余角、 补角的概念和性质
人教版数学七年级上册4.3.3余角、补角的概念和性质(教案)
-重点二:余角、补角的性质掌握。学生需要熟练掌握互为余角、补角的两个角之间的数量关系,并能运用这些关系进行计算。
-举例:如果∠A和∠B互为余角,且∠A=40°,求∠B的度数。
-重点三:运用余角、补角解决实际问题。培养学生将余角、补角知识应用于实际问题的能力,如平面几何图形的角的求解等。
3.重点难点解析:在讲授过程中,我会特别强调余角和补角的概念以及它们之间的数量关系。对于难点部分,比如两个角的和的关系,我会通过举例和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与余角、补角相关的实际问题,如直角三角形中的角度关系。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过剪纸或使用量角器,学生可以直观地观察到余角和补角的形成。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解余角和补角的基本概念。余角是指两个角的和等于90°的两个角,补角是指两个角的和等于180°的两个角。它们在几何图形的求解和平面角度的计算中非常重要。
2.案例分析:接下来,我们来看一个具体的案例。在一个等腰直角三角形中,底角的度数如何求解?通过余角的概念,我们可以轻松找到答案。
人教版数学七年级上册4.3.3余角、补角的概念和性质(教案)
一、教学内容
人教版数学七年级上册4.3.3余角、补角的概念和性质。本节课我们将学习以下内容:
1.余角的概念:两个角的和等于90°时,这两个角互为余角。
2.补角的概念:两个角的和等于180°时,这两个角互为补角。
3.余角、补角的性质:
a.互为余角的两个角的和为90°;
四、教学流程
(一)导入新课(用时5分钟)
初中数学教学课件:4.3.3 余角和补角(人教版七年级上)
(抢答题1)图中给出的各角,哪些互为余角?
10o
30o
50
o
60o
40
o
80
o
再显身手
∠α ∠α的余角
55°
35°
22°
68°
62°5′
X°
27°55′
90°- X°
二、补角的概念
如果两个角的和等于180°(平角),就说这两个角互为 补角,简称两个角互为补角,即其中一个角是另一个角 的补角. 2
解:∠COD和∠COE, 同理,∠AOD和∠BOE, ∠AOD和∠COE, ∠COD和∠BOE也互余
C
D
B
O
A
1.识图填空: 如图所示,O是直线AB上的一点,
OC是∠AOB的平分线. ∠BOD (1)∠AOD的补角是_______.
(2)∠AOD的余角是_________. ∠COD
综 合 检 测
1 1
几何语言表示为: 如果∠1+∠2=180°,那么∠1与∠2互为补角.
∠1=180°-∠2
抢答题2
图中给出的各角,哪些互为补角?
10o 30o
60
o
80o
100o 120o 150o
170o
再显身手
∠α 10° 32°15′ 90° 105° 108° ∠α的补角
170° 锐角的补角是钝角 147°45′ 90° 75° 钝角补角是锐角 72° 180° - X° 直角的补角是直角
今天我们学了什么?
余角、补角的概念:
(1)如果∠1+∠2=90°,那么∠1与∠2互为余角
(2)如果∠1+∠2=180°,那么∠1与∠2互为补角.
余角、补角的性质:
什么是余角什么是补角
什么是余角什么是补角
余角是指与一个角相加可以得到90度的角。
例如,对于一个60度的角度,其余角为30度,因为60度加上30度等于90度。
补角是指与一个角相加可以得到180度的角。
例如,对于一个60度的角度,其补角为120度,因为60度加上120度等于180度。
在三角函数中,余角和补角经常被用来简化计算。
例如,如果要计算正切函数的值,可以利用其与余切函数的关系,求出余角的正切值,然后再取倒数即可得到原始角的正切值。
总之,余角和补角是很有用的角度概念,在数学和物理学等领域中都有广泛的应用。
- 1 -。
人教版数学七年级上册4.3.3:余角、补角的概念和性质(教案)
-难点在于在实际问题中灵活运用余角和补角的性质,进行角度的转换和计算。
举例:对于性质的掌握,可以通过以下步骤进行教学:
a.引导学生观察图形,直观感受余角和补角的关系。
b.通过具体例题,如“如果一个角的度数是40°,那么它的余角和补角分别是多少度?”,让学生尝试自己推导出答案。
另外,在学生小组讨论环节,虽然大部分学生能够积极参与,但仍有个别学生显得比较被动。为了提高这部分学生的参与度,我打算在接下来的课程中,多设计一些互动性强的活动,鼓励他们大胆发表自己的观点。
b.提供实际操作的机会,如让学生用量角器在纸上画出特定角度,并找出其补角或余角。
c.引导学生进行小组讨论,分享解题策略,以促进学生之间的相互学习和启发。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《余角、补角的概念和性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要补全角度的情况?”比如,当我们用直角尺测量一个角度时,如何快速找出另一个角度的度数。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索余角和补角的奥秘。
其次,在新课讲授环节,我发现学生在案例分析部分表现得比较积极,能够跟着我的思路走。但在重点难点解析时,尤其是从角度和推导出补角或余角的度数这一部分,学生们的掌握程度不够理想。我意识到,对于这个难点的讲解,我可能需要再细化一些,用更简单易懂的语言和示例来进行解释。
在实践活动和小组讨论环节,学生们表现出了很高的热情。通过分组讨论和实验操作,他们能够将所学的理论知识应用到实际问题中。但在讨论过程中,我也发现有些小组在问题的深入挖掘上还不够,可能需要我在今后的教学中多给予一些引导和启发。
余角与补角
探究
同角的补角相等吗?
1
2
3
同角的补角相等
探究
等角的补角相等吗?
4 3
2
1
等角的补角相等
补角性质:
同角(等角) 的补角相等。
因为∠1+∠2=180° ∠1+∠3=180° 所以∠2=∠3
因为∠1+∠2=180° ∠3+∠4=180° 又 ∠1=∠3 所以∠2=∠4
例3
如图,点A,O,B在同一条直线 上,射线OD和射线OE分别平分 ∠AOC和∠BOC
10o
30o
60
o
80o
100o 120o 150o
170o
填一填
∠α
2° 45° 62°23′ x°
∠α的余角
∠α的补角
88° 178° 135° 45° 27°37′ 117°37′ (90 –x) ° (180-x) °
同一锐角的补角一定比这个角的余角大90°。
3 2
1
同角的余角相等
等角的余角相等
练一练
(1)∠1+∠2=90°则∠1是余角.( 错 ) (2) ∠1 +∠2+ ∠3=90°,则∠1 、∠2、 ∠3、 互为余角.( 错 ) (3)钝角没有余角,但一定有补角.( 对
)
(4)如果一个角有补角,那么这个角一定是钝
角.( 错 ) (5)互补的两个角不可能相等.( 错
)
算一算: 65° 4、∠A=25°,则它的余角为_______,
155° 它的补角为________.
40 ° 5、已知∠A=50°,则∠A的余角是____, 130° 90° 补角是____ ,补角与余角的差是_____.
数学课件余角和补角
余角的性质包括角度和为90度、余角之间的角度差为90度等。余角的定理包括同 角或等角的余角相等、互补角的余角互为补角等。这些性质和定理是数学中关于 角度的基本规则,对于理解几何图形和解决几何问题具有重要意义。
补角的性质和定理
总结词
补角的性质和定理是数学中关于角度的基本概念,对于理解几何图形和解决几何问题具有重要意义。
计算公式
如果角A和角B互为补角,则它们 的度数之和为180度,即A + B = 180度。
实例
如果一个角是60度,那么它的补角 就是120度;如果一个角是90度, 那么它的补角就是90度。
余角和补角的综合计算
综合计算公式
如果一个角的余角和补角之和等于 180度,则这个角的度数为90度。
实例
如果一个角的余角是30度,它的补角 是150度,那么这个角的度数就是90 度。
感谢您的观看
THANKS
详细描述
互补性和互余性是余角和补角的基本性质。如果两个角互为 余角或补角,则它们的角度互补或相等。此外,同角或等角 的余角或补角也相等。这些性质在几何学中非常重要,可用 于解决各种几何问题。
02
余角和补角的性质和定理
余角的性质和定理
总结词
余角的性质和定理是数学中关于角度的基本概念,对于理解几何图形和解决几何 问题具有重要意义。
解析
设这个角为x度,根据补角和余角的定义, 我们可以列出方程:180° - x = 2(90° - x)。 解这个方程可以得到x的值为60°。
余角和补角的综合练习题及解析
题目
已知一个角的余角是这个角的补角的 1/3,求这个角的度数。
解析
设这个角为x度,根据余角和补角的定 义,我们可以列出方程:90° - x = 1/3(180° - x)。解这个方程可以得到x 的值为45°。
人教版数学七年级上册4.3.3余角、补角的概念和性质教案
一、教学内容
人教版数学七年级上册4.3.3余角、补角的概念和性质。本节课我们将学习以下内容:
1.余角的定义:两个角的和等于90°时,这两个角互为余角。
2.补角的定义:两个角的和等于180°时,这两个角互为补角。
3.余角、补角的性质:
a.互为Байду номын сангаас角的两个角中,一个角的度数等于90°减去另一个角的度数。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了余角与补角的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对余角与补角的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-难点三:理解余角和补角在几何图形中的应用。学生需要能够将余角和补角的概念应用到更复杂的几何图形中,如多边形或图形的相交部分。
举例:
-对于难点一,可以通过制作角度转盘或使用动态几何软件,让学生动态观察角度变化,加深对互为余角、补角数量关系的理解。
-对于难点二,可以设计不同类型的实际问题,如角度计算、图形分割等,引导学生发现问题的解决关键在于应用余角和补角的知识。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“余角与补角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
关于余角和补角的知识点
关于余角和补角的知识点1.什么是角度角度是指由两条射线相交形成的图形,一般用字母来表示,如∠A BC。
角度由两条射线的起点A、公共顶点B和终点C确定。
2.角的度量单位角的度量单位有两种常用表示方法:度(°)和弧度(ra d)。
其中,1弧度等于57.3°,1°等于π/180弧度。
在数学中,常用度作为角的度量单位。
3.余角和补角的概念余角指的是两个角的度数之和等于90°时,这两个角互为余角。
补角则是两个角的度数之和等于180°时,这两个角互为补角。
4.余角和补角的计算方法4.1余角的计算方法当已知角度α时,可以通过计算90°减去α得到其余角的度数。
例子:若角α的度数为60°,则其余角的度数为90°-60°=30°。
4.2补角的计算方法已知角度β时,可以通过计算180°减去β得到其补角的度数。
例子:若角β的度数为45°,则其补角的度数为180°-45°=135°。
5.余角和补角的性质5.1余角和补角的和等于90°(或180°)根据余角和补角的定义,两个互为余角的角的度数之和等于90°,而互为补角的角的度数之和等于180°。
例子:若角θ的余角的度数为40°,则角θ的补角的度数为90°-40°=50°。
5.2余角和补角的度数不唯一一个角的余角和补角的度数并不唯一,因为角的度数可以是任意实数。
例子:若角ω的度数为30°,则其余角的度数可以是60°、120°等,其补角的度数可以是150°、210°等。
结论余角和补角是角度的重要概念,它们不仅在几何图形的角度计算中有重要作用,而且在物理和工程问题中也具有广泛应用。
通过理解余角和补角的定义、计算方法和性质,我们能够更好地解决与角度相关的问题,并在实际应用中灵活运用。
余角和补角的定义和性质
余角和补角的定义和性质
什么是余角和补角:
余角和补角是两个平行四边形中两个角间的性质,在一条平行四边形中,所有相邻的两个角相加总和为360°,其中有一个角称为余角,另外一个角称为补角。
余角的性质:
余角是平行四边形中所有相邻的两个角相加,余出的那个角,余角小于180°,在正六边形、正八边形、正十边形等多边形中,所有的角都是余角。
补角的性质:
补角是平行四边形中所有相邻的两个角相加,补到360°的那个角,补角大于180°,在正六边形、正八边形、正十边形等多边形中,所有的角有一个是补角。
余角和补角的关系:
余角与补角是平行四边形中一种互补的关系,它们的总和总是等于360°。
例如,如果一个角为100°,它的余角是100°,它的补角就是260°;如果一个角是240°,它的补角就是240°,它的余角就是120°。
余角和补角是平行四边形中两个相邻角之间的性质,它们的总和等于360°,其中一个角被称为余角,另一个角被称为补角,余角小于180°,而补角大于180°,它们之间有着一种互补的关系。
4.3.3.1余角、补角的概念和性质
2.余角和补角的性质
(1)∠1与∠2,∠3都互为补角,∠2和∠3的大小有什么关系?
(2)如果∠1与∠2,∠3都互为余角,∠2和∠3的大小又有什么关系?
同角(或等角)的补角相等.
同角(或等角)的余角相等.
活动3:巩固新知
关键
明确性质的由来
步骤时间
学教内容
学教方法、各环节学生参与情况
个案设计
5分
15分
5分
10分
5分
活动1:创设情境,导入新课
1.用量角器量出图中的两个角的度数,并求出这两个角的和.
2.说出一副三角尺中各个角的度数.
活动2:探究新知
1.余角和补角的概念
师:在一副三角尺中,每块都有一个角是90°,而其他两个角的和是90°,一般情况下,如果两个角的和等于90°(直角),我们就说这两个角互为余角,即其中一个角是另一个角的余角.
例3:如图,点A,O,B在同一直线上,射线OD和射线OE分别平分∠AOC和∠BOC,图中哪些角互为余角?
活动4:练习应用
练习:教材139页练习2,3,4题.
活动5:小结与作业
小结:谈谈你本节课的收获.
讲解认识我们的三角板
教师给出互补互余以及补角余角的定义
学生分组讨论,交流,说出各自的理由,可由两个同学板演解题步骤,然后师生共同归纳余角和补角的性质.
课题
4.3.3余角和补角(2课时)
第1课时 余角、补角的概念和性质
设计教师
洪喜来
授课教师
洪喜来
课型
新授
授课时间
总第节
学教目标
1.在具体的现实情境中,认识一个角的余角和补角
人教版数学七年级上册余角、补角的概念和性质 经典课件
Hale Waihona Puke E123 4
A
O
B
人教版数学七年级上册余角、补角的 概念和 性质 经典课件
人教版数学七年级上册余角、补角的 概念和 性质 经典课件
1、如图,OD平分∠COA ,OE平分∠COB,则 ①∠ EOD=__9_0__ ° ②图中互余角有 4 对, 互补角有 5 对。
C
人教版数学七年级上册余角、补角的 概念和 性质 经典课件
人教版数学七年级上册余角、补角的 概念和 性质 经典课件
人教版数学七年级上册余角、补角的 概念和 性质 经典课件
本节课我们学了什么?
余角、补角的概念:
(1) 和为90°的两个角称互为余角; (2) 和为180°的两个角称互为补角。
余角、补角的性质:
(1) 同角(等角)的余角相等; (2) 同角(等角)的补角相等。
人教版数学七年级上册余角、补角的 概念和 性质 经典课件
图中给出的各角,那些互为补角?
10o 30o
60o
80o
100o
人教版数学七年级上册余角、补角的 概念和 性质 经典课件
120o
150o
170o
人教版数学七年级上册余角、补角的 概念和 性质 经典课件
练一练
1、如图两堵墙围一个角 AOB ,但人
不 能进入围墙,我们如何去测量这个角
的大小呢?
A
动动脑 C
3
一个角的1 补角2是不否一一定定是是钝钝 角角 。?
人教版数学七年级上册余角、补角的 概念和 性质 经典课件
4
人教版数学七年级上册余角、补角的 概念和 性质 经典课件
2.互余和互补的性质:
如图∠1 与∠2互余,∠3 与∠4互余 ,如果 ∠1=∠3,那么∠2与∠4相等吗?为什么? 答:∠2与∠4相等。 理由如下:
余角、补角、对顶角的概念和习题答案
余角和补角和对顶角令狐采学余角:如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。
∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A补角:如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A 的补角=180°-∠A对顶角:一个角的两边分别是另一个角的反向延长线,这两个角是对顶角。
两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。
两条直线相交,构成两对对顶角。
对顶角相等.对顶角与对顶角相等.对顶角是对两个具有特殊位置的角的名称;对顶角相等反映的是两个角间的大小关系。
补角的性质:同角的补角相等。
比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B。
等角的补角相等。
比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B。
余角的性质:同角的余角相等。
比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。
等角的余角相等。
比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B。
注意:①钝角没有余角;②互为余角、补角是两个角之间的关系。
如∠A+∠B+∠C=90°,不能说∠A、∠B、∠C互余;同样:如∠A+∠B+∠C=180°,不能说∠A、∠B、∠C互为补角;③互为余角、补角只与角的度数相关,与角的位置无关。
只要它们的度数之和等于90°或180°,就一定互为余角或补角。
余角与补角概念认识提示:(1)定义中的“互为”一词如何理解?如果∠1与∠2互余,那么∠1的余角是∠2 ,同样∠2的余角是∠1 ;如果∠1与∠2互补,那么∠1的补角是∠2 ,同样∠2的补角是∠1。
人教版数学七年级上册4.3.3余角、补角的概念和性质(教案)
1.理论介绍:首先,我们要了解余角和补角的基本概个角的和等于180°的两个角。它们在几何图形的求解和实际应用中具有重要意义。
2.案例分析:接下来,我们来看一个具体的案例。通过一个三角形的例子,展示如何利用余角和补角求解未知角度,以及它们在实际中的应用。
三、教学难点与重点
1.教学重点
-余角和补角的概念:学生需要掌握余角和补角的定义,即两个角的和分别为90°和180°时,它们互为余角和补角。
-余角和补角的性质:学生需要理解并运用余角和补角的性质,如互为余角的两个角的和为90°,互为补角的两个角的和为180°。
-运用余角和补角解决实际问题:学生需要学会将余角和补角的概念应用于角度计算,解决实际问题。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了余角和补角的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对余角和补角的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
最后,我会在课后认真反思本次教学过程中的不足,不断改进教学方法,努力提高学生的学习效果。同时,我也将关注学生的学习进度和反馈,为他们在几何学习道路上提供更多的支持和帮助。
举例解释:
-例如,强调当一个角为40°时,它的余角为50°,补角为140°。通过具体数值让学生直观感受余角和补角的概念。
-在解题过程中,强调利用余角和补角的性质简化计算,如已知一个角的度数,求其补角或余角的度数。
余角与补角ppt
补角的定义与性质
补角是两个角的度数和为180度 补角的性质:互补两角之和为180度,两角互补为补角
逆余角也是补角
余角与补角的关系
互余角和互补角是 余角和补角的延伸
两角互余和两角互 补可以相互转化
余角和补角的区别 在于角度和位置不 同
02
余角和补角的性质和运用
余角和补角的性质
余角
余角和补角在建筑中的运用
建筑结构
在建筑结构中,利用余角和补角可以形成优美的几何图形。例如,古罗马的 万神庙穹顶采用了120度的补角,形成了完美的穹顶结构。
光学设计
在光学设计中,利用余角和补角可以制造出具有特定反射和折射效果的材料 。例如,某些玻璃窗在阳光下会产生一定角度的反射光线,形成特定的视觉 效果。
如果两个角的和等于90度,则 这两个角互为余角。
补角
如果两个角的和等于180度,则 这两个角互为补角。
性质总结
余角和补角是一对互为补角的 关系,即一个角的余角是90度 减去这个角的度数,而一个角 的补角是180度减去这个角的度
数。
余角和补角的运用
1 2
余角的运用
在几何中,可以通过将一个角分成两个相加等 于90度的角来计算角度。
06
复习与回顾
余角与补角的定义及性质回顾
总结词:重要基础
详细描述:回顾余角和补角的定义,以及余角和补角的基本性质。重点强调余角 和补角的表示方法,以及它们在数学和几何中的应用。
余角与补角的计算回顾
总结词:核心技能
详细描述:全面梳理余角和补角的计算规则,包括余角的度 数等于90度减去另一个角的度数,补角的度数等于180度减 去另一个角的度数。同时,强调在计算中需要注意的事项和 易错点。
余角和补角
B ∠BO AOD的补角是∠BO 的补角是_____ 1)∠AOD的补角是_____D __ ∠COD 2)∠AOD的余角是__ OD AOD的余角是__ ____ 的余角是 ∠C BOD的补角是∠AOD 的补角是______ 3)∠BOD的补角是∠AOD ______
牛刀小试
1、若∠1+∠2= 90 °,∠1+∠3=90°, ∠2= ∠3 则_____________。 2、若∠1+∠2=90°,∠3+∠4=90° ∠2= ∠4 且∠1=∠3,则___________。 3、若∠A=∠B,且∠A+∠1=180°, ∠1= ∠2 ∠B+∠2=180°,则____________。 4、∵∠1+∠2=180°,∠1 +∠3= 180° ∴____________。 ∠2= ∠3
北
● ●
B B
40° 40° 40° 40° 70° 70°
B
西
●
●
A
65° 65°
●B
东
●
B
南
如图.货轮O在航行过程中,发现灯塔A在它南偏东60 60° 例4:如图.货轮O在航行过程中,发现灯塔A在它南偏东60°的方 向上,同时,在它北偏东40 40° 南偏西10 10° 西北(即北偏西45 45° 向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°) 方向上又分别发现了客轮B,货轮C和海岛D B,货轮 方向上又分别发现了客轮 B, 货轮 C 和海岛 D. 仿照表示灯塔方位 的方法,画出表示客轮B,货轮C和海岛D方向的射线. B,货轮 的方法,画出表示客轮B,货轮C和海岛D方向的射线. 所以: 射线OA OA的方向就是南偏 所以 : 射线 OA 的方向就是南偏 东 60° , 即灯塔A 所在的方向。 60° 即灯塔 A 所在的方向 。 射线OB的方向就是北偏东40° 射线OB的方向就是北偏东40°, OB的方向就是北偏东40 即客轮B所在的方向。 即客轮B所在的方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
45° 45°
西 C
射线OF 西南方向:__________
东 A
O
F
B
南
射线OG 东南方向 :__________ G 射线OH 东北方向:__________
北
(3)南偏西25°
射线OA
东
60°
C
B 西
70° O
北偏西70° 射线OB 南偏东60° 射线OC
25°
A 南
乙地对甲地的方位角
乙地
∠1+∠2=90°
∠1+∠2=180°
21
2
1
同角或等角的 余角相等
同角或等角的 补角相等.
探索研究
如图,已知AOB是一直线,OC是 ∠AOB的平分线,∠ DOE是直角,图中 哪些角互余?哪些角互补?哪些角相 等?
C
D
E
4
3
1
2
O
A
B
A
B
C
如图,E、F是直线DG上 两点 ∠BEF = ∠BFE ∠AED = ∠CFG = 90 °
60° C
●
10°
南
●32°方向线, OB 表示南偏东 43°方向线,则∠AOB等 于————。
2
1
4
3
解:∵ ∠1 +∠2=180°, ∠3 +∠4=180° ∴ ∠2=180°-∠1 , ∠4=180°- ∠3 ∵ ∠1 =∠3 ∴ 180°-∠1 =180°- ∠3 即:∠2 =∠4
补角性质: 同角或等角的补角相等
探究:余角的性质
如图∠1 与∠2互余,∠3 与∠4互 余 ,如果∠1=∠3,那么∠2与∠4相等吗? 为什么?
七年级备课组
比萨斜塔
2
1
互为余角(互余):
如果两个角的和是 90°(直角),那么这两个 角叫做互为余角,其中一 个角是另一个角的余角。 即:∠1是∠2的余角或 ∠2是∠1的余角.
2
1
考考你:
图中给出的各角,那些互为余角?
10o 25o
44
o
65o
46
o
80
o
比萨斜塔
4
3
互为补角(互补):
如果两个角的和是 180°(平角),那么这 两个角叫做互为补角, 其中一个角是另一个角 的补角。 即:∠3是∠4的补角 或∠4是∠3的补角.
● 东
射 线 OC 的 方 向 就 是 ∴ 射 线 OA 的 方 向 就 射 线 OD 的 方 向 就 是 射 线 OB 的 方 向 就 是 南 偏 西 10 ° , 即 货 是 南 偏 东 60 ° , 即 北 偏 西 45 ° , 即 海 北 偏 东 40 ° , 即 客 轮 C 所在的方向。 灯塔 A所在的方向。 岛 D 所在的方向。 轮 B 所在的方向。
D E
F G
找出图中相等的角并说明理由。
如图所示,一辆汽车在马路上行 驶,∠AOB=40°,∠CO′D=140°, 若这辆汽车向右拐,则需拐多少度的弯? 若这辆汽车向左拐,则需拐多少度的弯?
A
O O' 140 C
40 B D
保康县实验中学七年级备课组
(1)正东,正南,正西,正北
北 D
E
射线OA OB OC OD 射线OE (2)西北方向:_________
4
3
考考你:
图中给出的各角,那些互为补角?
10o 30o
60
o
80o
100o 120o 150o
170o
我来试一试: ∠α ∠α的余角 ∠α的补角
85° 175° 32° 58° 148° 45° 45° 135° 77° 13° 103° 27°37′ 62°23′ 117°37′ x 90° x 180°- x 同一个锐角的补角比它的余角大 90° 。 互余和互补是两个角的数量关系, 与它们的位置无关。
解之得: x = 45
答:这个角是45°。
七年级备课组
探究:补角的性质
如图∠1 与∠2互补,∠3 与∠4互 补 ,如果∠1=∠3,那么∠2与∠4相等吗? 为什么?
2
1
4
3
猜想: 同角或等角的补角相等
探究:补角的性质
如图∠1 与∠2互补,∠3 与∠4互 补 ,如果∠1=∠3,那么∠2与∠4相等吗? 为什么?
5°
练习
一、填空 1、70°的余角是 20° ,补角是 110 ° 。 2、 ∠ ( ∠ <90 ° )的余角 是 90°- ∠ ,它的补角 是 。 180°- ∠ 重要提醒:(如何表示一个角的余角和补角) 锐角∠的余角是(90 °—∠ ) ∠的补角是(180 °—∠ )
1
2
3
4
猜想: 同角或等角的余角相等
探究:余角的性质
如图∠1 与∠2互余,∠3 与∠4互 余 ,如果∠1=∠3,那么∠2与∠4相等吗? 为什么?
1 2
3
4
解:∵ ∠1 +∠2=90°, ∠3 +∠4=90° ∴ ∠2=90°-∠1 , ∠4=90°- ∠3 ∵ ∠1 =∠3 ∴ 90°-∠1 =90°- ∠3 即:∠2 =∠4
甲地对乙地的方位角
乙地
南
甲地
3.度量向南的射线和绿色线之间的角度
说出B在A的 北偏东40°
那么A在B的 南偏西40°
北
● ●
B B
西
B
●
40 40° ° 70°
●
A
65°
●B
东
●
B
南
例2:如图.货轮O在航行过程中,发现灯塔A 在它南偏东60°的方向上,同时,在它北偏 东40°,南偏西10°,西北(即北偏西45°) 方向上又分别发现了客轮B, 货轮C和海岛D.仿照表示 北 ●B 灯塔方位的方法画出 ● D 45°40° 表示客轮B,货轮C和 海岛D方向的射线. 西 O
甲地
1. 先找出中心点,然后画出方向指标
乙地对甲地的方位角 乙地
甲地
2. 把中心点和目的地用线连接起來
乙地对甲地的方位角 乙地
北
甲地
3.度量向北的射线和蓝色线之间的角度
甲地对乙地的方位角 乙地
甲地
1. 先找出中心点,然后画出方向指标
甲地对乙地的方位角 乙地
甲地
2. 把中心点和目的地用线连接起來
例1:若一个角的补角等于它的余角的 4倍,求这个角的度数。 解:设这个角是x °,则它的补角是 (180°-x°),
余角是(90°-x°) ,根据题意得:
(180-x)= 4 (90-x) 解得: x =60 答:这个角的度数是60 °.
练习:
1、一个角的补角是它的3倍,这个 角是多少度? 解:设这个角为x°,则它的补角为 (180°-x°),得: 180 – x = 3 x
余角性质: 同角或等角的余角相等
A
1 O 2
D
如图 ∠AOB = 90 °
∠COD = 90 °
B 则∠1与∠2是什么关系?
C
答: ∠1 = ∠2 因为∠1+ ∠BOD = 90 ° ∠2+ ∠BOD = 90 ° 所以∠1 = ∠2 (同角的余角相等)
互
数量 关系 对 应 图 形 性 质
余
互
补