竞赛讲座 14染色问题与染色方法

合集下载

020301007-林一玲

020301007-林一玲

染色问题在竞赛中的应用林一玲 指导老师: 沈晓斌 讲师 (泉州师范学院 数学系,福建 泉州 362000)摘 要:拉姆塞型染色问题是数学竞赛中常见的一类题型,我们通过一些竞赛题对它进一步研究,使我们能很好的应用它。

平面二染色也是竞赛中常见的题,我们通过对某些竞赛题的研究,使我们能更好的应用它。

关键词:拉姆塞;染色;竞赛题;二染色;三角形;颜色;完全图;顶点。

中图分类号:O157.5 文献标识码:A一、拉姆塞型的染色问题拉姆赛(Ramsey )型染色问题是数学竞赛中常见的一类题型。

这类题大多数是考虑拉姆赛数的上界问题,即将完全图Kn 用t 色染后证明存在其同色三角 形。

对于拉姆赛数问题的下界的讨论则较少涉及。

在1994年高中联赛中就有一 道关于拉姆塞数下界的试题。

本文将介绍处理这一问题的两个基本方法,即“包 装法”和“集合分拆法”。

本文中用Kn 表示n 个顶点的完全图。

引理1[1] 若能将Kn 的边用t 种颜色染使其不含同色三角形,又能将m K 的边用r 种颜色染使其不含同色三角形,则可将Kmn 的边用r+t 种颜色染使其不含同色三角形。

证明 设Kmn 的顶点集合为V ,令V=12n V V V ⋃⋃⋃ ,使得()Vi Vj i j φ⋂=≠且,1,2,.Vi m i n == 将以Vi 的点为顶点构成的完全图记为,1,2,,i m K i n = ,因Km 可用r 种颜色染使其不含同色三角形,故可将每一个im K 均用前r 种颜色染使其不含同色三角形。

现将每个i m K 均收缩(或包装)成一个点Vi ,则得一个以12,,,n V V V 为顶点的完全图j m K 。

因j m K 可用t 色染使其不含同色三角形,那么,将j m K 用后t 种颜色染使其不含同色三角形后,若j m K 中的边i j VV 染第l 种颜色,则集合Vi 与j V 之间的边(即一个端点在Vi ,而另一端点在j V 的边)均染第l 种颜色。

染色问题

染色问题

∴ 不同的染色方法共有 4× ( 153+432+78) =2652 种. 【评析】以上例 1 是通过对“面”的染色问题转化为对“点“的染色,此题的难度较大, 若单从正八面体的各面进行分析,会使得问题变得十分模糊,很容易出错,因此,考 虑到正八面体结构的特殊性,我将问题转化为对正方体的八个顶点的分析,这样做的 目的主要是使问题变得更加清晰明了,由此可以发现,点染色是染色问题中一种很常 用也很实用的方法;
【评析】本题属于典型的区域染色问题,通过对正六边形的六块区域进行不同的染色方 法,利用组合数学的知识很容易就能求解,此题的突破点就在利用图形特殊对称性进行 分析,也正是基于此,所以联想到将问题推广为 N 块圆区域情形,通过寻找彼此递推 关系,进而得出 N 块区域的染色种数,土木难度不是很大,但很能反映一个人的洞察 力和分析问题的能力. 通过此题我们可以也发现区域染色的计数问题实际上也就是组 合数学问题,彼此之间有着紧密的联系,包括上述其他的几种染色问题和我们常见的一 些数学方法都有着紧密的联系.
2.染色方法
将问题中的对象适当进行染色,有利于帮助我们更好地观察、分析对象之间的关系,常 用的染色方法有点染色、线段染色、小方格染色、区域染色等染色 方法;以下我将通过一些具体的例题,对上述几类染色方法进行简 单一一介绍. 例 1: (点染色)用红、黄、蓝、绿四种颜色给如下正八面体的面 A、 B、C、D、E、F、G、H 染色(允许只用其中的几种) ,使相邻面(有 公共棱的面)不同色,求不同的染色方法的种数. 解: 如图,作一正方体,其顶点对应正八面体各面,则当且仅当正 八面体中两面相邻时,对应的正方体两顶点相邻. 这样,原问题就 转化为:求用 4 种不同颜色给正方体的八个顶点染色,相邻点不同 色的染色方法种数. ★ A 的染色方法有 4 种 下面对 B、D、E 的染色分情况讨论. (1)B、D、 E 同色,有 3 种染色方法. 则 C、F、H 至多染 3 色,各有 3 种选择,共有 27 种染色方法. 其中,

高中竞赛数学讲义第14讲染色问题

高中竞赛数学讲义第14讲染色问题

第14讲 染色问题本节主要讲述用染色的方法解有关的竞赛题.染色,是一种辅助解题的手段,通过染色,把研究对象分类标记,以便直观形象地解决问题,因此染色就是分类的思想的具体化,例如染成两种颜色,就可以看成是奇偶分析的一种表现形式.染色,也是构造抽屉的一个重要方法,利用染色分类,从而构造出抽屉,用抽屉原理来解题.A 类例题例1⑴ 有一个6×6的棋盘,剪去其左上角和右下角各一个小格(边长为1)后,剩下的图形能不能剪成17个1×2的小矩形?⑵ 剪去国际象棋棋盘左上角2×2的正方形后,能不能用15个由四个格子组成的L 形完全覆盖?分析 把棋盘的格子用染色分成两类,由此说明留下的图形不能满足题目的要求.证明 ⑴如图,把6×6棋盘相间染成黑、白二色,使相邻两格染色不同.则剪去的两格同色.但每个1×2小矩形都由一个白格一个黑格组成,故不可能把剩下的图形剪成17个1×2矩形. ⑵如图,把8×8方格按列染色,第1,3,5,7列染黑,第2、4、6、8列染白.这样染色,其中黑格有偶数个.由于每个L 形盖住三黑一白或三白一黑,故15个L 形一定盖住奇数个黑格,故不可能.说明 用不同的染色方法解决不同的问题.例2 用若干个由四个单位正方形组成的“L ”形纸片无重叠地拼成一个m n 的矩形,则mn 必是8的倍数.分析 易证mn 是4的倍数,再用染色法证mn 是8的倍数.证明:每个L 形有4个方格,故4|mn .于是m 、n 中至少有一个为偶数.设列数n 为偶数,则按奇数列染红,偶数列染蓝.于是红格与蓝格各有12mn 个,而12mn 是偶数.每个L 形或盖住3红1蓝,或盖住1红3蓝,设前者有p 个,后者有q 个.于是红格共盖住3p +q 个即p +q 为偶数,即有偶数个L 形.设有2k 个L 形.于是mn =2k ×4=8k .故证.例例1(!)说明 奇偶分析与染色联合运用解决本题.情景再现1.下面是俄罗斯方块的七个图形:请你用它们拼出(A)图,再用它们拼出(B)图(每块只能用一次,并且不准翻过来用).如果能拼出来,就在图形上画出拼法,并写明七个图形的编号;如果不能拼出来,就说明理由.2.能否用图中各种形状的纸片(不能剪开)拼成一个边长为75的正方形?(图中每个小方格的边长都为1)请说明理由.B 类例题例3 ⑴ 以任意方式对平面上的每一点染上红色或者蓝色.证明:一定存在无穷条长为1的线段,这些线段的端点为同一颜色.⑵ 以任意方式对平面上的每一点染上红色或者蓝色.证明:存在同色的三点,且其中一点为另两点中点.分析 任意染色而又要求出现具有某种性质的图形,这是染色问题常见的题型,常用抽屉原理或设置两难命题的方法解. 证明 ⑴取边长为1的等边三角形,其三个顶点中必有两个顶点同色.同色两顶点连成线段即为一条满足要求的线段,由于边长为1的等边三角形有无数个,故满足要求的线段有无数条.⑵ 取同色两点A 、B ,延长AB 到点C ,使BC =AB ,再延长BA 到点D ,使AD =AB ,若C 、D 中有一点为红色,例如点C 为红色,则点B 为AC 中点.则命题成立.否则,C 、D 全蓝,考虑AB 中点M ,它也是CD 中点.故无论M 染红还是蓝,均得证.说明 ⑴中,两种颜色就是两个“抽屉”,三个点就是三个“苹果”,于是根据抽屉原理,必有两个点落入同一抽屉.⑵中,这里实际上构造了一个两难命题:非此即彼,二者必居其一.让同一点既是某两个红点的中点,又是两个蓝点的中点,从而陷入两难选择的境地,于是满足条件的图形必然(5)(6)(7)(4)(2)(3)(1)(B)(A )存在.达到证明的目的.例4 ⑴ 以任意方式对平面上的每一点染上红色或者蓝色.证明:一定可以找到无穷多个顶点为为同一种颜色的等腰三角形.⑵ 以任意方式对平面上的每一点染上红色或者蓝色.证明:一定可以找到无穷多个顶点为为同一种颜色的等腰直角三角形.分析 ⑴同样可以设置两难命题:由于等腰三角形的顶点在底边的垂直平分线上,故先选两个同色点连成底边,再在连线的垂直平分线上找同色的点,这是解法1的思路.利用圆的半径相等来构造等腰三角形的两腰,这是解法2的思路.利用抽屉原理,任5个点中必有三点同色,只要这5点中任三点都是一个等腰三角形的顶点即可,而正五边形的五个顶点中任三个都是等腰三角形的顶点,这是解法3的思路.⑵连正方形的对角线即得到两个等腰直角三角形,所以从正方形入手解决相题第2问. ⑴ 证明1 任取两个同色点A 、B (设同红),作AB 的垂直平分线MN ,若MN 上(除与AB 交点外)有红色点,则有红色三角形,若无红色点,则MN 上至多一个红点其余均蓝,取关于AB 对称的两点C 、D ,均蓝.则若AB 上有(除交点外)蓝点,则有蓝色三角形,若无蓝点,则在矩形EFGH 内任取一点K (不在边上)若K 为蓝,则可在CD 上取两点与之构成蓝色三角形,若K 为红,则可在AB 上找到两点与之构成红色三角形.证明2 任取一红点O ,以O 为圆心任作一圆,若此圆上有不是同一直径端点的两个红点A 、B ,则出现红色顶点等腰三角形OAB ,若圆上只有一个红点或只有同一直径的两个端点是红点,则圆上有无数蓝点,取两个蓝点(不关于红点为端点的直径对称)C 、D ,于是CD 的垂直平分线与圆的两个交点E 、F 为蓝点,于是存在蓝色顶点的等腰三角形CDE . 证明3 取一个正五边形ABCDE ,根据抽屉原理,它的5个顶点中,必有三个顶点(例如A 、B 、C)同色,则△ABC 即为等腰三角形. ⑵证明 任取两个蓝点A 、B ,以AB 为一边作正方形ABCD ,若C 、D 有一为蓝色,则出现蓝色三角形.若C 、D 均红,则对角线交点E 或红或蓝, 出现红色或蓝色等腰直角三角形.显然按此作法可以得到无数个等腰直角三角形.(由本题也可以证明上一题.)例5 设平面上给出了有限个点(不少于五点)的集合S ,其中若干个点被染成红色,其余点被染成蓝色,且任意三个同色点不共线.求证:存在一个三角形,具有下述性质:⑴ 以S 中的三个同色点为顶点; ⑵ 此三角形至少有一条边上不含另一种颜色的点.分析 要证明存在同色三角形不难,而要满足第⑵个条件,可以用最小数原理.证明 由于S 中至少有五点,这些点染成两种颜色,故必存在三点同色.且据已知,此三点不共线,故可连成三角形.取所有同色三角形,由于S 只有有限个点,从而能连出的同色三角形只有有限个,故其A B C D E K HE N M D C A (2)(1)F E D C O B A O A B O C D E中必有面积最小的.其中面积最小的三角形即为所求.首先,这个三角形满足条件⑴,其次,若其三边上均有另一种颜色的点,则此三点必可连出三角形,此连出三角形面积更小,矛盾.说明 最小数原理,即极端原理.见第十二讲.例6 将平面上的每个点都染上红、蓝二色之一,证明:存在两个相似的三角形,其相似比为1995,且每一个三角形的三个顶点同色.(1995年全国联赛加试题)分析 把相似三角形特殊化,变成证明相似的直角三角形,在矩形的网格中去找相似的直角三角形,这是证法1的思路.证法2则是研究形状更特殊的直角三角形:含一个角为30˚的直角三角形.证明可以找到任意边长的这样的三角形,于是对任意的相似比,本题均可证.证法3则是考虑两个同心圆上三条半径交圆得的三组对应点连出的两个三角形一定相似,于是只要考虑找同心圆上的同色点,而要得到3个同色点,只要任取5个只染了两种颜色的点就行;而要得到5个同色点,则只要取9个只染了两种颜色的点即行. 证明 1 首先证明平面上一定存在三个顶点同色的直角三角形.任取平面上的一条直线l ,则直线l 上必有两点同色.设此两点为P 、Q ,不妨设P 、Q 同着红色.过P 、Q 作直线l 的垂线l 1、l 2,若l 1或l 2上有异于P 、Q 的点着红色,则存在红色直角三角形.若l 1、l 2上除P 、Q 外均无红色点,则在l 1上任取异于P 的两点R 、S ,则R 、S 必着蓝色,过R 作l 1的垂线交l 2于T ,则T 必着蓝色.△RST 即为三顶点同色的直角三角形.下面再证明存在两个相似比为1995的相似的直角三角形.设直角三角形ABC 三顶点同色(∠B 为直角).把△ABC 补成矩形ABCD (如图).把矩形的每边都分成n 等分(n 为正奇数,n >1,本题中取n=1995).连结对边相应分点,把矩形ABCD 分成n 2个小矩形.AB 边上的分点共有n +1个,由于n 为奇数,故必存在其中两个相邻的分点同色,(否则任两个相邻分点异色,则可得A 、B 异色),不妨设相邻分点E 、F 同色.考察E 、F 所在的小矩形的另两个顶点E '、F ',若E '、F '异色,则△EFE '或△DFF '为三个顶点同色的小直角三角形.若E '、F '同色,再考察以此二点为顶点而在其左边的小矩形,….这样依次考察过去,不妨设这一行小矩形的每条竖边的两个顶点都同色.同样,BC 边上也存在两个相邻的顶点同色,设为P 、Q ,则考察PQ 所在的小矩形,同理,若P 、Q 所在小矩形的另一横边两个顶点异色,则存在三顶点同色的小直角三角形.否则,PQ 所在列的小矩形的每条横边两个顶点都同色.现考察EF 所在行与PQ 所在列相交的矩形GHNM ,如上述,M 、H 都与N 同色,△MNH 为顶点同色的直角三角形.由n=1995,故△MNH ∽△ABC ,且相似比为1995,且这两个直角三角形的顶点分别同色. 证明2 首先证明:设a 为任意正实数,存在距离为2a 的同色两点.任取一点O (设为红色点),以O 为圆心,2a 为半径作圆,若圆上有一个红点,则存在距离为2a 的两个红点,若圆上没有红点,则任一圆内接六边形ABCDEF 的六个顶点均为蓝色,但此六边形边长为2a .故存在距离为2a 的两个蓝色点. 下面证明:存在边长为a ,3a ,2a 的直角三角形,其三个顶点同色.如上证,存在距离为2a 的同色两点A 、B (设为红点),l l以AB 为直径作圆,并取圆内接六边形ACDBEF ,若C 、D 、E 、F 中有任一点为红色,则存在满足要求的红色三角形.若C 、D 、E 、F 为蓝色,则存在满足要求的蓝色三角形. 下面再证明本题:由上证知,存在边长为a ,3a ,2a 及1995a ,19953a ,1995⨯2a 的两个同色三角形,满足要求.证明3 以任一点O 为圆心,a 及1995a 为半径作两个同心圆,在小圆上任取9点,其中必有5点同色,设为A 、B 、C 、D 、E ,作射线OA 、OB 、OC 、OD 、OE ,交大圆于A ',B ',C ',D ',E ',则此五点中必存在三点同色,设为A '、B '、C '.则∆ABC 与∆A 'B 'C '为满足要求的三角形.情景再现3.以任意方式对平面上的每一点染上红色或者蓝色.证明:一定存在一个矩形,它的四个顶点同色.4.以任意方式对平面上的每一点染上红色或者蓝色.证明:一定可以找到无穷多个顶点全为同一种颜色的全等三角形.5.图中是一个6×6的方格棋盘,现将部分1×1小方格涂成红色。

专题 染色问题与染色方法

专题 染色问题与染色方法

竞赛讲座14-染色问题与染色方法1.小方格染色问题最简单的染色问题是从一种民间游戏中发展起来的方格盘上的染色问题.解决这类问题的方法后来又发展成为解决方格盘铺盖问题的重要技巧.例1 如图29-1(a),3行7列小方格每一个染上红色或蓝色.试证:存在一个矩形,它的四个角上的小方格颜色相同.证明由抽屉原则,第1行的7个小方格至少有4个不同色,不妨设为红色(带阴影)并在1、2、3、4列(如图29-1(b)).在第1、2、3、4列(以下不必再考虑第5,6,7列)中,如第2行或第3行出现两个红色小方格,则这个问题已经得证;如第2行和第3行每行最多只有一个红色小方格(如图29-1(c)),那么在这两行中必出现四角同为蓝色的矩形,问题也得到证明.说明:(1)在上面证明过程中除了运用抽屉原则外,还要用到一种思考问题的有效方法,就是逐步缩小所要讨论的对象的范围,把复杂问题逐步化为简单问题进行处理的方法.(2)此例的行和列都不能再减少了.显然只有两行的方格盘染两色后是不一定存在顶点同色的矩形的.下面我们举出一个3行6列染两色不存在顶点同色矩形的例子如图29-2.这说明3行7列是染两色存在顶点同色的矩形的最小方格盘了.至今,染k 色而存在顶点同色的矩形的最小方格盘是什么还不得而知.例2 (第2届全国部分省市初中数学通讯赛题)证明:用15块大小是4×1的矩形瓷砖和1块大小是2×2的矩形瓷砖,不能恰好铺盖8×8矩形的地面.分析将8×8矩形地面的一半染上一种颜色,另一半染上另一种颜色,再用4×1和2×2的矩形瓷砖去盖,如果盖住的两种颜色的小矩形不是一样多,则说明在给定条件不完满铺盖不可能.证明如图29-3,用间隔为两格且与副对角线平行的斜格同色的染色方式,以黑白两种颜色将整个地面的方格染色.显然,地面上黑、白格各有32个.每块4×1的矩形砖不论是横放还是竖盖,且不论盖在何处,总是占据地面上的两个白格、两个黑格,故15块4×1的矩形砖铺盖后还剩两个黑格和两个白格.但由于与副对角线平行的斜格总是同色,而与主对角线平行的相邻格总是异色,所以,不论怎样放置,一块2×2的矩形砖,总是盖住三黑一白或一黑三白.这说明剩下的一块2×2矩形砖无论如何盖不住剩下的二黑二白的地面.从而问题得证.例3 (1986年北京初二数学竞赛题)如图29-4(1)是4个1×1的正方形组成的“L”形,用若干个这种“L”形硬纸片无重迭拼成一个m×n(长为m个单位,宽为n个单位)的矩形如图29-4(2).试证明mn必是8的倍数.证明∵m×n矩形由“L”形拼成,∴m×n是4的倍数,∴m、n中必有一个是偶数,不妨设为m.把m×n矩形中的m列按一列黑、一列白间隔染色(如图29-4(2)),则不论“L”形在这矩形中的放置位置如何(“L”形的放置,共有8种可能),“L”形或占有3白一黑四个单位正方形(第一种),或占有3黑一白四个单位正方形(第二种).设第一种“L”形共有p个,第二种“L”形共q个,则m×n矩形中的白格单位正方形数为3p+q,而它的黑格单位正方形数为p+3q.∵m为偶数,∴m×n矩形中黑、白条数相同,黑、白单位正方形总数也必相等.故有3p+q=p+3q,从而p=q.所以“L”形的总数为2p个,即“L”形总数为偶数,所以m×n 一定是8的倍数.2.线段染色和点染色下面介绍两类重要的染色问题.(1) 线段染色.较常见的一类染色问题是发样子组合数学中图论知识的所谓“边染色”(或称“线段染色”),主要借助抽屉原则求解.例4 (1947年匈牙利数学奥林匹克试题)世界上任何六个人中,一定有3个人或者互相认识或者互相都不认识.我们不直接证明这个命题,而来看与之等价的下述命题例5 (1953年美国普特南数学竞赛题)空间六点,任三点不共线,任四点不共面,成对地连接它们得十五条线段,用红色或蓝色染这些线段(一条线段只染一种颜色).求证:无论怎样染,总存在同色三角形.证明设A、B、C、D、E、F是所给六点.考虑以A为端点的线段AB、AC、AD、AE、AF,由抽屉原则这五条线段中至少有三条颜色相同,不妨设就是AB、AC、AD,且它们都染成红色.再来看△BCD的三边,如其中有一条边例如BC是红色的,则同色三角形已出现(红色△ABC);如△BCD三边都不是红色的,则它就是蓝色的三角形,同色三角形也现了.总之,不论在哪种情况下,都存在同色三角形.如果将例4中的六个人看成例5中六点,两人认识的连红线,不认识的连蓝线,则例4就变成了例5.例5的证明实际上用染色方法给出了例4的证明.例6 (第6届国际数学奥林匹克试题)有17位科学家,其中每一个人和其他所有人的人通信,他们的通信中只讨论三个题目.求证:至少有三个科学家相互之间讨论同一个题目.证明用平面上无三点共线的17个点A1,A2,…,A17分别表示17位科学家.设他们讨论的题目为x,y,z,两位科学家讨论x连红线,讨论y连蓝线,讨论z连黄线.于是只须证明以这17个点为顶点的三角形中有一同色三角形.考虑以A1为端点的线段A1A2,A1A3,…,A1A17,由抽屉原则这16条线段中至少有6条同色,不妨设A1A2,A1A3,…,A1A7为红色.现考查连结六点A2,A3,…,A7的15条线段,如其中至少有一条红色线段,则同色(红色)三角形已出现;如没有红色线段,则这15条线段只有蓝色和黄色,由例5知一定存在以这15条线段中某三条为边的同色三角形(蓝色或黄色).问题得证.上述三例同属图论中的接姆赛问题.在图论中,将n点中每两点都用线段相连所得的图形叫做n点完全图,记作k n.这些点叫做“顶点”,这些线段叫做“边”.现在我们分别用图论的语言来叙述例5、例6.定理1 若在k6中,任染红、蓝两色,则必有一只同色三角形.定理2 在k17中,任染红、蓝、黄三角,则必有一只同色三角形.(2)点染色.先看离散的有限个点的情况.例7 (首届全国中学生数学冬令营试题)能否把1,1,2,2,3,3,…,1986,1986这些数排成一行,使得两个1之间夹着一个数,两个2之间夹着两个数,…,两个1986、之间夹着一千九百八十六个数?请证明你的结论.证明将1986×2个位置按奇数位着白色,偶数位着黑色染色,于是黑白点各有1986个.现令一个偶数占据一个黑点和一个白色,同一个奇数要么都占黑点,要么都占白点.于是993个偶数,占据白点A1=993个,黑色B1=993个.993个奇数,占据白点A2=2a个,黑点B2=2b个,其中a+b=993.因此,共占白色A=A1+A2=993+2a个.黑点B=B1+B2=993+2b个,由于a+b=993(非偶数!)∴a≠b,从而得A≠B.这与黑、白点各有1986个矛盾. 故这种排法不可能.“点”可以是有限个,也可以是无限个,这时染色问题总是与相应的几何问题联系在一起的.例8 对平面上一个点,任意染上红、蓝、黑三种颜色中的一种.证明:平面内存在端点同色的单位线段.证明作出一个如图29-7的几何图形是可能的,其中△ABD、△CBD、△AEF、△GEF 都是边长为1的等边三角形,CG=1.不妨设A点是红色,如果B、E、D、F中有红色,问题显然得证.当B、E、D、F都为蓝点或黄点时,又如果B和D或E和F同色,问题也得证.现设B和D异色E和F异色,在这种情况下,如果C或G为黄色或蓝点,则CB、CD、GE、GF中有两条是端点同色的单位线段,问题也得证.不然的话,C、G均为红点,这时CG是端点同色的单位线段.证毕.还有一类较难的对区域染色的问题,就不作介绍了.练习二十九1.6×6的方格盘,能否用一块大小为3格,形如的弯角板与11块大小为3×1的矩形板,不重迭不遗漏地来铺满整个盘面.2.(第49届苏联基辅数学竞赛题)在两张1982×1983的方格纸涂上红、黑两种颜色,使得每一行及每一列都有偶数个方格是黑色的.如果将这两张纸重迭时,有一个黑格与一个红格重合,证明至少还有三个方格与不同颜色的方格重合.3.有九名数学家,每人至多会讲三种语言,每三名中至少有2名能通话,那么其中必有3名能用同一种语言通话.4.如果把上题中的条件9名改为8名数学家,那么,这个结论还成立吗?为什么?5.设n=6(r-2)+3(r≥3),求证:如果有n名科学家,每人至多会讲3种语言,每3名中至少有2名能通话,那么其中必有 r名能用同一种语言通话.6.(1966年波兰数学竞赛题)大厅中会聚了100个客人,他们中每人至少认识67人,证明在这些客人中一定可以找到4人,他们之中任何两人都彼此相识.7.(首届全国数学冬令营试题)用任意方式给平面上的每一个点染上黑色或白色.求证:一定存在一个边长为1或的正三角形,它三个顶点是同色的.练习二十九1.将1、4行染红色、2、5行染黄色、3、6行染蓝色,然后就弯角板盖住板面的不同情况分类讨论.2.设第一张纸上的黑格A与第二张纸上的红格A′重合.如果在第一张纸上A所在的列中,其余的黑格(奇数个)均与第二张纸的黑格重合,那么由第二张纸上这一列的黑格个数为偶数,知必有一黑格与第一张纸上的红格重合,即在这一列,第一张纸上有一方格B与第二张纸上不同颜色的方格B′重合.同理在A、B所在行上各有一个方格C、D,第二张纸上与它们重合的方格C′、D′的颜色分别与C、D不同.3.把9名数学家用点A1,A2,…,A9表示.两人能通话,就用线连结,并涂某种颜色,以表示不同语种。

高中数学竞赛中的染色、覆盖问题

高中数学竞赛中的染色、覆盖问题

染色问题和覆盖问题第一部分。

染色问题例1.已知(2)n n >条直线把平面划分成为若干块,其中的一些区域被染上颜色,使得任何两个染色的区域都没有公共边界,求证:染色区域的数目不超过2.3n n + 解答:不妨假定这些直线有相交直线。

设有k 条边的染色区域的数目为(1,2,...,)k m k n =。

注意到2m 就是有两条边的区域,两个射线形成的角域。

至多有2n 个线段。

因为每一段(线段或射线)至多是一个染色区域的边界,所以 22323...n m m nm n +++≤。

因为一条直线上只有两段的射线部分才可能是有两条边的染色区域,所以2m n ≤。

22322323 (333)n n m m nm m n n m m m +++++++≤+≤。

注意:这里有个很关键的不等式2m n ≤需要说明一下。

设12,,...,n L L L 是平面上直线束,那么每一个直线上至多有两个被染色(如题目中定义的染色)的角域;同时每一个被染色的角域值只占有两个直线。

设12,,...,m ΩΩΩ是m 个被染色的角域。

如果某个直线i L 上被染色的角域少于两个,那么根据数学归纳法假设可以直接证明2m n ≤。

否则的话,每一个直线上面恰好有两个被染色的角域。

这样可以得到一个2-正则的二部图()1212,,,{,,...,},{,,...,}.(,)n m i j i j G X Y E X L L L Y L E L ===ΩΩΩΩ∈⇔Ω是的边界这个二部图一定有1-因子。

从而也有2m n ≤成立。

例2. 平面上给定了)2(≥n n 条直线,其中任何两条不平行,任何三条不共点。

它们将平面划分成为若干个小区域。

试在每一个区域内部填写一个绝对值不大于n 的非负整数,使得任何一条直线的同一侧所有区域中各数之和为零。

解:一个为人们关心的问题是:这个题目是怎样产生的?那个出题人为什么出这个题?它的背景是什么?如果我们将这个问题放在球面上去,让所有的直线对应于一些大圆(从拓扑学的观点看,这是完全允许的),将每一个交点看成一个节点。

高中数学竞赛染色问题与染色方法

高中数学竞赛染色问题与染色方法

高中数学竞赛染色问题与染色方法第二专题染色问题与染色方法一、区域染色3?的棋盘,用黑色或白色两种颜色去染棋盘上的方例1、有一个7 格,每个方格只染一种颜色。

证明:无论怎样染色,棋盘上必定包含一个矩形(它由铅垂直线或水平线所划出的小正方形构成),它的四角所在的方块都是同一颜色。

2000?方格表中都染上红色或蓝色两种颜色之一,使得例2、2000每种颜色都恰好出现2000000格内,两个红格若同行便称为一副红对,两个蓝格若同行便称为一副蓝对。

求证:所有红对数目和蓝对数目相等。

例3、在一个正六边形的六个区域中的每一个二、点染色例4、已知:将平面上的所有点染成红、蓝两色之一。

求证:存在一个30。

同色顶点的直角三角形,其斜边为2003,且有一个锐角为例5、将平面上的所有点染成红、蓝两色之一。

求证:存在这样的两个相似三角形,它们的相似比为2003,并且每一个三角形的三个顶点同色。

例6、用红、蓝两种颜色去染正九边形的顶点,每个顶点只染一种颜色,证明:在以这9个点为顶点的所有三角形中,一定有两个全等的三角形,每一个的三个顶点都是同颜色。

三、线段染色例7、证明:在任何六个人中,总可以找到三个相互认识的人或三个互相不认识的人。

(认识是相互的)。

例8、6个点,每两个点之间有一条线相连,线染上红色或蓝色,证明一定有两个以这些点为顶点的三角形,每个三角形的边是同一种颜色(可能有公共边)。

例9、平面上有5个点,无三点共线,两两相连的线段各染上红蓝颜色中的任意一种,求证:图中没有同色三角形的充要条件是可分解为一红一蓝的两条封闭折线,每条恰含有5条连线段。

例10、17名科学家中每一名和其余科学家通信,在他们的通信中仅讨论三个题目,而任两名科学家之间仅讨论一个题目。

证明:其中至少有3名科学家,他们互相通信中讨论同一个题目。

例11、某俱乐部有13 n 名成员,对每一个人,其余的人中恰好有n 个愿与他打网球,n 个愿与他下象棋,n 个愿与他打乒乓。

初中数学竞赛:染色和赋值(含例题练习及答案)

初中数学竞赛:染色和赋值(含例题练习及答案)

初中数学竞赛:染色和赋值染色方法和赋值方法是解答数学竞赛问题的两种常用的方法。

就其本质而言,染色方法是一种对题目所研究的对象进行分类的一种形象化的方法。

而凡是能用染色方法来解的题,一般地都可以用赋值方法来解,只需将染成某一种颜色的对象换成赋于其某一数值就行了。

赋值方法的适用范围要更广泛一些,我们可将题目所研究的对象赋于适当的数值,然后利用这些数值的大小、正负、奇偶以及相互之间运算结果等来进行推证。

一、染色法将问题中的对象适当进行染色,有利于我们观察、分析对象之间的关系。

像国际象棋的棋盘那样,我们可以把被研究的对象染上不同的颜色,许多隐藏的关系会变得明朗,再通过对染色图形的处理达到对原问题的解决,这种解题方法称为染色法。

常见的染色方式有:点染色、线段染色、小方格染色和对区域染色。

例1用15个“T”字形纸片和1个“田”字形纸片(如下图所示),能否覆盖一个8×8的棋盘?解:如下图,将 8×8的棋盘染成黑白相间的形状。

如果15个“T”字形纸片和1个“田”字形纸片能够覆盖一个8×8的棋盘,那么它们覆盖住的白格数和黑格数都应该是32个,但是每个“T”字形纸片只能覆盖1个或3个白格,而1和3都是奇数,因此15个“T”字形纸片覆盖的白格数是一个奇数;又每个“田”字形纸片一定覆盖2个白格,从而15个“T”字形纸片与1个“田”字形纸片所覆盖的白格数是奇数,这与32是偶数矛盾,因此,用它们不能覆盖整个棋盘。

例2如左下图,把正方体分割成27个相等的小正方体,在中心的那个小正方体中有一只甲虫,甲虫能从每个小正方体走到与这个正方体相邻的6个小正方体中的任何一个中去。

如果要求甲虫只能走到每个小正方体一次,那么甲虫能走遍所有的正方体吗?解:甲虫不能走遍所有的正方体。

我们如右上图将正方体分割成27个小正方体,涂上黑白相间的两种颜色,使得中心的小正方体染成白色,再使两个相邻的小正方体染上不同的颜色。

显然,在27个小正方体中,14个是黑的,13个是白的。

初中数学竞赛专题:染色问题

初中数学竞赛专题:染色问题

初中数学竞赛专题:染色问题25.1.1★★圆周上等间距地分布着27个点,它们被分别染为黑色或白色.今知其中任何2个黑点之间至少间隔2个点.证明:从中可以找到3个白点,它们形成等边三角形的3个顶点.解析 我们将27个点依次编号,易知它们一共可以形成9个正三角形(1,10,19),(2,11,20),…,(9,18,27).由染色规则知,其中至多有9个黑点.如果黑点不多于8个,则其中必有一个正三角形的所有顶点全为白色.如果黑点恰有9个,那么由染色规则知,它们只能是一黑两白相间排列,其中也一定有一个正三角形的所有顶点全为白色. 25.1.2★★某班有50位学生,男女各占一半,他们围成一圈席地而坐开营火晚会.求证:必能找到一位两旁都是女生的学生.解析 将50个座位相间地涂成黑白两色,假设不论如何围坐都找不到一位两旁都是女生的学生,那么25个涂有黑色记号的座位至多坐12个女生.否则一定存在两相邻的涂有黑色标记的座位,其上面都坐着女生,其间坐着的那一个学生与假设导致矛盾.同理,25个涂有白色标记的座位至多只能坐12个女生,因此全部入座的女生不超过24人,与题设相矛盾.故命题得证. 25.1.3★在线段AB 的两个端点,一个标以红色,一个标以蓝色,在线段中间插入n 个分点,在各个分点上随意地标上红色或蓝色,这样就把原线段分为1n +个不重叠的小线段,这些小线段的两端颜色不同者叫做标准线段.求证:标准线段的个数是奇数.设最后一个标准线段为1k k A A +.若0k A A =,则仅有一个标准线段,命题显然成立;若n k A A =,由 A 、B 不同色,则0A 必与k A 同色,不妨设0A 与k A 均为红色,那么在0A 和k A 之间若有一红蓝的标准线段,必有一蓝红的标准线段与之对应;否则k A 不能为红色,所以在0A 和k A 之间,红蓝和蓝红的标准线段就成对出现,即0A 和k A 之间的标准线段的个数是偶数,加上最后一个标准线段1k k A A +,所以,A 和B 之间的标准线段的个数是奇数.25.1.4★★能否用面积为14⨯的一些长方块将1010⨯的棋盘覆盖?解析 如图中标上1~4这些数,显然每个1×4的长方块各占1、2、3、4一个,于是如果可以覆盖,则1、2、3、4应一样多,但1有25个,2则有26个,矛盾!因此不能覆盖.25.1.5★★12个红球和12个蓝球排成一行,证明:必有相邻的6个球三红三蓝.解析 将这些球标上数字,红球标1,而蓝球则标上1-,于是问题变为:必定有6个相邻的球其标数之和为0.记从第i 个球起的6个数字和为i S ,于是i 可取1,2, (19)易知1S 的全部取值为6-、4-、2-、0、2、4、6,且10i i S S +-=或2(可以认为以2或2-、0的步长“连续”变化).由1713190S S S S +++=,知若四数中有0,则结论成立,否则必有正有负.不妨设0i S >,0j S <,i ,j ∈{1,7,13,19},于是必存在一个k ,k 在i 与j 之间,0k S =.25.1.6★如图,把正方体形的房子分割成27个相等的小房间,每相邻(即有公共面)两个房间都有门相通,在中心的那个小正方体中有一只甲虫,甲虫能从每个小房问走到与它相邻的小房间中的任何一问去.如果要求甲虫只能走到每个小房间一次,那么甲虫能走遍所有的小房间吗?解析 甲虫不能走遍所有的小房间.我们如右图将正方体分割成27个小正方体(每个小正方体表示一问房间),涂上黑白相间的两种颜色,使得中心的小正方体染成白色,再使两个相邻的小正方体染上不同的颜色.显然,在27个小正方体中,14个是黑的,13个是白的.甲虫从中间的白色小正方体出发,每走一步,方格就改变一种颜色.故它走26步,应该经过14个白色的小正方体、13个黑色的小正方体.因此在26步中至少有一个小正方体,甲虫进去过两次.由此可见,如果要求甲虫到每一个小房间只去一次,那么甲虫不能走遍所有的小房间.25.1.7★★3行9列共27个小方格,将每个小方格涂上红色或蓝色.试证:无论如何涂法,其中至少有两列,它们的涂色方式完全一样.解析第一行的9个方格中必有5格同色(抽屉原理),不妨设这5个方格位于前五个位置,且都为红色.下面考虑前五列构成的3×5小矩形.第二行的五格中必有3格是同色的,不妨设这三格位于前三个位置.接着考虑前三列构成的3×3方阵,该方阵前两行的每列完全一样.对第三行,用两种颜色染色时,三列中必有两列同色,不妨设是前两列.此时前两列的涂色方式完全一样.a线进行剪裁,总剪不出七个由相邻两个小正方形组成的矩形来.(b)(a)解析如图(b)涂色.若有一种剪法能剪出七个相邻两个小正方形组成的矩形,则每个矩形一定由一个涂色小正方形和一个不涂色小正方形构成.因此,应该有七个涂色小正方形和七个不涂色的小正方形.但图中有八个涂色小正方形,六个不涂色小正方形,因此适合题意的剪法不存在.25.1.9★★★在8×8的国际象棋棋盘中的每个方格都填上一个整数,现任挑选3×3或4×4的正方形,将其中每个数加1,称为一次操作,问是否能经过有限次操作,一定可以让方格中的所有整数均被10整除?解析按图中选择小方格涂黑,易见每个3×3或4×4都包含偶数个小黑格,这些小黑格中原来数字之和是奇数的话,那么操作一次后,数字和仍是奇数,因此不能得到最后均被10整除.答案是不一定.25.1.10★★4×4的方格表中最多选择几个格子涂黑,使得不存在4个黑格的中心是一个矩形的顶点?解析如图,涂9格,无所求矩形,下证若涂10格,则会出现所求矩形.这是因为若有一行全部涂黑,则余下的行中必有一行至少涂黑2格,此时便有所求矩形出现.于是每行黑格数不到4个,必有两行各包含3个黑格,此时不难看出有所求矩形出现,因此最多选择9格.25.4.11★★★在8×8的国际象棋棋盘中剪去哪个小方格,使得剩下的小方格可以被1×3的矩形覆盖?解析剪去左上角的方格后,棋盘不能用21个3×1的矩形覆盖.为了证明这一点,我们将棋盘涂上三种颜色,涂法如图,其中数字1、2、3分别表示第一、二、三种颜色.如果能用21个3×1矩形将剪去左上角的棋盘覆盖,那么每个3×1的矩形盖住第一、二、三种颜色的方格各1个,从而21个3×1的矩形盖住第一、二、三种颜色的方格各21个,然而棋盘(剪去左上角后)却有第一种颜色的方格20个,第二种颜色的方格22个,第三种颜色的方格21个.因此,剪去左上角的棋盘无法用21个3×1的矩形覆盖.由此可见,如果剪去一个方格后,棋盘能用21个3×1的矩形覆盖,那么剪去的方格一定是图中涂第二种颜色的方格.但是,剪去图中涂第二种颜色的一个方格后,仍然不能保证一定能用21个3×1的矩形覆盖,比如说,剪去图中第一行第2个方格后不能用21个3×1的矩形覆盖,这是由于棋盘的对称性,剪去这个方格与剪去第一行第7个(涂第一种颜色的)方格(或剪去第八行第2个涂第三种颜色的方格)所剩下的棋盘完全相同.于是,只有剪去第三行第3个、第三行第6个、第六行第3个、第六行第6个这四个方格中的某一个,剩下的棋盘才有可能用21个3×1的矩形覆盖.不难验证这时确实能够覆盖. 25.1.12★★求证:只用2×2及3×3的两种瓷砖不能恰好铺盖23×23的正方形地面.解析 将23×23的正方形地面中第1、4、7、10、13、16、19、22列中的小方格全染成黑色,剩下的小方格全染成白色,于是白色的小方格的个数为15×23,这是奇数.因为每块2×2瓷砖总是盖住二黑格和二白格或者盖住四白格,每块3×3瓷砖总是盖住三黑格和六白格,故无论多少2×2及3×3的瓷砖盖住的白格数总是一个偶数,不可能盖住23×15个白格,所以,只用2×2及3×3的瓷砖不能盖住23×23的地面.25.1.13★★求证:用15块大小是1×4的矩形瓷砖和1块大小是2×2的正方形瓷砖,不能恰好铺盖8×8的正方形地面.解析 把8×8的正方形地面上64个小方格依次赋值1、2、3、4如图.无论1×4的矩形瓷砖怎样盖在图中所示的地面上,每块l ×4的矩形瓷砖恰好盖住赋有1、2、3、4的小方块各1个,可见15块1×4的矩形瓷砖恰好盖住赋有1、2、3、4的小方格各15个,而一块2×2的正方形瓷砖无论盖在何处,只有如下四种情形之一:4121341423432321这就是说,2×2的正方形瓷砖所盖住的4个小方块中,必有两个小方块有相同数码.由此可见,如果15块1×4,1块2×2的瓷砖恰好能铺盖8×8的正方形地面,那么这64个小方块中,某一种赋值的小方块应有17块,但实际上,赋值1、2、3、4的小方块各16块,矛盾.25.1.14★★7×7的方格表中有19个方格涂成红色,称一行或一列是红色的如果该行或该列中至少有4个红格.问该方格表中最多有多少个红色的行和列?解析首先我们指出红色的行和列不多于8个.若不然,红色的行和列至少9个,则其中必有5个红行或红列,不妨设为前者.由于每个红行中至少有4个红格,故知表中至少有20个红格.此与已知条件矛盾.其次,当我们将表格中的某个4×4的正方形的16个方格全部涂红时,便得到4个红行和4个红列,共8个.这表明有19个红格时,确可使红行与红列的个数达到8.所以最大值为8.25.1.15★★如图是由4个l×1方格组成的L形纸片,如果一个m n⨯方格的棋盘能被若干个L形纸片无重复地覆盖,试证:mn是8的倍数.解析设m n⨯棋盘由k个L形纸片所覆盖,而L形是由4个1×1小方格所组成,则可令=.由此得出m、n中至少有一个偶数,不失一般性,可令n为偶数,即共有偶数n列.4mn k现在对“列”进行黑、白交替染色,可得黑、白格各共有2k个.易见每个L形纸片无论怎样配置,总是盖住奇数个黑格.今共有2k个黑格,因此必须有偶数个L 形,从而证得mn是8的倍数.25.1.16★★在8×8的方格棋盘上最多能放多少个马,它们互不相吃(假定有足够多的马)?解析我们将棋盘相间染成黑白二色,则黑格与白格各32个.按马的走法(如图)知,黑格上的马只能吃白格上的马,因此,将所有黑格都放马,它们是互不相吃的.这就是说,我们可以放32个马,它们互不相吃.现证任意放33个马必有被吃的情形.事实上,将棋盘划分为8个2×4的小棋盘,则至少有一个小棋盘要放5个马,其放法只有两种可能:要么一排放1个,另一排放4个;要么一排放2个,另一排放3个.显然这两种放法都不可避免地发生互相“残杀”的结局.因此,最多能放32个马,它们互不相吃.25.1.17★★★在12×12的棋盘上,一匹超级马每步跳至3×4矩形的另一角,如图(a).这匹马能否从某一点出发,跳遍每一格恰好一次,最后回到出发点?(a)解析我们用两种方法对此棋盘染色.首先,将棋盘黑白相间染色,由马的跳步规则知,马每跳一步,或者是从黑格跳到白格,或者是从白格跳到黑格.不妨设马是第奇数步跳到自格,即马在第奇数步跳入的格子全体就是全体白格.123456789101112(b)其次,将棋盘的第1、2、6、7、11、12行染成白色,其余的行染成黑色,如图(b).由马的跳步规则知.马从白格一定跳人黑格,因为白格的数目同黑格的数目相同,马要遍历棋盘的每一格恰一次再回到出发点,因此,马从黑格只能跳入白格,不妨设马第奇数步跳入白格.对于一种满足要求的跳法,在两种染色方式下第奇数步跳入的格子的全体却是不同的,矛盾.因此,题目要求的跳法,即“回路”是不存在的.25.1.18★★★在8×8方格表的小方格内放置黑色或白色的棋子,每个小方格内至多只能放一个棋子,使得每行且每列白色棋子的数量都是黑色棋子的数量之2倍.在满足上述条件的所有放置方法中,请问如何放置白色棋子和黑色棋子才能使得棋子的总数量最多?解析因每行都有8格,所以每行棋子最多只能有6个.此方格表共有8行,因此棋子的总数最多为48个.如右图所示,48个棋子是可以完成的.25.1.19★★★★将m n ⨯的方格表中每个小方格涂上黑色或白色,两种颜色的方格数相等.问能否有一种涂法,使每一行、每一列中都有一种颜色的方格数超过75%?解析 不可能.设每行、每列中都有一种颜色的方格超过34,由于行与行、列与列可对调而不影响结论.不妨设其中前p 行白色占优势,后q 行黑色占优势;前r 列白色占优势,后s 列黑色占优势.p q m +=,r s n +=(如下左图).r spq 全白黑白相间黑白相间全黑考虑p s ⨯放q r ⨯的矩形中的ps qr +个方格.其中的白格可看成s 列或q 行中的“少数派”,而黑格可看成p 行或r 列中的“少数派”.由于在每行、每列中“少数派”少于4n 或4m 个,所以前一个矩形中的白色与后一个矩形中的黑格的个数之和少于()44m mn s r +=.同样,前一个矩形中的黑格与后一个中白格之和少于()44n mn p q +=.所以这两个矩形中的方格数442mn mn mn ps qr +<+=,即少于方格总数的一半.因此ps qr pr qs +<+, ()()0p q s r --<,从而p q ≤,r s ≤或q p ≤,s r ≤不妨设为前者,这时2m p ≤,2n r ≤, 白色方格总数44n m pr q s <+⨯+⨯()()44n m pr m p n r =+-⨯+-⨯ 24242mn n r m p p r ⎛⎫⎛⎫=---- ⎪ ⎪⎝⎭⎝⎭2mn ≤, 与两种颜色的方格相等矛盾.评注 每行、每列中都有一种颜色的方格恰好占34是可能的(这时m 、n 当然都被4整除),前右图(其中2m p q ==,2n r s ==)即满足要求. 25.1.20★★★在2是×2是的方格表上,有3k 个格子涂黑,求证:可以选择k 行及k 列,包含了全部这3k 个黑格.解析 将包含黑格的所有行中找出黑格数最多的前k 行,则这k 行中包含的黑格总数必定不少于2k ,否则会有一行的黑格数至多一个,而剩下来的k 行至少有1k +个黑格,于是有一行包含了至少两个黑格,这与k 前是行”的定义矛盾.于是结论成立,接下来只要再找是列包含剩下的k 个黑格即可(有的列可不包含黑格).25.1.21★★★7×7方格表中的方格被分别染为两种不同颜色,证明:至少可以找出21个矩形,它们的顶点是同一种颜色方格的中心,它们的边平行于方格线.解析 考察其中任意一列,估计其中同色“方格对”的个数.设在该列中有一种颜色的方格走个,另一种颜色的方格7k -个,那么,在该列中就共有()()()217672122k k k k k k ---+=-+个同色“方格对”.该式的值在3k =和4k =时达到最小值9,所以,7个列中一共有不少于63个同色“方格对”.注意到每一个这样的同色“方格对”位于一个“行对”中,如果相应的“行对”中还有一个与之颜色相同的同色“方格对”,那么,它们即构成一个满足要求的矩形.我们知道,方格表中一共有76212⨯=个不同的“行对”,由于有两种不同颜色,所以,一共有42种不同情况的“行对”.因此,至少可以找到21(=63-42)个满足要求的矩形.25.1.22★★★把全体正整数染成黑白两色之一,已知任意两个不同颜色的数之和为黑色,而它们的积是白色,试找出所有的这种染色方法.解析 设正整数m 、n 为白色,现研究mn 的颜色.若mn 是黑色,设正整数k 黑色,则m k +为黑色,()m k n mn kn +==+为白色,但由前知mn 黑色,kn 白色,于是mn kn +黑色,矛盾,因此mn 为白色. 设正整数l 是染成白色的最小数,于是由条件及前面的讨论知,l 的所有正整数倍数sl 均为白色.至于其他正整数p ,p 不被l 整除,设p ql r =+,0r l <<,由l 之定义知,r 必定是黑色,于是知当0q =时,p r =为黑色;当0q >时由ql 为白色,知p 亦为黑色.于是本题的结论就是,所有l 的倍数染成白色,其余的数染成黑色,不难验证这种染法确实满足题设要求.25.1.23★★★★有一个矩形顶点坐标分别为()0,0、()0,m 、(),0n 与(),n m ,其中m 、n 均为正奇数,将这个矩形分拆(既无重叠,也不遗漏)为一些三角形,使得每个三角形的顶点均为格点且至少有一条边与坐标轴平行,并且这条边上的高为1,求证:一定存在至少两个三角形,它们各有两条边平行于坐标轴.解析 易知,可将矩形分成mn 个单位正方形,并涂上黑白两色,使相邻的正方形颜色不同.此时4个角上的小正方形颜色相同,设为黑色,于是黑色格总面积比白格多1.可以推出,上述分拆中,每一个有两条边与坐标轴平行的三角形中,两种颜色部分的面积之差为12;而每一个仅有一条边与坐标轴平行的三角形中,两种颜色部分的面积相等,如图.由于黑色面积与白色面积相差1,故至少存在两个三角形各有两条边与坐标轴平行.25.1.24★★★把正三角形划分为2n 个同样大小的小正三角形,把这些小正三角形的一部分标上号码1,2,…,m ,使得号码相邻的三角形有相邻边.求证:21m n n -+≤.解析 将2n 小正三角形如图黑、白染色,黑三角形共有1+2+3+…+()112n n n =+个,白三角形共有1+2+3+…+(1n -)()112n n =-个,由于要求“号码相邻的三角形有相邻边”,且有相邻号码的两个三角形染有不同的颜色,因此标上号码的黑三角形总比标上号码的白三角形的个数多1,所以编号的三角形数m 不超过()2121112n n n n ⨯-+=-+个,即21m n n -+≤.25.1.25★★★将正方形ABCD 分割为n n ⨯个相等的小方格,把相对的顶点A 、C 染成红色,把B 、D 染成蓝色,其他交点任意染成红、蓝两色中的一种颜色.求证:恰有三个顶点同色的小方格的数目必是偶数.解析 用数代表颜色:红色记为1.蓝色记为1-.将小方格编号,记为1,2,…,2n .记第i 个小方格四个顶点处数字之乘积为i A .若该格恰有三个顶点同色,则1i A =-,否则1j A =.今考虑乘积212n A A A ⨯⨯⨯.对正方形内部的交点,各点相应的数重复出现4次;正方形各边上的不是端点的交点相应的数各出现2次;A 、B 、C 、D 四点相应的数的乘积为()()11111⨯⨯-⨯-=.于是,2121n A A A ⨯⨯⨯=.因此,1A ,2A ,…,2n A 中1-的个数必为偶数,即恰有三个顶点同色的小方格必有偶数个.25.1.26★★已知ABC △内有n 个点(无三点共线),连同点A 、B 、C 共3n +个点,以这些点为顶点把ABC △分割为若干个互不重叠的小三角形,现把A 、B 、C 分别染成红色、蓝色、黄色,而其余n 个点,每点任意染上红、蓝、黄三色之一.求证:三顶点都不同色的小三角形的总数必是奇数.解析 把这些小三角形的边赋值:边的端点同色的,赋值0,边的端点不同色,赋值1,于是每只小三角形的三边赋值的和,有如下三种情形:(i)三顶点都不同色的小三角形,赋值和为3;(ii)恰有两顶点同色的小三角形,赋值和为2;(iii)三顶点同色的小三角形,赋值和为0.设所有小三角形的边的赋值总和为S ,又设情形(i)、(ii)、(iii)中三类小三角形的个数分别为a 、b 、c ,于是32032S a b c a b =++=+. ①注意到所有小三角形的边的赋值总和中,除了边AB ,BC ,CA 外,其余各边都被计算了两次,故它们的赋值和是这些边的赋值和的两倍,再加上ABC △的三边的赋值和为3,故S 是奇数,因此,由①式得a 是奇数.25.1.27★★★由8个1×3和1个1×1的砖块按通常方式(即平行地贴着格子线)铺满一个5×5的棋盘,求证:1×1的砖块必定位于整个棋盘的中心位置.解析 将棋盘按图中方式染成A 、B 、C 三种颜色.易见A 、C 各有8格,而B 有9格.由于每个1×3砖块必定覆盖A 、B 、C 三色格各一格,因此1×1的砖块必定染成B 色.再将整个棋盘旋转90゜,再按完全相同的方法染色,于是1×1的砖块仍在染成B 色的方格上,但两次染色均染成B 色的小方格只有中间的那个,因此1×l 的砖块必定位于整个棋盘的中心位置.25.1.28★★★★6个点每两点之间连一条线,将这15条线进行任意的二染色(即每条边染成两种颜色之一),则必定存在至少两个同色的三角形.解析 设两色为红色与蓝色.若从同一点出发有3条线同色,比如AB 、AC 、AD 为红色,如果BC 红色,则ABC △为红色三角形,否则BC 为蓝色,同理CD 、DB 亦为蓝色,于是BCD △为蓝色三角形.因此,有一点出发3条线同色,一定有同色三角形存在.于是6个点之间的15条线中,一定有同色三角形存在.5个点的10条线若无同色三角形,则每一点连出的4条线必定两红两蓝.比如五点为A 、B 、C 、D 、E ,不妨设BA 、AE 红,由于BE 蓝,还有一点与B 的连线红色,不妨设BC 红,于是BD 蓝,ED 红,AC 、AD 蓝,CD 红,CE 蓝,故要想不出现同色三角形,只能是五点构成的五边形(不一定凸或自身不交)的边同色,而对角线则异色.现在回到原题,设六点为1A 、2A 、3A 、4A 、5A 、6A ,由于一定有同色三角形存在,不妨设为456A A A △一是红色三角形,若不存在第二个同色三角形,则可设五边形12345A A A A A 的边为红色(图中实线所示),对角线为蓝色(图中虚线所示).若16A A 为红色,则156A A A △为红色三角形,故16A A 蓝,同理36A A 为蓝色,于是136A A A △为蓝色三角形,因此同色三角形至少有两个.A 1A 2A 34A 5A 625.1.29★★★n n ⨯的方格表中有1n -个格子涂且黑色,如果一个未涂色的小方格有两个以上的黑色小方格与之相邻(“相邻”指有公共边),则将这个小方格也涂黑,求证:不可能将所有的小方格都涂黑.解析 假定小方格边长为1.考虑一开始这1n -格小方格组成的“岛”,每个“岛”都由连在一起的小方格组成,不同的“岛”之间没有公共边界(当然也可能本来只有一个“岛”).因此这些“岛”的边界(包括有“洞”时“洞”的“内部边界”)长度之和不大于()41n -(因为还有小方格边界在内部抵消的情形).现在按规则操作,每添加一个黑格,总边界不会增加,甚至还会减少(例如未涂色的小方格周边已有3或4个小黑格与之相邻).如果所有小方格都涂黑了,总边界为()441n n >-,矛盾.因此结论成立.25.1.30★★★无限大方格表上的每个结点(方格线的交点)都被染为三种颜色之一,并且每种颜色的点都有.证明:可以找到一个直角三角形(其直角边不一定在方格线上),它的三个顶点被分别染为三种不同颜色.解析用反证法.假设不存在三个顶点被分别染为三种不同颜色的直角三角形.不难看出,可以找出一条水平方向或竖直方向的直线l,它上面至少有两种颜色的结点,为确定起见,设其为水平方向.如果l上只有两种颜色的点,比方说蓝色与红色,那么在平面上任意取一个绿色结点A,并且把A 所在的竖直直线与l的交点记作B.于是,B或为蓝色或为红色,不妨设其为蓝色.由于l上还有红色结点,只要任取其中一个红点C,即可得到三个顶点颜色各异的Rt ABC△,此与假设矛盾.所以,l上面有三种颜色的结点.在直线l上任意取一个蓝点B、一个红点C和一个绿点D.那么,此时在经过点B的竖直直线上的结点都应当为蓝色,否则就可以找到三一个顶点颜色各异的直角三角形.同理,在经过点C的竖直直线上的结点都为红色,在经过点D的竖直直线上的结点都为绿色.这就表明,在以上的染色方法中,每条竖直直线上的结点都是单一颜色的,从而,任何直角边在方格线上的直角=三角形中都至少有两个顶点同色.下面考察任何一条经过结点且与竖直方向交成45゜的直线.由于它同每条竖直直线都相交于结点处,所以它上面有着三种不同颜色的结点.这样一来,根据刚才的讨论,在每一条与它垂直的直线上的结点都只能是单一颜色的.但是,事实上这些直线都与竖直方向交成135゜,从而与每条竖直直线都相交于结点处.故都有着三种不同颜色的结点,导致矛盾.25.1.31★★★将全平面以任意方式二染色,并在平面上任找不共线的三点A、B、C,求证:存在一个顶点同色的三角形,与ABC△相似.S M K N T解析首先证明,一定有两点及两点连线之中点同色,不妨设二色为红与蓝.至少有一种颜色被涂在无穷多个点上,不妨设是红色,今找两点M、N,均为红色.K为MN中点,又使M为SN中点,N为MT中点.若K红,则M、K、N为所求;同理,若S或T为红,则S、M、N或M、N、T为所求;若K、S、T皆为蓝,则S、K、T为所求.如图,现作A△,P、Q、R为三边中点,且由前,可设B′、P、C′.若A′△′B′C′∽ABC红,则A△′P或QPC△′B′C′即为所求;若R或Q红,则RB△′为所求;若A′、R、Q皆蓝,此时A△′RQ即为所求.于是结论成立.。

六年级下册奥数讲义-奥数方法:染色法 全国通用

六年级下册奥数讲义-奥数方法:染色法 全国通用

在解决某些数学问题时,我们常常需要把有关元素适当分类.为了使这种分类更为形象,我们可以设想把元素分别涂上不同的颜色.这类用涂色的方法来寻求解题思路的方法叫做染色法.根据染色对象的不同,染色法一般分为方格染色、线段染色和点染色三种,在运用染色法解题的过程中,常结合抽屉原理等组合知识和图论初步知识.解题步骤一般分为:(1)审题,把实际问题用染色图表示出来;(2)运用抽屉原理或图论知识对染色图进行分析;(3)找出问题的答案.[例1] 在平面上有一个27×27的方格棋盘,在横盘的正中间摆好81枚棋子,它们被摆成一个9×9的正方形.按下面的规则进行游戏:每一枚棋子都可沿水平方向或竖直方向越过相邻的棋子,放进紧挨着这枚棋子的空格中,并把越过的这枚棋子取出来.问:是否存在一种方法,使棋盘上最后恰好剩下一枚棋子?思路剖析本题的游戏规则是一枚棋子越过相邻的棋子进行移动,故每一次移动会影响3个棋盘方块的棋子数,可考虑用3种颜色对棋盘染色,研究其变动规律,推出答案.解答如图1所示,将整个棋盘的每一格都分别染上红、白、黑三种颜色,这种染色方式将棋盘按颜色分成了三个部分.按照游戏规则,每走一步,有两部分中的棋子数各减少了一个,而第三部分的棋子数的奇偶性都要改变.因为一开始时,81个棋子摆成一个9×9的正方形,显然三个部分的棋子数是相同的,故每走一步,三部分中的棋子数的奇偶性是一致的.但如果在走了若干步以后,棋盘上恰好剩下一枚棋子,则两部分上的棋子数为偶数,而另—部分的棋子数为奇数,这种结局是不可能的,即不存在一种走法,使棋盘上最后恰好剩下一枚棋子.[例2]在5×5的方格棋盘中的A格里放一颗棋子,规定每次棋子可向左右或上下移动一格,问这颗棋子走25步后能否回到原处?思路剖析如图2所示,棋子从A出发,每一步都有2┉4种走法,25步以后出现的情况很多.从表面上看,似乎找不到棋子行走的规律,若利用染色法,对棋格作相间染色,很容易发现规律,找到本题答案.解答如图3所示,对棋格作相间染色,则棋子从白格A出发,走l步进入黑格,走2步进入白格,走3步进入黑格,……,显然,棋子从白格A出发. 走奇数步落在黑格,走偶数步落在白格,所以,走25步一定落在黑格,而原处为白格,故本题答案为:这颗棋子走25步后不能回到原处.[例3】如图4所示,把正方体分割成27个相等的小正方体,在中心的那个小正方体中有一只小甲虫,甲虫能从每个小正方体走到与这个正方体相邻的6个小正方体中的任何一个中去.如果要求甲虫只能走到每个小正方体一次,那么甲虫能走遍所有的正方体吗?思路剖析先将正方体进行黑白相间染色(见图5),则小甲虫每移动一次,会改变一次方格的颜色,对小甲虫走过不同颜色的方格数进行考虑,问题便迎刃而解了.解答我们如图5所示,将正方体分割成27个小正方体,涂上黑白相间的两种颜色,使得中心的小正方体染成白色,再使两个相邻的小正方体染上黑色.显然,在27个小正方体中,14个是黑的,13个是白的.甲虫从中间的白色小正方体出发,每走一步,方格就改变一种颜色.故它走27步,应该经过14个白色的小正方体、13个黑色的小正方体.因此在27步中至少有一个小正方体,甲虫进去过两次.由此可见,如果要求甲虫到每一个小正方体只去一次,那么甲虫不能走遍所有的小正方体.[例4] 如图6所示,平面上给定6个点,没有三个点在一条直线上. 证明:用这些点做顶点所组成的一切三角形中,必定有一个三角形,它的最大边同时是另一个三角形的最小边.思路剖析在一般情况下,三角形的三条边互不相等,因此存在一个最大边和最小边,考虑特殊情况,在等腰三角形(或等边三角形)中,最大边可能有2 条(或3条).同样,可用涂色法解决.证明先将每一个三角形中的最大边涂成红色,然后将其余的边染成绿色.(1)先证明这些三角形中至少有一个同色三角形.根据抽屉原理,从A出发的5条线,至少有3条线同色,设有3条红线AB、AC、AD,再分析BC、BD、CD三条线段,若有l条为红色,问题得证,若3条全是绿色.问题也得证.(2)由(1)可知,全部三角形中必有一个为同色三角形,若为红色三角形,则这红色三角形中的最小边必定是某个三角形的最大边;若为绿色三角形,则这个绿色三角形中的最大边必定是某一三角形的最小边,问题得证.[例5】用15个“T"字形纸片和1个“田”字形纸片(如图7所示),能否覆盖一个8×8的棋盘?思路剖析本题看起来无从下手,但我们可以将棋盘的方格进行染色,然后寻找T字形纸片与棋盘方格之间的关系,综合运用假设法,导出本题答案.解答如图8所示,先将棋盘染成黑白相间的形状.假设15个T字形纸片和1个田字形纸片可以盖住棋盘,则它们盖住的白格数为32个.显然1个田字形纸片盖住2个白格,故15个T字形纸片盖住30个白格.再来看每个T字形纸片只能盖住1个或3个白格,设有,n(n为自然数)张T字纸片盖住1个白格,则15张T字纸片一共盖住n×1+(15-n)×3=,n+45-3n=45-2n,对45-2n=30求解,显然n没有自然数解,所以不能覆盖棋盘.[例6】6个人参加一个集会,每两个人或者互相认识或者互相不认识.证明:存在两个“三人组”,在每一个“三人组”中的三个人,或者互相认识,或者互相不认识(这两个“三人组”可以有公共成员).思路剖析本题是一个生活中的小问题,可先进行适当转化,使其变成一个纯粹的数学题,可考虑用点表示每个人,利用染色法,对每个人之间的不同关系用点与点之间不同颜色的线段来区分.问题就迎刃而解了.解答现在我们将每个人用一个点表示(A、B、C、D、E、F),如果两人认识就在相应的两个点之间连一条红色线段,否则就连一条蓝色线段.本题即证明图9中是否存在两个同色的三角形.我们先证明存在一个同色的三角形(图9):考虑由A点引出五条线段AB、AC、AD、AE,AF、其中必然有三条被染成了相同的颜色,我们不妨设AB、AC、AD同为红色.再考虑ABCD的三边:若其中有一条是红色,则存在一个红色三角形;若这三条都不是红色,则存在一个蓝色三角形.我们不妨再假设△ABC的三条边都是红色的.若△DEF也是三边同为红色,则显然就有两个同色三角形;若△DEF三边中有一条边为蓝色,设其为DE,再考虑DA,DB,DC三条线段:若其中有两条为红色,则显然有一个红色三角形;若其中有两条是蓝色的,则设其为DA,DB.此时在EA,EB中若有一边为蓝色,则存在一个蓝色三角形;而若两边都是红色,则又存在一个红色三角形.(请读者参照上图作图)答:不论如何染色,总可以找到两个同色的三角形.[例7】某展览馆是由5×5个小方形房组成的25间展室,相邻的两展室之间有一门相通且只有一间展室为进出口房间.一小朋友打算从进口间开始,不重复地依次看完每一展室,然后出来.试问,这位小朋友的希望能实现吗?思路剖析如果我们一条一条地把所有可能的走法都来试验,显然是不明智的,因为走法太多,而且容易发生遗漏.可以考虑染色法,将25个展室用黑白相间的办法涂色,再进行奇偶性分析.解答如图10所示,把25个展室用黑白相间的办法涂色,根据小朋友的愿望,他必须依次由白室走入黑室,经过25道门,最后再到白室.然而,无论他选择什么路线,按其要求走的结果必然是:即,经过25道门后,所到的展室一定是黑室而不是白室,所以,这位小朋友的愿望不能实现.点津染色法是由染色问题引申出来的一类解题方法,其实质也是将一个数学问题转化为一个染色问题.运用它解题的关键在于染色对象和染色方式的选择,一般采用黑白相间的方式,在解答一些更难的问题时可能要用到多种颜色.在题中数量关系发生变动时,考虑这种变动在涂色图形上的反应时,要有较严密的逻辑思维和想像能力.1.如图11所示,正方形被分成6块区域,若给每一块区域都染色,并且相邻的区域颜色不同,问至少需要几种不同的颜色?2.将4x4的正方形剪去两个小正方形,剪法不同得出图12和图13.现用7块l x 2的小矩形去覆盖,问覆盖能否完成.3.如图14用红、黄、蓝、绿4种颜色给一个五边形着色,使相邻两边的颜色不同.问共有多少种不同的着色方法?4.在正方体的每一个面取中心,将这些点两两相连,有些用红线,有些用蓝线,求证:在这些连线中,必然有同一种颜色的线组成的三角形.5.将图15中的点染色,要求相邻的(即有线段连结的)点染成不同的颜色.问至少需要几种颜色?6.一个车间安装了5行缝纫机,每行7台,每台缝纫机由一名工人操作,一个月后,要求每个工人和它相邻的同伴交换工作,这可能吗?为什么?7.线段AB的两个端点一个染黑色,一个染白色.在线段AB内任意取100个点,将AB分成101条首尾相接的线段,请判断,如果将这100个点任意染成黑色点或白色点,那么这101条线段中,两端点不同色的线段的条数是奇数还是偶数?8.在一张白纸上,随着画上一些红色点和一些蓝色点,它们的总和不少于5点.画完之后发现,任意3个红点不共线,任意3个蓝点也不共线. 求证,一定存在3个顶点同颜色的三角形,它至少有一条边(不包括延长线)不含另一种颜色的点.9.一批现成的木箱,尺寸是6 x 6 x 6,现有一批商品,每件都是长方体,尺寸为l x2x4.能不能用这样的商品将木箱填满?。

初中数学重点梳理:染色问题

初中数学重点梳理:染色问题

染色问题知识定位染色是分类的直观表现,在数学竞赛中有大批以染色面目出现的问题,这类问题的特点是知识点少,逻辑性强,技巧性强,其内部蕴藏着深刻的数学思想。

同时,染色作为一种解题手段也在数学竞赛中广泛使用。

将问题中的对象适当进行染色,有利于我们观察、分析对象之间的关系,像国际象棋的棋盘那样,我们可以把被研究的对象染上不同的颜色,许多隐藏的关系会变得明了,再通过对染色图形的处理达到对原问题的解决,这种解题方法称为染色法。

知识梳理知识梳理1.染色问题解答染色问题,并不需要具备更多的数学知识,只需要具有缜密的思考能力和较强的分析能力。

纵观各种染色试题,它与我们经常使用的数学方法紧密联系。

大体上有如下几种方法:奇偶分析、归纳法、反证法、抽屉原理、构造法、组合计数等。

常见的染色方式有:点染色、线段染色、小方格染色和对区域染色。

例题精讲【试题来源】【题目】用任意的方式将平面上的每一点染上黑色或白色(称为二染色).求证:一定存在长为1的线段,它的两个端点同色。

【答案】在平面上任作一个边长为1的正三角形,设三个顶点为A,B,C,由于平面上的每点只着黑、白两色之一,根据抽屉原理,A,B,C三点中必有两点同色,以这两同色点为端点的线段长度恰为1.【解析】在平面上任画一条长为1的线段,如图,若A,B两点同色,则结论已成立.若A,B 两点不同色,为确定起见不妨设A为黑色,B为白色,以AB为边作正三角形ABC,则AB=BC=CA=1.这时C点要么是黑点,要么是白点.若C为黑点,则AC为两个端点同色的长为1的线段.若C为白点,则BC为两个端点同色的长为1的线段.上述分析过程,其实已完成了证明过程,不过思路一旦找出,出现边长为1的正三角形的顶点A,B,C三点的构想是个关键,为此可得出如下简化的证明.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】对平面上的点黑白二染色后,一定存在三顶点同色的直角三角形.【答案】见解析【解析】对平面上的点黑白二染色,根据例1的结论,存在边长为a(a>0)的线段AB,它的两个端点同色(不妨设A,B同黑).以AB为边作正方形ABCD,对角线AC,BD交于点O,如图,如果D,O,C中有一个黑点,则该点与A,B构成三顶点同黑色的直角三角形.如果D,O,C全白色,则△DOC就是三顶点全为白色的直角三角形.因此,二染色平面上一定存在顶点同色的直角三角形.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】用任意的方式,对平面上的每个点染黑色或白色,求证:一定存在一个边长为1或3的正三角形,它的三个顶点同色.【答案】见解析【解析】若存在边长为1且顶点同色的正三角形,则问题得证.若不存在边长为1且顶点同色的正三角形,则一定存在长为1的线段AB ,两端点A ,B 异色.以AB =1为底作腰长为2的等腰三角形ABC ,则C 与A 或B 总有一对是异色的.不妨设长为2的线段AC 两端点异色(见图(a )).取AC 的中点O ,则O 必与A ,C 之一同色(见图(b )),不妨设O 与A 同色.由于不存在边长为1的同色顶点的正三角形,所以以AO 为一边的等边三角形的另外的顶点D 和E 必与A 异色.此时,△ECD 就是一个边长为3的顶点同色的正三角形.评注 事实上,当将平面分成宽度为23的水平带状区域,且每个区域含下沿直线,不含上沿直线,使相邻的带状区域染上不同颜色,对这样的平面二染色,任意边长为1的正三角形的三个顶点均不同色,但存在边长为3的三顶点同色的三角形.由例3可得更一般的结论:平面上点二染色后,要么存在边长为a (a >0)三顶点同色的正三角形,要么存在边长为3 a 三顶点同色的正三角形.【知识点】染色问题 【适用场合】当堂练习题 【难度系数】3【试题来源】【题目】连接圆周上9个不同点的36条线段染成红色或蓝色,假设9点中每3点所确定的三角形都至少含有一条红色边.证明有4点,其中每两点的连线都是红色.【答案】见解析【解析】设9个点依次为v1,v2,…,v9,首先证明必存在一点,设为v1,从v 1出发的红色线段不是5条.事实上,若不然,如果都是5条,则共有红色线段295不是整数,矛盾.若从v1出发的红色线段至少有6条,设v1v2,v1v3,v1v4,v1v5,v1v6,v 1v7均为红色,则由第26讲例8评注可知,连结v2,v3,v4,v5,v6,v7的线段中必有同色三角形.由题意知它只能为红色三角形,设为v2v3v4,则v1,v 2,v3,v4四点中两两皆连红线.若从v1出发的红色线段至多4条,则v1出发的蓝色线段至少有4条,设为v 1v2,v1v3,v1v4,v1v5,则v2,v3,v4,v54点必然两两连红线.否则,例如若v2v3是蓝色的,则△v1v2v3是蓝色三角形,与题设至少有一边为红色矛盾.以上各例中,染色都是作为问题条件给出的,有时,染色方法也作为一种分类手段,因此,用形象直观地染色进行分类,也就成了一种很有特色的解题方法.【知识点】染色问题【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】某桥牌俱乐部约定,四个人在一起打牌,同一方的两个人必须都曾合作过,或都不曾合作过.试证:只要有五个人,就一定能凑齐四个人,按照约定在一起打牌.【答案】见解析【解析】本题证明采用构造一个涂色模型,使它与原问题间有一一对应的关系.如果模型中的问题证明了,那么原问题也相应地证明了.证明五个人对应为空间五个点,如两个人合作过,那么对应两点连结红色线段,如两人不曾合作过,那么对应两点连结蓝色线段.因此原问题等价于证明涂色模型:空间五个点(无三点在一条直线上),两两连线,涂上红色或蓝色之一.证明必存在两条无公共端点的同色线段.设五个点为A1,A2,A3,A4,A5,不失一般性,不妨设A1A2为红色.观察△A3A4A5三条边的颜色.(1)如果△A3A4A5中有一条边为红色,设为A3A4,那么A1A2与A3A4是满足条件的两条线段;(2)如果△A3A4A5的三条边均为蓝色,此时如A1A3,A1A4,A1A5与A2A3,A2A4,A2A5中如果有一条蓝色线段,那么问题就获证.如以A1A3是蓝色线段为例,那么A1A3与A4A5是满足条件的两条线段.反之,如果此时六条线段均为红色,如取A1A3与A2A4就是满足条件的两条线段.由于无公共端点的同色线段存在,证得原命题成立.【知识点】染色问题【适用场合】阶段测验【难度系数】3【试题来源】【题目】把平面划分成形为全等正六边形的房间,并按如下办法开门:若三面墙汇聚于一点,那么在其中两面墙上各开一个门,而第三面墙不开门.证明:不论沿多么曲折的路线走回原来的房间,所穿过的门的个数一定是偶数.【答案】见解析【解析】为方便起见,我们把有公共门的两个房间叫做相邻的.用两种不同的颜色涂平面上的这些房间,使相邻的房间的颜色不同(如图).注意,从某种颜色的房间走到同种颜色的房间,必须经过另一种颜色的房间.显然,从任一房间走到同种颜色的房间,必定经过偶数个门.这样,利用图形和不同的颜色就可以解出这道题.【知识点】染色问题【适用场合】课后两周练习【难度系数】3【试题来源】【题目】有一个2003⨯2003的棋盘和任意多个l⨯2及1⨯3的矩形纸片,规定l⨯2的纸片只能沿着棋盘的格线水平地放置,而1⨯3的纸片只能沿着棋盘的格线铅直地放置. 请问是否可依上述规定取用一些纸片不重叠地盖满整个棋盘?【答案】不可以【解析】先将棋盘的每一行黑白交错涂色,即第一行,第二行,第三行,…,依次为黑色,白色,黑色,….经过这样涂色后,开始时棋盘的黑白方格数之差为2003个.沿着棋盘的格线水平地放置1⨯2的纸片,每放上一个l⨯2的纸片,就能盖住黑白方格各一个,所以这个操作并不会改变黑白方格数之差;而每一个1⨯3的矩形纸片沿着棋盘的格线铅直地放置,所覆盖的三个方格都是同一颜色,所以每放置一片l⨯3的矩形纸片,棋盘的黑白方格数之差就增加3个或减少3个.因为2003不是3的倍数,所以,依题述规定取用一些1⨯2及l⨯3的矩形纸片是不可能不重叠地盖满整个棋盘的.【知识点】染色问题【适用场合】课后一个月练习【难度系数】3【试题来源】【题目】证明:如图,用15块4×1的矩形瓷砖与1块2×2的方形瓷砖,不能覆盖8×8的正方形地面(瓷砖不许断开!).【答案】见解析【解析】本例题有多种证法.一个共同点是:“不能覆盖”的证明,通常借助于反证法.证法1将8×8的正方形地面的小方格,用黑、白色涂之,染色法如图.于是,每一块4×1瓷砖,不论怎样辅设,都恰好盖住两个白格两个黑格.15块4×1瓷砖共盖住30个白格和30个黑格.一块2×2瓷砖,无论怎么放,总是盖住“三白一黑”或“三黑一白”,即只能盖住奇数个白格和奇数个黑格.而盘中的黑白格总数相等(全为32个).所以用15块4×1砖与1块2×2砖不能完全覆盖8×8地面.证法2将8×8的正方形地面的小方格.用代号为1,2,3,4的四种颜色涂之,染色法如(a).这时,4×1砖每次总能盖住1,2,3,4四色;而2×2砖不论放何处,总是不能同时盖住1,2,3,4四色.故是不可能的.证法3同样用四色涂之,涂法如(b).用反证法,设4×1砖横着盖住i 色的有x i 块,竖着盖住的有y 块.2×2砖盖住阴影格处(不妨假定,余仿此).假定能够盖住.那么有:⎩⎨⎧=+=+,144,16421y x y x 相减得4(x 1-x 2)=2.因为x 1与x 2均为整数,这是不可能的.【知识点】染色问题 【适用场合】当堂例题 【难度系数】3【试题来源】【题目】(1)用1×1,2×2,3×3三种型号的正方形地板砖铺设23×23的正方形地面,请你设计一种辅设方案,使得1×1的地板砖只用一块.(2)请你证明:只用2×2,3×3两种型号的地板砖,无论如何铺设都不能铺满23×23的正方形地面而不留空隙.【答案】见解析【解析】(1)首先用12块地板砖与6块地板砖能铺成的长方形地面, 再利用4个的板块,恰用1块地板砖,可以铺满的正方形地面. (2)我们将的大正方形分成23行23列共计529个的小方格,再将第1行,第4行,第7行,第10行,第13行,第16行,第19行,第22行这八行染红色,其余的15行都染白色,任意或的小正方块无论怎样放置(边线与大正方形格线重合),每块或的正方块都将盖住偶数块的白色小方格.假设用及的正方形地板砖可以铺满后正方形地面,则它们盖住的白色的小方格总数为偶数个.然而地面染色后共有(奇数)个的白色小方格,矛盾.所以,只用,两种型号地板砖无论如何铺设,都不能铺满的正方形地面而不留空隙.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】如图,对A,B,C,D,E,F,G七个区域分别用红、黄、绿、蓝、白五种颜色中的某一种来着色,规定相邻的区域着不同的颜色.那么有种不同的着色方法.【答案】2880【解析】对这五个区域,我们分五步依次给予着色:(1)区域A共有5种着色方式;(2)区域B因不能与区域A同色,故共有4种着色方式;(3)区域C因不能与区域B同色,故共有4种着色方式;(4)区域D因不能与区域A,B,C同色,故共有2种着色方式;(5)区域E因不能与区域A,D同色,故共有3种着色方式.(6)区域F因不能与区域D,E同色,故共有3种着色方式.(7)区域G因不能与区域A,E,F同色,故共有2种着色方式.于是,根据乘法原理共有种不同的着色方式.因此,本题正确答案是:2880.【知识点】染色问题【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】一块2×2的方格由4个1×1的方格构成,每个小方格被涂上红、绿两种颜色之一.如果要求绿色小方格的上方和右方不能与红色方格邻接.且上述四个小方格可以全部不涂绿色,也可全部涂上绿色.则可能的涂色方法共有种.【答案】2880【解析】对这五个区域,我们分五步依次给予着色:(1)区域A共有5种着色方式;(2)区域B因不能与区域A同色,故共有4种着色方式;(3)区域C因不能与区域B同色,故共有4种着色方式;(4)区域D因不能与区域A,B,C同色,故共有2种着色方式;(5)区域E因不能与区域A,D同色,故共有3种着色方式.(6)区域F因不能与区域D,E同色,故共有3种着色方式.(7)区域G因不能与区域A,E,F同色,故共有2种着色方式.于是,根据乘法原理共有5×4×4×2×3×3×2=2880种不同的着色方式.故答案为:2880.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】在9×9的方格表中,有29个小格被染上了黑色,如果m表示至少包含5个黑色小方格的行的数目,n表示至少包含5个黑色小方格的列的数目,试确定m+n的最大值.【答案】10【解析】∵m表示至少包含5个黑色小方格的行的数目,∴5m小于29,∴m的最大值为5,当m=5时,则n的最大值为5.故m+n的最大值为5+5=10.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】将凸五边形ABCDE的5条边和5条对角线染色,且满足任意有公共顶点的两条线段不同色,求颜色数目的最小值.【答案】5【解析】由于顶点A是4条线段AB,AC,AD,AE的公共点,因此至少需要4种颜色.若只有4种颜色,不妨设为红、黄、蓝、绿,则每个顶点引出的4条线段的颜色包含红、黄、蓝、绿各一种,因此,红色的线段共有条,矛盾.所以,至少需要5种颜色.下面的例子说明5种颜色可以将这10条线段染为满足条件的颜色.将AB,CE 染为1号颜色;将BC,DA染为2号颜色;将CD,EB染为3号颜色;将DE,AC染为4号颜色;将EA,BD染为5号颜色,则任意有公共顶点的两条线段不同色.综上所述,颜色数目的最小值为5.【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】有10个表面涂满红漆的正方体,其棱长分别为2,4,6,…,20.若把这些正方体全部锯成棱长为1的小正方体,求有多少个至少一面有漆的小正方体.【答案】8000【解析】【知识点】染色问题【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】将直线上的每一个点都染上红、黄两色中的一种,证明:必存在同颜色的三个点,使得其中一点是另两点为端点的线段的中点.【答案】见解析【解析】【知识点】染色问题【适用场合】当堂例题【难度系数】3【试题来源】【题目】某班有50个学生,男女各占一半,他们围成一圈,席地而坐开营火晚会,求证:必能找到一位两旁都是女生的学生.【答案】见解析【解析】【知识点】染色问题【适用场合】课后两周练习【难度系数】3【试题来源】【题目】若由“L”形的4个小方格,无重迭地拼成一个4×n的矩形.试证:n必为偶数.【答案】见解析【解析】【知识点】染色问题【适用场合】随堂课后练习【难度系数】3【试题来源】【题目】将一个棱长分别为36厘米、54厘米和72厘米的长方体切割成一些大小相同、棱长是整数厘米的正方体,然后给这些正方体的表面涂色。

【通用版】超级数学竞赛讲义专题1-4(共22讲,pdf版,含答案)

【通用版】超级数学竞赛讲义专题1-4(共22讲,pdf版,含答案)
G,它的边涂上了颜色,每三点之间至少有一条边,每个顶点引出 的边至多有三种不同的颜色。要证明的是:图 G 中存在三个点,它们两两相邻,且这三 条边具有相同的颜色(这种三角形称为同色三角形)。
如果边 (vi , v j ), (vi , vk ) 具有相同的第 i 种颜色,则按边涂色的意义,点 v j 和 vk 也 相邻,且边 (v j , vk ) 也具有第 i 种颜色,所以对顶点 v1 来说,有两种情形:
例 3. 国际乒乓球男女混合双打大奖赛有 24 对选手参加,赛前一些选手握了手,但 同一对选手之间不握手。赛后某个男选手问每个选手的握手次数,各人的回答各不相同, 问这名男选手的女搭档和多少人握了手?
解 48 名选手用 48 个顶点 v, v0 , v1, v2 ,..., v46 表示,其中 v 代表那名男选手。两人
3.染色问题
数学竞赛中的染色问题主要有两类:一类是问题本身就是用染色的方式给出的;另 一类是借助于染色方式来解决问题。这些问题通常涉及到组合中的存在性问题、最值问
题、构造问题等。常用的方法有抽屉原理、极端原理、数学归纳法、反证法、算两次或 整体处理等。
二、典型例题选讲
例 1. 九名数学家在一次国际数学会议上相遇,发现他们中的任意三个人中,至少有
个顶点的完全图记为 Kn 。完全图 Kn 的边的数目是 Cn2

1 2
n(n
1) 。
2.K 部图
如果图 G 的顶点集 V 可以分解为 K 个两两不交且非空的子集的并,即
k
V Ui1Vi ,Vi Vj , i j,1 i, j k ,并且没有一条边其两个端点都在上述
同一子集内,我们称这样的图 G 为 K 部图,记作G (V1,V2 ,...,Vk ; E) 。

染色问题完整ppt课件

染色问题完整ppt课件
问题四:若将内圆作为第五部分,有四种颜 色可供使用,又有多少种不同的方法?
2003年•高考
ppt精选版
5
例:某城市在中心广场建造一个如图所示的 花圃,现要栽种4种不同颜色的花,每部分 栽一种且相邻部分不能栽种同样颜色的花, 不同的栽种方法有多少种?
解:根据分步计数原理,不同的栽种方法有:
4 3 2 1 A 2 1 1 1 1 2 1 ( 种 ) 2 2
答:不同的栽种方法p有pt精选1版20种。
6
强化训练 1、至少需要几种颜色才能使 右图中所有有公共端点的线段 涂上不同的颜色? 4种
2、将一个四棱锥S–ABCD的 每个顶点染上一种颜色,并使 同一条棱的两个端点异色,如 果有5种颜色可供使用,那么 A 不同的染色方法有多少种?
420种 ppt精选版
不同的栽种方法有120ppt精选版将一个四棱锥sabcd的每个顶点染上一种颜色并使同一条棱的两个端点异色如果有5种颜色可供使用那么不同的染色方法有多少种
染色问题
执教:叶 春 天
ppt精选版
1
二十世纪现代数学十大成果之一——四色问题:
给任意一张平面地图着色时,最多用四 种颜色就可使任何具有公共边界线的区域 着不同颜色。
S
D
C
B
7
小结:
解决染色问题的基本方法有二:分步 法和分类法。但分步法中有些步骤却要分 类计算,而分类法中的有些类型则要分步 计算。因此,要注意将二者结合使用。
作业:
课堂新坐标P282 一、二
ppt精选版
8
下课 谢谢指导
ppt精选版
9
ppt精选版
2
问题一:给四川、青海、西藏、云南四省 (区)的地图染色,要求每省(区)用一种 颜色,相邻省(区)着不同色,有四种颜色 可供使用,则不同的染色方法有多少种?

染色问题

染色问题

染色问题 (一)一.基本方法染色问题的本质是对集合的元素进行分类的问题,染色可以使分类更直观、更形象.染色问题主要有两类:一类使借助染色方法解决问题;二类是问题的条件是用染色的方式给出的.常见的染色问题有对区域的染色(包括对方格,三角形的染色),对线段的染色,对点的染色.常用思想方法是整体思想,抽屉原理,考虑极端情形,数学归纳法,构造思想等. 二.例题精选(一).k 染色平面问题将平面上的点用不超过k 种颜色给每一个点染一种颜色,这样的平面叫做k 染色平面.1.坐标平面上若干个整点,将一些整点染红色,一些染蓝色,证明:总可以有一种染法使每行、每列两种颜色点数之差不超过1.2.对于任意的a >0,二染色平面上必存在斜边长为a 且内角分别为︒︒︒90,60,30的三顶点同色的三角形.R R R R RR R RR BB B BBBB B B B B B B B B R R R R RR BR4.求证:二染色平面上,一定存在一个边长为1或3的正三角形,它的三个顶点同色.(若用三染色平面呢?)(二).平面图形的染色问题5.已知⊿ABC 为正三角形,G 为三条线段AB 、BC 、CA (包括A 、B 、C )上的所有点的集合,将G 中的一些点染上黑色,其余点染白色,试证:至少存在一个正三角形 ABC 的内接直角三角形,三顶点是同色的. 关键:在2,,,,,===EACE FCBF DBAD F E D CA BC AB 且上取点则D ,E ,F 必有两点同色,不妨设为E ,F 同为黑色,若BC 上还有黑色点,命题的证.否则BC上除点F全为白色点,若AB上有白色点,得证.否则AB上全为 黑色点,则E在AB上的射影G为黑色点,再在AB上取 另一点H,则三角形FGH是直角三角形.6.正九边形的一些顶点染上白色,另一些染上黑色.证明:存在两个全等的三角形,每一个三角形的顶点染有同一颜色.解:九个顶点中至少有5个顶点颜色相同,设为白色,5个白色顶点能构成10个顶点同为白色三角形,然后绕正九边形中心旋转,每次旋转)8,,1,0(92 =k k π,上述10个三角形,9次旋转后构成90个三角形。

高中数学竞赛讲义-涂色问题

高中数学竞赛讲义-涂色问题

§29涂色问题涂色问题是数学竞赛中较为典型的问题,可以直接用抽屉原则解决涂色问题。

另一方面,也可以将别的有关问题“涂色”,转化为涂色问题,涂色问题本身,有其深刻的数学背景。

有些问题,本来就属于图论的内容。

有些问题的解决,则需要用到数论、组合数学的理论和方法。

这里介绍,只是中学数学竞赛中的有关问题。

1.小方格染色问题最简单的染色问题是从一种民间游戏中发展起来的方格盘上的染色问题.解决这类问题的方法后来又发展成为解决方格盘铺盖问题的重要技巧.2.线段染色和点染色(1)线段染色.较常见的一类染色问题是发样子组合数学中图论知识的所谓“边染色”(或称“线段染色”),主要借助抽屉原则求解.(2)点染色.先看离散的有限个点的情况.例题讲解1.把正方形ABCD的一边AB分成n段,使奇数号的线段长度之和等于偶数号的线段长度之和(如图01—01)。

过各分点作平行于AD的线段,得到n个矩形。

每一个矩形又被对角线BD 分成两部分。

将奇数号矩形左部及偶数号矩形的右部涂上同一颜色。

证明:在对角线BD两侧的有同色的部分,其面积和相等。

2.在一张无限方格纸的某些方格上涂上红色,其余方格涂上蓝色,每一个2×3的六方格矩形内恰好2个红方格。

试问:一个9×11的99方格矩形内包含多少个红方格?3.在n×n(n≥2)个方格的正方形表中,有n-1个格子里涂了色,求证:通过交换两行或两列的位置,总可以将所有涂色的方格移到正方形表的左上角顶点到右下角顶点的对角线下方。

4.有n×n(n≥3)个方格表中,先在表中任意选出n-1个方格都涂成黑色,然后将那些凡是至少与两个已涂色的方格相邻的方格也都涂黑色。

求证:不论怎样选择最初的n-1个方格,都不能按这样的法则,将表中的所有方格全涂黑。

5.设ABC为正三角形,E为线段BC,CA,AB上点的集合(包括A,B,C在内)。

将E分成两个子集,求证:总有一个子集中含有一个直角三角形的顶点。

对数学竞赛中染色问题的研究

对数学竞赛中染色问题的研究

对数学竞赛中染色问题的研究
在数学竞赛中,染色问题是出现次数相对较多且问题难度较大的一类数学问题。

染色问题是一种有趣而又简单而注重实践的研究内容。

染色问题是指假设存在一个有限图,它每条边之间相邻的任意两个点,其公共边的颜色不能相同,即在该图的所有边上使用最少的颜色数量使得所有的顶点公共边上的颜色不同。

由于染色问题的解决方法非常多,高校和高等教育机构会进行深入的研究,探
索出最优解决方案。

一般来说,可以采用网络流法、迭代法、贪心法等方法,求出最优解。

网络流法是一种求解的思路,它利用有向图计算网络流的最大值,然后通过两个阶段的计算求得条件最优解。

其次,迭代法利用迭代的方法求得一种最优解。

此外,贪心法利用贪心算法的思想,在当前情况下,选择代价最低的解决方法。

在最近几年,染色问题研究在高校和高等教育中受到了越来越多的关注,其重
要性和应用价值也不断改变着数学竞赛。

针对不同的图模型结构,学者们采用不同的算法,进行了多项深入的研究,给出相应的结论和证明,追求最终的最优解。

总的来说,染色问题是一个有趣而复杂的研究领域,它融合了数学竞赛中几个
基本解决问题的方法,解决该问题能够极大帮助我们解决实际难题,为更多数学竞赛提供更多可能性,更加深入地理解数学本质,同时提高我们在高校和高等教育机构中的学习成果。

数学奥林匹克竞赛讲座14染色问题与染色方法

数学奥林匹克竞赛讲座14染色问题与染色方法

竞赛讲座14-染色问题与染色方法1.小方格染色问题最简单的染色问题是从一种民间游戏中发展起来的方格盘上的染色问题.解决这类问题的方法后来又发展成为解决方格盘铺盖问题的重要技巧.例1 如图29-1(a),3行7列小方格每一个染上红色或蓝色.试证:存在一个矩形,它的四个角上的小方格颜色相同.证明由抽屉原则,第1行的7个小方格至少有4个不同色,不妨设为红色(带阴影)并在1、2、3、4列(如图29-1(b)).在第1、2、3、4列(以下不必再考虑第5,6,7列)中,如第2行或第3行出现两个红色小方格,则这个问题已经得证;如第2行和第3行每行最多只有一个红色小方格(如图29-1(c)),那么在这两行中必出现四角同为蓝色的矩形,问题也得到证明.说明:(1)在上面证明过程中除了运用抽屉原则外,还要用到一种思考问题的有效方法,就是逐步缩小所要讨论的对象的范围,把复杂问题逐步化为简单问题进行处理的方法.(2)此例的行和列都不能再减少了.显然只有两行的方格盘染两色后是不一定存在顶点同色的矩形的.下面我们举出一个3行6列染两色不存在顶点同色矩形的例子如图29-2.这说明3行7列是染两色存在顶点同色的矩形的最小方格盘了.至今,染k色而存在顶点同色的矩形的最小方格盘是什么还不得而知.例2 (第2届全国部分省市初中数学通讯赛题)证明:用15块大小是4×1的矩形瓷砖和1块大小是2×2的矩形瓷砖,不能恰好铺盖8×8矩形的地面.分析将8×8矩形地面的一半染上一种颜色,另一半染上另一种颜色,再用4×1和2×2的矩形瓷砖去盖,如果盖住的两种颜色的小矩形不是一样多,则说明在给定条件不完满铺盖不可能.证明如图29-3,用间隔为两格且与副对角线平行的斜格同色的染色方式,以黑白两种颜色将整个地面的方格染色.显然,地面上黑、白格各有32个.每块4×1的矩形砖不论是横放还是竖盖,且不论盖在何处,总是占据地面上的两个白格、两个黑格,故15块4×1的矩形砖铺盖后还剩两个黑格和两个白格.但由于与副对角线平行的斜格总是同色,而与主对角线平行的相邻格总是异色,所以,不论怎样放置,一块2×2的矩形砖,总是盖住三黑一白或一黑三白.这说明剩下的一块2×2矩形砖无论如何盖不住剩下的二黑二白的地面.从而问题得证.例3 (1986年北京初二数学竞赛题)如图29-4(1)是4个1×1的正方形组成的“L”形,用若干个这种“L”形硬纸片无重迭拼成一个m×n(长为m个单位,宽为n个单位)的矩形如图29-4(2).试证明mn必是8的倍数.证明∵m×n矩形由“L”形拼成,∴m×n是4的倍数,∴m、n中必有一个是偶数,不妨设为m.把m×n矩形中的m列按一列黑、一列白间隔染色(如图29-4(2)),则不论“L”形在这矩形中的放置位置如何(“L”形的放置,共有8种可能),“L”形或占有3白一黑四个单位正方形(第一种),或占有3黑一白四个单位正方形(第二种).设第一种“L”形共有p个,第二种“L”形共q个,则m×n矩形中的白格单位正方形数为3p+q,而它的黑格单位正方形数为p+3q.∵m为偶数,∴m×n矩形中黑、白条数相同,黑、白单位正方形总数也必相等.故有3p+q=p+3q,从而p=q.所以“L”形的总数为2p个,即“L”形总数为偶数,所以m×n一定是8的倍数.2.线段染色和点染色下面介绍两类重要的染色问题.(1) 线段染色.较常见的一类染色问题是发样子组合数学中图论知识的所谓“边染色”(或称“线段染色”),主要借助抽屉原则求解.例4 (1947年匈牙利数学奥林匹克试题)世界上任何六个人中,一定有3个人或者互相认识或者互相都不认识.我们不直接证明这个命题,而来看与之等价的下述命题例5(1953年美国普特南数学竞赛题)空间六点,任三点不共线,任四点不共面,成对地连接它们得十五条线段,用红色或蓝色染这些线段(一条线段只染一种颜色).求证:无论怎样染,总存在同色三角形.证明设A、B、C、D、E、F是所给六点.考虑以A为端点的线段AB、AC、AD、AE、AF,由抽屉原则这五条线段中至少有三条颜色相同,不妨设就是AB、AC、AD,且它们都染成红色.再来看△BCD的三边,如其中有一条边例如BC是红色的,则同色三角形已出现(红色△ABC);如△BCD三边都不是红色的,则它就是蓝色的三角形,同色三角形也现了.总之,不论在哪种情况下,都存在同色三角形.如果将例4中的六个人看成例5中六点,两人认识的连红线,不认识的连蓝线,则例4就变成了例5.例5的证明实际上用染色方法给出了例4的证明.例6 (第6届国际数学奥林匹克试题)有17位科学家,其中每一个人和其他所有人的人通信,他们的通信中只讨论三个题目.求证:至少有三个科学家相互之间讨论同一个题目.证明用平面上无三点共线的17个点A1,A2,…,A17分别表示17位科学家.设他们讨论的题目为x,y,z,两位科学家讨论x连红线,讨论y连蓝线,讨论z连黄线.于是只须证明以这17个点为顶点的三角形中有一同色三角形. 考虑以A1为端点的线段A1A2,A1A3,…,A1A17,由抽屉原则这16条线段中至少有6条同色,不妨设A1A2,A1A3,…,A1A7为红色.现考查连结六点A2,A3,…,A7的15条线段,如其中至少有一条红色线段,则同色(红色)三角形已出现;如没有红色线段,则这15条线段只有蓝色和黄色,由例5知一定存在以这15条线段中某三条为边的同色三角形(蓝色或黄色).问题得证.上述三例同属图论中的接姆赛问题.在图论中,将n点中每两点都用线段相连所得的图形叫做n点完全图,记作k n.这些点叫做“顶点”,这些线段叫做“边”.现在我们分别用图论的语言来叙述例5、例6.定理1 若在k6中,任染红、蓝两色,则必有一只同色三角形.定理2 在k17中,任染红、蓝、黄三角,则必有一只同色三角形.(2)点染色.先看离散的有限个点的情况.例7 (首届全国中学生数学冬令营试题)能否把1,1,2,2,3,3,…,1986,1986这些数排成一行,使得两个1之间夹着一个数,两个2之间夹着两个数,…,两个1986、之间夹着一千九百八十六个数?请证明你的结论.证明将1986×2个位置按奇数位着白色,偶数位着黑色染色,于是黑白点各有1986个.现令一个偶数占据一个黑点和一个白色,同一个奇数要么都占黑点,要么都占白点.于是993个偶数,占据白点A1=993个,黑色B1=993个.993个奇数,占据白点A2=2a个,黑点B2=2b个,其中a+b=993.因此,共占白色A=A1+A2=993+2a个.黑点B=B1+B2=993+2b个,由于a+b=993(非偶数!)∴a≠b,从而得A≠B.这与黑、白点各有1986个矛盾.故这种排法不可能.“点”可以是有限个,也可以是无限个,这时染色问题总是与相应的几何问题联系在一起的.例8 对平面上一个点,任意染上红、蓝、黑三种颜色中的一种.证明:平面内存在端点同色的单位线段.证明作出一个如图29-7的几何图形是可能的,其中△ABD、△CBD、△AEF、△GEF都是边长为1的等边三角形,CG=1.不妨设A点是红色,如果B、E、D、F中有红色,问题显然得证.当B、E、D、F都为蓝点或黄点时,又如果B和D或E和F同色,问题也得证.现设B和D异色E和F异色,在这种情况下,如果C或G为黄色或蓝点,则CB、CD、GE、GF中有两条是端点同色的单位线段,问题也得证.不然的话,C、G均为红点,这时CG是端点同色的单位线段.证毕.还有一类较难的对区域染色的问题,就不作介绍了.练习二十九1.6×6的方格盘,能否用一块大小为3格,形如的弯角板与11块大小为3×1的矩形板,不重迭不遗漏地来铺满整个盘面.2.(第49届苏联基辅数学竞赛题)在两张1982×1983的方格纸涂上红、黑两种颜色,使得每一行及每一列都有偶数个方格是黑色的.如果将这两张纸重迭时,有一个黑格与一个红格重合,证明至少还有三个方格与不同颜色的方格重合.3.有九名数学家,每人至多会讲三种语言,每三名中至少有2名能通话,那么其中必有3名能用同一种语言通话.4.如果把上题中的条件9名改为8名数学家,那么,这个结论还成立吗?为什么?5.设n=6(r-2)+3(r≥3),求证:如果有n名科学家,每人至多会讲3种语言,每3名中至少有2名能通话,那么其中必有r名能用同一种语言通话.6.(1966年波兰数学竞赛题)大厅中会聚了100个客人,他们中每人至少认识67人,证明在这些客人中一定可以找到4人,他们之中任何两人都彼此相识.7.(首届全国数学冬令营试题)用任意方式给平面上的每一个点染上黑色或白色.求证:一定存在一个边长为1或的正三角形,它三个顶点是同色的.练习二十九1.将1、4行染红色、2、5行染黄色、3、6行染蓝色,然后就弯角板盖住板面的不同情况分类讨论.2.设第一张纸上的黑格A与第二张纸上的红格A′重合.如果在第一张纸上A所在的列中,其余的黑格(奇数个)均与第二张纸的黑格重合,那么由第二张纸上这一列的黑格个数为偶数,知必有一黑格与第一张纸上的红格重合,即在这一列,第一张纸上有一方格B与第二张纸上不同颜色的方格B′重合.同理在A、B所在行上各有一个方格C、D,第二张纸上与它们重合的方格C′、D′的颜色分别与C、D不同.3.把9名数学家用点A1,A2,…,A9表示.两人能通话,就用线连结,并涂某种颜色,以表示不同语种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

竞赛讲座14-染色问题与染色方法1.小方格染色问题最简单的染色问题是从一种民间游戏中发展起来的方格盘上的染色问题.解决这类问题的方法后来又发展成为解决方格盘铺盖问题的重要技巧.例1 如图29-1(a),3行7列小方格每一个染上红色或蓝色.试证:存在一个矩形,它的四个角上的小方格颜色相同.证明由抽屉原则,第1行的7个小方格至少有4个不同色,不妨设为红色(带阴影)并在1、2、3、4列(如图29-1(b)).在第1、2、3、4列(以下不必再考虑第5,6,7列)中,如第2行或第3行出现两个红色小方格,则这个问题已经得证;如第2行和第3行每行最多只有一个红色小方格(如图29-1(c)),那么在这两行中必出现四角同为蓝色的矩形,问题也得到证明.说明:(1)在上面证明过程中除了运用抽屉原则外,还要用到一种思考问题的有效方法,就是逐步缩小所要讨论的对象的范围,把复杂问题逐步化为简单问题进行处理的方法.(2)此例的行和列都不能再减少了.显然只有两行的方格盘染两色后是不一定存在顶点同色的矩形的.下面我们举出一个3行6列染两色不存在顶点同色矩形的例子如图29-2.这说明3行7列是染两色存在顶点同色的矩形的最小方格盘了.至今,染k 色而存在顶点同色的矩形的最小方格盘是什么还不得而知.例2 (第2届全国部分省市初中数学通讯赛题)证明:用15块大小是4×1的矩形瓷砖和1块大小是2×2的矩形瓷砖,不能恰好铺盖8×8矩形的地面.分析将8×8矩形地面的一半染上一种颜色,另一半染上另一种颜色,再用4×1和2×2的矩形瓷砖去盖,如果盖住的两种颜色的小矩形不是一样多,则说明在给定条件不完满铺盖不可能.证明如图29-3,用间隔为两格且与副对角线平行的斜格同色的染色方式,以黑白两种颜色将整个地面的方格染色.显然,地面上黑、白格各有32个.每块4×1的矩形砖不论是横放还是竖盖,且不论盖在何处,总是占据地面上的两个白格、两个黑格,故15块4×1的矩形砖铺盖后还剩两个黑格和两个白格.但由于与副对角线平行的斜格总是同色,而与主对角线平行的相邻格总是异色,所以,不论怎样放置,一块2×2的矩形砖,总是盖住三黑一白或一黑三白.这说明剩下的一块2×2矩形砖无论如何盖不住剩下的二黑二白的地面.从而问题得证.例3 (1986年北京初二数学竞赛题)如图29-4(1)是4个1×1的正方形组成的“L”形,用若干个这种“L”形硬纸片无重迭拼成一个m×n(长为m个单位,宽为n个单位)的矩形如图29-4(2).试证明mn必是8的倍数.证明∵m×n矩形由“L”形拼成,∴m×n是4的倍数,∴m、n中必有一个是偶数,不妨设为m.把m×n矩形中的m列按一列黑、一列白间隔染色(如图29-4(2)),则不论“L”形在这矩形中的放置位置如何(“L”形的放置,共有8种可能),“L”形或占有3白一黑四个单位正方形(第一种),或占有3黑一白四个单位正方形(第二种).设第一种“L”形共有p个,第二种“L”形共q个,则m×n矩形中的白格单位正方形数为3p+q,而它的黑格单位正方形数为p+3q.∵m为偶数,∴m×n矩形中黑、白条数相同,黑、白单位正方形总数也必相等.故有3p+q=p+3q,从而p=q.所以“L”形的总数为2p个,即“L”形总数为偶数,所以m×n 一定是8的倍数.2.线段染色和点染色下面介绍两类重要的染色问题.(1) 线段染色.较常见的一类染色问题是发样子组合数学中图论知识的所谓“边染色”(或称“线段染色”),主要借助抽屉原则求解.例4 (1947年匈牙利数学奥林匹克试题)世界上任何六个人中,一定有3个人或者互相认识或者互相都不认识.我们不直接证明这个命题,而来看与之等价的下述命题例5 (1953年美国普特南数学竞赛题)空间六点,任三点不共线,任四点不共面,成对地连接它们得十五条线段,用红色或蓝色染这些线段(一条线段只染一种颜色).求证:无论怎样染,总存在同色三角形.证明设A、B、C、D、E、F是所给六点.考虑以A为端点的线段AB、AC、AD、AE、AF,由抽屉原则这五条线段中至少有三条颜色相同,不妨设就是AB、AC、AD,且它们都染成红色.再来看△BCD的三边,如其中有一条边例如BC是红色的,则同色三角形已出现(红色△ABC);如△BCD三边都不是红色的,则它就是蓝色的三角形,同色三角形也现了.总之,不论在哪种情况下,都存在同色三角形.如果将例4中的六个人看成例5中六点,两人认识的连红线,不认识的连蓝线,则例4就变成了例5.例5的证明实际上用染色方法给出了例4的证明.例6 (第6届国际数学奥林匹克试题)有17位科学家,其中每一个人和其他所有人的人通信,他们的通信中只讨论三个题目.求证:至少有三个科学家相互之间讨论同一个题目.证明用平面上无三点共线的17个点A1,A2,…,A17分别表示17位科学家.设他们讨论的题目为x,y,z,两位科学家讨论x连红线,讨论y连蓝线,讨论z连黄线.于是只须证明以这17个点为顶点的三角形中有一同色三角形.考虑以A1为端点的线段A1A2,A1A3,…,A1A17,由抽屉原则这16条线段中至少有6条同色,不妨设A1A2,A1A3,…,A1A7为红色.现考查连结六点A2,A3,…,A7的15条线段,如其中至少有一条红色线段,则同色(红色)三角形已出现;如没有红色线段,则这15条线段只有蓝色和黄色,由例5知一定存在以这15条线段中某三条为边的同色三角形(蓝色或黄色).问题得证.上述三例同属图论中的接姆赛问题.在图论中,将n点中每两点都用线段相连所得的图形叫做n点完全图,记作k n.这些点叫做“顶点”,这些线段叫做“边”.现在我们分别用图论的语言来叙述例5、例6.定理1 若在k6中,任染红、蓝两色,则必有一只同色三角形.定理2 在k17中,任染红、蓝、黄三角,则必有一只同色三角形.(2)点染色.先看离散的有限个点的情况.例7 (首届全国中学生数学冬令营试题)能否把1,1,2,2,3,3,…,1986,1986这些数排成一行,使得两个1之间夹着一个数,两个2之间夹着两个数,…,两个1986、之间夹着一千九百八十六个数?请证明你的结论.证明将1986×2个位置按奇数位着白色,偶数位着黑色染色,于是黑白点各有1986个.现令一个偶数占据一个黑点和一个白色,同一个奇数要么都占黑点,要么都占白点.于是993个偶数,占据白点A1=993个,黑色B1=993个.993个奇数,占据白点A2=2a个,黑点B2=2b个,其中a+b=993.因此,共占白色A=A1+A2=993+2a个.黑点B=B1+B2=993+2b个,由于a+b=993(非偶数!)∴a≠b,从而得A≠B.这与黑、白点各有1986个矛盾.故这种排法不可能.“点”可以是有限个,也可以是无限个,这时染色问题总是与相应的几何问题联系在一起的.例8 对平面上一个点,任意染上红、蓝、黑三种颜色中的一种.证明:平面内存在端点同色的单位线段.证明作出一个如图29-7的几何图形是可能的,其中△ABD、△CBD、△AEF、△GEF 都是边长为1的等边三角形,CG=1.不妨设A点是红色,如果B、E、D、F中有红色,问题显然得证.当B、E、D、F都为蓝点或黄点时,又如果B和D或E和F同色,问题也得证.现设B和D异色E和F异色,在这种情况下,如果C或G为黄色或蓝点,则CB、CD、GE、GF中有两条是端点同色的单位线段,问题也得证.不然的话,C、G均为红点,这时CG是端点同色的单位线段.证毕.还有一类较难的对区域染色的问题,就不作介绍了.练习二十九1.6×6的方格盘,能否用一块大小为3格,形如的弯角板与11块大小为3×1的矩形板,不重迭不遗漏地来铺满整个盘面.2.(第49届苏联基辅数学竞赛题)在两张1982×1983的方格纸涂上红、黑两种颜色,使得每一行及每一列都有偶数个方格是黑色的.如果将这两张纸重迭时,有一个黑格与一个红格重合,证明至少还有三个方格与不同颜色的方格重合.3.有九名数学家,每人至多会讲三种语言,每三名中至少有2名能通话,那么其中必有3名能用同一种语言通话.4.如果把上题中的条件9名改为8名数学家,那么,这个结论还成立吗?为什么?5.设n=6(r-2)+3(r≥3),求证:如果有n名科学家,每人至多会讲3种语言,每3名中至少有2名能通话,那么其中必有 r名能用同一种语言通话.6.(1966年波兰数学竞赛题)大厅中会聚了100个客人,他们中每人至少认识67人,证明在这些客人中一定可以找到4人,他们之中任何两人都彼此相识.7.(首届全国数学冬令营试题)用任意方式给平面上的每一个点染上黑色或白色.求证:一定存在一个边长为1或的正三角形,它三个顶点是同色的.练习二十九1.将1、4行染红色、2、5行染黄色、3、6行染蓝色,然后就弯角板盖住板面的不同情况分类讨论.2.设第一张纸上的黑格A与第二张纸上的红格A′重合.如果在第一张纸上A所在的列中,其余的黑格(奇数个)均与第二张纸的黑格重合,那么由第二张纸上这一列的黑格个数为偶数,知必有一黑格与第一张纸上的红格重合,即在这一列,第一张纸上有一方格B与第二张纸上不同颜色的方格B′重合.同理在A、B所在行上各有一个方格C、D,第二张纸上与它们重合的方格C′、D′的颜色分别与C、D不同.3.把9名数学家用点A1,A2,…,A9表示.两人能通话,就用线连结,并涂某种颜色,以表示不同语种。

两人不通话,就不连线.(1)果任两点都有连线并涂有颜色,那么必有一点如A1,以其为一端点的8条线段中至少有两条同色,比如A1A2、A1A3.可见A1,A2,A3之间可用同一语言通话.②如情况①不发生,则至少有两点不连线,比如A1、A2.由题设任三点必有一条连线知,其余七点必与A1或A2有连线.这时七条线中,必有四条是从某一点如A1引出的.而这四条线中又必有二条同色,则问题得证.4.结论不成立,如图所示(图中每条线旁都有一个数字,以表示不同语种).5.类似于第3题证明.6.用点A1、A2、…、A100表示客人,红、蓝的连线分别表示两人相识或不相识,因为由一个顶点引出的蓝色的线段最多有32条,所以其中至少有三点之间连红线.这三个点(设为A1、A2、A3)引出的蓝色线段最多为96条.去掉所有这些蓝色的线段(连同每条线段上的一个端点AI,I≠1,2,3),这样,在图中至少还剩下四个点,除A1、A2、A3外,设第四点为A4,这四个点中A1,A2,A3每一个点与其它的点都以红色的线段相连,于是客人A1、A2、A3、A4彼此两两相识.7.先利用右图证明"若平面上有两个异色的点距离为2,地么必定可以找到符合题意的三角形".再找长为2端点异色的线段.以O(白色)为圆心,4为半径作圆.如圆内皆白点,问题已证.否则圆内有一黑点P,以OP为底作腰长为2的三角形OPR,则R至少与O、P中一点异色,这样的线段找到.。

相关文档
最新文档