型专练】1.直线20x y +-=分别与x 轴,y 轴交于,A B 两点,点P 在圆22(2)2x y ++=上,则ABP 面积的取值范围是()A .[]2,6B .[]4,8C .D .⎡⎣2.(多选题)已知点P 在圆O :224x y +=上,直线l :43120x y +-=分别与x 轴,轴交于,A B 两点,则()A .过点B 作圆O 的切线,则切线长为B .满足0PA PB ⋅=的点P 有3个C .点P 到直线l 距离的最大值为225D .PA PB +的最小值是1【答案】ACD【分析】对于A,根据勾股定理求解即可;对于B,0PA PB ⋅=即PA PB ⊥,所以点P 在以AB 为直径的圆上,设AB 的中点为M ,写出圆M 的方程,根据两个圆的交点个数即可判断正误;对于C,根据圆上一点到直线的最大PM 3.已知动点A ,B 分别在圆1C :()2221x y ++=和圆2C :()2244x y -+=上,动点P 在直线10x y -+=上,则PA PB +的最小值是_______【答案】3-##3-+如图,设点()10,2C -关于直线10x y -+=对称的点为()030,C x y ,所以,00002121022y x x y +⎧=-⎪⎪⎨-⎛⎫⎪-+= ⎪⎪⎝⎭⎩,解得003,1x y =-=,即()33,1C -,所以,3252C C =所以,32523PA B C P C r R --+=-≥,即PA PB +的最小值是523-.故答案为:523-4.过直线3450x y +-=上的一点P 向圆()()22344x y -+-=作两条切线12l l ,.设1l 与2l 的夹角为θ,则θ的最大值为______.【答案】π3##60︒【分析】由题可得圆心为()3,4C ,半径为2,设12l l ,与圆C 切于,A B ,根据圆的性质结合条件可得1sin sin22APC θ∠=≤,进而即得.【详解】由()()22344x y -+-=,可得圆心为()3,4C ,半径为2,设12l l ,与圆C 切于,A B ,则2APB APC θ=∠=∠,在Rt APC △中,2AC =,2sin sin 2CA APC CP CPθ∠===又()3,4C 到直线3450x y +-=的距离为223344534⨯+⨯-+所以4CP ≥,1sin sin22APC θ∠=≤,所以APC ∠的最大值为π6,即θ的最大值为π3.故答案为:π3.5.已知圆22:410,+--=M x y x (),P x y 是圆M 上的动点,则3t x =+的最大值为_________;22x y +的最小值为____________.6.18世纪末,挪威测量学家维塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义,例如z OZ =,也即复数z 的模的几何意义为z 对应的点Z 到原点的距离.已知复数z 满足2z =,则34i z --的最大值为()A .3B .5C .7D .9【答案】C【解析】2z = ,z ∴对应的点(),Z x y 的轨迹为圆224x y +=;34i z -- 的几何意义为点(),Z x y 到点()3,4的距离,max 34i 27z ∴--==.故选:C.题型六:圆与圆的位置关系问题【例1】已知圆221:1C x y +=与圆222:(3)(4)4C x y -+-=,则圆1C 与2C 的位置关系是()A .内含B .相交C .外切D .相离【例2】已知点P 在圆O :224x y +=上,点()30A -,,()0,4B ,满足AP BP ⊥的点P 的个数为()A .3B .2C .1D .0【答案】B【解析】【分析】设(,)P x y ,轨迹AP BP ⊥ 可得点P 的轨迹方程,即可判断该轨迹与圆的交点个数.设点(,)P x y ,则224x y +=,且(3,)(,4)AP x y BP x y =+=- ,,由AP BP ⊥,得22(3)(4)340AP BP x x y y x y x y ⋅=++-=++-= ,即22325()(2)24x y ++-=,故点P 的轨迹为一个圆心为3(,2)2-、半径为52的圆,则两圆的圆心距为52,半径和为59222+=,半径差为51222-=,有159222<<,所以两圆相交,满足这样的点P 有2个.故选:B.【例3】圆221:22260O x y x y +---=与圆222:820O x y y +--=的公共弦长为()A .B .C .D .【例4】已知圆C :()()22681x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为()A .12B .11C .10D .9【答案】B【分析】由题意得P 点轨迹,转化为有交点问题【详解】90APB ∠=︒,记AB 中点为O ,则||OP m =,故P 点的轨迹是以原点为圆心,m 为半径的圆,又P 在圆C 上,所以两圆有交点,则|1|||1m OC m -≤≤+,而||10OC =,得911m ≤≤.故选:B【题型专练】1.写出与圆221x y +=和圆()2264x y -+=都相切的一条直线的方程______.2.(2022全国新高考1卷)写出与圆x 2+y 2=1和(x -3)2+(y -4)2=16都相切的一条直线的方程_______.【答案】3544y x =-+或7252424y x =-或1x =-【解析】【分析】先判断两圆位置关系,分情况讨论即可.【详解】圆221x y +=的圆心为()0,0O ,半径为1,圆22(3)(4)16x y -+-=的圆心1O 为(3,4),半径为4,5=,等于两圆半径之和,故两圆外切,如图,当切线为l 时,因为143OO k =,所以34l k =-,设方程为3(0)4y x t t =-+>O 到l 的距离1d ==,解得54t =,所以l 的方程为3544y x =-+,当切线为m 时,设直线方程为0kx y p ++=,其中0p >,0k <,由题意14⎧=⎪⎪=,解得7242524k p ⎧=-⎪⎪⎨⎪=⎪⎩,7252424y x =-当切线为n 时,易知切线方程为1x =-,故答案为:3544y x =-+或7252424y x =-或1x =-.3.(多选题)圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则有()A .公共弦AB 所在直线的方程为0x y -=B .公共弦AB 所在直线的方程为10x y +-=C .公共弦ABD .P 为圆1O 上一动点,则P 到直线AB 14.已知点()()2,3,5,1A B -,则满足点A 到直线l 的距离为1,点B 到直线l 距离为3的直线l 的条数有()A .1B .2C .3D .4【答案】D【解析】【分析】以A 为圆心,1为半径,B 为圆心,3为半径分别画圆,将所求转化为求圆A 与圆B 的公切线条数,判断两圆的位置关系,从而得公切线条数.【详解】以A 为圆心,1为半径,B 为圆心,3为半径分别画圆,如图所示,由题意,满足点A 到直线l 的距离为1,点B 到直线l 距离为3的直线l 的条数即为圆A 与圆B 的公切线条数,因为513AB ==>+,所以两圆外离,所以两圆的公切线有4条,即满足条件的直线l 有4条.故选:D5.已知圆()()221:111C x y -++=,圆()()222:459C x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,点P 为x 轴上的动点,则PN PM -的最大值是()A .4B .9C .7D .2【答案】B【解析】【分析】分析可知()21max 4PN PM PC PC -=-+,设点()24,5C 关于x 轴的对称点为()24,5C '-,可得出22PC PC '=,求出21PC PC '-的最大值,即可得解.【详解】圆()()221:111C x y -++=的圆心为()11,1C -,半径为1,圆()()222:459C x y -+-=的圆心为()24,5C ,半径为3.()max min max PN PM PN PM -=- ,又2max 3PN PC =+,1min 1PMPC =-,()()()2121max 314PN PM PC PC PC PC ∴-=+--=-+.点()24,5C 关于x 轴的对称点为()24,5C '-,2121125PC PC PC PC C C ''-=-≤==,所以,()max 549PN PM -=+=,故选:B .。

人教A版高中数学选修一第二章《直线和圆的方程》提高训练题 (6)(含答案解析)

人教A版高中数学选修一第二章《直线和圆的方程》提高训练题 (6)(含答案解析)

选修一第二章《直线和圆的方程》提高训练题 (6)一、单选题1.已知Rt PAB 的直角顶点P 在圆(()22:11C x y +-=上,若点(),0A t -,()(),00B t t >,则t的取值范围为( ) A .(]0,2B .[]1,2C .[]2,3D .[]1,32.设直线l 与圆()()221:2536C x y ++-=交于A 、B 两点,若线段AB 的中点为()1,1M ,则圆()()222:341C x y -+-=上的点到直线l 的距离的最小值为( )A .15B .35C .65D .953.已知点P 为圆()()22121x y -+-=上动点,O 为坐标原点,则向量OP →在向量()2,1a →=方向上投影的最大值为( )A B 1 C 1 D 4.若,62ππα⎡⎫∈⎪⎢⎣⎭,则直线4cos 670x y α+-=的倾斜角的取值范围是( )A .,62ππ⎡⎫⎪⎢⎣⎭B .5,6ππ⎡⎫⎪⎢⎣⎭C .0,6π⎛⎤ ⎥⎝⎦D .5,26ππ⎛⎤ ⎥⎝⎦5.直线y x b =+与曲线x =b 的取值范围是( )A .bB .11b -<≤或b =C .11b -≤≤D .1b <≤-6.设a ,b 分别表示直线l 在x 轴和y 轴上的截距,k 为l 的斜率,p 为原点到l 的距离,且0abpk ≠,则有( )A .()22221a k p k =+ B .b k a =C .11p a b+=D .a kp =-二、多选题7.古希腊著名数学家阿波罗尼斯发现:平面内到两个定点A ,B 的距离之比为定值()1λλ≠的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy 中,()2,0A -,()4,0B ,点P 满足12PA PB =.设点P 的轨迹为C ,则( ). A .轨迹C 的方程为()2249x y ++=B .在x 轴上存在异于A ,B 的两点D ,E ,使得12PD PE=C .当A ,B ,P 三点不共线时,射线PO 是APB ∠的角平分线D .在C 上存在点M ,使得2MO MA =8.点P 在圆221:1C x y +=上,点Q 在圆222:68240C x y x y +-++=上,则( )A .||PQ 的最小值为0B .||PQ 的最大值为7C .两个圆心所在的直线斜率为43-D .两个圆相交弦所在直线的方程为68250x y --=9.已知圆22:230A x y x +--=,则下列说法正确的是( ) A .圆A 的半径为4B .圆A 截y 轴所得的弦长为C .圆A 上的点到直线34120x y -+=的最小距离为1D .圆A 与圆22:88230B x y x y +--+=相离10.(多选)已知直线:10l x my m -+-=,则下列说法正确的是( ). A .直线l 的斜率可以等于0B .若直线l 与y 轴的夹角为30°,则m =或m =C .直线l 恒过点()2,1D .若直线l 在两坐标轴上的截距相等,则1m =或1m =-三、双空题11.函数21y x x =-+________,其中x =________.四、填空题12.已知圆()()22:124C x y ++-=,则过点()1,3P 作圆C 的切线l 的方程为___________.13.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的取值范围是_______.14.直线y x b =+与曲线||1x -=b 的取值范围是_______;15.直线(5)1y k x =-+与曲线3y =k 的取值范围是________;16.已知在ABC 中,()1,1A ,(()14B m m <<,()4,2C ,则当ABC 的面积S 最大时,m =______. 17.在平面直角坐标系xOy 中,圆C 的方程为22430x y y +-+=,若直线20x ty -+=上至多存在一点,使得以该点为圆心,1为半径的圆与圆C 相切,则实数t 的取值范围为______.18.已知圆()22:116C x y ++=,过点()0,1P 的直线l 交圆C 于不同的两点,当圆上的点到直线l 的距离的最大值为6时,直线l 的方程为______.19.过圆22240x y y +--=与22420x y x y +-+=的交点,且圆心在直线:2410l x y +-=上的圆的方程是_______.20.光线从点(3,5)B -出发射到x 轴上,经反射后过点(2,10)A ,则光线从点B 到点A 经过的路程为___________.五、解答题21.已知直线1:210l x y -+=和22:0x y l --=的交点为P .(1)若直线l 经过点P 且与直线343:50x y l --=平行,求直线l 的方程;(2)若直线m 经过点P 且与x 轴,y 轴分别交于A ,B 两点,P 为线段AB 的中点,求OAB 的面积(其中O 为坐标原点).22.已知ABC 的内切圆的圆心M 在y 轴正半轴上,半径为1,直线210x y +-=截圆M 所得的弦(1)求圆M 方程;(2)若点C 的坐标为()2,4,求直线AC 和BC 的斜率;(3)若A ,B 两点在x 轴上移动,且AB 4=,求ABC 面积的最小值.23.已知直线l 过点()0,4P ,并且点()1,3A 和点()3,5B 到直线l 的距离相等,求直线l 的方程. 24.已知圆C 过()0,0O ,()1,1A ,()4,2B , (1)求圆C 的方程;(2)判断()3,2P 和圆C 的位置关系.25.如图所示,已知O 的方程为224x y +=,直线l 的方程为4x =,圆O 与x 轴的交点分别为A 、B ,P 是圆O 上异于A 、B 的任意一点,直线PA 、PB 分别交直线l 于M 、N 两点.求证:当点P 变化时,以MN 为直径的圆必过圆O 内一定点.26.实数x ,y 滿足222410x y x y ++-+=, 求(1)4yx -的最大值和最小值; (2)2x y +的最大值和最小值.27.四条直线1:3150l x y +-=,2:60l kx y --=,3:50l x y +=,4:0l y =围成一个四边形,问k 取何值时,该四边形有一个外接圆,并求出外接圆的方程.28.(蝴蝶定理)过圆AB 弦的中点M ,任意作两弦CD 和EF ,CF 与ED 交弦AB 于P 、Q ,求证:PM QM =.29.判别方程222(410)10200x y kx k y k ++++++=(k 为参数,1k ≠-)表示何种曲线?找出通过定点的坐标.30.求过两圆22640x y x ++-=与226280x y y ++-=的交点的直线方程和圆心在直线40x y --=上的圆的方程.31.已知ABC 中,BC 边上的高所在的直线方程为210x y -+=,A ∠的角平分线所在的直线方程为0y =,点C 的坐标为()12,. (1)求点A 和点B 的坐标;(2)过点C 作函数(0)k y x x=>的图像,在图像上是否存在一点P 使得PAB △面积最小,如果存在求此时点P 的坐标及PAB △面积最小值,若不存在说明理由.32.一圆经过点()2,4--,且与直线3260x y +-=相切于点()8,6,试求该圆的方程.33)x ∈R .34.求以相交两圆221:410C x y x y ++++=及222:2210C x y x y ++++=的公共弦为直径的圆的方程;35.求函数y =.36.过圆222x y r +=内部一点(,)M a b 作动弦AB ,过A 、B 分别作圆的切线,设两条切线的交点为P .求证:点P 恒在一条定直线上的运动. 37.已知224x y +≤,且0x ≥,求41y x ++的最大值与最小值.38.关于x 2kx =+只有一个实根,求k 的取值范围.39.ABC 的边,AC AB 上的高所在直线的方程分别为2310,0x y x y -+=+=,顶点(1,2)A ,求BC 边所在直线的方程.40.已知C 经过点(2,0)A -,(0,2)B ,且圆心在直线y x =上.又直线l :1y kx =+与C 相交于P ,Q 两点.(1)求C 的方程;(2)过点(0,1)作直线1l 与l 垂直,且直线1l 与C 交于M ,N 两点,求四边形PMQN 面积的最大值. 41.(1)已知实数z 、y 满足方程22(2)1x y ++=,求12y x --的最小值; (2)若实数x 、y 满足方程222410x y x y +--+=,求代数式2yx +的取值范围. 42.已知10条直线,11:0l x y c -+=,1c 22:0l x y c -+=, 33:0l x y c -+=,……1010:0l x y c -+=,其中1210c c c <<<.这10条直线中,每相邻两条直线之间的距离依次为2,3,4,…,10. (1)求实数10c 的值;(2)求100x y c -+=与x 轴、y 轴围成的图形的面积. 43.已知点()2,1P -.(1)求过点P 且与原点的距离为2的直线的方程.(2)是否存在过点P 且与原点的距离为6的直线?若存在,求出该直线的方程;若不存在,请说明理由.44.已知过坐标原点O 的一条直线与函数9log y x =的图象交于A ,B 两点,分别过点A ,B 作y 轴的平行线与函数3log y x =的图象交于C ,D 两点. (1)证明:点C ,D ,O 在同一条直线上; (2)当直线BC 的斜率为0时,求点A 的坐标.45.已知过点()0,1A 且斜率为k 的直线l 与圆()()22:231C x y -+-=交于M ,N 两点.(1)求k 的取值范围;(2)若12OM ON ⋅=,其中O 为坐标原点,求OMN 的面积.46.已知方程()()()222321620m m x m m y m m --++-+-=∈R .(1)若方程表示一条直线,求实数m 的取值范围;(2)若方程表示的直线的斜率不存在,求实数m 的值,并求出此时的直线方程; (3)若方程表示的直线在x 轴上的截距为3-,求实数m 的值; (4)若方程表示的直线的倾斜角是45°,求实数m 的值.47.求函数()f x .48.已知两直线2212:224,:224(02)l ax y a l x a y a a -=-+=+<<与两坐标轴的正半轴围成四边形.当a 为何值时,围成的四边形面积取最小值,并求此最小值. 49.已知ABC 的三个顶点(4,0),(8,10),(0,6)A B C . (1)求过点A 且垂直于BC 的直线方程; (2)求过点B 且与点A ,C 距离相等的直线方程.50.求两平行直线1:30l kx y k --=与2:40l kx y -+=之间距离的最大值.【答案与解析】1.D 【解析】首先根据题意得到点P 在以AB 为直径的圆222:M x y t +=上(去掉,A B 两点).又因为P在圆(()22:11C x y +-=上,且2CM =,所以得到121t t -≤≤+,再解不等式即可.因为点P 为Rt PAB 的直角顶点,且点(),0A t -,()(),00B t t >, 所以点P 在以AB 为直径的圆222:M x y t +=上(去掉,A B 两点). 又因为P在圆(()22:11C x y +-=上,所以圆C 与圆M 有交点,因为2CM =,所以121t t -≤≤+,解得13t ≤≤. 故选:D 2.A 【解析】求出直线l 的方程,并求出圆2C 的圆心到直线l 的距离,结合圆的几何性质可得出结果. 圆1C 的圆心为()12,5C -,由垂径定理可知1C M l ⊥, 直线1C M 的斜率为1514213C M k -==---,所以,直线l 的斜率为34k =,故直线l 的方程为()3114y x -=-,即3410x y -+=, 圆2C 的圆心为()23,4C ,半径为1r =, 圆心2C 到直线l 的距离为65d =, 因此,圆()()222:341C x y -+-=上的点到直线l 的距离的最小值为61155d r -=-=. 故选:A. 3.B 【解析】设向量a →所在直线为OA (A 为向量的终点),当点P 位于与直线OA 垂直且与圆相切的直线上时,投影取得最值,进而求出最大值.如图所示,向量a →所在直线为OA (A 为向量的终点),则12OA k =,则设与直线OA 垂直且与圆相切的直线为:2l y x t =-+,所以圆心到直线的距离14d t =⇒=根据图形可知,当t =:2l y x =-+OA 交于B , 易得,直线OA :12y x =,联立:212y x y x ⎧=-+⎪⎨=⎪⎩,解得:((21,55B ⎛⎫⎪⎝⎭,所以(||1OB ==,则向量OP →在向量()2,1a →=方向上投影的最大值为1+. 故选:B. 4.B 【解析】求出直线4cos 670x y α+-=的斜率的取值范围,利用斜率与倾斜角的关系可出结果. 因为,62ππα⎡⎫∈⎪⎢⎣⎭,则cos α⎛∈ ⎝⎦, 所以,直线4cos 670x y α+-=的斜率为2cos 3k α⎡⎫=-∈⎪⎢⎪⎣⎭, 因此,直线4cos 670x y α+-=的倾斜角的取值范围是5,6ππ⎡⎫⎪⎢⎣⎭.故选:B. 5.B 【解析】首先根据题意得到曲线x y x b =+与曲线x =有且仅有一个公共点时b 的取值范围.将方程x ()2210x y x +=≥.当直线y x b =+与曲线221x y +=1=,即b ,解得b =由图可知,当b =11b -<≤时,直线y xb =+与曲线x = 故选:B. 6.A 【解析】根据题意,设出直线的截距式方程,进而求出斜率以及原点到直线的距离,最后得到答案. 由题意可得,直线的截距式方程为1x ya b+=,斜截式方程为y kxb =+,由点到直线的距离公式,得p =又1x y a b +=与y kx b =+表示同一条直线,所以b ak =-.将bak =-代入p =()222()1ak p k ⋅-=+,即()22221a k p k =+.故选:A. 7.BC 【解析】根据两点间的距离公式计算化简,逐一判断选项即可.A :在平面直角坐标系xOy 中,()20A -,,()40B ,,点P 满足12PA PB =, 设()P x y ,12=,化简得2280x y x ++=,即()22416x y ++=,所以A 错误;B :假设在x 轴上存在异于A ,B 的两点D ,E ,使得12PD PE=,设()0D m ,,()0E n ,化简得()2222338240x y m n x m n +--+-=,由轨迹C 的方程为2280x y x ++=,可得8224m n -=-,2240m n -=, 解得6m =-,12n =-或2m =-,4n =(舍去),所以B 正确; C :当A ,B ,P 三点不共线时,12OA PAOBPB==, 可得射线PO 是APB ∠的角平分线,所以C 正确;D :若在C 上存在点M ,使得2MO MA =,可设()M x y ,,,化简得221616033x y x +++=, 与2280x y x ++=联立,方程组无解,故不存在点M ,所以D 错误. 故选:BC . 8.BC 【解析】求出圆心距12C C ,结合半径由圆的性质可得圆上两点的距离的最大值和最小值,判断AB ,得直线斜率,判断C ,根据两圆位置关系可判断D .解:根据题意,圆221:1C x y +=,其圆心1(0,0)C ,半径1R =,圆222:68240C x y x y +-++=,即22(3)(4)1x y -++=,其圆心2(3,4)C -,半径1r =,圆心距12||5C C ==,则||PO 的最小值为123C C R r --=,最大值为127C C R r ++=,故A 错误,B 正确; 对于C ,圆心1(0,0)C ,圆心2(3,4)C -,则两个圆心所在的直线斜率404303k --==--,C 正确, 对于D ,两圆圆心距125C C =,有122C C R r >+=,两圆外离,不存在公共弦,D 错误. 故选:BC . 9.BC 【解析】将圆的一般方程转化为标准方程即可得半径可判断A ;利用几何法求出弦长可判断B ;求出圆心A到直线的距离再减去半径可判断C ;求出圆B 的圆心和半径,比较圆心距与半径之和的大小可判断D ,进而可得正确选项.对于A :由22230x y x +--=可得()2214x y -+=,所以A 的半径为2r ,故选项A 不正确; 对于B :圆心为()1,0到y 轴的距离为1d =,所以圆A 截y 轴所得的弦长为B 正确;对于C :圆心()1,0到直线34120x y -+=3=,所以圆A 上的点到直线34120x y -+=的最小距离为3321r -=-=,故选项C 正确;对于D :由2288230x y x y +--+=可得()()22449x y -+-=,所以圆心()4,4B ,半径3R =,因为5AB r R ==+,所以两圆相外切,故选项D 不正确;故选:BC.10.BD【解析】讨论0m =和0m ≠时直线的斜率和截距情况,判断AD 的正误;利用倾斜角和斜率的关系判断B 的正误;将方程化为()()110x m y ---=判断直线过定点,判断C 的正误.当0m =时,直线:1l x =,斜率不存在,当0m ≠时,直线l 的斜率为1m,不可能等于0,故A 选项错误; ∵直线l 与y 轴的夹角角为30°,∵直线l 的倾斜角为60°或120°,而直线l 的斜率为1m ,∵1tan 60m =︒=1tan120m =︒=∵m =或m =B 选项正确; 直线l 的方程可化为()()110x m y ---=,所以直线l 过定点()1,1,故C 选项错误;当0m =时,直线:1l x =,在y 轴上的截距不存在,当0m ≠时,令0x =,得1m y m -=,令0y =,得1x m =-, 令11m m m-=-,得1m =±,故D 选项正确. 故选:BD .11.9 2x =-或1x =【解析】将所求函数整理为2y =,设()2,P x x 是抛物线2y x 上的动点,()3,5-M,所求问题的几何意义是:点P 到直线10y x -+=的距离与到点M 计算点()3,5-M 到直线10y x -+=的距离即可求最小值,求出过点()3,5-M 与10y x -+=垂直的直线方程与2y x 联立可得x 的值.因为21y x x =-+所以2y . 设()2,P x x 是抛物线2y x 上的动点,()3,5-M ,如图所示,设PQ ⊥直线1y x =-于Q PQ =PM .所求问题的几何意义是:点P 到直线10y x -+=的距离与到点M 于是,当M 、P 、Q 三点共线时,PQ PM +取得最小值.此直线是过点M 且垂直于直线1y x =-的直线为()53y x -=-+即2y x =-.则PQ PM +的最小值就是点M 到直线1y x =-的距离.因为)21y x x PQ PM MQ =-++9==. 由22y x y x =-⎧⎨=⎩可得1x =或2x =-, 故最小值为9,且对应的2x =-或1x =.故答案为:9;2x =-或1x =.12.1x =或34150x y +-=【解析】本题考查求圆的切线方程,分斜率存在与不存在,利用由圆心到切线的距离等于半径,求解即得. 圆()()22:124C x y ++-=的圆心坐标()1,2C -,半径2r ,当切线l 的斜率不存在时,:1l x =,显然到圆心的距离等于半径,故而是圆的一条切线; 当切线l 的斜率存在时,设斜率为k ,():31l y k x -=-,即:30kx y k --+=,2=,解得34k =-, 故切线的方程为34150x y +-=,故答案为:1x =或34150x y +-=易错点睛:本题考查求过点作圆的切线,关键是由首先验证斜率不存在时是否是圆的切线,考查学生的分类讨论思想,属于易错题.13.403k ≤≤【解析】求出圆C 的圆心和半径,由题意可得圆心到直线的距离小于或等于两圆的半径之和即可求解. 由228150x y x +-+=可得22(4)1x y -+=,因此圆C 的圆心为(4,0)C ,半径为1,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点, 只需点(4,0)C 到直线2y kx =-的距离112d =≤+=,即22(21)1k k -≤+,所以2340k k -≤,解得403k ≤≤, 所以k 的取值范围是403k ≤≤, 故答案为:403k ≤≤.14.1b =或1b -或32b <+【解析】化简曲线||1x -=.曲线||1x -=22(||1)(1)1x y -+-=表示两个半圆,当1x 时,22(1)(1)1x y -+-=;当1x -时,22(1)(1)1x y ++-=,如图所示,当直线在1l 时,b =2l 时,1b =;当直线在3l 时,2b =4l 时,1b =-;当直线在5l 时,3b =.由图象可知,当1b =或1b -或32b <+.∵b 的取值范围是1b =或1b -或32b <+故答案为:1b =或1b <-或32b <+15.205k -< 【解析】化简曲线3y =.由3y =222)(3)4(3)x y y -+-=≤(, 其图象是以(2,3)为圆心,2为半径的半圆,(5)1y k x =-+是过定点(5,1)A 的直线,作出图象,如图所示,其中0AC k =,25AD k =-,有两个不同的公共点时,k 的取值范围是205k -<. 故答案为:205k -< 16.94 【解析】表示三角形面积12S AC d =⋅,其中d 为点(B m 到直线AC 的距离,可得2131224S ⎫=-⎪⎭,利用二次函数的最值即得解因为()1,1A ,()4,2C ,所以AC ==且直线AC 的方程为()211141y x --=⨯--,即320x y -+=.又点(B m 到直线AC 的距离d =,所以211131222224S AC d m ⎫=⋅=-=-⎪⎭.因为14m <<,所以12<<,所以131222-<<,所以231024⎫≤<⎪⎭,所以2113242S ⎡⎤⎫=⨯-⎢⎥⎪⎭⎢⎥⎣⎦,当94m =时,S 最大. 故答案为:9417.(],0-∞【解析】首先由题意求出圆C 的圆心到直线20x ty -+=的距离范围,再通过点到直线的距离公式即可求解. 由于圆C 的标准方程为()2221x y +-=,则圆C 的圆心坐标为()0,2,半径为1.要使直线20x ty -+=上至多存在一点,使得以该点为圆心,1为半径的圆与圆C 相切,则只需满足圆C 的圆心到直线20x ty -+=的距离2d ≥,即2d =≥,解得0t ≤.故答案为:(],0-∞.18.1y =【解析】由题知圆C 的圆心到直线l 的距离为2d =,进而分直线的斜率存在与不存在两种情况讨论求解即可.由题意知,圆C 的圆心为()0,1C -,半径4r =,易知点()0,1P 在圆C 的内部.设圆C 的圆心到直线l 的距离为d ,则圆上的点到直线的距离的最大值为4d +,所以46d +=,可得2d =.当直线l 的斜率存在时,设直线l 的方程为1y kx =+,即10kx y -+=,所以2d ==,解得0k =,所以直线l 的方程为1y =;当直线l 的斜率不存在时,直线l 的方程为0x =,不满足题意.综上,直线l 的方程为1y =.故答案为:1y =19.22310x y x y +-+-=【解析】根据过两圆交点的圆系方程设出所求圆的方程,并求出圆心坐标,把圆心坐标代入直线l 的方程,从而求出圆的方程.设圆的方程为()222242(1)240x y x y x y y λλ+-+++--=≠-,则()()()221412240x x y y λλλλ+-+++--=,即2242240111x y x y λλλλλ-+-+-=+++,所以圆心坐标为21,11λλλ-⎛⎫ ⎪++⎝⎭, 把圆心坐标21,11λλλ-⎛⎫ ⎪++⎝⎭代入2410x y +-=,可得13λ=,所以所求圆的方程为22310x y x y +-+-=.故答案为:22310x y x y +-+-=.20.【解析】利用入射光线上的一点关于x 轴的对称点一定在反射光线的反向延长线上的性质,即可求解. 易知点(3,5)B -关于x 轴的对称点为(3,5)B '--,设直线AB '交x 轴于P 点,则'||||PB PB =,又∵A 点坐标(2,10),∵'||||||||PA PB PA PB AB '+=+===故光线从点B 到点A 经过的路程为故答案为:21.(1)4330x y --=;(2)30【解析】(1)先求出交点P 的坐标和直线的斜率,再用点斜式求直线的方程;(2)先求出A 、B 两点的坐标,再利用三角形的面积公式,求得OAB 的面积.解:(1)由21020x y x y -+=⎧⎨--=⎩, 解得:35x y =-⎧⎨=-⎩, 可得直线1:210l x y -+= 和22:0x y l --=的交点为()3,5P =--,由于直线l 3的斜率为43, 故过点P 且与直线343:50x y l --=平行的直线l 的方程为()4533y x +=⨯+, 即4330x y --=; (2)由题意知:直线m 的斜率存在且不为零,设直线m 的斜率为k ,则直线m 的方程为()53y k x +=+,由于直线m 与x 轴,y 轴分别交于A ,B 两点,且()3,5P =--为线段AB 的中点,故:()53,0,0,35A B k k ⎛⎫-- ⎪⎝⎭, 53323552k k ⎧-⎪=-⎪∴⎨⎪-=-⎪⎩, 解得53k =-, 故()()6,0,0,10A B -- ,故OAB 的面积为116103022OA OB ⨯⋅=⨯⨯=. 22.(1)22(1)1y x +-=;(2)2±(3)163. 【解析】(1)设ABC 的内切圆的圆心()0,M b ,先求得圆心到直线210x y +-=的距离,再根据直线截圆M(2)当直线AC 和BC 的斜率不存在时,设直线方程为2x =,易知不成立;当直线AC 和BC 的斜率存在时,设直线方程为()42y k x -=-,然后由圆心到直线的距离等于半径求解;(3)根据AB 4=,设()()(),0,4,040A t B t t +-<<,进而得到直线AC 和直线 BC 的斜率,写出直线AC 和BC 的方程,联立求得点C 的坐标,进而得到坐标系的最小值求解.(1)设ABC 的内切圆的圆心()0,,0M b b >,圆心到直线210x y +-=的距离为d =, 又因为直线截圆M所以221+=⎝⎭, 解得1b =,所以圆M 方程()2211x y +-=;(2)当直线AC 和BC 的斜率不存在时,设直线方程为2x =,则圆心到直线的距离 0221d r =-=≠=,不成立,当直线AC 和BC 的斜率存在时,设直线方程为()42y k x -=-,即 240kx y k --+=,圆心到直线的距离1d =,解得2k = (3)因为AB 4=,设()()(),0,4,040A t B t t +-<<,所以直线AC 的斜率为:2222tan 2111AC t t k MAO t t-=∠==---, 同理直线BC 的斜率为: ()()222241411BC t t k t t --+==+-- ,所以直线AC 的方程为:()221t y x t t =---, 直线BC 的方程为:()()()224441t y x t t -+=--+- , 由()()()()222124441t y x t t t y x t t ⎧=--⎪-⎪⎨-+⎪=--⎪+-⎩,解得 22224412841t x t t t t y t t +⎧=⎪⎪++⎨+⎪=⎪++⎩, 即2222428,4141t t t C t t t t ⎛⎫++ ⎪++++⎝⎭, 又 ()2222282222414123t t y t t t t t +==-=-+++++-, 当2t =-时,点C 的纵坐标取得最小值83, 所以ABC 面积的最小值.18164233ABC S=⨯⨯=. 23.40x y -+=或4y =.【解析】 方法一:分点A 和点B 在直线l 的同侧和异侧两种情况求解;方法二:设直线l 的方程为()2200ax by c a b ++=+≠,再根据点到线的距离公式求解即可 方法一:当点A 和点B 在直线l 的同侧时,易得//AB l . ∵53131AB k -==-,∵1l k =. 又知直线l 过点()0,4P ,∵直线l 的方程为()410y x -=⨯-,即40x y -+=.当点A 和点B 在直线l 的异侧,这时直线l 过AB 的中点()2,4.又因为直线l 过点()0,4P ,则直线l 的斜率为0,直线l 的方程为4y =. 综上所述,直线l 的方程为40x y -+=或4y =.方法二:设直线l 的方程为()2200ax by c a b ++=+≠. 由题设知,直线l 过点()0,4P ,并且点()1,3A 和点()3,5B 到直线l的距离相等,则40b c +=⎧=,于是可得3a b a b -=+. 从而可得3a b a b -=+或3a b a b -=--,解得a b =-或0a =.当a b =-时,4c b =-,0a ≠且0b ≠,此时直线方程为40x y -+=.当0a =时,0b ≠,此时直线方程为4y =.综上所述,直线l 的方程为40x y -+=或4y =.24.(1)()()224325x y -++=;(2)点()3,2P 在圆C 外. 【解析】(1)利用待定系数法求得圆C 的方程.(2)由()()2234232625-++=>判断出点P 与圆C 的位置关系.(1)设圆C 的方程为()()222x a y b r -+-=,因为圆C 过()0,0O ,()1,1A ,()4,2B ,则()()()()()()222222222001142a b r a b r a b r ⎧-+-=⎪⎪-+-=⎨⎪-+-=⎪⎩,解得24325a b r =⎧⎪=-⎨⎪=⎩,所以所求圆C 的方程为()()224325x y -++=;(2)因为()()2234232625-++=>,所以点()3,2P 在圆C 外.25.证明见解析.【解析】设出直线PA 与PB 的方程,结合题意可求得,M N 的坐标,进而可求得以MN 为直径的圆C 的方程,再令0y =,可求出圆与x 轴的交点,即可求解由题意可知()2,0A -,()2,0B ,设直线l 与x 轴的交点为K ,设直线PA 的方程为()2y k x =+,则直线PB 的方程为()12y x k=--. 由题意可知()4,6M k 、24,N k ⎛⎫- ⎪⎝⎭,所以MN 的中点坐标为14,3k k ⎛⎫- ⎪⎝⎭,123MN k k=+,所以以MN 为直径的圆的方程为:()22211433x y k k k k ⎛⎫⎛⎫-+-+=+ ⎪ ⎪⎝⎭⎝⎭,即22182340x y x k y k ⎛⎫+---+= ⎪⎝⎭,令0y =,则2840x x -+=,解得4x =±点()4+在圆O 外部,点()4-在圆O 内部,所以以MN 为直径的圆C 必过O 内一定点()4-.26.(1)最大值为0,最小值为2021-;(2)最大值为- 【解析】先求出所给的圆的圆心和半径,(1)4yx - 表示圆上的点(x y )与点A (4,0)连线的斜率 k .设出过点A 的圆的切线方程,根据圆心C 到切线的距离等于半径,求得k 的值,可得k 的最大值和最小值. (2)将条件进行化简,转化为点和圆的位置关系进行求解即可. (1)4y x -表示圆上的点(),x y 与点()4,0A 连线的斜率, 设圆的切线斜率为k ,圆的切线方程为()04y k x -=-,即40kx y k --=,由2=0k =或2021-, 结合图形知,4yx -的最大值为0,最小值为2021-. (2)令2x y t +=,t 表示过圆上的点且斜率等于2-的直线在y 轴上的截距,当直线2x y t +=和圆相切时,有2=∵t =±故2x y +的最大值为-27.当47k =-时,该四边形有一个外接圆,外接圆方程为22151590x y x y +--=.【解析】设过该四边形4个顶点的二次曲线系方程为:(315)(5)(6)0x y x y kx y y λ+-++--⋅=,再根据二元二次方程表示圆的条件求得k 的值,进而再求出圆的方程.设过该四边形4个顶点的二次曲线系方程为:(315)(5)(6)0x y x y kx y y λ+-++--⋅=,即22(8)(15)15(756)0x k xy y x y λλλ+++--+--=,由151,80,k λλ-=⎧⎨+=⎩解得14,4.7k λ=⎧⎪⎨=-⎪⎩∴所求圆的方程为22151590x y x y +--=.28.证明见解析 【解析】建立平面直角坐标系,设出圆、直线CD 、直线EF 的方程.结合曲线系与AB 的交点,P Q 的横坐标所满足的方程的根与系数关系,证得M 是PD 的中点,由此证得PM QM =. 如图所示,以M 为原点,AB 所在直线为x 轴建立直角坐标系,设圆方程为 222()(||)x y b r b r +-=<设直线CD 、EF 的方程分别为1y k x =,2y k x =.将它们合并为()()120y k x y k x --=,于是过点C 、D 、E 、F 的曲线系方程为()()22212()0x y b r y k x y k x λ+--+--=.令0y =,得()2221210k k x b r λ++-=,即过点C 、D 、E 、F 的曲线系与AB 交于点P 、Q 的横坐标是方程()2221210k k x b r λ++-=的两根.由韦达定理得0P Q x x +=,即M 是PQ 的中点,故PM QM =.29.圆心在(,25)k k ---1|k +的圆;定点的坐标为(1,3)- 【解析】由题通过配方整理可得方程表示圆,将原方程整理为关于k 的方程可得定点. 将原方程整理得222()[(25)]5(1)0x k y k k ++++-+=,即222()[(25)]1)]x k y k k ++++=+,∴方程表示圆心在(,25)k k ---1|k +的圆,将原方程整理为关于k 的方程:221020(2410)0x y y k x y ++++++=,由2210200,24100x y y x y ⎧+++=⎨++=⎩解得1,3,x y =⎧⎨=-⎩ 即圆过定点(1,3)M -.30.直线方程为:40x y --=;圆的方程为:227320x y x y +-+-=. 【解析】首先写出过两圆交点的圆系方程,当1λ=-时,求出直线方程;通过对圆系方程化简整理,求出圆心,再结合已知条件即可求得圆的方程.由题意,过两圆交点的圆系方程为:()2222646280x y x x y y λ++-+++-=,令1λ=-,得40x y -+=, 故所求直线方程为:40x y -+=;对圆系方程化简整理得:22(1)(1)664280x y x y λλλλ+++++--=, ∵圆心的坐标为33,11λλλ-⎛⎫- ⎪++⎝⎭,而圆心在直线40x y --=上, 从而334011λλλ-+-=++,解得,7λ=- 代入圆系方程得,227320x y x y +-+-=. 故所求圆的方程为:227320x y x y +-+-=.31.(1)()10A -,,()56B -,;(2)存在,3,P .【解析】(1)由条件解方程组2100x y y -+=⎧⎨=⎩得出点A 坐标,得出BC 边上得高所在得直线方程,求出AB 得方程,由联立BC ,AB 的直线方程得出点B 的坐标.(2)由点C 作函数(0)ky x x =>的图像上求出k ,设2(,),P a aP 到AB l距离为d =1||2ABDA d SB =⨯⨯得出面积的表达式,从而求出答案. ()1因为点A 在BC 边上的高210x y -+=上,又在角A 的角平分线0y =上,所以解方程组2100x y y -+=⎧⎨=⎩得(1,0).A -BC 边上得高所在得直线方程为210,x y -+= 所以2BC k =- 1,1,AC AB AC k k k =∴=-=-所以AB 得方程为x+y+1=010240x y x y ++=⎧⎨+-=⎩得(5,6),B - 所以:()10A -,,()56B -,. (2)因为C 在曲线k y x =上. 22,2,1k k y x∴=∴=∴=2(,),(0),:10AB P a a l x y a>∴++=则P 到AB l距离为d2111122||||1|3|1|2222ABDa AB d a a Sa a ++=⨯⨯==⨯++=++202a a >∴+≥当且仅当22,a =即a =2211|1|1,a a a a++≥∴++≥3PABS∴≥,此时P.32.22113125222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭.【解析】设圆的圆心为C ,()()2,4,8,6A B --,:3260l x y +-=,由CB l ⊥,得到直线CB 的方程, 再求导线段AB 的垂直平分线方程,联立求得圆心即可.设圆的圆心为C ,()()2,4,8,6A B --,:3260l x y +-=,则CB l ⊥, 所以直线CB 的方程为:()638y x -=-,即3180x y --=, 又AB 的中点为()3,1,且64182AB k +==+, 所以线段AB 的垂直平分线方程为()13y x -=--,即40x y +-=, 由318040x y x y --=⎧⎨+-=⎩,解得11232x y ⎧=⎪⎪⎨⎪=-⎪⎩,所以圆的圆心为113,22⎛⎫- ⎪⎝⎭,半径为r =所以圆的方程是22113125222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,故答案为:22113125222x y ⎛⎫⎛⎫-++=⎪ ⎪⎝⎭⎝⎭ 33.证明见解析【解析】=可知代数式的几何意义是抛物线2yx 上的点()2,M x x 到点()3,2A 、()0,1B 的距离之差,数形结合以及三点共线可求得MA MB -的最大值,即可证得结论成立.=2yx 上动点()2,M x x 与两定点()3,2A 、()0,1B 的距离之差,如下所示:左边MA MB AB -≤==当且仅当B 在线段AM 上时取等号. 34.226121055x y x y ++++=.【解析】先由两个圆的方程相减,得到公共弦所在的直线方程,然后设所求圆的方程为()2222412210x y x y x y x y λ+++++++++=,再由其圆心在公共弦上求解.两个圆的方程相减,得20x y -=,即为公共弦所在的直线方程.显然圆2C 的圆心(1,1)-不在此直线上.设所求圆的方程为()2222412210x y x y x y x y λ+++++++++=.即22(1)(1)2(2)(12)(1)0x y x y λλλλλ+++++++++=.其圆心M 的坐标为212,12(1)λλλλ⎛⎫++-- ⎪++⎝⎭,点M 在直线20x y -=上,2(2)12012(1)λλλλ++∴-+=++,解得72λ=-. 故所求圆的方程为22555360222x y x y -----=,即226121055x y x y ++++=.35 【解析】解法一:运用判别式法的前提是必须有一元二次方程,且该方程有实根,而此函数的定义域为R ,用判别式法求解是可以的.关键是把函数转化为一元二次方程,因此先将其中一个根式移项,然后两边平方,再将含有根式的项整理到方程的一边,再平方,进而整理成关于自变量x 的一元二次方程,方程有实根的充要条件是“0∆≥”,解关于y 的不等式即可求得其最小值. 解法二:根据解析式中蕴涵的几何意义,转化为求两点间的距离即可求解.解法一:函数y ==.y ∴又0y ,即2y >,对∵式两边平方,得222225413y x x x x --+=-+.整理,得2822y x -+=对∵式两边平方,得()()()2222228484425y x y x y x x -+-+=-+,再整理,得()()2224244123236640y x y x y y ----+-=.∵2440y ->,x 为实数,()()()22242123244436640y y y y ∴∆=----+-≥,化简并整理,得64228520y y y -+≥, 即()()()242222285202260yyy y y y -+≥⇔--≥,又2y >,226y ∴≥,y ≥当y =∵为21002801960x x -+=,即22570490x x -+=,解得75x =解法二:y =令(,0)P x ,(1,2)A ,()2,3B ,则||||y AP BP =+点A 关于x 轴的对称点为(1,2)A '-.则min ||||||||y AP BP AP BP A B '=+=+≥=(其中运用三角形两边之和大于第三边,当且仅当A '、P 、B 三点共线时取“等号”). 36.证明见解析 【解析】先求出切线PA 、PB 的方程,得到直线AB 的方程,再证明点P 恒在定直线上.证明:设()11,A x y 、()22,B x y 、()00,P x y ,不妨将A 、B 、P 都视为定点(视动为静),先求直线AB的方程.切线PA 的方程为211x x y y r +=,切线PB 的方程为222x x y y r +=.∵P 点在切线上,∵21010x x y y r +=,22020x x y y r +=,这表明点A 、B 都在直线200x x y y r +=上,故直线AB 的方程为200x x y y r +=.又∵点M 在直线AB 上,∵200x a y b r +=.任意()00,P x y 都满足上式,故动点P 必在直线2ax by r +=上(换静为动).37.最大值为6 【解析】不等式224x y +≤(0x ≥)表示半圆,41y x ++表示半圆域上的点(,)x y 与点(1,4)--连线的斜率,通过画出图象,结合图形来看,问题就迎刃而解.如图所示,不等式224x y +≤(0x ≥)表示半圆域. 设41y k x +=+,41y x ++表示半圆域上的点(,)x y 与点(1,4)--连线的斜率,当直线过点(0,2)时,有max461y x +⎛⎫= ⎪+⎝⎭,当直线在切线位置时,k 值最小,由点(0,0)2=,解得k =. 又因为0k >,所以k =所以min41y x +⎛⎫= ⎪+⎝⎭ 38.0k =或1k >或1k <-. 【解析】先将问题转化为两函数y 2y kx =+的图像只有一个交点,再画出图像,利用函数2y kx =+是过定点(0,2)且绕定点(0,2)转动的直线, 数形结合即得参数范围.依题意,函数y 2y kx =+的图像只有一个交点.函数y 2为半径的上半圆,而2y kx =+是过定点(0,2)斜率k 在变化的直线,也就是说直线绕(0,2)点转动, 因为(0,2)点在半圆上,所以动直线不可能与半圆再有其他交点(如图所示).∵当0k =或1k >或1k <-时,两图像只有一个交点. 所以k 的取值范围为0k =或1k >或1k <-. 39.2370x y ++=. 【解析】已知直线AC 、AB 的高线方程可以得到对应的AC 、AB 的直线方程,联立方程AC 与AB 边上的高线方程可得到C 点坐标,联立方程AB 与AC 边上的高线方程可得到B 点坐标,求出BC 的斜率,然后利用点斜式带入求出方程.因为AC 边上的高所在直线的方程为2310x y -+=,所以AC 边所在直线的斜率为32-.所以AC 边所在直线的方程为32(1)2y x -=--,即3270x y +-=.同理,AB 边所在直线的方程为10x y -+=. 由32700x y x y +-=⎧⎨+=⎩得顶点C 的坐标为(7,7)-.由10,2310x y x y -+=⎧⎨-+=⎩得顶点B 的坐标为(2,1)--.所以BC 边所在直线的斜率为1(7)2273---=---.所以BC 边所在直线的方程为21(2)3y x +=-+,即2370x y ++=.40.(1)224x y +=;(2)7. 【解析】(1)由AB 的中垂线及圆心所在直线得圆心坐标,得半径,从而得圆方程;(2)用斜率k 的式子表示弦PQ 的长度,同理可得弦MN 的长度,也可用含k 的式子表示,结合图形特征得到函数()S f k =,运用不等式知识求其最大值.解:(1)由题设知QC 的圆心既在AB 的中垂线上,又在直线y x =上,易得圆心为原点,半径为2.∵C :224x y +=.(2)设四边形PMQN 的面积为S ,当直线l 的斜率0k =时, 则1l的斜率不存在,此时142S =⋅=当直线l 的斜率0k ≠时,设1l :11y x k=-+. 联立2214y kx x y =+⎧⎨+=⎩,得()221230k x kx ++-=.所以有()22122122441(3)02131k k k x x k x x k ⎧∆=-+->⎪⎪-⎪+=⎨+⎪-⎪=⎪+⎩.同理可得21MN k=+.211221S PQ MN k =⋅=+== 因为22212224k k k +++=,所以172122742S +=⨯=. 当且仅当1k =±时等号成立,所以S 的最大值为7. 41.(1)0;(2)120,5⎡⎤⎢⎥⎣⎦.【解析】(1)转换为圆上动点与圆外一定点连线的斜率问题.通过数形结合求解即可;(2)转换为圆上动点与圆外一定点连线的斜率问题.通过数形结合求解即可. 解:(1)设12y k x -=-,则y -1=kx -2k ,y =kx -2k +1. 设(2,21)a x kx k =+-+,(,1)b k =-,则222222222()(221)1(2)(2)(21)||1||a b kx k kx k x y x kx k a k b ⋅+-+-=++=++-+==+ 22(41)1k k -=+,故22(41)1k k -+,(158)0k k -,解得8015k . 则12y k x -=-的最小值是0. (2)设2yk x =+,则2y kx k =+,∵ ∵方程222410x y x y +--+=可化为22(1)(2)4x y -+-=, 故可将∵式写成32(1)1(2)k k x y -=-⋅-+⋅-, 构造向量(1,2)m x y =--,(,1)n k =-,则||(1)2m x =-=,2||1n k =+32m n k ⋅=-. 由222()||||m n m n ⋅⋅,得()22(32)41k k -+,解得1205k, 故所求2y x +的取值范围是120,5⎡⎤⎢⎥⎣⎦. 42.(1)10c =;(2) 3025. 【解析】(1)先计算出O 到直线1l 的距离1d ,然后根据规律可计算出O 到直线10l 的距离10d ,结合点到直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与圆方程解答题C 组练习1.已知圆x 2+y 2=16,A (2,0),若P,Q 是圆上的动点,且AQ AP ⊥,求PQ 的中点M 的轨迹方程 解:设中点(,)M x y ,如图 ∵,AP AQ M PQ ⊥为的中点,∴||||||MA MP MQ ==由垂径定理得222||||||,MO MP OP += 而,,∴,化简得,这就是动圆圆心的轨迹方程。

2.已知22,,46120x y R x y x y ∈+--+=且,求:(1)yx的最值; (2)22x y +的最值; (3)x y +的最值; (4)-x y 的最值。

【分析】数形结合,将代数式或方程赋予几何意义. 解:22(2)(3)1x y -+-=表示以点(2,3)C 为圆心,1为半径的圆。

(1)yx表示圆C 上的点(,)P x y 与坐标原点O(0,0)连线的斜率k ,故当y kx =为圆C 的切线时,k 得最值。

21,21yk xk ∴=∴+的最大值为最小值为 (2)设22x y +表示圆C 上的点(,)P x y 与坐标原点O(0,0)连结的线段长的平方,故由平面几何知识可知,当P 为直线OC 与圆C 的两交点12,P P 时,2212,OP OP 的最大值、最小值。

22x y ∴+的最大值为21)14=+最小值为2=(3)令,:x y m l x y m +=+=当直线与圆C 相切时,l 在y 轴上截距m 取得最值。

1,52m x y=∴=+的最大值为 (4)令-,:x y n l x y n '=-=当直线与圆C 相切时,l '在y 轴上截距的相反数n 取得最值。

1,12n x y=∴=--的最大值为 3.已知圆O 的方程是229,x y +=求过点A (1,2) 所作的圆的弦的中点P 的轨迹。

【解法一】参数法(常规方法)设过A 的弦所在的直线方程是2(1)y k x -=-(k 存在时),P (x,y )则229.(2)x y y kx k ⎧+=⎨=+-⎩消去y 可得2221222(2)(1)2(2)450,.1k k k x k k x k k x x k -++-+--=∴+=+ 利用中点坐标公式及中点在直线上,22(2)121k k xk k y k -⎧=⎪⎪+⎨-+⎪=⎪+⎩(k 为参数)k P∴消去得点的轨迹方程2220,x y x y +--=当k 不存在时,中点P (1,0)的坐标也适合方程。

所以P 点的轨迹是以1(,1)2解法二:代点法(涉及中点问题可考虑此法)设过点A 的弦1122,(,),(,).MN M x y N x y,M N 在圆O 上,221122229,9x y x y ⎧+=⎪∴⎨+=⎪⎩ ∴相减可得1212121212()()0()y y x x y y x x x x -++⋅+=≠- 设1212(,),,.22x x y y P x y x y ++==则,,,M N P A ∴四点共线,12122(1)1y y y x x x x --=≠-- 2220.1y x y x -∴+⋅=- 所以中点的轨迹方程是2220(1)x y x y x +--==时亦正确 ∴点P 的轨迹是以点1(,1)2为半径的圆。

解法三:数形结合(利用平面几何知识)由垂径定理可知,OP PA P ⊥故点的轨迹是以AO 为直径的圆。

(下略)本题涉及求轨迹方程的三种间接方法。

思路一,代表了解析几何的基本思路和基本方法,即(,)0(,)0f x yg x y =⎧⎨=⎩消去y (或x )可得关于x (或y )的一元二次方程20Ax Bx C ++=,再利用求根公式、判别式、韦达定理等得解。

思路二,又叫平方差法,要求弦的中点的轨迹方程时,用此法比较简单。

基本思路是利用弦的两个端点1122(,),(,),M x y N x y 在已知曲线上,将点的坐标代入已知方程然后相减,利用平方差公式可得12121212,,,,x x y y x x y y ++--等。

再由弦MN 的中点P (x,y )的坐标满足1212,.22x x y y x y ++==以及直线MN 的斜率121212()y y k x x x x -=≠-等,设法消去1212,,,x x y y 即可得弦MN 的中点P 的轨迹方程。

用此法对斜率不存在的情况,要单独讨论。

思路三,数形结合,利用平面几何知识等,有时能使求解过程变得非常简捷。

学好解析几何,要掌握特点,注意四个结合:(1)数形结合:形不离数,数不离形,依形判断,就数论形;(2)动静结合:动中有静,静中有动,几何条件——曲线方程——图形性质;(3)特殊与一般结合:一般性寓于特殊性之中,特殊化与一般化是重要的数学思维方法; (4)理论与实际相结合:学以致用,创造开拓。

4.(一中)已知圆C :044222=-+-+y x y x ,是否存在斜率为1的直线l ,使直线l 被圆C 截得的弦AB 为直径的圆过原点,若存在求出直线l 的方程,若不存在说明理由。

解:方法一:圆C 化成标准方程为2223)2()1(=++-y x假设存在满足题意的直线l ,则可设此直线方程为y x b =+,则22,2440y x bx y x y =+⎧⎨+-+-=⎩消元可得方程222(22)440x b x b b ++++-= 设此方程的两根为2121212121244,,(1),,21,2b b x x x x b x x y y x x b b +-+=-+=+=++=-则则AB 中点11(,)22b b M +--12|x x -由题意可知22211||||,(),22b b OM AM +-=+=即(-) 解得b=1,或b=-4. 又22=(22)8(44),b b b ∆+-+-经检验当b=1或b=-4时,0∆>成立。

故这样的直线l 是存在的,方程为x-y-4=0 或x-y+1=0 方法二:圆C 化成标准方程为2223)2()1(=++-y x假设存在满足题意的直线l ,则可设此直线方程为y x b =+,设1122(,),(,),A x y B x y 则22,2440y x bx y x y =+⎧⎨+-+-=⎩消元可得方程222(22)440x b x b b ++++-= 设此方程的两根为2121212121244,,(1),,21,2b b x x x x b x x y y x x b b +-+=-+=+=++=-则 212242b b y y +-=由于圆的直径为AB ,且圆过原点,所以212120,0,340,4,1OA OB x x y y b b b b ⋅=∴+=+-=∴=-=代入可得又22=(22)8(44),b b b ∆+-+-经检验当b=1或b=-4时,0∆>成立。

故这样的直线l 是存在的,方程为x-y-4=0 或x-y+1=05.(07年全国II 卷,理20)在直角坐标系xOy 中,以O 为圆心的圆与直线43=-y x 相切。

(1)求圆O 的方程;(2)圆O 与x 轴相交于A,B 两点,圆内的动点P 使||||||PB PO PA 、、成等比数列,求PB PA ⋅的取值范围。

解:(1)依题设,圆O 的半径等于O 到直线43=-y x 的距离,即,2314=+=r 得圆O 的方程为422=+y x(2)由已知可得A(-2,0),B(2,0) 设P(x,y),由||||||PB PO PA 、、成等比数列,得 222222)2()2(y x y x y x +=+-⋅++,即222=-y x)1(24),2(),2(222-=+-=--⋅---=⋅y y x y x y x由于点P 在圆O 内,故⎪⎩⎪⎨⎧=-<+242222y x y x ,由此得12<y ,所以PB PA ⋅的取值范围是[-2,0). 6.(08年宁夏银川模拟)已知圆C :01:,5)1(22=-+-=-+m y mx l y x 直线 (1)求证:对R m ∈,直线l 与圆C 总有两个不同的交点A 、B. (2)求弦AB 中点M 的轨迹方程,并说明其轨迹是什么曲线? (3)若定点P (1,1)分弦为2=,求l 的方程。

解:(1)证明:圆心C (0,1),半径5=r ,则圆心到直线l 的距离,11||2<+-=mm dR m r d ∈∴<∴对,,直线l 与圆C 总有两个不同的交点。

(2)设中点0)1()1(:,,=---y x m l y x M )(恒过定点P (1,1),11--=∴x y k AB 又1111,1,1-=-⋅--∴-=-=xy x y k k x y k MC AB MC 整理得22210x y x y +--+= 即41)1()21(22=-+-y x ,所以M 的轨迹表示圆心坐标是)1,21(,半径是21的圆。

(3)设),,(),,(2211y x B y x A 解方程组⎩⎨⎧=-+=+-5)1(0122y x y mx ,得052)1(2222=-+-+m x m x m222112m m x x +=+∴① 又2=,)1,1(2)1,1(1122y x y x --=--∴ 即3221=+x x ②联立①②解得).1)1(,13(,1)1(,132222221221mm m m A m m y m m x ++++++=++=即则 将A 点的坐标代入圆的方程得1±=m ,所以直线方程为020=-+=-y x y x 和 7.(09年天津汉沽一中)已知圆222430.x y x y ++-+= (1)若圆C 的切线在x 轴和y 轴上的截距相等,求此切线的方程;(2)从圆C 外一点11(,)P x y 向该圆引一条切线,切点为M,O 为坐标原点,且有||||PM PO =,求使得||PM 取得最小值的点P 的坐标。

解:(佳一)(1)将圆C 配方得22(1)(2)2x y ++-=① 当直线在两坐标轴上的截距为零时,设直线方程为,y kx =2k ==±即从而切线方程为(2.y x =② 当直线在两坐标轴上的截距不为零时,设直线方程为0x y a +-=,由直线与圆相切得10x y ++=或30x y +-=(2)由||||PO PM =得2222111111(1)(2)22430x y x y x y +=++--⇒-+=即点P 在直线:2430l x y -+=上,当||PM 取最小值时即||OP 取得最小值,直线,OP l ⊥∴直线OP 的方程为2x+y=0,解方程组20,2430x y x y +=⎧⎨-+=⎩得P 点的坐标为33105(,)-. 8.(2009江苏高考)在平面直角坐标系xoy 中,已知圆221:(3)(1)4C x y ++-=和圆222:(4)(5)4C x y -+-=. (1)若直线l 过点(4,0)A ,且被圆1C截得的弦长为l 的方程; (2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线1l 和2l ,它们分别与圆1C 和圆2C 相交,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,试求所有满足条件的点P 的坐标。

相关文档
最新文档