提升系统选型计算

合集下载

人工挖孔桩提升设备计算书

人工挖孔桩提升设备计算书

人工挖孔桩提升设备计算书一、工程概述本工程为_____,人工挖孔桩的施工需要使用提升设备来吊运土石方和施工材料等。

为确保施工安全,需对提升设备进行详细的计算和选型。

二、提升设备选型根据工程实际情况和施工要求,选用电动卷扬机作为人工挖孔桩的提升设备。

三、荷载计算(一)吊桶自重选用的吊桶重量约为_____kg。

(二)吊运物重量考虑每次吊运的土石方或材料重量,平均约为_____kg。

(三)吊索重量吊索采用_____规格的钢丝绳,其单位长度重量约为_____kg/m,根据实际吊运高度计算出吊索重量。

(四)风荷载根据当地气象资料,计算风荷载对提升设备的影响。

风荷载标准值按照公式:ωk =βzμsμzω0 计算,其中βz 为高度 z 处的风振系数,μs为风荷载体型系数,μz 为风压高度变化系数,ω0 为基本风压。

四、卷扬机牵引力计算(一)垂直提升力垂直提升力 F1 =(吊桶自重+吊运物重量+吊索重量)× g ,其中 g 为重力加速度,取 98m/s²。

(二)摩擦力考虑吊桶与孔壁之间的摩擦力 F2 ,根据实际情况选取摩擦系数进行计算。

(三)风阻力风阻力 F3 按照风荷载计算结果进行取值。

(四)总牵引力卷扬机所需的总牵引力 F = F1 + F2 + F3 。

五、卷扬机功率计算功率 P = F × v /η ,其中 v 为提升速度,η 为卷扬机的传动效率。

六、钢丝绳强度验算(一)钢丝绳破断拉力选用的钢丝绳规格为_____,根据相关标准查得其破断拉力总和。

(二)安全系数验算钢丝绳的安全系数 K =钢丝绳破断拉力/实际最大拉力,应满足相关规范要求的安全系数。

七、卷筒直径验算卷筒直径D ≥ d × e ,其中 d 为钢丝绳直径,e 为卷筒直径与钢丝绳直径的比值,根据规范选取合适的 e 值进行验算。

八、制动装置验算(一)制动力矩验算根据卷扬机的技术参数和实际荷载,验算制动装置的制动力矩是否满足要求。

汽车发动机、传动系统及轮胎选型计算公式

汽车发动机、传动系统及轮胎选型计算公式

汽车发动机、传动系统及轮胎选型计算公式一、发动机选型计算公式汽车发动机选型是指根据车辆的需求和性能要求,确定合适的发动机型号和参数。

以下是一些常用的发动机选型计算公式:1. 马力计算公式:马力 = (扭矩 ×转速) / 5252其中,马力表示发动机的输出功率,单位为马力;扭矩表示发动机的输出扭矩,单位为磅英尺;转速表示发动机的转速,单位为每分钟。

2. 排量计算公式:排量= (π/4) × (缸径^2) ×行程 ×缸数其中,排量表示发动机的容积,单位为立方厘米;π为圆周率;缸径表示汽缸的直径,单位为厘米;行程表示活塞从上止点到下止点的位移,单位为厘米;缸数表示发动机的汽缸数目。

3. 燃油消耗率计算公式:燃油消耗率 = 发动机燃料消耗量 / 行驶里程其中,燃油消耗率表示单位行驶里程所消耗的燃料量,单位为升/百公里;发动机燃料消耗量表示发动机在单位时间内消耗的燃料量,单位为升/小时;行驶里程表示汽车的行驶里程,单位为公里。

二、传动系统选型计算公式传动系统选型是指根据发动机的转速和轮胎的直径等参数,确定适合的传动比和齿轮比。

以下是一些常用的传动系统选型计算公式:1. 传动比计算公式:传动比 = 输出轴转速 / 输入轴转速其中,传动比表示传动系统的转速比;输出轴转速表示传动系统输出轴的转速,单位为转/分钟;输入轴转速表示传动系统输入轴的转速,单位为转/分钟。

2. 齿轮比计算公式:齿轮比 = 齿轮2的齿数 / 齿轮1的齿数其中,齿轮比表示齿轮传动中两个齿轮齿数之比;齿轮2的齿数表示第二个齿轮的齿数;齿轮1的齿数表示第一个齿轮的齿数。

三、轮胎选型计算公式轮胎选型是指根据车辆的重量和行驶条件,选择合适的轮胎尺寸和负荷能力。

以下是一些常用的轮胎选型计算公式:1. 单位载荷计算公式:单位载荷 = 总重量 / 轮胎数量其中,单位载荷表示每个轮胎所承受的重量,单位为千克/轮胎;总重量表示车辆的总重量,单位为千克;轮胎数量表示车辆所使用的轮胎数量。

第六章主立井单绳缠绕式提升设备的选型计算

第六章主立井单绳缠绕式提升设备的选型计算

第六章主立井单绳缠绕式提升设备的选型计算一、提升容器的选择1.确定合理的经济速度立井提升的合理经济速度为V j =√H式中V j —经济提升速度,m /s ;H ——提升高度,m ;H=H s +H x +H zH x --卸载水平与井口高差,简称卸载高度,m ,箕斗:H x =18m 一25m ,罐笼H x =0;Hz ——装载水平与井下运输水平高差,简称装载高度,m ,箕斗:H z =18m~25m ,罐笼H z =0; H s —井筒深度,m 。

2.估算一次提升循环时刻(按五时期速度图估算)式中T j --依据经济提升速度估算的一次提升循环时刻,s ;a —提升加速度,m /s 2,在以下范围内选取:罐笼提升时,≤/s 2,箕斗提升时,≤/s 2;u —容器爬行时期附加时刻,箕斗提升可取10s ,罐笼提升可取5s ;θ—休止时刻。

3、计算一次合理的经济提升量式中rn j --一次合理的经济提升量,t ;A n —矿井年产量,t /a ;C —提升不均衡系数,关于主井提升设备:有井底煤仓时,1.1~1.15,无井底煤仓时,1.2; a f ——提升能力富裕系数,主井提升设备对第一水平应留有1.2的富裕系数;b r ——提升设备年工作日数,一般取b r =300d ;t ——提升设备日工作小时数,一般取t=14h 。

依据计算出的一次合理的提升量m j 取之相近的标准容器,并列表记录其技术规格。

4.确定实际一次提升循环时刻T ′x 及完成年产量An 的最大提升速度V ′m 。

(1) 依据所选出的型号,计算一次提升循环所需要的时刻为(2) 计算提升机所需的提升速度二、提升钢丝绳的选择计算中选定标准容器之后,那么可按下边的公式计算钢丝绳每米质量m-----一次提升货载质量,kgM z ——提升容器自身质量,kg ;m p —提升钢丝绳每米质量,kg /m ;g —重力加速度,m /s 2;H c —钢丝绳最大悬垂长度,m ,H s --井筒深度,m ;H z —装载高度,m ,罐笼提升,Hz=0,箕斗提升,Hz=18m 一25m ;H j ——井架高度,井架高度在尚未精确确定时,可按下面数值选取:罐笼提升,15m 一25m ;箕斗提升,30m ~35m 。

(完整版)矿井提升设备选型设计

(完整版)矿井提升设备选型设计

第三章矿井提升设备选型设计第一节提升方式的确定及提升设备选型依据一、矿并提升设备的作用矿井提升设备是矿井重要的大型机电设备之一,它是联系矿井井下与地面时主要生产设备.矿井提升设备的任务是提升有益矿物(煤炭、矿石等)和矸石,升降人员和设备,下放材料等。

矿井提升设备的工作特点是在一定的距离内,以变速和匀速作往复直线运动,而且起动和停止频繁,因此它须具有良好的控制系统和完善的保护装置,以保证安全可靠地运转。

矿井提升设备的合理选型和正确的维护、管理和使用,对确保矿井提升设备的经济与安全运转具有重大的意义.二、矿井提升设备的组成部分矿井提升设备一般包活捉升机、电动机、提升钢丝绳、提升容器、天轮、井架、装卸载设备,以及电控设备与安全保护装置等.矿井提升机主要由缠绕机构(或主导轮)、减速器、联铀器、离合器、制动系统、深度指示器、液压站及操纵台等部分组成。

三、矿井提升系统根据提升方式的不同,矿井提升系统可分为以下几种:(1)竖并普通罐笼提升系统(2)竖井箕斗提升系统(3)斜井箕斗提升系统(4)斜井串车提升系统四、矿井提升设备的分类(一)按用途分类(1)主井提升设备,专供提升煤炭用的提升设备。

在特大、大和中型矿井,提升容器多采用箕斗,小型矿井多采用罐笼或矿车;(2)副井提升设备,专供提升歼石、升降人员、运送材料和设备的提升设备。

提升容器多为普通罐笼或翻转罐笼。

(二)按缠绳机构的型式分类(1)单绳缠绕式提升机,即等直径圆柱形卷筒提升机,多用于井深在350m以下的大、中、小型矿井提升,此外还有变直径圆柱圆锥形卷筒提升机;(2)多绳摩擦式提升机,适用于井筒较深、产量较大的矿井提升.(三)按井筒倾角分类(1)竖并提升设备;(2)斜井提升设备.(四)按提升容器分类(1)罐笼提升设备;(2)箕斗提升设备;(3)串车提升设备;斜井串车提升(5)吊桶提升设备。

(五)按拖动装置分类(1)交流感应电动机施动的提升设备;(2)直流电动机施动的提升设备;(3)液压传动的提升设备。

矿山机械课程设计矿井提升设备选型计算

矿山机械课程设计矿井提升设备选型计算

选择卷筒(或摩擦轮)直径D的主要原则是使钢丝绳在卷筒
(或摩擦轮)上缠绕时不致产生过大的弯曲应力,以保证钢 丝绳的一定承载能力和使用寿命。
理论和实践都证明,绕经卷筒和天轮的钢丝绳弯曲应力大小
及其使用寿命,取决于卷筒与钢丝绳直径的比值。《煤矿安全
规程》规定:
缠绕式提升机地面安装DD
80d
1200
井下安装DD
17:25
设计依据
4
⑴主井提升 ①矿井年产量An t/年; ②工作制度:年工作日br,日工作小时t。《煤矿工业设计规 范》规定,br=300天,t=14h; ③矿井开采水平数、各水平井深Hs及各水平的服务年限; ④提升方式:箕斗或罐笼; ⑤卸载水平与井口的高差(卸载高度)Hx,m; ⑥装载水平与井下运输水平的高差(装载高度)Hz,m; ⑦煤的松散密度,t/m3; ⑧矿井电压等级。
(m mz ) / n1
b ma 0 g
Hc
提升钢丝绳根数
Hx H
Hs
验算公式为 每根提升钢丝绳每米质量
H0
Qq (m mz )g / n1 mp gHc
ma
Hz Hh
A Hc
17:25
② 对于重尾绳,Δ= n2 mq-n1 mp > 0。当重容器在井口卸载位置时,主绳
在A点受最大静拉力,其值为 27
6
提升容器计算和选择 提升钢丝绳计算和选择 提升机滚筒直径的计算和选择 天轮直径的计算和选择 电动机功率初选 提升机与井筒相对位置计算 运动学及动力学计算 初选电动机功率的验算 主井提升吨煤电耗及效率计算 副井提升最大班作业时间平衡表制定
17:25
第二节 提升容器的选择计算
7
1. 小时提升量Ah

提升机技术参数及设备选型过程

提升机技术参数及设备选型过程

提升机技术参数及设备选型过程矿井提升机技术参数介绍及设备选型过程目录一、提升机相关参数二、选型过程三、MA标志查询办法四、提升系统设计内容与步骤。

五、电机功率选择与校核一、技术参数1、卷筒宽度和直径2、两卷筒中心距3、最大静张力、最大静张力差4、钢丝绳直径、绳速5、提升高度、容绳量6、减速器速比7、电机功率、极数、电机型号简介8、变位质量JK-2/2JK-2提升机技术参数表1、卷筒宽度和直径卷筒直径:提升机卷筒上第一层钢丝绳中心到卷筒中心距离的2倍。

绞车卷筒的直径为:卷筒缠绳表面到卷筒中心距离的2倍。

二者概念有差别,相差1根钢丝绳的直径。

卷筒宽度:卷筒两个挡绳板内侧直间的距离。

卷筒直径和宽度决定了卷筒使用钢丝绳的最大直径和容绳量2、最大静张力和最大静张力差JK-2型提升机的最大静张力161KN,2JK-2型绞车的最大静张力和最大静张力差分别为61KN、40KN。

钢丝绳的张力,也就是钢丝绳的拉力。

在单钩提升时,滚筒上只有一根钢丝绳,其拉力主要由提升容器、钢丝绳、提升载荷的重力构成。

拉力最大值在天轮的切点处,载荷越大、井筒越深、容器重量越大钢丝绳的拉力就越大。

最大静张力是针对提升机而言的,是强度允许的,滚筒上最大的拉力值双钩提升时,滚筒上有两条钢丝绳,重载钢丝绳的拉力大,轻载钢丝绳的拉力小,两根钢丝绳拉力的差值就是静张力差。

最大静张力差就是静张力差的最大值,是绞车强度所允许的,滚筒上两根钢丝绳拉力差的最大值。

通过以上分析,我们可以这样来理解二者。

对于单滚筒绞车,只有最大静张力,没有最大静张力差。

最大静张力就是绞车强度所允许的容器、钢丝绳、提升载荷自重的总和。

单位为重力单位:KN,最大静张力的值除9.8就为上述三者的质量。

即为提升量的质量,单位为:kg。

对于双滚筒绞车。

最大静张力也是绞车强度所允许的容器、钢丝绳、提升载荷自重的总和。

而最大静张力差是绞车强度所允许的钢丝绳、提升载荷自重的总和。

单位为重力单位:KN,KN除9.8就为提升量的质量,单位为:kg 最大静张力为什么分为载人和载物?二者的数值不同?是因为提升人员和物料时,其安全系数要求不同,提人要求9倍的安全系数,提物要求7.5倍的系数。

缠绕式提升机选型方法和步骤

缠绕式提升机选型方法和步骤

缠绕式提升机选型方法和步骤1.提升容器的选择1)小时提升量:式中-----不均衡系数。

《规范》规定:有井底煤仓时为1.10~1.15;无井底煤仓时为1.20;----提升能力富裕系数。

2)提升速度:式中---提升距离,罐笼提升时:;箕斗提升时:。

3)一次提升时间估算:式中---提升正常加速度,通常;---容器启动初加速及爬行段延续的时间,取5~10s;---提升容器在每次提升终了后的休止时间,s。

4)一次提升量的确定:2.钢丝绳的选择1)钢丝绳的端部荷重:立井:式中---容器的载重量,即实际一次提升量,kg ;---容器(包括连接装置)的重量,kg 。

斜井:式中---井筒的倾角;---提升容器在倾坡运输道上运动的阻力系数。

2)钢丝绳的单重:立井:斜井:式中---钢丝绳的公称抗拉强度,一般选=155~170;m----钢丝绳的静力安全系数;---提升距离, m ;---钢丝绳的摩擦阻力系数;---井架高度, m 。

---钢丝绳的最大悬垂长度,m 。

箕斗提升:罐笼提升:3.提升机的选择1)滚筒直径:;式中:---滚筒的计算直径,mm ;---已选定的钢丝绳直径,mm ;---已选定的钢丝绳中最粗钢丝的直径,mm 。

2)滚筒缠绕宽度及缠绕层数计算:单滚筒单层单钩提升:;单滚筒单层双钩提升:式中:---定期试验用的钢丝绳长度,一般取30m ;d---钢丝绳直径,mm;---钢丝绳在滚筒上缠绕时,钢丝绳间的间隙。

3)钢丝绳作用在滚筒上的力:a)钢丝绳作用在滚筒上的最大静张力:立井:;斜井:。

b)钢丝绳作用在滚筒上的最大静张力差:立井:;斜井:。

4.提升系统的确定1)天轮直径:;2)井架高度计算:立井:箕斗提升:;罐笼提升:式中:---容器的全高, m;---天轮半径, m;---过卷高度;---箕斗在卸煤位置时,高出卸载煤仓溜煤口的高度,一般取0.3~0.5m 。

斜井:斜井甩车场:式中:---钢丝绳从井口至天轮接触点的斜长,m;---钢丝绳的倾角。

矿山提升设备选型2

矿山提升设备选型2
于9;提升物料时不得小于7.5;混合提升时不 得小于9; 3、专为升降物料用的钢丝绳不得小于6.5。
PPT文档演模板
矿山提升设备选型2
第四节 提升机的选择计算
一、卷筒直径
原则:使钢丝绳绕经卷筒时所产生的弯曲应力不要过大,以便保
持钢丝绳的一定承载能力和使用寿命。
•绕经卷筒的钢丝绳弯曲应力的大小, 取决于卷筒和钢丝绳直径之比。 •《煤矿安全规程》规定: •对于安装于地面的提升机:
• D≥80d, mm
• D≥1200δ, mm •对于井下提升机:
• D≥60d, mm
• D≥900δ, mm
PPT文档演模板
矿山提升设备选型2
二、卷筒宽度
卷筒宽度应根据所需容纳的钢丝绳长度确定。在卷筒表 面应容纳以下几部分钢丝绳:
(1)提升高度H, m ; (2)钢丝绳试验长度,规定每半年剁绳头一次进行试验,
一次剁掉5m,如果钢丝绳的寿命以三年计,则试验长 度为30m; (3)卷筒表面应保留三圈摩擦圈,以便减轻钢丝绳在卷 筒固定处的张力;
(4)当钢丝绳在卷筒上作多层缠绕时,为了避免上下层 钢丝绳总是在一个地方过渡,每季要将钢丝绳错动约 1/4圈,根据钢丝绳的使用年限,取错绳圈=2~4圈。
• 对于单层缠绕,每个卷筒的宽度为:
矿山提升设备选型2
PPT文档演模板
2023/5/26
矿山提升设备选型2
第八章 竖井提升设备的选型计算
第一节 提升方式确定原则
选型设计依据和内容
一、提升方式确定原则 1、年产量An小于30万t的小型矿井,可用一套罐笼提升设备完成全
部主副井任务 。 2、年产量An大于60万t的大中型矿井,一般均设主副井两套提升设
• 2、变位质量计算的原则: • 必须保持该部件变位前后的动能相等。

提升泵房设计计算及设备选型和厂区布置

提升泵房设计计算及设备选型和厂区布置

提升泵房设计计算及设备选型和厂区布置泵房是水处理工程中的重要设施,其设计计算及设备选型和厂区布置对于工程的运行效率和安全性至关重要。

本文将从提升泵房设计计算、设备选型和厂区布置的角度进行讨论。

一、提升泵房设计计算1.水量计算:在设计泵房时,需要首先明确需要提升的水量。

根据工程的需求,结合用水设备的用水量和用水时段的特点,可以计算出泵房的设计流量。

同时,还需要考虑峰值流量和容错能力,以确保泵房可以满足系统的需求。

2.扬程计算:泵房的扬程是指泵站泵入水的总扬程,包括输配水管道的摩擦阻力、管网高差、泵站出水管道的阻力等因素。

通过计算泵站的总扬程,可以选择符合扬程要求的泵体。

3.功率计算:泵站的功率计算是指泵站所需驱动装置的功率大小。

通常可以通过泵站的扬程和流量计算出功率,并选择适当的电机进行驱动。

二、设备选型1.泵的选型:根据需要提升的水量和所需扬程,可以选择合适的泵进行选型。

在选型时,还需要考虑泵的效率、稳定性、可靠性等因素,并根据现场条件选择合适的材料和结构。

2.控制系统的选型:泵房的控制系统是实现自动化控制和监测的重要组成部分。

根据泵房的特点和需求,选择合适的自动控制系统和监测仪器,以提高运行效率和安全性。

三、厂区布置1.建筑结构布置:泵房的建筑结构布置应考虑泵的安装位置、操作区域、设备维修通道等因素。

合理的布置可以提高操作的便利性和设备的维护率。

2.设备布局:不同设备之间的布局应科学合理,以保证泵房设备的安全运行和方便维护。

同时,还需要考虑管道的布置,以便于水的流向和调控。

3.前处理设施布置:根据水质特点,可能需要额外增设前处理设施,如细网过滤器、除磷、除氨等设备。

这些设备的布置也需要充分考虑操作的便利性和运行效率。

总结起来,提升泵房设计计算及设备选型和厂区布置需要综合考虑水量、扬程、功率等因素,并根据系统需求选择合适的设备。

同时,在厂区布置时需要考虑建筑结构、设备布局和前处理设施等方面的因素。

多绳摩擦提升系统首绳悬挂装置选型

多绳摩擦提升系统首绳悬挂装置选型

多绳摩擦提升系统首绳悬挂装置选型收稿日期:2022-07-24;修回日期:2022-10-05作者简介:谭清述(1988—),男,四川万源人,工程师,从事矿山提升系统、输送系统设计工作;福建省厦门市湖里区泗水道599号海富中心B座20楼,紫金(厦门)工程设计有限公司,361000;E mail:449550590@qq.com谭清述,李照连(紫金(厦门)工程设计有限公司)摘要:随着开采深度的增加,多绳摩擦提升系统被广泛应用在深竖井中,但机械性能差别、制造误差、提升系统运行特性等因素会导致提升系统在运行过程中钢丝绳间受力不均衡,使部分钢丝绳产生滑动,增加系统维护量,缩短钢丝绳使用寿命。

针对以上问题,从钢丝绳受力不均的机理切入,以陈耳金矿为例,对其深竖井首绳悬挂装置进行了选型计算,从而选择合适的首绳悬挂装置,使维护作业由每隔1周维护1次改为每年维护1次或2次,钢丝绳使用寿命基本可达到2a。

关键词:竖井提升;多绳摩擦提升系统;钢丝绳;悬挂方式;首绳悬挂装置;深部开采 中图分类号:TD526 文章编号:1001-1277(2022)12-0059-04文献标志码:Adoi:10.11792/hj20221211引 言随着国内矿业发展,地表浅层矿石已被大量开采,矿石开采逐步由地表浅层向深部发展。

目前,国内已有多条深度超过1000m的竖井,设计深度超过1600m的深井。

多绳摩擦提升系统被广泛应用于提升高度300~2000m的竖井中,由于技术发展不充分及外在条件限制,大部分超深井均采用多绳摩擦提升系统[1]。

世界各国对多绳摩擦提升系统的首绳悬挂方式进行了广泛深入研究。

瑞典广泛采用杠杆式平衡装置,但这种悬挂方式不适合成对使用,其通常在一个容器上使用,且作为首绳的钢丝绳伸长量的调整范围有限。

英国经常在首绳两端不采用任何平衡装置,只在绳环与容器之间装设测力器和绳长调整装置,使竖井调绳工作量增加。

德国广泛采用三角形杠杆平衡装置,可以避免因装置不稳定导致的失衡,杠杆偏转时会产生恢复平衡位置的力矩。

提升设备计算书

提升设备计算书

内蒙古自治区鄂托克旗千里沟白云煤矿主井提升设备选型计算书临汾市天宇新矿山设备制造有限公司主井提升设备选型计算书本选型计算是根据内蒙古自治区鄂托克旗千里沟白云煤矿矿领导的合理化建议,在太原市明仕达煤炭设计有限公司初步设计的基础进行的,由于时间短,基础资料不完善,是否合理请各位领导审核。

(一)、设计依据生产能力 60万t/a井口标高 +1591.21m装载硐室底板标高 +1220.0m装载高度 5m卸载高度 9m工作制度 330d/a,16h/d提升容器:箕斗型号: 4t 提煤箕斗本体质量(包含悬挂) 3650kg装载质量 4000kg本体高度 7.56m装载口距箕斗底高度 3.56m(二) 、设备选择1、钢丝绳绳端载荷: Qd=3650+4000=7650kg提升高度: H t =1591.21-1220+5+9+3.56=388.77m 悬挂长度: H c =388.77+7.56+6.5=402.83m最大允许提升速度: [Vm ]=0.6t H =0.677.388=11.83m/s专用升降物料的立井提升的最大速度不得超过公式[Vm ]=0.6t H 钢丝绳选用30 18×7+FC 1770 B ZZ GB8918-2006型钢丝绳,d=30mm ;qk=3.51kg/m,δB =1770Mpa (钢丝绳的公称抗拉强度),Fq =1.283×494=633.802KN钢丝绳安全系数:m=g ×)H ×(c k d qq Q F +=9.81×402.83)×51.37650(633802+=7.1>6.5(专为升降物料用的不得小于6.5)式中:Fq 为钢丝绳的全部破断拉力总和,NQd 为钢丝绳终端载荷;qk 为所选钢丝绳每米质量,kg/mHc 为钢丝绳的悬挂长度,mg 为重力加速度,m/s 22、提升机滚筒计算直径: D /g =(60-80)×d=80×30=2400mm其中d-已选定的钢丝绳直径,30mm计算最大静张力:Fjmax=(Qd +qk Ht )g=(7650+3.51×388.77) ×9.81×10-3=88.43KN 计算最大静张力差:Fcmax=(m+ qk Ht )g=(4000+3.51×388.77)×9.81×10-3=52.626KN 式中:m 为装载质量;根据以上计算,选用2JK-2.5/11.5E 型单绳缠绕式提升机,其主要技术参数如下:型号 2JK-2.5/11.5E滚筒直径 2.5m滚筒宽度 1.2m最大静张力 90KN最大静张力差 55KN滚筒数量 2提升速度 6.6m/s主机变位质量 13700kg减速比 10.5计算钢丝绳实际缠绕宽度: B=ππ×Dp ×2 2.5××)43(+++Lm Ht =ππ×2.528×2 2.5××)43(3077.388+++×(30+2.5)=969mm <1200mm式中:Dp=Dg+(Kc-1)d ;Dg 为卷筒直径,2500mm ;Kc 为缠绕层数,2层;d-已选定的钢丝绳直径,30mm3、电动机初选 Ns=η1000max Km gV ρ=0.92×1000 6.6×9.81×4000×15.1×1.25=404.66KW 式中:Ns 所需电动机功率,kwK 矿井提升的阻力系数,箕斗可取1.15;Vmax 提升机选定的最大速度,m/sη减速器的传动效率,《煤炭工业矿井设计规范》规定,行星齿轮减速器可取0.92.ρ动负荷的影响系数,称为动力系数,箕斗可取1.2-1.3。

煤矿两绞车选型计算

煤矿两绞车选型计算

煤矿两绞车选型计算提升设备选型运算说明书二○一二年元月说明水城县玉舍中寨煤矿原副井提升绞车为JT-1.2×1.0/30型绞车,与安全专篇不相符。

安全专篇选用绞车型号为JTP-1.2×1.0P/30型,电机功率55KW。

依照矿井现状,考虑今后上综采设备,经选型运算,选用JK-2.0×1.5P、电机功率为160KW、钢丝绳型号6×7-28mm,天轮直径 2.5m 的提升设备作为矿井副井提升绞车使用。

附件:1、JK-2.0×1.5P单绳缠绕式矿井提升机总2、JK-2.0×1.5P单绳缠绕式矿井提升机基础图图3、JK-2.0×1.5P单绳缠绕式矿井提升平面布置图提升设备选型运算一、确定提升装置矿井采纳斜井开拓方式,地面布置了三个井筒,即:主斜井、副斜井和回风斜井。

该矿采面采纳刮板机运输,采面运输巷采纳刮板转载机和胶带机运输,一区段运输石门采纳机轨合一运输,一区段轨道石门采纳调度绞车运输。

主斜井设计采纳胶带机运输煤炭;副斜井采纳提升绞车单钩串车提升及运输,担负矿井设备、材料、矸石运输,人员升降采纳架空乘人装置。

1、副斜井提升绞车绞车设计依据提升设计有关参数如下:(1)井筒倾角α=26о,斜长215m;(2)车场形式:上、下部均为平车场,中部甩车场;(3)工作制度:每年330天,每天“四•六”工作制,三班提升;(4)提升量:最大班下井人数60人,矸石22.8t/班(按年产量的15%计),设备3次/班、材料3次/班,炸药及雷管各1次/班,其它5次/班;(5)提升容器及提升最大设备重量:MF1.1-6A型矿车(容积1.1m3,自重600kg,最大载货重量m=ψρV=(0.96×1.6×1.1)=1.700t),配备45辆;MC1-6A型材料车,矸配备20辆;MPC3-6型平板车(自重530Kg,最大载重量6.5t),配备5辆;考虑到下一步上综采支架,经周边综采已成功上的矿井情形,综采支架预选重12吨重的爱护式支架;平板车加扣件选用总重1.5吨,计13.5吨重。

立井提升机电动机选型

立井提升机电动机选型

第一节主立井提升设备选型计算一、计算条件矿井年产量: n Q =150万吨/年 单水平提升,井筒深度: 300m; 箕斗卸载高度: 20m ; 箕斗装载高度: 15m ;松散煤的密度: 1.15T/3m ; 年工作日: n b =300 天 每天净提升时间: t =14 h 矿车型号: MG3.3C-9固定式矿车二、箕斗的选定 1、提升高度3002015335s z x H H H H m =++=++= 式中:s H 为井筒深度;z H 为箕斗装载高度; x H 为箕斗卸载高度; 2、经济提升速度7.32/m v m s ==≈ 3、一次提升循环估算时间x T 处估加速度a=0.8m/s2074.9mx m v H T s v a=++= 4、小时提升次数3600/48.05s x n T ==次; 5、小时提升量s A取提升不均衡系数C=1.15,提升能力宽裕系数f C =1.20415010 1.15 1.20492.5/30014n f n rA CC t h b t ⨯⨯⨯===⨯s A6、一次合理提升量492.510.2548.05t ==s s A Q=n 考虑为以后矿井生产能力加大留有余地,由多绳箕斗规格表1-4,选择名义载重量12t 的同侧装卸式JDS-12/110*4 箕斗,其主要技术规格如下:自重z Q =11.5t ; 全高14450r H mm =; 有效容积 13.23m ;提升钢丝绳数 4,尾绳数 2;实际载重量 Q=13.2⨯1.15⨯10≈151.8kN 三、选择提升钢丝绳和尾绳1、考虑到提升容器为多绳箕斗,拟采用四绳摩擦提升机,主绳根数214;1550/mm B n N σ==钢丝抗拉强度对于摩擦提升采用为宜。

2、钢丝绳最大悬垂长度c H 尾绳环高度15h H m = 初估井塔高j H =23m 提升高度 H=335m2333515372c j h H H H H m =++=++=2、估算钢丝绳每米重力'P取钢丝绳抗拉强度21550/,m 7a N mm σ==B 安全系数;'1P 0.11()c B c a Q Q n H m σ+=-=15.181000011.5100000.111550004(372)7.0⨯+⨯⨯-=28.68N/m选用6W(19)股(1+6+6/6)-1520-30-特-镀锌-顺捻钢丝绳作主绳。

副井提升设备选型设计

副井提升设备选型设计

副井提升设备选型设计副井为斜井,是辅助提升井,主要担负升降人员,升降大、中小型设备、下放坑木、材料、水泥、砂石、提升井下矸石等辅助提升任务。

单水平提升,井上、下均为甩车场,采用单钩串车提升方式。

一、设计依据1、矿井年产量:60万t2、副井井口标高:+1490.00m3、井底标高:+1100.00m4、井筒倾角:α=25°5、提升斜长:L=923m。

6、辅助任务量:①矸石:46t/班;②水泥:2.75t/班;③砂石:8m3/班;④坑木:2.5m3/班;⑤金属支架、背板1次/班;⑥最大件设备:5.5t(包括2t平板车质量)。

⑦人员:69人。

7、提升容器:矿车为1tU型固定车箱式标准矿车,600mm轨距,容积1.1m3,每车装煤1.0t,装矸1.75t,自重610kg,允许牵引力58.8kN;8、矿井工作制度年工作日 b=330d日净提升时间 t=16h9 、井底车场甩车增加的运行距离 LH=30m10、井口栈桥上串车增加的运行距离LB=30m二、计算一次提升量:1、一次提升循环时间提升斜长:LX =LH+L+LB=30+923+30=983m初步选定的绞车最大速度为2.56m/s则每次提升的持续时间T=0.213LX+80=0.213×983+80=289s 一次提升量:K 1·K2·A·TQ=————————b·t·36001.15×1.15×600000×289 =———————————————330×16×3600=12t确定每次可提煤车3辆,矸石车两辆人车(XRB15—6/6型)壹辆,自重2200kg三、提升钢丝绳的选择1、提升各种负荷的绳端载荷(1)提煤时,绳端荷重Q m=3×(1000+630)(Sina+f1cosa) =3×1630×0.3514=1718kg(2)提矸石时,绳端荷重Q G=2×(1600+630)(Sina+ f1cosa) =1567kg(3)提人时绳端荷重Q R=1×(2200+15×70)(Sina+f1cosa) =1142kg2、计算钢丝绳单位钢丝绳悬垂长度:Lc=566+30=596m钢丝绳单位长度重量:[提煤荷重最大1718kg]Pk=Qd[1.1δB/m-L(sinα+f2cosα)]=1718/[1.1×17029.26/7.5-596(sina+0.2cosa) =1718/(2498-316)=0.78kg/m选钢丝绳18NAT6×7+Fc1670Zs108破断力总和Q B=179kN ,单重Pk=1.14kg/m3、钢丝绳最大静张力及安全系数(1)提煤时静张力:Fz=Qd+Lt·Pk(Sinα+f2cosα)=1718+566×1.14(0.342+0.2×0.94)=2060kg安全系数: Q B/F Z.g=8.87>7.5(2)提矸时静张力:F Z=1909kgm矸=Q B/F Z=9.56>7.5(3)提人时静张力:F Z=1484kgm人=Q B/F Z=12.31>9故所选钢丝绳满足《煤矿安全规程》要求(三)钢丝绳选择及校验1、提升容器选择矿车为1tU型固定车箱式标准矿车,600mm轨距,容积1.1m3,每车装煤1.0t,装矸1.75t,自重610kg,允许牵引力58.8kN;材料车为600mm轨距矿用材料车,运送坑木、背板、金属网等材料;平板车为二种,一种为矿用标准平板车,运送一般设备;另一种为专用重型平板车,专门运送大件物体、采煤机、支架等较重设备。

10章 斜井提升设备的选型计算

10章  斜井提升设备的选型计算

2) 一次提升量Q
Q AxTx Ca f ATx , 3600 3600br t t 次
(9-22)
3) 一次提升矿车数z1
z1 Q G
t
(9-23)
G Vc ,
(9-24)
式中 φ —— 装载系数。倾角为20°以下时,φ=1;
倾角为21°~25°时,φ=0.95~0.9;倾角为25°~30°时,φ=0.85~0.8; γ —— 煤的散集密度,t/m3; Vc —— 矿车容积,m3; G —— 矿车中货载质量,t。
(二) 速度图参数的确定
4.加速度a1和减速度a3 • 《煤矿安全规程》规定: 升降人员时,a1 和a3 都不得超过0.5m/s2 ,对物料提升的a1 和a3 没 有限制。一般可用0.5m/s2,也可稍大一些。但要考虑自然加速度 与自然减速度的问题。
5.摘挂钩时间θ1
• 甩车场θ1=20s;平车场θ1=25s。 6.电动机换向时间 • θ2=5s。
二、一次提升量的确定
(一) 提升长度L 采用甩车场时,
L LD L's LB , m
(9-1)
采用平车场时.
L L'sHale Waihona Puke LB ,m(9-2)
式中 LD —— 井底甩车道长,即从井底至井底尾车停车点的距离。应根据设计出 的甩车场长度及一次拉的矿车数而定,一般可取25~35m; LB —— 从井口至栈桥尾车停车点的距离,它近似地等于从井口至道岔A的 距离。根据一次拉车数或由车场设计确定,一般可取25~35m; Ls' —— 井筒斜长,m。
式中 C —— 提升不均衡系数。
有井底煤仓时,C=l.10~1.15;无井底煤仓时,C=l.20; 当矿井有两套提升设备时,C=1.15;只有一套提升设备时,C=1.25;

运输设备选型和能力计算

运输设备选型和能力计算

运输设备选型和能力计算1、主井提升皮带设备选型和能力计算(1)原始数据:原煤粒度 300mm,散状密度0.9t/m3,输送量140t/h,带式输送机安装角度δ=20°~0°,输送机斜长L=261.3m,提升高H=77.6m,带宽B=800mm,带速v=2m/s。

采用尾部车式拉紧装置。

上托辊间距a0=1.2m,下托辊间距a u=3m,托辊槽角35°,托辊直径108mm,导料槽长度3m。

系统布置见插图7-1-1图7-1-1 主井带式输送机系统布置示意图(2)带式输送机圆周驱动力及传动功率的计算1)主要阻力F H= CfL1g[q RO+q RU+(2q B+q G)Cosδ]+fL2g[q RO+q RU+(2q B+q G)]=4780.89N2)倾斜阻力:F st=q G gH=19.44×9.81×77.6=14798.8(N)3)主要特种阻力:F S1=Fε+F gl因为没有前倾上托辊:Fε上=0(N)物料与导料槽板间摩擦力:F gl=μ2I2VρgL/v2b12=11.9(N)F S1= Fε上+F gl =11.9 (N)4)附加特种阻力:F S2= F a+n3 F rF a——犁式卸料器附加阻力,无犁式卸料器 F a=0胶带与清扫器的摩擦阻力:n3 F r=APμ3式中:μ3=0.6 A弹=0.008 (A空=0.012)P=10×104代入式中得:F S2=1200(N)清扫器设置:1个清扫器,1个空段。

5)圆周驱动力:F u= F H+F st +F S1+F S2 =20791.6N式中:C——附加阻力系数,取1.31;f——模拟摩擦系数,取0.03;L——输送机长度,L=261.3m;q RO——每米上托辊转动部分质量,q RO=8.825kg/m;q RU——每米下托辊转动部分质量,q RU=2.927kg/m;q G——每米长输送物料的质量,q G =19.44kg/mq B——每米长输送带的质量,(PVG680S) q B=10.6kg/m;F H——主要阻力;F S1——主要特种阻力;F S2——附加特种阻力;F N——附加阻力;F st——倾斜阻力;δ——输送带倾角,δ=20°~0°。

立井提升系统过卷防护缓冲装置的选型计算与分析研究

立井提升系统过卷防护缓冲装置的选型计算与分析研究
煤矿 现 代 化
2 0 1 3 年第1 期
总第1 1 2 期
立井提升系统过卷防护缓冲装置的选型计算与分析研究
龚 文 , 王 建理
( 1 . 大 同煤矿集团 四台矿 ,山西 大 同 0 3 7 0 0 7 ; 2 . 中国矿业大学 科研所 , 徐州 2 2 1  ̄8)
摘 要 通过对罐笼进行 受力分析并建立数学模型, 对模型进行计算验证。 说明了对过 卷 防护 缓 冲装 置进行 科 学合 理 的选型 设计 和计 算是 为 了保证 立 井提 升 系统 中过 卷 防护缓 冲 装置的安全可靠。 关键词 过卷; 缓冲装置; 选型; 计算 中图分 类号 : T D 5 3 4 . 6 文献 标 志码 : B 文章编 号 : 1 0 0 9 — 0 7 9 7 ( 2 0 1 3) 0 1 — 0 0 3 2 — 0 3 为了方便数学计算模型的建立 ,无论对缠绕式 或摩擦式提升系统忽略下列较小干扰因素 的影响 : ( 1 ) 忽 略 提升 钢 丝绳 的横 向振 动 ; ( 2 ) 过卷缓 冲开始时过卷开关起作用 , 电动机 已 切 断 电源 , 无 驱动 力 矩 ; ( 3 ) 绞 车 制动 闸未施 加 制动 力 ; ( 4 ) 缓 冲装 置 制 动力 可 以视 为 恒定 。 2 . 1 . 1 缠 绕 式提 升 系统计 算数 学模 型【 3 J 为 了避 免 过卷 缓 冲过程 中主 提 升钢 丝 绳 的 张力 加大超限 ,因此井上过卷和井下过放防护缓冲装置 作不 同步布置 ,即把过放缓 冲过程的结束作为过卷 缓 冲过 程 的开 始 。 根 据 以上 假设 ,过 卷 容器 的受 力状 态 如 ∑ 图 m 1 所
【 7 】 赵 苍 荣 ,周 孟 然 . 基于 A R M的 C A N 总 线 井 下 瓦斯 监 控 系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

提升系统选型及验算方法一、提升井架井筒利用矿建用凿井井架施工,凿井井架必须能承载井筒装备安装施工荷载,且其天轮平台满足提升悬吊天轮布置的要求。

必要时可采用永久井架施工。

二、提升机井筒装备安装用的提升机,应根据井筒安装的提升方式及提升量进行选择。

必要时可采用矿永久提升机施工。

列出提升机技术参数表(表3.4.3)。

三、提升系统选型验算根据矿建所用提升机或矿永久提升机进行提升能力验算。

(1)、提升绞车凿井提升计算①滚筒直径(D)D≥60ds D≥900δ式中:ds—钢丝绳直径,mm;δ—钢丝绳最粗钢丝直径,mm;②选定提升机型号DT≥D DT—所选提升机的滚筒直径,Mm;③校验滚筒宽度B={[(H0+30)/3.14DT]+3}(ds+ε)≤BT式中:30—钢丝绳试验长度,m;DT—提升机名义直径,mm ;3—摩擦圈数;BT—提升机滚筒宽度,mm;ε—钢丝绳绳圈间隙,取2~3mm ;④计算提升高度H0=H1+H2+H3+H4,m。

其中:H1—井筒深度,mH2—井架高度,mH3—提升天轮半径,mH4—提升天轮梁高度,取0.75m⑤设计选用多层股不旋转钢丝绳作为提升绳,绳重Ps= kg/m,钢丝绳最小破断拉力Q断为kg,配提升钩头,提升钩头应与提升荷载配套。

⑥提升容器自重:吊桶:Q Z=G1+ G2+ G3+ G4;其中:G1—吊桶重量,kgG2—钩头重量,kgG3—滑架重量,kgG4—滑架缓冲器重量,kg⑦提升载荷:Q=最大提升重量,kg;Q绳:提升钢丝绳重:提升高度绳重,kg⑧提升钢丝绳静张力:Q总= Q + Q绳,kg;其中:Q—最大提升重量,kgQ绳—提升高度的钢丝绳重量,kg提升人员时:Q人总= Q Z +n Q人+ Q绳,kg其中:Q1—提升容器总重量,kgQ人—吊桶乘人总重量,取75kg/人Q绳—提升高度的钢丝绳重量,kgn—吊桶乘人数,根据吊桶容积确定以上计算的钢丝绳静张力Q总应小于绞车最大静张力差,可以满足使用。

⑨以最大静张力验算提升绳安全系数Ma:提料:Ma=Q断/Q总>7.5,提人:Ma= Q断/ Q人总>9,满足要求。

⑩电机功率验算:P o=Q o V=Q o WπD/(102×η×60×i)<绞车电机额定功率结论:该提升绞车挂吊桶、重物提升到合理位置;实际施工时,绞车实际电流不得超过额定电流,确保提升安全。

(11)提升偏角验算滚筒中心与天轮中心距离L(不超过60m),钢丝绳距提升中心线的最大偏移量为B。

钢丝绳最大偏角α=arctg(B/L)= °<1.5°,满足要求。

(12)提升过卷高度验算(以最大长度的吊物为例)绞车最大绳速为m/s。

h4=H-(h1+h2+h3+0.5R) m,式中:H—为井架高度即井口水平到天轮平台的距离,mh1—天轮平台高度,取mh2—吊物吊起所需高度,mh3—吊物、钩头、连接装置和滑架的总高度,mh4—提升过卷高度,R—提升天轮公称半径,mh3=3.48+2.5+1.1=7.08式中:h5—吊物总高度,mH6—吊物提升所需高度,1.5mH7—钩头总高度,2.5m大于《煤矿安全规程》规定的过卷高度(通过规程计算),满足施工要求。

(2)、提升机调试计算①失压脱扣器整定i.吸引电压不高于额定电压的85%即U吸=0.85Ue/K y=0.85×6000/60=85Vii.释放电压约为额定电压的60%即U放=0.6Ue/Ky=0.6×6000/60=60V式中:K y--电压互感器变比,6000/100②电流速断电流速断用做电动机的短路保护。

I aq=K rel·K c·λm·I1n/K iA式中:K rel----可靠系数,取1.6;K c----接线系数,接相电流取1;Λm----电动机最大力矩相对值,1.9;I1N----电动机定子额定电流,120A;K i----电流互感器变比,为200/5。

③过流保护反时限动作用做电动机的过流保护。

I aoc=K rel·K c·I1n/(K i·K ret) A式中:K rel----可靠系数,取1.2;K ret----继电器返回系数,取0.85;K c、I1N、K i同上。

④加速电流继电器采用纯时间控制,把电流继电器作为限流元件:i.吸引电流i at=1.05λ1·I1N/ K i A式中:λ1-起动切换力矩上限相对值,1.4ii.释放电流i r=K ret·i at A式中:K ret-返回系数,取0.8⑤过速继电器GSJ2继电器,作为等速阶段过速保护用,按规程要求过速15%起保护作用,所以整定值为:U at=1.15E N V式中:E N----测速发电机直流输出,V;⑥时间继电器⑦液压站整定压力kg/cm2A、确定最大力矩:a.最大静张力差(见本设计4.2.4)F jc= Q总×9.81 Nb.最大静张力矩M jmax=F jc×D/2 N·M式中:D----滚筒直径,2.8m;c.最大制动力矩c.1未考虑残压影响所需制动力矩:Mz'max≥3×M jmax N·Mc.2考虑残压影响所需制动力矩:Mz"max≥Mz'max+9.81×2n·P z·A·R cp·μN·M式中:n----盘形制动器对数,10;P z----电液调节阀残压,取P z=5kg/cm2;A----盘形制动器活塞面积,查得A=138cm2;R cp----盘形闸磨擦半径,查得R cp=1.572m;μ----闸瓦磨擦系数,查得μ=0.45。

c.3根据上述计算确定最大制动力矩:M max= N·MB、制动油压确定(1)制动系统贴闸皮油压Pt:P t=M zmax/(2n·R cp·A·μ·g)×0.0981 MPa(2)最大制动油压P s=P t+C Mpa式中:C----制动闸综合阻力,查得16.5kg/cm2(1.62Mpa)。

(3)、调试数据计算说明:(1)现场施工时,若电机功率、电流互感器比及电流继电器等设备参数与计算中使用的参数不符时,应及时进行计算调整。

(2)闸瓦摩擦系数按0.45计算,若实际闸瓦摩擦系数不同时,也应进行计算调整。

(3)绞车投入使用前,制动闸瓦必须磨合,并经有资质的单位进行制动力矩测试,符合《煤矿安全规程》中431、432、433条的规定后,方可投入使用。

四、悬挂系统选型及验算方法(以吊盘为例)(一)吊盘的选型及验算方法根据井筒断面、井壁结构、提升方式、井筒悬吊设备、风筒及管路位置等因素选定。

(二)悬吊钢丝绳选型及验算方法(1)吊盘、稳绳(4绳悬吊)选择方法①吊盘钢丝绳的端荷重每根钢丝绳的端荷总重:总吊重/4+钢丝绳自身重量总吊重=吊盘重+(水箱、卧泵和阀重)+工具、人员重根据规程要求,稳绳总荷重每百米不得小于1T。

②钢丝绳的选择参照3.4.5 ,安全系数取大于6。

(三)凿井绞车的选型及验算方法根据钢丝绳总荷重(钢丝绳悬吊重量+钢丝绳自身重量)选择凿井绞车。

(四)天轮选型及验算方法天轮直径的选择:D=20×钢丝绳直径,同时考虑悬吊钢丝绳总荷重不超过悬吊天轮的承载限值。

其余悬吊设备选型与上相同。

附悬吊系统选型计算表(表3.4.5)。

井筒提升悬吊系统选型计算表表3.4.5说明:主提升选用提升钩头;Φ2500mm天轮1个和Φ1000mm天轮*个,Φ650mm天轮*个。

6五、生产辅助系统设置要求 (一)压风系统凿井期间以井筒用打眼和风镐凿岩时的耗风量为最大,则最大耗风量Q 为: Q=abcd(q 钻+q 镐) m 3/ min 式中a —管网漏风系数,1.15b —机械磨损使耗风量增加的系数,1.1c —凿岩机同时使用系数,0.82d —同时打钻用风不均衡系数,0.9 供风量Q 1为:Q 1=Q (1+15%) m 3/ min 。

井筒凿井期间,在井口附近设一个压风机房,并根据以上计算压风机,使得总供风量可满足不同施工工序的用风需要。

地面压风干管选用Φ89×6无缝钢管,井下选用Φ57×6mm 的无缝钢管或高压胶管;井筒压风管采用钢丝绳吊挂。

(二)供、排水系统 (1)供水方式根据井筒装备施工供水主要用于湿式打眼,井筒装备施工用水均由地面供给,在一层吊盘设水箱,以适应凿岩用水的需要,水箱注水采用压风管给水。

(2)排水管选型根据预计的井筒涌水量确定排水管规格,排水管沿钢丝绳吊挂。

排水管选型计算如下:① 管径:理论计算:Q=3600πvD 2/4 式中D----排水管内径,mv----管道中水流平均速度,取2.6m/s Q----排水量,m 3/h应能满足排除井筒最大涌水量的要求。

② 排水管壁厚计算排水管内最大拉应力按拉麦公式计算,推导出孔口管的管壁厚度δ:式中:d 0------无缝钢管内径,mmδc ----无缝钢管管壁附加厚度,2mm σs -----无缝钢管的允许应力,取80MPa p------最大排水压力,Mpa λ------超载系数,λ取1.1c ppd s s δ)1λσλσ(2δ0+=根据计算,选择排水管壁厚,能满足井筒施工排水需要。

(3)排水方式当井筒涌水量大于10m3/h时,在吊盘中安装一台排量为50m3/h的卧泵,由潜水泵排水至吊盘水箱,再由卧泵排水至地面。

排水管用高压法兰连接,排水管沿钢丝绳吊挂。

或用深井潜水泵进行排水。

(三)通风系统1、通风系统井筒装备安装施工以采用压入式通风方式为宜,若井筒较深(超过700m)且为高瓦斯,则以选用玻璃钢风筒为宜,风筒均沿井壁固定,用树脂锚杆固定吊挂。

或用钢丝绳吊挂。

2、井筒需风量计算1)按瓦斯涌出量计算Q=100kq m3/min式中:q——瓦斯绝对涌出量,m3/min;k——通风系数,取1.5。

2)按作业面同时工作最多人数计算:Q=4N m3/min式中:Q—风量N—工作面同时工作最多人数,35人3)采用压入式通风,计算所需风量Q= 7.8/ t×3√2k/p2式中Q-----工作面所需风量,m3/minS-----井巷净断面积,m2L-----井筒最大排烟长度,mk-----淋水系数,取0.15~0.8(见《简明建井手册》P1047)t -----通风时间,取30~50minp-----风筒进出风量比,取1.44)风速验算:4×60S> Q >0.25×60S m3/min3、风机风量计算①风筒通风阻力h L沿程摩擦风阻:R m=6.5αL/D5Pa .s 2/m6局部风阻:R z=n1ξγ/2gs2 + n2ξγ/2gs2Pa. s 2/m6出口风阻:R c=0.818γ/gD4Pa. s 2/m6式中:R m—风阻,Pa .s 2/m6α—摩擦阻力系数,查表取0.002Pa .s 2/m2L—风筒长度,mD—风筒直径,mn1—风筒接头数,个n2—风筒转弯数,个ξ—风筒局部阻力系数查表取0.09γ—空气相对密度,取1.29S—风筒断面积,m2g—重力加速度,9.81m/s2h L=( R m+ R z+ R c). Q Pa风筒出口局部阻力系数ξ=0.09,h xo=ξQ2/ D4Pa风机全压:h mt= h L+ h xo Pa②风机工作风阻:R mt =h mt/ Q m2Pa . s 2/m6③风机选型根据计算及瓦斯情况,采用1路风筒供风,风筒配1~2台局部通风机,并实现两台风机电源自动切换,可以满足施工需要。

相关文档
最新文档