第三章 静定结构的内力计算(组合结构)
建筑力学第三章静定结构内力计算
01
02
03
04
排架是由两个单层刚架组成的 结构,其内力可以通过整体法
和分离法进行计算。
整体法是将两个单层刚架作为 一个整体进行分析,从而求得
整个排架的内力。
分离法是将排架拆分成两个单 层刚架进行分析,然后分别求
得每个单层刚架的内力。
在计算过程中,需要考虑到排 架的自重、外力以及支座反力
的影响。
组合结构的内力计算实例
03 静定结构的内力计算方法
截面法
总结词
通过在指定截面上截取隔离体,然后对隔离体进行受力分析,计算出内力的方法。
详细描述
截面法是静定结构内力计算的基本方法之一。在截面法中,我们首先在结构中选择一个或多个截面, 然后将这些截面处的杆件暂时断开,并分析这些杆件的内力。通过这种方法,我们可以确定每个杆件 的内力大小和方向。
组合结构是由两种或多种结构组成的 结构,其内力可以通过叠加法进行计 算。
在计算过程中,需要考虑到组合结构 是将每种结构的内力分别计算 出来,然后根据结构的特点进行叠加, 从而求得整个组合结构的内力。
05 静定结构内力计算的注意 事项
材料强度的考虑
材料强度
在计算静定结构内力时,必须考虑材 料的强度。不同的材料有不同的抗拉 、抗压、抗剪强度,应确保结构中的 应力不超过材料的容许应力。
节点法
总结词
通过分析节点处的平衡状态,计算出节点所受内力的方法。
详细描述
节点法是一种基于力的平衡原理的计算方法。在节点法中,我们首先确定节点 的位置和数量,然后分析每个节点处的平衡状态。通过这种方法,我们可以计 算出每个节点所受的内力大小和方向。
弯矩图法
总结词
通过绘制弯矩图,直观地表示出结构的弯矩 分布情况,进而计算出结构的内力。
03结构力学 第三章 静定结构的内力计算3.3 静定刚架的内力计算(邓军)
轴力仍以受拉为正,受压为负;轴力图可画在杆件的任一侧或 与纵坐标对称地画在杆件的两边,但需在轴力图上标明正负号。
§3.3 静定刚架的计算
例1 绘制如图所示门式刚架在半跨均布荷载作用下的内力图。
§3.3 静定刚架的计算
§3.3 静定刚架的计算
§3.3 静定刚架的计算
§3.3 静定刚架的计算
静定刚架的组成及类型
平面刚架是由直杆(梁和柱)组成的平面结构。
刚架中的结点部分或全部是刚节点。
在刚节点处,各杆件连成一个整体,杆件之间不能发生相对 移动和相对转动,刚架变形时各杆之间的夹角保持不变,因 此刚节点能够承受弯矩、剪力和轴力。
解:
1)求支座反力 由整体平衡方程可得
M A 0, 6 3 12FyB 0 M B 0, 6 9 12FyA 0
X 0, FxA FxB 0
取铰C右边部分为隔离体
MC 0, 6.5FxB 6FyB 0
求得
FyB =1.5kN() FyA=4.5kN() FxA =1.384 kN()
§3.3 静定刚架的计算
2)作弯矩图
求出杆端弯矩(设弯矩方正向为使刚架内侧受拉)后,画于受 拉一侧并连以直线,再叠加简支梁的弯矩图。
以DC杆为例
M DC 1.384 4.5 6.23kN m, MCD 0
CD中点弯矩为 1.3845.5 133 1 1 4.5 6 1.388kN m 22
(2)为计算静定刚架位移和分析超静定刚架打下基础。
2)刚架各杆内力的求法
从力学观点看,刚架是梁的组合结构,因此刚架的内力求法 原则上与梁的内力计算相同。 通常是利用刚架的整体或个体的平衡条件求出各支座反力和 铰接点处的约束反力,然后用截面法逐个计算杆件内力。
第03章: 结构力学 静定结构内力分析
2
2qa 2
2qa2
4qa
2
2
4qa2
14qa2
2qa2 q
14qa
弯矩图
10
也可直接从悬臂端开始计算杆件 8 2qa2
8qa 2
B
10qa 2
6qa 2q
2
2qa 2
4qa2
14qa
2
M图
(4)绘制结构Q图和N图 2qa2 2qa2 C 6qa q E
D
2q A 2a 2a 4a B
3a
6qa
FN2=0
FN=0
FN=0
FN1=0
判断结构中的零杆
FP FP FP/2
FP/ 2
FP
截
面
法
截取桁架的某一局部作为隔离体, 由平面任意力系的平衡方程即可求得未知 的轴力。 对于平面桁架,由于平面任意力系的 独立平衡方程数为3,因此所截断的杆件数 一般不宜超过3
试用截面法求图示桁架指定杆件的内力。
5、三铰拱的合理轴线 拱的合理轴线:在固定荷载作用下使拱处于无弯距状态 的轴线。 求解公式:在竖向荷载作用下,三铰拱的合理轴线使拱 的各截面处于无弯距状态,即
M M FH y 0
0
M y FH
0
结论: (1)三铰拱在沿水平线均匀分布的竖向荷载作用下,合理轴 线为一抛物线。
y
M AD
1 qL x2 8
M BD
q(l x) 1 x qx 2 2 2
Mx1max
1 qL x2 8
由以上三处的弯矩得到:
q(L x) 1 2 1 2 x qx qL x 2 2 8
整理得:
x 0.172L
第三章 静定结构的内力计算
FAy
1 3a 4 FP a M q 3a 3a 2 5
第三章
静定结构的内力计算
M
B
0
3a 4 FAy 3a M q 3a FP a 0 2 5 1 3a 4 FAy FP a M q 3a 3a 2 5
第三章
无荷载 平行轴线
Q图
静定结构的内力计算
均布荷载
集中力 发生突变
P
集中力偶
无变化 发生突变
m
斜直线
M图
二次抛物线 凸向即q指向
出现尖点
两直线平行 备 注
Q=0区段M图 Q=0处,M 平行于轴线 达到极值
集中力作用截 集中力偶作用 面剪力无定义 面弯矩无定义
在自由端、铰支座、铰结点处,无集中力偶作用,截面弯矩 等于零,有集中力偶作用,截面弯矩等于集中力偶的值。
第三章 静定结构的内力计算
第三章
静定结构的内力计算
§3-1单跨静定梁
一、静定结构概述 1.概念:是没有多余约束的几何不变体系。 2.特点:在任意荷载作用下,所有约束反力和内力都 可由静力平衡方程唯一确定。 平衡方程数目 = 未知量数目 3.常见的静定结构 常见的静定结构有:单跨静定梁、多跨静定梁、静 定平面刚架、三铰拱、静定平面桁架、静定组合结构等 (如下图)。
0 FYA FYA 0 FYB FYB
A
x
C
L
斜梁的反力与相应简支 梁的反力相同。
第三章
(2)内力
静定结构的内力计算
求斜梁的任意截面C的内力,取隔离体AC: a FP1 A
FYA x Fp1 FYA
0
MC
结构力学二3-静定结构的内力计算
以例说明如下
例 绘制刚架的弯矩图。 解:
E 5kN
由刚架整体平衡条件 ∑X=0 得 HB=5kN← 此时不需再求竖向反力便可 绘出弯矩图。 有:
30
20 20 75 45
40
0
MA=0 , MEC=0 MCE=20kN· m(外) MCD=20kN· m(外) MB=0 MDB=30kN· m(外) MDC=40kN· m(外)
有突变
铰或 作用处 自由端 (无m)
m
Q图
M图
水平线
⊕
⊖㊀
Q=0 处 突变值为P 如变号 无变化
有极值 尖角指向同P 有极值 有突变 M=0 有尖角
斜直线
→
↑
利用上述关系可迅速正确地绘制梁的内力图(简易法)
简易法绘制内力图的一般步骤:
(1)求支反力。 (2)分段:凡外力不连续处均应作为分段点, 如集中力和集中力偶作用处,均布荷载两端点等。 (3)定点:据各梁段的内力图形状,选定控制 截面。如集中力和集中力偶作用点两侧的截面、均 布荷载起迄点等。用截面法求出这些截面的内力值, 按比例绘出相应的内力竖标,便定出了内力图的各 控制点。
说明:
(a)M图画在杆件受拉的一侧。 (b)Q、N的正负号规定同梁。Q、N图可画在杆的 任意一侧,但必须注明正负号。 (c)汇交于一点的各杆端截 面的内力用两个下标表示,例如: MAB表示AB杆A端的弯矩。 MAB
例 作图示刚架的内力图
RB↑
←HA
VA→
CB杆:
由∑ X=0 可得: M = CD RB=42kN↑ HA=48kN←, H (左) A=6×8=48kN← 由∑M144 VA=22kN↓ 48 A=0 可得: MEB=MEC=42×3 ↑ (2)逐杆绘M图 R=126kN = 126 · m (下) B 192 MDC=0 CD杆: M =42 × 6-20 × 3 由 ∑Y=0 可得: CB MCD=48kN·m(左) =192kN· m(下) VA=42-20=22kN↓
3静定结构的内力计算
①简支梁
②外伸梁
③悬臂梁
3
二、梁的内力
1、内力计算法——截面法
P1
A
m
FAx
K
n
P2 B
8
斜梁介绍
工程中,斜梁和斜杆是常遇到的,如楼梯梁、刚架中的斜杆等。斜梁 受均布荷载时有两种表示方法: (1)按水平方向分布的形式给出(人群、雪荷载等),用 q 表示。 (2)按沿轴线方向分布方式给出(自重),用 q’ 表示。
q 与 q’间的转换关系:
qdx = qds q = q
cos
dM dx
= FQ
无荷载区段 平行轴线
FQ图
M图
斜直线
均布荷载区段 集中力作用处 集中力偶作用处
↓↓↓↓↓↓
+ -
二次抛物线
凸向即q指向
发生突变
+P -
出现尖点
尖点指向即P的指向
无变化
发生突变
m
两直线平行
注备
FS=0区段M图 FS=0处,M 平行于轴线 达到极值
12
三、叠加法作弯矩图
1. 叠加原理: 几个载荷共同作用的效果,等于各个载荷单独
吊杆
带拉杆的三铰拱
拉杆折线形
拉杆
花篮螺丝
带吊杆的三铰拱
3、三铰拱的内力计算
1)、拱的内力计算原理仍然是截面法。 2)、拱通常以受压为主,因此规定轴力以受压为正。 3)、计算时常将拱与相应简支梁对比,通过对比完成计算。
45
静定结构内力计算全解[详细]
从组成的观点,静定结构的型式: ✓悬臂式、简支式(两刚片法则) ✓三铰式(三刚片法则) ✓组合式(两种方式的结合)
悬臂式 三铰式
简支式 组合式
组合式结构中:
✓基本部分:结构中先组成的部分,能独立承载; ✓附属部分:后组成的以基本部分为支承的部分,不能独立 承载。
三铰拱作业:
y
100kN
1
A O
2m
20kN/m
4m 8m
2
B x
Hale Waihona Puke 2m求图示抛物线拱的1、2截面的内力。
三、三铰拱的合理拱轴线
使拱在给定荷载下只
M M 0 FH y 0 产生轴力的拱轴线,被
y M0
称为与该荷载对应的合 理拱轴
FH
三铰拱的合理拱轴线 的纵坐标与相应简支梁弯 矩图的竖标成正比。
Mik
i
FQik
Mik
i
Fiy
q Mki
k
FQki q
Mki
k
Fky
叠加法作弯矩图: 叠加法作弯矩图:
+
要点:先求出杆两端 截面弯矩值,然后在 两端弯矩纵距连线的 基础上叠加以同跨度、 同荷载简支梁的弯矩 图。
§3 静定多跨梁与静定平面刚架
一、静定多跨梁 多根梁用铰连接组成的静定体系。
AB、CD梁为基本部分 BC梁为附属部分。
2、求支座反力和内部约束力
根据组成和受力情况,取整个结构或部分结构为隔离 体,应用平衡方程求出。
B
B
F
F
FBy
A FC
FAx A FAy
结构力学第三章静定结构的受力分析
例2: MA
A
MA
FP L/2 L/2
FP
MB
B 结论
把两头的弯矩标在杆
端,并连以直线,然
后在直线上叠加上由
节间荷载单独作用在
简支梁上时的弯矩图
MB MA
FPL/4
FPL/4
2020年5月29日星期五7时56分M25秒B
§3-1 梁的内力计算的回顾
3)画剪力图
要求杆件上某点的剪力,通常是以弯矩图为
C
B FQBA
由: MA 0 FQBA (81 26) 2 9kN
也可由: Y 0 FQCA 17 8 9kN
剪力图要注意以下问题: ▲ 集中力处剪力有突变; ▲ 没有荷载的节间剪力是常数; ▲ 均布荷载作用的节间剪力是斜线; ▲ 集中力矩作用的节间剪力是常数。
2020年5月29日星期五7时56分25秒
L/2
M/2
FPL/4
L/2
M
M/2
2020年L5/月229日星期五L7/时2 56分25秒
§3-1 梁的内力计算的回顾
2)用叠加法画简支梁在几种简单荷载共同作用下 的弯矩图
例1: MA
q
MB
q
A
B=
qL2/8
MA
MB
+
+
MA
=A
qL2/8
MB
B
2020年5月29日星期五7时56分25秒
§3-1 梁的内力计算的回顾
2020年5月29日星期五7时56分25秒
§3-1 梁的内力计算的回顾
正 MAB
杆端内力
FNAB
A端 FQAB
MBA 正
B端
FNBA
FQBA
结构力学--第3章静定结构内力计算
FB y 40kN
FC y 60kN
组合结构——样例
E
A B
2m
10kN/m
C
6m
6m
F
3m
G
D
2m
ME 0 MF 0
6FQC 3FNC 180 0
6FQC 3FNC 180 0 FQC 0 FNC 60 kN
Fx 0 FNAE sin FNC 0
FNAE 30 13 kN
M A 0 FNa FP (压力)
Y 0 FAy FP
取整体隔离体:
ME 0
取隔离体HGB:
FBy FP
Y 0 FNb 0
E FNa
A
FAy
F
FP
FNCE
H
FNb
GB
FP
FP
作业:
▪ 第3章 3-20 3-21 3-22 ▪ P65 思考题3 ▪ 第5章 5-9 5-20
10 kN E 2
20 kN
F
C
1 10 kN
A
0 kN
D
B Fx 0 M A 0
20 kN
●再取CEB刚片作隔离体求1、2杆轴力
10 kN E
FN2
C FN1
FNBD
MB 0 FN1 0 kN
B
20 kN
Fx 0 FN2 10 kN
三刚片求解过程示例
FP
CD
A
E
l
B
F
G
llll
★如何求B支座反力?
D A
F G
FP E
C
B
x FBPy 0.5FP F G
D
E x 1
A
B
F By 1.5
东北石油大学结构力学考试题库3章静定结构的内力计算
第三章 静定结构的内力计算内容提要1、静定梁(1) 内力。
静定梁在任意荷载作用下,其截面上一般有三个内力分量,即轴力N F 、剪力s F 和弯矩M 。
内力符号规定如下:轴力以拉力为正,剪力以绕隔离体内部任一点顺时针转动为正,弯矩以使梁的下边纤维受拉力正。
(2) 内力图。
内力图是反映结构中各个截面上内力变化规律的图形。
其绘制方法可归纳如下:1)基本法。
先用理论力学的基本方法求外力;再用结构力学理论列内力方程;最后用数学方法绘图2)微分关系法。
在直梁中荷载集度q 、剪力s F 弯矩M 之间有如下关系(荷载集度向上为正):)()(x q dxx dF s = )()(x F dxx dM s = )()(22x q dx x M d = 以外力不连续点为分段点,如集中力及力偶作用点、分布荷载的两个端点等。
用截面法求得各分段点截面上的内力值,再由上述微分关系式可描绘出内力图的形状。
3)区段叠加法。
当梁段上作用有几个荷载时,则可用叠加原理绘制梁段的内力图。
先求出杆段始端、末端的弯矩竖标,连一虚直线,然后以该连线为基线,叠加相应简支梁在区段荷载作用下的弯矩图。
(3)多跨静定梁是主从结构,由附属部分和基本部分组成。
其受力特点是:外力作用在基本部分时,附属部分不受力;外力作用在附属部分时,附属部分和基本部分都受力。
其计算方法是:先算附属部分,将附属部分上的反方向加在基本部分上,再算基本部分。
所以多跨静定梁可以拆成若干个单跨梁分别进行内力计算,然后将各单跨梁的内力图连在一起即可得多跨静定梁的内力图。
上述多跨静定梁的计算方法,同样适用于其他型式的主从结构。
2.静定刚架静定刚架的内力计算方法,原则上与静定梁相同。
通常先由理论力学的基本方法求出支座反力,然后按静定梁计算内力的方法杆绘制内力图。
在绘制刚架的弯矩图时,不定义弯矩的正负号,只将弯矩图绘在杆件的受拉侧,剪力、轴力的正负号规定与静定梁相同。
3.三铰拱(1)水平推力。
第三章静定结构的内力计算(精)
第三章静定结构的内力计算学习目的和要求不少静定结构直接用于工程实际,另外,它还是静定结构位移计算及超静定结构的计算基础。
所以静定结构的内力计算是十分重要的,是结构力学的重点内容之一。
通过本章学习要求达到:1、练掌握截面内力计算和内力图的形状特征。
2、练掌握截绘制弯矩图的叠加法。
3、熟练掌握截面法求解静定梁、刚架及其内力图的绘制和多跨静定梁及刚架的几何组成特点和受力特点。
4、了解桁架的受力特点及按几何组成分类。
熟练运用结点法和截面法及其联合应用,会计算简单桁架、联合桁架既复杂桁架。
5、掌握对称条件的利用;掌握组合结构的计算。
6、熟练掌握截三铰拱的反力和内力计算。
了解三铰拱的内力图绘制的步骤。
掌握三铰拱合理拱轴的形状及其特征学习内容梁的反力计算和截面内力计算的截面法和直接内力算式法;内力图的形状特征;叠加法绘制内力图;多跨静定梁的几何组成特点和受力特点。
静定梁的弯矩图和剪力图绘制。
桁架的特点及分类,结点法、截面法及其联合应用,对称性的利用,几种梁式桁架的受力特点,组合结构的计算。
三铰拱的组成特点及其优缺点;三铰拱的反力和内力计算及内力图的绘制;三铰拱的合理拱轴线。
§3.1梁的内力计算回顾一、截面法1、平面杆件的截面内力分量及正负规定:轴力N (normal force) 截面上应力沿轴线切向的合力以拉力为正。
剪力Q (shearing force)截面上应力沿轴线法向的合力以绕隔离体顺时针转为正。
弯矩M (bending moment) 截面上应力对截面中性轴的力矩。
不规定正负,但弯矩图画在拉侧。
2、截面内力计算的基本方法:截面法:截开、代替、平衡。
内力的直接算式:直接由截面一边的外力求出内力。
1、轴力=截面一边的所有外力沿轴切向投影代数和。
2、剪力=截面一边的所有外力沿轴法向投影代数和,如外力绕截面形心顺时针转动,投影取正否则取负。
3、弯矩=截面一边的所有外力对截面形心的外力矩之和。
弯矩及外力矩产生相同的受拉边。
结构力学I-第三章 静定结构的受力分析(桁架、组合结构)
Y 0 FNEC sin FNED sin FNEA sin 10 kN 0
联立解出
FNEC FNED 10 5 33.5 思考:能否更快呢? FNEC 22.36 kN, FNED 11.18 kN
00:44
静定平面桁架
• 桁架的内力计算
由力矩平衡方程 ∑ ME = 0,可求CD杆内力。
FA×d - FNCD×h = 0
FNCD = FAd / h = M0E / h
F1 F2 F3 F4 F5
M0E FA
6d
M FB
若M0E > 0,则FNCD >0 (下弦杆受拉 )
M0E是什么?
00:44
I
II
静定平面桁架
I
II
• 桁架的内力计算
简支梁
悬臂梁
伸臂梁
刚架:受弯构件,由若干直杆联结而成的结构,其中全部或部份 结点为刚结点;
A
D
B
C
简支刚架
悬臂刚架
三铰刚架
00:44
回顾
• 结构内力图
M–AB (表0) 示结构上各截面内力值的图形:弯矩图、M剪BA (0)
力图、A端轴力图;
A
B
FNA横B 坐标 -- 截面位置;
内力图 - 弯矩
A
FA
FB
– 截面法
• 例1:试求图示桁架中杆EF、ED,CD,DG的内力。
解: ⑶ 求上弦杆EF内力,力矩法;
取 ED 和 CD 杆 的 交 点 D 为 矩 心 , 先 求 EF 杆 的 水 平 分 力
FxEF,由力矩平衡方程∑MD = 0,
FA×2d - F1×d + FxEF×H = 0
《结构力学》第三章 静定结构内力计算(1)
技巧:“求谁不管谁”:不考虑待求未知力,而考虑其
它未知力有什么特点,具体分为下面两种情况:
(a)其余未知力平行,在其垂直方向投影。
(b)其余未知力汇交于一点,对该点取矩。
X 0,X A 0;
1
1
MB
0,YA
l ql
l 2
0,YA
ql 2
Y
0,YA
YB
ql
0,YB
1 2
ql
step2:求指定截面内力 (1)取脱离体:从指定c截面截开梁,取左半脱离体为 研究对象,受力如图所示:
轴力、剪力 符号规定
梁、拱的弯 矩符号通常 假定使下侧 受拉为正
2、杆件任一截面上内力的计算---截面法
沿计算截面用一假想截面将构件切开,任取一侧 脱离体为研究对象,利用脱离体的静力平衡条 件,可建立三个平衡方程:
X 0,Y 0,M 0
由此就可求得杆件任一截面上的内力。
注意:
• 脱离体要与周围的约束全部断开,并用相应的约束力 代替。例如,去掉辊轴支座、铰支座、固定支座时应 分别添加一个、二个以及三个支座反力,等等。
(二)简支结构
通过一铰、一链杆或三根链杆与基础相连的结构。
(三)三铰结构
若结构体系(不含基础)有两个刚片,其与基础 的连接满足三刚片法则,则称该体系为三铰结 构。
(四)组合结构
多次运用几何不变体系的简单组成规则构成的结 构。
2、静定结构内力分析(即绘制内力图) 方法
有三种常用的绘制内力图的方法。
(2)熟记几种常见单跨梁的弯矩图,如悬臂梁、简
支梁等。特别记住简支梁在均布荷载、集中力以及集 中力偶作用下的弯矩图。
(1)
(2) (3)
梁长均为L
第三章静定结构受力分析
内力的概念和表示在平面杆件的任意截面上,将内力一般分为三个分量:轴力F N 、剪力F Q 和弯矩MM A轴力----截面上应力沿杆轴切线方向的合力。
轴力以拉力为正。
剪力----截面上应力沿杆轴法线方向的合力。
剪力以绕微段隔离体顺时针转者为正。
内力的概念和表示弯矩----截面上应力对截面形心的力矩。
在水平杆件中,当弯矩使杆件下部受拉时,弯矩为正。
作图时,轴力图和剪力图要注明正负号,弯矩图规定画在杆件受拉的一侧,不用注明正负号。
内力的计算方法梁的内力的计算方法主要采用截面法。
截面法可用“截开、代替、平衡”六个字来描述:1.截开----在所求内力的截面处截开,任取一部分作为隔离体;隔离体与其周围的约束要全部截断。
2.代替----用截面内力代替该截面的应力之和;用相应的约束力代替截断约束。
3.平衡----利用隔离体的平衡条件,确定该截面的内力。
内力的计算方法利用截面法可得出以下结论:1.轴力等于截面一边的所有外力沿杆轴切线方向的投影代数和;2.剪力等于截面一边所有外力沿杆轴法线方向的投影代数和;3.弯矩等于截面一边所有外力对截面形心力矩的代数和。
以上结论是解决静定结构内力的关键和规律,应熟练掌握和应用。
分段叠加法画弯矩图1.叠加原理:几个力对杆件的作用效果,等于每一个力单独作用效果的总和。
= +=+2.分段叠加原理:上述叠加法同样可用于绘制结构中任意直杆段的弯矩图。
例例:下图为一简支梁,AB段的弯矩可以用叠加法进行计算。
(1)(2)(3)(4)静定多跨连续梁的实例现实生活中,一些梁是由几根短梁用榫接相连而成,在力学中可以将榫接简化成铰约束,这样由几个单跨梁组成几何不变体系,称作为静定多跨连续梁。
下图为简化的静定多跨连续梁。
静定多跨梁的受力特点结构特点:图中AB依靠自身就能保持其几何不变性的部分称为基本部分,如图中AB;而必须依靠基本部分才能维持其几何不变性的部分称为附属部分,如图中CD。
受力特点:作用在基本部分的力不影响附属部分,作用在附属部分的力反过来影响基本部分。
第三章河海大学结构力学
2.弯矩图 杆AC
M AC 0 M CA 8 4 3 4 2 8kN m
右侧受拉
M CE M CA 8kN m
下侧受拉
杆BE
M BE 0
M EB 4 1 4kN m(右侧受拉)
MEC =4 1 4kN gm(上侧受拉)
用叠加法作弯矩图
第三章 静定结构的内力计算
§3-1 §3-2 §3-3 §3-4 静定结构的一般概念 静定平面刚架 三铰拱 静定桁架
§3-5
§3-6
静定组合结构
静定结构的特性
§3-1
静定结构的一般概念
一、静定结构的定义
定义:一个几何不变的结构,在荷载等因素作用下其结构的全部支座反力 和内力均可由静力平衡条件唯一确定的结构称静定结构
2、三铰拱各部分的名称
1 矢高于跨度之比 f l 称为矢跨比,一般 f l由 到 1。 10
3、拱轴线:一般有抛物线、圆弧线和悬链线等。
4、带拉杆的三铰拱
二、三铰拱的计算
1.支座不等高的三铰拱受一般荷载。
支座反力:
M M
B A
0 0
M M
L C R C
0 0
解出 解出
FyA、FxA FyB、FxB
FN ——以拉为正; M ——使拱下边纤维受拉为正。
要使截面上只出现压应力,则要求: e
h 6
拱通常采用抗拉强度低的建筑材料,如混凝土、砖、石等,所以设计 时,最好能使拱的所用截面内压力的作用线不超出截面的中三分段 (核心)的范围。
例 力、内力,作内力图。
图示三铰拱,拱轴线方程 y
4f x(l x), l 16m, f 4m ,试计算反 l2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A A A A 0 0 0 0
0 0 0 0
8 8 8 8
HC
3、求梁式杆内力 处理结点A处力
结构力学
第3章静定结构的内力计算
静定结构特性
结构力学
第3章静定结构的内力计算
静定结构特性 静定结构特性 一、结构基本部分和附属部分受力影响
A
F1
B
C
F2
D
E
F3
F
如只有 F1 作用。则Ⅱ、Ⅲ无内力和反力; Ⅰ Ⅱ Ⅲ 如只有 F1 作用。则Ⅱ、Ⅲ无内力和反力; 如只有 F1 作用。则Ⅱ、Ⅲ无内力和反力; 如只有 F3 作用。则Ⅰ、Ⅱ均有内力和反力; 如只有 F3 作用。则Ⅰ、Ⅱ均有内力和反力; 如只有 F3 作用。则Ⅰ、Ⅱ均有内力和反力; 如只有 F2 作用。则Ⅲ无内力和反力,但Ⅰ有内力和反力。 如只有 F2 作用。则Ⅲ无内力和反力,但Ⅰ有内力和反力。 特性一、静定结构基本部分承受荷载作用,只在基本部分上产 如只有 F2 作用。则Ⅲ无内力和反力,但Ⅰ有内力和反力。 生反力和内力;附属部分上承受荷载作用,在附属部分和基本 部分上均产生反力和内力。
第3章静定结构的内力计算
q = 1 kN/m A FR Ax FR Ay FNDA F C FNFD VC
8 8 8 8
M M图 图 ( m M图 (kN· kN· m) ) M 图 (kN· m) (kN· m) F 图 FQ 图 Q ( ) FkN 图 ( kN Q ) FkN 图 ( Q ) (kN) F 图 FN N图 ( ) FkN ( kN ) N图 FkN N图 ( ) (kN)
结构力学
第3章静定结构的内力计算
二、平衡荷载的影响
F C B D
A B q C
F A C F /2 F /2 B
A F /2
E
3a a 2a 2a
F /2
特性二、如果由一组平衡力系组成的荷载作用在静定结构的某 一几何不变部分,则结构其余部分的内力为零。
结构力学
第3章静定结构的内力计算
三、等效荷载的影响
A
F
C
G
B
D
E
五角形屋架
计算内力时一般先求桁架式 杆轴力,再求梁式杆内力。
结构力学
第3章静定结构的内力计算
例题
试求图示静定组合结构内力
q = 1 kN/m A B D
2×4=8m
解:1、求支反力
FRB 4kN
1m
FRAy 4kN
FR Ax FR Ay
F
C
G E
DF、EG杆是否为零杆?
FR B
AD杆轴力计算,取结点A?
FNAF FR Ax FR Ay
AFC杆为梁式杆!
FNDA
结构力学
第3章静定结构的内力计算
例题
试求图示静定组合结构内力
q = 1 kN/m A
解:1、求支反力
FRB 4kN
B E
1m
FRAy 4kN
n-n截面
n
2、求桁架式杆轴力 DE联系杆
FR Ax FR Ay
8.96 F-4
结构力学
第3章静定结构的内力计算
静定组合结构内力计算
结构力学
第3章静定结构的内力计算
概述
组合结构是由梁式杆(受弯杆)与桁架式杆(轴力杆)混合组 成的结构,也称构架。 结点有刚结点、铰结点和组合结点 优点:可以采用力学性能不同的材料,重量轻,施工方便,适 用于各种跨度的建筑物。
q
桁架式杆:只有轴力 梁式杆:轴力、剪力、弯矩
q C A l/2 l/2 B
A l/2 l/2 ql/2 C B
q C A ql/2 l/2 l/2 B
荷载
F1 S1=S2
BC杆内力 S1
F2 S2
F3 F1 (-F2 )=F1 -F2 S3 S1 (S2 )=S1 S2 0
特性三、作用在静定结构的某一几何不变部分的荷载作等效变 换时,其余部分内力不变。
结构力学
第3章静定结构的内力计算
四、内部组成变换的影响
F
F
A B
A
B
C A D B
F A
C D
2F
F B
F
F
F
F
特性四、结构某一几何不变部分变换为另一几何不变部分形式 时,其余部分杆件内力不变。
结构力学
第3章静定结构的内力计算
五、温度改变和支座移动等的影响
A
t1
t2
温度改变
B
A
B
B'
B'
支座移动
x y
0 FNDA 8.96kN 0 FNDF 4kN
结构力学
q q= =1 1 kN/m kN/m q = 1 kN/m q = 1 kN/m F F C F C F4 4 C C 2 4 2 4 0.5 2 0.5 2 0.5 0.5 2 2 2 2
2 2 2 2 8 8 8 8
特性五、静定结构,除荷载外,温度改变、支座移动、制造误 差、材料收缩等因素不产生反力和内力。
D
C
G
8 n
FR B
2×4=8m
m
C
0 FNDE 8kN
q = 1 kN/m A FR Ax FR Ay D
FNDF FNDA
F
C
VC
FNDE
0 MC 或 FNDE =8kN f HC Fx 0 HC 8kN Fy 0 VC 0
其它桁架式杆
结点D
D
FNDE
F F
特性五、静定结构,除荷载外,温度改变、支座移动、制造误 差、材料收缩等因素不产生反力和内力。结构力学第3章静定结构的内力计算
静定结构特性
特性一、静定结构基本部分承受荷载作用,只在基本部分上产 生反力和内力;附属部分上承受荷载作用,在附属部分和基本 部分上均产生反力和内力。 特性二、如果由一组平衡力系组成的荷载作用在静定结构的某 一几何不变部分,则结构其余部分的内力为零。 特性三、作用在静定结构的某一几何不变部分的荷载作等效变 换时,其余部分内力不变。 特性四、结构某一几何不变部分变换为另一几何不变部分形式 时,其余部分杆件内力不变。