第三届全国石油工程设计大赛综合组作品
2014-石油工程综合设计任务书(钻井方向)
Vc 100 / c
②计算 100 kg 干灰需用水量
(L)
Vw (100 sVc ) /( s w )
(L) (kg)
Ww Vw w
水灰比: m Ww / Wc ③计算干灰和水的总用量
Sum _ Wc Sum _ Vs *1000 /(Vc Vw ) *100 Sum _ Ww Sum_Vs *1000 /(Vc Vw ) * Ww
序号
班级
王方晴 159 5329 8310
张继庆 153 7676 2587
2 各班负责人联系方式
表 2 各班负责人联系方式 班长 团支书 班长 团支书 班长 团支书 班长 团支书 班长 团支书 班长 石工 11-6 团支书 班长 石工 11-7 团支书 班长 石工 11-8 团支书 班长 石工 11-9 团支书 徐睿智 武诗琪 周祥 丰雅 张进 黄乾 韩波 曹潇颖 郑刚 王超琦 陈本军 魏永辉 张明山 丁前 罗奇 景义斌 段进忠 张召欣
3
6.2 设计内容 6.2.1 井身结构设计(画图)
(1)套管层次和下深; (2)套管——钻头尺寸的配合; (3)各层套管段对应的钻深; (4)水泥返至深度设计; (5)各井段的钻井液密度设计。
6.2.2 钻头选型及钻进参数设计:
(1)钻头选型:类型、钻头用量、每只钻头的钻井时间和钻进井段; (2)钻进参数设计:每只钻头的钻压、转速。 其中:进口铣齿钻头的使用寿命为 50h;国产铣齿钻头的使用寿命为 40h;进口镶齿钻头的使用寿命 为 80h;国产镶齿钻头的使用寿命为 60h。
各方向报告截止时间:元月 16 号
4 综合设计总体要求
1. 成绩评定方法 (1)综合设计总成绩=(油藏成绩+钻井成绩+采油成绩)/3 。 (2)各方向具体成绩评定方法见具体安排。 (3)油藏、钻井、采油三个方向若有一个方向不及格就视为总成绩不及格。 2. 报告要求 (1)学院统一印制下发封面,每个方向报告完成后加上该方向封面单独装订,总封面填 写好个人信息后交给钻井方向老师。 (2)报告用白色暗格论文纸手写,所有图件(图号、图名、坐标、单位等齐全)必须手 工绘制。 (3)内容包括:目录、各部分具体内容、结论、附属资料等。内容要条理清楚、详实、 齐全、完整。 (4)格式要求:左侧装订,上、下及右边距为 2.0cm,左边距为 3.0cm。页码在页脚居 中连续标注,油藏方向用―1- ‖;钻井方向用―2- ‖;采油方向用―3- ‖。
中国石油工程设计大赛电子版证书
中国石油工程设计大赛电子版证书一、大赛简介1.1 名称及标志中文名称:中国石油工程设计大赛英文名称: China Petroleum Engineering Design英文缩写: CPEDC .大赛标志:1.2大赛组织机构主办单位:世界石油理事会中国国家委员会中国石油学会中国石油教育学会支持单位:中国石油天然气集团公司中国石油化工集团公司中国海洋石油集团有限公司.斯伦贝谢公司承办单位:中国石油大学(北京)1.3 大赛背景随着全球经济的快速发展,石油已成为世界各国重要的战略物资,在国家能源体系中的地位和作用也日益凸显。
当前,常规油气资源的开发已进入平缓期,非常规油气资源逐渐成为油气开发的热点。
这既对固有的开发技术提出了新的挑战,也使油气田开发设计由原来的主要满足使用功能转变为一项需综合考虑钻井效率、储层保护、采收率、经济效益等多方面要求的工作,对设计者的专业知识水平、总体规划程度、创新性思维提出了更高的要求。
为深入贯彻落实教育部“卓越工程师教育培养计划2.0”,世界石油理事会中国国家委员会、中国石油学会和中国石油教育学会联合发起主办了中国石油工程设计大赛系列活动,旨在通过活动锻炼和提升学生解决复杂工程问题的能力,培养适应社会发展需要的科技创新型、工程实践型和团队协作型的石油工程师。
二、大赛赛题2.1参赛对象大赛主要面向全日制普通高校和科研院所在校研究生,鼓励本科生和专科生参加。
参赛学生需根据参赛组别组成1-5人的团队,学历构成不限。
选手可同时参加两个类别的比赛,但同一类别内,只能选择参加其中1个组别。
2.2赛题设置2.2.1方案设计类大赛专家委员会提供现场油(气)田区块的地质资料,参赛学生参考《油(气)田开发方案总体编制指南》和《第九届中国石油工程设计大赛方案设计类作品要求》完成油(气)田开发方案的设计,主要包括油(气)藏工程、钻完井工程、采油(气)工程、地面工程和HSE与经济评价等部分的设计,赛题设综合组、单项组和创新组,每人只限参加方案设计类一个组别的比赛。
石油工程设计大赛获奖作品
石油工程设计大赛获奖作品
4.7 本章小结 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·16 第 5 章 集中处理站设计 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·18 5.1 集中处理站总工艺流程 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·18 5.2 单井计量间所用的三相分离器选取 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·20 5.3 原油净化 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·21 5.3.1 HNS 型三相分离器的选取 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·21 5.3.2 原油缓冲罐的选取· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·22 5.3.3 电脱水器的选取· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·22 5.3.4 加热炉选取 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·24 5.4 原油稳定 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·24 5.4.1 稳定工艺及参数的选取 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·24 5.4.2 闪蒸稳定塔计算· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·24 5.5 泵与压缩机的选取 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·25 5.5.1 油泵的选取 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·25 5.5.2 负压压缩机选取· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·25 5.6 油罐选取 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·26 5.7 主要工程量 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·26 5.8 本章小结 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·26 第 6 章 防腐设计 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·27 6.1 防腐数据分析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·27 6.2 管道防腐方案 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·27 6.2.1 防腐层设计 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·27 6.2.2 阴极保护 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·29 6.2.3 缓蚀剂 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·30 6.3 站内设备防腐方案 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·30 6.4 本章小结 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·30 第 7 章 含油污水处理系统 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·31 7.1 净化污水回注水质标准 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·31
中国石油工程设计大赛优秀作品
中国石油工程设计大赛优秀作品
近期,中国石油工程设计大赛公布了多项优秀作品,这些创新性
的作品为中国油气工业发展注入了新的活力。
以下是关于这些优秀作
品的详细介绍:
1. 无人机扫描仪技术
该作品研发了一种基于无人机的扫描仪技术,可用于快速获取海
洋平台的3D结构信息。
通过将扫描仪安装到无人机上,可以将整个平
台加工、维护数据进行实时转化,同时,可实验,并设计多种机器学
习算法来对数据进行分析,为后续工作提供方向。
2. 油气输送管道安全监测系统
该作品设计了一套油气输送管道的安全监测系统,其主要包括多
种传感器和数据采集装置,旨在实现对管道运行状态的全面监控和数
据分析。
不仅可以及时发现管道漏油、堵塞和损伤等问题,同时也可
以实时分析管道的温度、密度变化,提高燃料运输效率,减少运输成本。
3. 煤层气开采智能化管理系统
该作品通过应用人工智能、云计算技术等方法,设计出一套全新
的煤层气开采智能化管理系统。
该系统能够对开采作业进行实时监测
和数据分析,提供详细的工艺流程和作业安排,为开采过程提供最佳
方案。
最后,中国石油工程设计大赛的这些优秀作品体现了现代技术对
于油气工业的革新和提高,同时也为未来油气工业的发展提供了新的
思路和方向。
这些创新性的成果不仅将为中国油气工业注入新的活力,也将为世界各国推进清洁能源革命提供经验参考。
全国大学生油气储运工程设计大赛特等奖作品_word版
全国大学生油气储运工程设计大赛R油田输油管道及沿线站场设计日期2016年7 月20 日全国大学生油气储运工程设计大赛组委会制方案简介本作品根据《第一届全国大学生油气储运工程设计大赛赛题及基础数据》和相关标准,秉承经济、高效、节能、环保的设计理念,对R 油田输油管道工程进行了设计。
主要设计内容包括:A-B、B-C段管道工艺及运行管理,河流穿越方案,沿线站场及阀室工艺,火车装车方案,辅助生产及配套工程技术方案以及投资估算等内容。
输油管道设计方面:采用加热输送工艺,从技术经济角度优选管径,通过逆向推算得到设计压力及布站情况,通过考虑油水乳化状态提高了水力计算的准确性。
使用商业软件对其进行了模拟及优化,并编制相应程序辅助计算。
河流穿越方案方面:分析了穿越区岩土层可钻性,确定并设计了水平定向钻(HDD)管道穿越河流施工方案,并进行了管道强度校核和施工风险评价。
沿线站场及阀室方面:设计了原油脱水及污水深度处理工艺,确定了沿线各站场及阀室的分布,并对其进行了设计。
火车装车方案方面:对装车站进行了详细设计,从可靠性的角度采用了“双管、双泵、双用单鹤管”的装车工艺;针对来油量衰减较快特点,从经济的角度对装车操作的运行与管理进行了优化,制定了高效益、低成本的火车装车方案。
此外,本文还对整体输油管道工程的防腐、自控、消防、HSE管理、辅助生产及公用工程等进行了设计。
设计中使用了OLGA,PIPESIM等商业软件对各种工况下的管道进行了模拟,并且基于VB平台编制了相应软件辅助计算,校核了整体方案的可行性和可靠性,完成了管道及站场工艺的优化,提高了方案的经济性。
本设计充分借鉴了国内外原油输送及装车的成熟技术,优化了管道及站场的工艺流程及运行方案,选用了高效设备,降低了投资及运行维护费用,具有一定的工程应用价值。
目录第1章总论 (1)1.1 工程概况 (1)1.2 编制依据 (2)1.3 编制原则 (2)1.4 设计范围 (2)1.5 国家级地方有关法律、法规 (2)1.6 国家、地方、行业、企业的技术标准和规范 (3)第2章R油田输油管道设计基础 (6)2.1 工程概况 (6)2.2 设计基础资料 (6)2.2.1 基础数据 (6)2.2.2 原油物性 (7)2.2.3 设计环境 (8)2.2.3.1 土壤条件 (8)2.2.3.2 铁路依托条件 (8)2.2.3.3 气象条件 (8)第3章输油管道工艺设计 (9)3.1 输送工艺 (9)3.2 设计参数 (10)3.2.1 管道设计参数 (10)3.2.1.1 设计输量 (10)3.2.1.2 设计压力 (10)3.2.1.3 管径优选 (11)3.2.1.4 钢管类型选择 (11)3.2.1.5 管道纵断面图 (11)3.2.1.6 管道埋深参数 (12)3.2.1.7 管道防腐层 (12)3.2.2 原油物性 (13)3.2.2.1 油品密度 (13)3.2.2.2 油品粘度 (13)3.2.2.3 原油乳化 (15)3.2.1热力设计参数 (16)3.3.1.1 加热站出站油温 (16)3.3.1.2 加热站进站油温 (16)3.3.1.3 管道周围介质温度T0 (16)3.3.1.4 管道保温层设计 (16)3.3 A-B段工艺设计 (17)3.3.1 设计输量下的设计方案 (17)3.3.2 最低输量下的设计方案 (19)3.3.3 设计压力及管道壁厚 (21)3.3.4 经济性分析 (24)3.3.5 适应性分析 (26)3.4 B-C段工艺设计 (28)3.4.1 设计输量下的设计方案 (28)3.4.2 最低输量下的设计方案 (32)3.4.3 设计压力及管道壁厚 (34)3.4.4 经济性分析 (37)3.4.5 适应性分析 (44)3.4.5.1 冬季运行方案 (44)3.4.5.2 夏季运行方案 (44)3.5 设备选型 (46)3.5.1 泵机组选型 (46)3.5.2 原动机选型 (48)3.5.3 加热炉选型 (48)3.6 管道强度校核 (49)3.6.1 进出站压力校核 (49)3.6.3 静水压力校核 (49)3.6.4 动水压力校核 (49)3.8 设计成果 (49)第4章穿越河流设计方案 (51)4.1 遵循的主要标准、规范 (51)4.1.1 法律法规 (51)4.1.2 标准规范 (51)4.2 穿越河流方式比选 (51)4.3 水平定向钻穿越设计 (52)4.3.1 HDD可钻性评价 (52)4.3.1.1 穿越场地地层岩性结构 (52)4.3.1.2 穿越场地土的物理力学性质指标 (53)4.3.1.3 穿越区域岩土层可钻性评价 (55)4.3.1.4 施工条件评价 (55)4.3.1.5 地下障碍物评价 (55)4.3.2 HDD穿越曲线设计 (56)4.3.3 HDD设备选型 (58)4.3.3.1 钻机选型 (58)4.3.3.2 钻具选型 (59)4.3.4 场地布置 (61)4.3.5 穿越段管道设计 (62)4.3.5.1 穿越段管道壁厚设计 (62)4.3.5.2 穿越段管道防腐与防护 (63)4.3.5.3 穿越段管道热力校核 (63)4.3.6 穿越管道应力校核 (63)4.3.6.1 管道回拖工况应力校核 (63)4.3.6.2 管道试压工况应力校核 (66)4.3.6.3 管道运行工况应力校核 (66)4.3.6.4 管道径向屈曲失稳校核 (67)4.3.7 套管结构设计 (68)4.3.7.1 套管最大夯入长度计算 (68)4.3.7.2 套管壁厚选取 (69)4.3.7.3 套管强度验算 (69)4.3.7.4 套管稳定性验算 (71)4.4 穿越施工方案 (72)4.4.1 施工工艺流程 (72)4.4.2 施工技术措施 (72)4.4.2.1 施工准备 (72)4.4.2.2 泥浆配制 (74)4.4.2.3 钻导向孔 (75)4.4.2.4 预扩孔工艺 (76)4.4.2.5 管道回拖 (77)4.4.2.6 管道焊接检验和试压 (77)4.5 对水文地质和环境的影响 (78)4.5.1 对地貌的影响 (78)4.5.2 对河床结构的影响 (78)4.5.3 对生物的影响 (78)4.5.4 施工过程对环境的影响 (78)4.6 消防、安全 (79)4.6.1 设计采取的安全及消防措施 (79)4.6.2 施工中的主要安全措施 (79)4.7 施工风险及应对措施 (80)4.7.1 穿越风险分析 (80)4.7.2 施工应急处置预案 (81)4.7.2.1 导向施工应急预案 (81)4.7.2.2 扩孔过程中发生卡钻、抱钻、断钻的应急预案 (81)4.7.2.3 管线回拖中卡死的应急预案 (82)4.7.2.4 冒浆应急预案 (82)4.7.2.5 塌孔的处理预案 (82)4.8 主要工程量及投资估算 (83)第5章输油管道的流动保障 (84)5.1 管道运行管理 (84)5.1.1 热力冬季运行方案 (84)5.1.2 热力夏季运行方案 (85)5.1.3 水力运行方案 (85)5.2 清管 (86)5.2.1 清管的作用 (86)5.2.2 清管器选择 (86)5.3 停输再启动 (86)5.3.1 停输后的管内温降 (87)5.3.2 管内原油温度场 (87)5.3.3 停输再启动过程 (88)第6章沿线站场 (89)6.1 站场设置 (89)6.2 站场工艺 (89)6.3 A联合站 (89)6.3.1 联合站工艺 (90)6.3.2 联合站主要工程量 (90)6.4 B外输首站 (90)6.4.1 进站计量 (91)6.4.2 加热工艺 (91)6.4.3 脱水工艺 (91)6.4.4 污水处理 (93)6.4.4 储油工艺 (95)6.4.5 外输工艺 (95)6.4.6 B外输首站工艺流程 (96)6.4.7 主要工艺设计参数 (98)6.4.8 平面布置说明 (98)6.4.9 首站主要工程量 (100)6.5 中间输油站 (100)6.6 线路阀室 (101)6.7 C装车站 (102)6.8 沿线站场及阀室分布总结 (102)第7章装车站设计 (103)7.1 装车站总体设计 (103)7.1.1 装车站功能 (103)7.1.2 装车站工艺流程设计 (103)7.1.3 装车站分区 (103)7.1.4 装车站总平面布置 (104)7.1.4.1 总平面布置原则 (104)7.1.4.2 总平面布置 (104)7.1.4.3 站内道路 (105)7.1.4.4 围墙 (105)7.1.1.5 绿化 (106)7.2 储油区设计 (106)7.2.1 储油区容量确定 (106)7.2.1.1 周转系数法 (106)7.2.1.2 储存天数法 (107)7.2.1.3 库容确定方法对比优选 (108)7.2.2 储油罐数量确定 (108)7.2.3 储油容量等级 (108)7.2.4 油罐类型选择 (109)7.2.5 储罐强度设计 (110)7.2.5.1 罐壁厚度计算 (110)7.2.5.2 浮顶计算 (111)7.2.6 油罐加热与保温 (113)7.2.6.1 原油储存温度 (113)7.2.6.2 油罐加热方式 (114)7.2.6.3 油罐加热器选用 (114)7.2.6.4 油罐保温 (116)7.2.7 油罐防腐 (116)7.2.7.1 防腐部位 (116)7.2.7.2 防腐涂层结构及材料 (117)7.2.7.3 阴极保护 (117)7.3 铁路装车设计 (117)7.3.1 铁路装车工艺 (118)7.3.2 铁路油罐车设计 (118)7.3.3 铁路专用线设计 (120)7.3.3.1 铁路装卸线布置形式 (120)7.3.3.2 装卸线的有效长度 (120)7.3.4 铁路装油设施设计 (121)7.3.4.1 铁路装油鹤管选用 (121)7.3.4.2 鹤管数量确定 (122)7.3.4.3 鹤管与集油管的连接 (122)7.3.4.4 集油管与鹤管的连接 (123)7.3.4.5 栈桥设计 (124)7.4 装车方案设计 (124)7.4.1 方案设计出发点 (125)7.4.2 不同方案所需装油设施 (125)7.4.3 不同方案每年装车次数 (126)7.4.4 方案对比优选 (126)7.5 站内管道设计 (127)7.5.1 管道作用 (127)7.5.2 管道分类 (128)7.5.3 常用的管道工艺流程 (128)7.5.4 管道工艺流程对比优选 (129)7.5.5 管道保温层设计 (129)7.5.6 管道强度设计 (130)7.5.6.1 站内管道管径计算 (130)7.5.6.2 站内管道壁厚计算 (131)7.5.6.3 站内管道强度校核 (131)7.5.7 管路水力计算 (133)7.5.8 管道敷设与防腐 (135)7.6 发油泵站设计 (135)7.6.1 泵站形式 (135)7.6.2 泵站工艺流程 (136)7.6.3 泵的选用 (137)7.6.3.1 油泵选型 (137)7.6.3.2 油泵数量 (138)7.6.3.3 原动机选择 (138)7.6.3.4 电动机功率计算 (139)7.6.3.5 油泵基本参数 (139)7.6.3.6油泵规格参数 (141)7.6.4 油泵站布置 (141)7.7 站内污水处理 (142)7.7.1 污水来源 (142)7.7.2 含油污水处理 (142)7.7.3 生活污水处理 (142)7.8 油品计量 (143)7.8.1 液面高度的人工测量 (143)7.8.2 液面高度的自动测量 (143)7.8.2.1 常用测量液位计 (143)7.8.2.2 液位计的选用 (145)第8章辅助生产系统及配套工程 (146)8.1 通信 (146)8.2 供配电 (146)8.3 建筑结构 (147)8.4 供热与暖通 (148)8.5 自动化控制 (148)8.5.1 自动化控制系统 (148)8.5.2 储油区工业自动化系统 (149)8.6 防火防爆 (152)8.6.1 火灾和爆炸原因 (153)8.6.2 防火防爆措施 (153)8.7 站场消防 (154)8.7.1 灭火原理与方法 (154)8.7.2 灭火方法及设备 (155)8.7.3 消防给水 (157)8.8 防雷 (158)8.9 防静电 (158)8.10 防杂散电流 (162)8.11 穿越施工安全 (163)8.11.1 设计采取的安全及消防措施 (163)8.11.2 施工中的主要安全措施 (163)8.12 管道水工保护 (163)8.12.1 冲刷防护 (164)8.12.2 坡面防护 (164)8.12.3 支挡防护 (164)8.13 管道标志 (165)第9章HSE风险管理 (166)9.1 长输管道HSE管理 (166)9.1.1 长输管道危害性因素分析 (166)9.1.2 管道系统安全防护对策 (166)9.2 站场HSE管理 (168)9.2.1 站场危害性因素分析 (168)9.2.2 站场安全防护对策 (168)9.3 HSE管理体系建设与运行 (170)9.3.1 HSE体系建设 (170)9.3.2 HSE体系实施 (170)9.4 应急保障体系 (171)9.4.1 突发事件分类与分级 (171)9.4.2 应急工作原则 (172)第10章投资成本估算 (173)10.1 长输管道工程投资 (173)10.2 站场投资 (173)10.3 方案工程总投资 (174)参考文献 (175)附录 (177)附录A 管道水力摩阻计算 (177)附录B 不同管道钢级投资表 (178)附录C 河流穿越施工图 (179)附图1 (179)附图2 (180)附录D 自编程序Visual Basic 程序代码 (181)附录E 穿越轨迹设计程序代码 (189)第1章总论1.1 工程概况R油田开发是将井场原油通过集输管道汇集至位于区块南部的A联合站,通过外输管道170km外输管道将原油输送至装车站。
石油工程设计大赛优秀作品
作品编号 15191003 15191007 15191016 15191017 15191026 15191012 15191013 15191024 15191022 团队名称 Gas Fantasy 北极星 石油之火 页岩之光 Sgodlio 阳光总动员 能源之星 橄榄 擎苍气龙 团队成员 李小江,侯腾飞,武继强,任泽 潘泳君,朴立文,吴雪瑞,葛庆颖 王利明,熊天文,毛文辉,杨阳 张晋,李召坤,管于廷,许洪伦 谢福龙,李华昌,张永超,司伟平 宋丽阳,方欣,蔡贤卿,徐子怡 杨红军,许永猛,方丽超,王天驹 张百灵,赵彦琦,徐鹏,刘兵 袁亮,陈飞,路昭,张世昆 指导教师 李根生,张士诚,宇波,黄世军 林伯韬,侯冰 程林松 程林松,黄世军,李春兰,田守嶒 高德利,吴晓东,刘月田,于达 张士诚,岳湘安,黄启玉,高德利 张遂安,蔚宝华,宇波,张士诚 杨进,梁永图,张劲 吴长春,钟大康,侯冰,陈冬 董平川,赵海峰,杨进,徐樟有 黄中伟,刘月田,李兆慈,隋微波 康万利,赵凤兰,汪志明,刘同敬 刘福江 团队人数 博士人数 硕士人数 本科人数 专科人数 学历系数 4 4 4 4 4 4 4 4 4 4 4 4 4 2 0 0 0 0 1 0 1 0 0 0 0 0 2 4 4 4 4 2 4 3 3 4 4 4 1 0 0 0 0 0 1 0 0 1 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 1.025 1.05 1.05 1.05 1.05 1.05 1.05 1.0375 1.0625 1.05 1.05 1.05 1.0875 全国奖项 晋级总决赛 晋级总决赛 晋级总决赛 全国三等奖 全国鼓励奖 全国鼓励奖 全国鼓励奖 成功参赛奖 成功参赛奖 成功参赛奖 成功参赛奖 成功参赛奖 成功参赛奖 校级奖项 一等奖 一等奖 一等奖 一等奖 二等奖 二等奖 二等奖 二等奖 三等奖 三等奖 三等奖
第六届中国石油工程设计大赛综合组北京赛区获奖名单
作品编号 16181004 16181026 16181016 16181031 16181023 16181020 16181007 16181009 16181014 16181003 16181006 16181011 16181008 16181027 16181012 16181010 16181021 团队名称 深蓝 行成于思 定海神针 Ocean Explorer 蛟龙入海 卓越队 Winway 五福跃油门 Intothesea 开拓先锋 鹏程万里 海底一万米 派大星 勇敢者协会 深海探求者 神奇石油队 海油之星 团队成员 张百灵,邸鹏伟,张浩然,钟子尧,陈卓 翟成龙,吴永辉,张怡,杨柳,吴波 刘自中,张钰垚,韩珂,胡锦川,常元昊 张万,刘明宽,魏征,刘斌彦,马晶 张世昆,伍飞,李文龙,王炜硕,黄建树 张宏源,禹晓珊,张凤远,邓娇,周星泽 孙政,闫松,李海涛,吴小军,齐雪宇 唐子春,苏朋辉,张梅,马克迪,王国辉 刘星,张墨翰,宋帅,严攀,万源 田得强,王洁,陈艺彤 ,罗彪,潘文 陈璐,彭程,王晶,户凯,刘凯铭 孔彬,王千玮,肖顺贻,杨乐朋,王春蕾 刘玉含,杜宣,赵中华,唐蕾,陈映桥 曹闻,王乔怡如,解宁,俎红叶,李璞 李莅临,刘洪辰,何藜,符浩,练洋 祁鹏,高建,刘化普,信诗琪,田伟 穆中奇,陈勇哲,何懿伦,范志弘,杜炜 指导教师 杨进,李晓平,蔚宝华,薛永超 程林松,薛永超,田守嶒,邢晓凯 马新仿,金衍,姜汉桥,张帆,李俊键 张士诚,姚约东,高德利 杨进,刘月田,邢晓凯,牟建业,盛茂 黄中伟,牟建业,侯磊,廖新维,赵晓亮 王玮,韩国庆,蔚宝华,石军太 吴晓东,蒋官澄,姚约东,雷征东 宫敬,李军,金衍,杨进 樊洪海,侯磊,谭强,廖新维,马新仿 陈民锋,张帆 张遂安,吴胜和,于海洋 樊洪海,邢晓凯,卢运虎,刘月田,于海洋 蔚宝华,曹仁义,张逸群 杨进,程时清,韩国庆 马新仿,庞占喜 张辉,李相方,李杰,张帆,韩国庆 学历系数 1 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.05 1 1 1.05 全国奖项 晋级总决赛 晋级总决赛 晋级总决赛 晋级总决赛 全国三等奖 全国鼓励奖 全国鼓励奖 全国鼓励奖 成功参赛奖 成功参赛奖 成功参赛奖 成功参赛奖 成功参赛奖 成功参赛奖 成功参赛奖 成功参赛奖 成功参赛奖 校级奖项 一等奖 一等奖 一等奖 一等奖 二等奖 二等奖 二等奖 二等奖 二等奖 三等奖 三等奖 三等奖 三等奖 三等奖 三等奖
全国石油工程设计大赛综合组范例(109页)
评审编号:PS029方案类型:油藏钻完井采油项目管理 HSE 经济评价全国石油工程设计大赛组织委员会制作品说明为了提升自身能力与专业水平,我们参加了此次大赛。
在本次设计大赛中,我们主要做了以下几项内容。
首先进行地质图件的Geomap化,提取其中的地质参数。
然后结合大赛所给其他资料进行地质储量的计算与评价。
然后进行油藏工程方案设计,主要包括以下几个方面:①利用经验公式、极限经济井网密度初步确定井网密度,在已有井的基础上进行井网的部署;②建立东西南断层封闭,北边边水的层状油藏数值模拟模型;③开发方案的论证:a天然能量开发指标计算预测 b注水开发(注水时机:同期注水;注采井网:边部注水,面积注水—五点、反七点、反九点,注采强度:以注采比为基础,论证0.8/1.0/1.2)论证,推荐三个可选优化方案。
进一步,从低渗油藏开发的现场经验及地下地质条件出发,选择丛式定向井进行钻井方案和采油方案的设计。
最后,对整个开发方案进行了经济评价。
本次设计主要侧重于使用油藏数值模拟对开发方案的论证。
在结合已有资料的基础上查阅了大量文献及资料,在老师的指导及团队成员的通力合作之下完成了本次设计大赛。
本参赛作品由团队成员独立完成,不存在剽窃、抄袭等侵权现象。
若违反自愿放弃参赛资格并承担相关责任。
负责人签字:团队成员签字:指导老师签字:时间:2010年5月6日目录概述 (1)第1章油藏地质特征 (2)1.1 概况 (2)1.1.1 地理位置和自然地理概况 (2)1.1.2 勘探开发历史 (3)1.2 油田地质特征 (4)1.2.1 构造位置 (4)1.2.2 地层分布及储层分布 (5)1.2.3 沉积特征 (8)1.2.4 储层性质 (8)1.2.5 储层流体特征 (11)1.2.6 储层渗流特征 (11)1.2.7 储层敏感性分析 (12)1.2.8 油藏类型 (16)1.3 储量计算与评价 (16)1.3.1 储量计算概述 (16)1.3.2 储量类别 (18)1.3.3 储量参数确定及储量计算 (19)1.3.4 地质储量计算及结果 (22)1.3.5 储量评价 (22)第2章油藏工程设计 (23)2.1 开发原则 (23)2.2 开发层系划分及井网井距设计 (23)2.2.1 开发层系划分 (23)2.2.2 井网密度 (23)2.2.3 井距、排距的确定及优化 (25)2.3 数值模拟模型及方案优化 (29)2.3.1 数值模拟模型建立 (29)2.3.2 油田开发生产历史拟合 (29)2.3.3 对模拟区开发井网设计和指标预测 (30)2.4 油藏注水时机研究 (35)2.5 最终推荐方案 (43)第3章钻井和采油工艺 (44)3.1 编制依据及基础资料 (44)3.1.1 编制的依据 (44)3.1.2 基础资料 (44)3.2 钻井工程设计 (45)3.2.1 钻前准备 (45)3.2.2 井身结构 (45)3.2.3 钻头及钻具 (46)3.2.4 定向井的设计 (48)3.2.5 钻机 (55)3.2.6 钻井液 (63)3.2.7 钻井其他要求 (69)3.2.8 钻井进度计划 (69)3.2.9 钻井费用 (70)3.3 完井设计 (70)3.3.1 完井方法 (70)3.3.2 射孔工艺 (72)3.4 采油工艺 (73)3.4.1 油管柱设计 (73)3.4.2 采油方式 (74)3.4.3 注水工艺 (76)3.5 油水井压裂 (80)3.5.1 压裂层位 (80)3.5.2 压裂液 (80)3.5.3 压裂步骤 (80)3.6 油层保护 (82)第4章项目组织管理和生产作业 (83)4.1 生产管理 (83)4.2 动态监测要求 (83)第5章投资估算与经济评价 (85)5.1 投资估算 (85)5.1.1 依据 (85)5.1.2 原则 (85)5.1.3 价格选取 (85)5.1.4 投资估算项目划分 (85)5.1.5 投资计算 (86)5.2 经济评价 (91)5.2.1 评价模式及原则 (91)5.2.2 评价指标与评价方法 (91)5.2.3 评价结果 (97)5.2.4 敏感性分析 (97)第6章职业卫生、安全和环境保护 (101)6.1 总体原则 (101)6.2 健康与安全 (101)6.3 环保要求 (102)概述MM油藏含油面积为 3.988km2,油层平均有效厚度为4.467m,有效孔隙度值为11.4%,平均含水饱和度为43.88%。
石油工程设计大赛作品
团队编号:全国石油工程设计大赛方案设计类作品比赛类别:方案设计类单项组(钻完井工程)完成日期 2013 年 4 月 7 日全国石油工程设计大赛组织委员会制目录第1章地质概况 (1)1.1自然地理情况 (1)1.1.1 油田地理位置 (1)1.1.2 区域地质情况 (1)1.2构造特征 (1)1.2.1 构造地质特征 (1)1.2.2 地层特征 (2)1.3储层地质特征 (2)1.3.1产层描述 (2)1.3.2物性分析 (4)1.3.3储层流体物性分析 (4)1.4地层分布对比分析 (4)1.5D1井压力预测 (5)1.6D1井试油试采分析 (7)1.7钻井数据 (7)1.7.1井号 (7)1.7.2坐标 (7)第2章井身结构设计 (9)2.1井身结构设计依据 (9)2.2设计原则 (9)2.3设计步骤 (9)2.3.1压力预测分析 (9)2.3.2设计系数及取值范围 (10)2.3.4 井身结构设计 (11)2.3.5 井身结构设计图 (11)2.3.6井身结构设计说明 (12)第3章水平井设计 (13)3.1P1井轨道设计 (13)3.1.1设计依据 (13)3.1.2设计原则 (13)3.1.3 具体设计步骤 (13)3.1.4 基础数据 (13)3.1.5井身剖面设计参数 (14)3.1.6 井眼轨迹控制 (16)3.1.7 井眼轨迹控制主要措施 (17)第4章固井工程设计 (20)4.1基础数据 (20)4.2套管柱设计 (20)4.2.1 设计原则 (20)4.2.2 设计方法 (20)4.2.3 设计结果 (21)4.3套管柱强度校核步骤 (22)4.4水泥及注水泥浆设计 (22)4.4.1注水泥工艺 (22)4.4.3水泥浆设计 (23)第5章钻柱设计 (27)5.1钻具组合设计的原则和依据 (27)5.2钻柱设计 (27)5.2.1一开组合 (28)5.2.2二开组合(直井段) (28)5.2.3二开组合(增斜段) (29)5.3钻柱组合强度设计 (30)第6章钻机选择 (32)6.1钻井设备选取依据 (32)6.2钻井设备选取原则 (32)第7章机械破碎参数设计 (35)7.1钻头选型 (35)7.1.1 钻头选型依据 (35)7.1.2 钻头选型设计 (36)7.2钻压、钻速的优选 (37)7.2.1 钻压、转速确定的一般原则 (37)7.2.2 采用最优关系方程确定钻压、转速 (37)第8章钻井液设计 (39)8.1钻井中对钻井液设计重点提示 (39)8.1.1钻井液对钻井工程的要求 (39)8.2设计原则 (39)8.3钻井液体系选择和密度设计 (39)8.4钻井液性能要求 (40)8.5钻井液基本配方 (41)8.6固控设备及使用要求 (42)8.7钻井液资料录取要求 (42)8.8钻井液测试仪器配套要求 (43)8.9钻井液地面管理要求 (43)第9章水力参数设计 (45)9.1钻头水力参数设计原则 (45)第10章油气井压力控制 (46)10.1油气井控制的原则和依据 (46)10.2各次开钻井口装置 (46)10.2.1 一开井口装置 (46)10.2.2 二开井口装置 (47)10.3井控管汇 (47)10.4试压要求 (48)10.4.1井控装置试压 (48)10.4.2套管试压 (49)10.5井控要求 (49)10.5.1井控设备安装要求: (49)10.5.2井控其它要求: (49)10.5.3中途测试与测井井控要求 (50)10.6油气井控制的主要措施 (51)第11章钻井复杂情况及事故预防与处理措施 (52)11.1卡钻的预防与处理 (52)11.1.1 防卡技术措施 (52)11.2井塌 (53)11.2.1 防塌技术措施 (53)11.2.2 井塌处理措施 (53)11.3井漏 (53)11.3.1 防漏技术措施 (54)11.3.2 堵漏技术措施 (55)11.4井涌、井喷的预防与处理 (55)11.4.1 防井涌、井喷技术措施 (55)11.5井场防火技术措施 (57)第12章完井设计 (58)12.1完井方式的优选 (58)12.2割缝衬管完井适用的地质条件 (58)12.3割缝衬管缝眼的功能 (59)12.4割缝衬管的技术参数 (59)12.4.1缝眼的形状 (59)12.4.2缝口的宽度 (59)12.4.3缝眼的排列形式 (60)12.4.4 割缝衬管的尺寸 (60)12.4.5缝眼的长度 (61)12.4.6缝眼的数量 (61)12.5完井井口装置与储层保护技术 (61)12.5.1完井井口装置 (61)第13章钻前工程和HSE管理 (63)13.1钻前及安装工程 (63)13.2HSE管理 (63)13.2.1 健康管理要求 (64)13.2.2 安全管理要求 (64)13.2.2.1安全标志牌的要求(位置、标识等) (64)13.2.2.2易燃易爆物品的使用和管理 (64)13.2.2.3井场灭火器材和防火安全要求 (64)13.2.2.4井场动火安全要求 (64)13.2.2.5井喷预防和应急措施 (64)13.2.3 环境管理要求 (65)13.2.3.1认真贯彻环境保护“三同时”原则 (65)13.2.3.2钻前环境管理要求 (65)13.2.3.3钻井作业期间环境管理要求 (65)13.2.3.4钻井作业完成后环境管理要求 (65)第14章钻井周期计划 (66)14.1机械钻速预测 (66)14.2钻井进度计划 (66)第15章钻井成本计划 (67)15.1钻井成本计划 (67)第16章钻井技术经济指标 (68)附表 (69)附表1井身结构具体设计步骤 (69)附表2水平井具体设计步骤 (71)附表3套管柱强度校核步骤 (74)附表4水力参数设计 (77)参考文献 (79)第1章地质概况1.1 自然地理情况1.1.1 油田地理位置A 区块位于隶属新疆维吾尔自治区M 县,工区地表为草原戈壁,地面较平坦,植被稀少,地面海拔 70m~270m;工区 15公里外有发电厂,25 公里范围内有一个中型凝析气藏投入开发。
第五届中国石油工程设计大赛中国石油大学北京赛区获奖名单
作品编号 团队名称 参赛类型 指导教师 团队人数 博士人数 硕士人数 本科人数 专科人数 学历系数 全国奖项 校级奖项 团队成员 15192088 阳光石油筑梦队 方案设计类(油/气藏工程单项组) 吕晓聪,马康 刘慧卿 2 0 2 0 0 1.05 晋级总决赛 一等奖 15192078 Invictus 方案设计类(油/气藏工程单项组) 苟启明,王奇 张红玲 2 0 2 0 0 1.05 全国三等奖 一等奖 15192002 未来之轴 方案设计类(油/气藏工程单项组) 刘传斌,裴艳丽 姜汉桥 2 0 2 0 0 1.05 全国三等奖 一等奖 15192016 风萧萧兮 方案设计类(油/气藏工程单项组) 肖聪,张路锋 张士诚 2 0 2 0 0 1.05 全国三等奖 一等奖 15192030 奔跑吧兄弟 方案设计类(油/气藏工程单项组) 曹崇,辛晓知 宁正福 2 0 2 0 0 1.05 全国三等奖 一等奖 15192015 我心飞扬 方案设计类(油/气藏工程单项组) 卢凌云,刘秉谦 张遂安 2 0 2 0 0 1.05 全国三等奖 一等奖 15192025 2D 方案设计类(油/气藏工程单项组) 严伟,罗玮玮 赵仁保 2 0 2 0 0 1.05 全国三等奖 一等奖 15192068 阳光石油论坛材华队 方案设计类(油/气藏工程单项组) 徐振华,何双材 吴胜和 2 0 2 0 0 1.05 全国三等奖 一等奖 15192054 疯狂石油人 方案设计类(油/气藏工程单项组) 杨宝松,朱智 顾岱鸿 2 0 2 0 0 1.05 全国三等奖 一等奖 15192024 小小石油 方案设计类(油/气藏工程单项组) 李翔龙,宋磊 田冷 2 0 2 0 0 1.05 全国三等奖 一等奖 15192049 石油曙光 方案设计类(油/气藏工程单项组) 赵超,高启超 2 0 2 0 0 1.05 全国鼓励奖 二等奖 董平川 15192062 静心守志 方案设计类(油/气藏工程单项组) 秦小仑,李准 周福建 2 0 2 0 0 1.05 全国鼓励奖 二等奖 15192022 独领一代风骚 方案设计类(油/气藏工程单项组) 王敉邦,吴润桐 杨胜来 2 0 2 0 0 1.05 全国鼓励奖 二等奖 15192084 潜力无穷 方案设计类(油/气藏工程单项组) 孙亚楠,钱永娟 郭小哲 2 0 2 0 0 1.05 全国鼓励奖 二等奖 15192052 我为海油献石油 方案设计类(油/气藏工程单项组) 黄灏,刘红君 董平川 2 0 1 1 0 1.075 全国鼓励奖 二等奖 15192075 昭然 方案设计类(油/气藏工程单项组) 李滢,陈彦召 杨胜来 2 0 2 0 0 1.05 全国鼓励奖 二等奖 15192012 清洁能源 方案设计类(油/气藏工程单项组) 左文永,封钦亚 董平川 2 0 2 0 0 1.05 全国鼓励奖 二等奖 15192039 blackstone 方案设计类(油/气藏工程单项组) 臧加利,黄亮 石军太 2 0 2 0 0 1.05 全国鼓励奖 二等奖 15192064 阳光石油论坛勇敢的心 方案设计类(油/气藏工程单项组) 李海明,郭颖 王志章 2 0 2 0 0 1.05 全国鼓励奖 二等奖 15192118 黑油 方案设计类(油/气藏工程单项组) 韦世明,徐东明 薛永超 2 0 0 2 0 1.1 全国鼓励奖 二等奖 15192082 永恒石油 方案设计类(油/气藏工程单项组) 陈俊刚,罗忠海 薛亮 2 0 1 1 0 1.075 成功参赛奖 二等奖 15192008 命运石之门 方案设计类(油/气藏工程单项组) 董睿涛,王遥 董平川 2 0 0 2 0 1.1 成功参赛奖 二等奖 15192014 Destiny 方案设计类(油/气藏工程单项组) 赵华伟,赵天逸 宁正福 2 2 0 0 0 1 成功参赛奖 三等奖 15192003 海洋之金 方案设计类(油/气藏工程单项组) 李四海,赵鑫 马新仿 2 0 2 0 0 1.05 成功参赛奖 三等奖 15192009 奥陶之行 方案设计类(油/气藏工程单项组) 张蔓,郑波 姜汉桥 2 0 2 0 0 1.05 成功参赛奖 三等奖 15192032 两颗勇敢的心 方案设计类(油/气藏工程单项组) 张欣,景亚菲 郭小哲 2 0 2 0 0 1.05 成功参赛奖 三等奖 15192018 sapphire 方案设计类(油/气藏工程单项组) 陈斯宇,张慧先 程林松 2 0 2 0 0 1.05 成功参赛奖 三等奖 15192083 Drive Stars 方案设计类(油/气藏工程单项组) 韦家煜,黄梅 刘月田 2 0 2 0 0 1.05 成功参赛奖 三等奖 15192094 CM之家 方案设计类(油/气藏工程单项组) 梁俊红,郝杰 裴柏林 2 0 2 0 0 1.05 成功参赛奖 三等奖 15192004 中油设计1队 方案设计类(油/气藏工程单项组) 黄成辉,金沙 黄世军 2 0 1 1 0 1.075 成功参赛奖 三等奖 15192023 石油Z.C. 方案设计类(油/气藏工程单项组) 常阳,赵明月 李春兰 2 0 2 0 0 1.05 成功参赛奖 三等奖 15192033 活出敢性 方案设计类(油/气藏工程单项组) 陈正,石登科 程时清 2 0 2 0 0 1.05 成功参赛奖 三等奖 15192101 Tyloo 方案设计类(油/气藏工程单项组) 乔聪颖,夏钦禹 陈民锋 2 0 2 0 0 1.05 成功参赛奖 三等奖 15192035 Caterpillar 方案设计类(油/气藏工程单项组) 闫子旺,刘浩旻 张红玲 2 0 2 0 0 1.05 成功参赛奖 三等奖 15192019 yao 方案设计类(油/气藏工程单项组) 姚健欢,刘娟 董平川 2 0 2 0 0 1.05 成功参赛奖 三等奖
历届全国石油工程设计大赛一等奖获奖名单(2)
常州大学 承德石油高等专科学校
东北石油大学 中国石油大学(北京)
团队成员 刘一璠 关杰文 孙超
获奖等级 一等奖 一等奖 一等奖 一等奖
一等奖(卓越杯) 一等奖 一等奖 一等奖 一等奖 一等奖 一等奖 一等奖 一等奖 一等奖 一等奖 一等奖 一等奖 一等奖 一等奖 一等奖
2014年11月14日
何聪鸽 肖剑锋 陈子剑 李江飞 吕泽昊 周曦龙 潘子晴 张峰 代建伟 王彬 刘阳 余雨航 陶祖文 王浩儒 马旭 安云朋 赖令彬 王石 闫静 韩加庚 杨川 路千里 蒙春 刘佳丽
李苇 阮刚 郑功伟 程君 范鹏飞 陈阳 吴武超 郭亮 郭琳琳 卢绪盛 傅盛林 杜彬彬 文恒 王琦 张前 成思敏 隆例家
获奖类别
一等奖
方案设计类综合组
一等奖
方案设计类综合组
一等奖
方案设计类综合组
一等奖
方案设计类综合组
一等奖
方案设计类单项组
一等奖
方案设计类单项组
一等奖
方案设计类单项组
一等奖
方案设计类单项组
一等奖
方案设计类单项组
Байду номын сангаас
一等奖
方案设计类单项组
一等奖
方案设计类单项组
一等奖
2013年 第三届大赛
年份
2014年 第四届大赛
学校 中国地质大学(武汉) 中国石油大学(北京) 中国石油大学(华东) 中国石油大学(北京) 中国石油大学(华东)
余益松 王哲 卢建松 李龙 韩冠永 宋丽阳 陈璨
华南理工大学_唐文鹏_20万立方米大型原油储罐设计及优化
2.2 储罐抗风圈及加强圈的设计 .................................................................................................... 13
2.2.1 抗风圈的设计 ................................................................................................. 13 2.2.2 加强圈的设计 ................................................................................................ 14
参考文献 ............................................................................................................................................... 37 致谢 ....................................................................................................................................................... 38
第二届全国石油工程设计大赛复审意见(综合组)
西南石油大学 西南石油大学 西南石油大学 燕山大学 中国地质大学(北京) 中国地质大学(武汉) 中国石油大学(华东) 中国石油勘探开发研究院 中国石油大学(北京) 中国石油大学(北京) 中国石油大学(北京) 中国石油大学(北京) 中国石油大学(北京) 中国石油大学(北京) 中国石油大学(北京) 中国石油大学(北京) 中国石油大学(北京) 北京大学 北京科技大学 重庆科技学院 重庆科技学院 重庆科技学院 重庆科技学院 重庆科技学院 承德石油高等专科学校
能源之星 油击五人组 逐梦队 勇新队 超人 Unique(油里客) 太阳之火 Petroleummen 掘金 Plus cupstar Sunshine 队 五彩水果 挑战者(PetroDefy) 步步为营 希望之星 锐新组合 飞跃 Unipetro 维科纵队 石油之梦 聚梦团队 梦之队 石油之星 潜力组 擎苍油龙
本科 硕士 本科 硕士 本科 本科 硕士 博士 硕士 硕士 硕士 硕士 博士 本科 本科 博士 博士 博士 博士 本科 本科 本科 本科 本科 专科
5 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 4 5 5 5 5 5 5
陶祖文 邓鹏 苏昱 刘英杰 刘洪霞 关闻 于萌 罗二辉 吴振华 涂乙 贺小慧 耿黎东 蔡振华 温长 徐文君 杨峰 宋立辉 孙文杰 王鸣川 米杰 袁翔飞 贺正雪 李江 郭现红 刘继宽
苏堪华、焦国盈、黄小亮、孟江 楼一珊、喻高明、廖瑞全、程远鹏 韦忠良、黄维秋、王彦祺、杨力 杨宇 高书香、韩光明、刘世恩、刘春艳 陈明强 李相方,吴晓东,姚约东,邢晓凯 程林松,曹仁义 吴晓东 程林松,金衍,牟建业,张帆 岳湘安,孙恒,廖新维 程时清,汪志明,韩国庆 高德利,曹仁义 罗沛、杨志龙、王建华,田园 张旭、杨斌、徐春碧,田园 刘春艳、刘世恩 马贵阳、王卫强、张秋实、王璐 武富礼、李爱荣 肖曾利 刘晓娟 任晓娟 卢聪、陈军、廖柯熹、刘厚彬 敬加强、李海涛、李年银、杨辉廷 康毅力、蒲晓林、黄坤、李小刚 付玉
化工设计大赛往年作品(3篇)
第1篇一、前言化工设计大赛是一项旨在培养大学生创新设计能力、工程实践能力和团队协作能力的全国性竞赛。
自2006年举办以来,吸引了众多高校的参与,成为我国化工领域最具影响力的竞赛之一。
本文将分析往届化工设计大赛的优秀作品,以期为参赛选手提供借鉴和启示。
二、往届优秀作品分析1. 2018年化工设计大赛一等奖作品——《新型环保催化剂制备及催化氧化技术应用研究》该作品针对我国环境污染问题,设计了一种新型环保催化剂,并应用于催化氧化技术中。
该催化剂具有高活性、高选择性、低毒性和低成本等特点,能够有效降低工业废气中的有害物质排放,具有良好的环保效益。
作品亮点:(1)创新性:设计了一种新型环保催化剂,具有较高的催化活性;(2)实用性:将催化剂应用于催化氧化技术,具有良好的应用前景;(3)经济效益:催化剂制备成本低,具有良好的经济效益。
2. 2017年化工设计大赛一等奖作品——《基于物联网的智能化工控制系统》该作品针对传统化工生产过程中存在的安全隐患和效率低下问题,设计了一套基于物联网的智能化工控制系统。
该系统通过实时监测、预警和远程控制,实现了化工生产的自动化、智能化和高效化。
作品亮点:(1)创新性:将物联网技术应用于化工生产,实现了生产过程的智能化;(2)安全性:实时监测生产过程,有效预防安全事故;(3)效率:提高生产效率,降低生产成本。
3. 2016年化工设计大赛一等奖作品——《高效节能型化工反应器》该作品针对传统化工反应器存在能量利用率低、生产效率低等问题,设计了一种高效节能型化工反应器。
该反应器采用新型材料,具有优异的热传导性能,有效提高了反应器的能量利用率。
作品亮点:(1)创新性:采用新型材料,提高反应器的能量利用率;(2)节能性:降低能耗,降低生产成本;(3)环保性:减少污染物排放,具有良好的环保效益。
三、总结通过分析往届化工设计大赛的优秀作品,我们可以得出以下结论:1. 创新性是作品成功的关键。
第六届石油工程设计大赛_方案设计类油气田开发工程单项组一等奖作品
方案设计类油气田开发工程单项组
完成日期 2016 年 4 月 16 日 中国石油工程设计大赛组织委员会制
作品简介
本作品根据已有的设计基础资料,从技术和经济角度比选了两种不同模式的 开发方案,最后确定了水下生产系统+FPSO 的全海独立式开发模式。在此模式的 基础上,进一步对水下生产系统、FPSO 平台和陆地终端进行了详细设计,具体的 设计内容如下: (1)完成了水下生产系统工艺流程的设计,并结合 VB 和 C 语言开发了基于 遗传算法的可视化海底管网优化布局软件,对海底管网进行了布局。结合 PipeSim 和 OLGA 软件对不同工况下管道的运行参数进行了模拟,分析了立管段段塞流、 水合物形成、结蜡以及清管等工况,同时对关键设备进行了选型计算。 (2)结合本区块海域和油田特点,分析了不同船型 FPSO 的适应性,确定了 采用圆形 FPSO+多点系泊系统的平台方案以减少建设投资,根据油田产量确定了 FPSO 的吨位、舱容、卸油周期等关键参数,对平台甲板和舱室进行了优化布置。 同时利用 HYSYS 软件对油气处理工艺模块进行了设计,绘制了包括油气处理、污 水处理、燃料气系统、开闭排系统、火炬系统、化学药剂注入系统在内的工艺流程 图, 并对其中一些关键设备进行了选型计算。 最后对 FPSO 的包括系泊系统在内的 配套辅助生产系统进行了工艺设计。 (3)根据穿梭油轮的装载量和卸油周期,计算了陆地终端的库容,在此基础 上对油罐、油库总图布置、生产工艺流程进行了设计,最后对配套辅助生产系统进 行了设计。 (4)针对 FPSO 和陆地终端分别进行了 HSE 风险评估,分析了在生产运营期 间可能存在的危险隐患和环境影响, 结合相关行业标准, 制定了对应的预防和处理 措施,以此作为本油田 HSE 管理的基本原则。 (5)利用静态和动态评价两种方法对本项目进行了经济评价,分析得知采用 该开发方案在经济上具有一定的可行性。 本团队专业知识水平尚浅, 工程设计经验不足, 因此作品难免存在纰漏之处, 请各位评委批评指正!
中国石油工程设计大赛分赛区评审标准
中国石油工程设计大赛分赛区评审标准中国石油工程设计大赛分赛区评审标准一、项目背景与目标:评审者将对参赛队伍提交的项目背景资料和目标说明进行评估。
包括项目的科学性、技术难度、创新性以及与中国石油工程设计相关的性质和价值。
二、研究内容和方法:评审者将对参赛队伍提交的研究内容和方法进行评估。
要考虑项目的科学性、技术可行性、方法的合理性和创新性,并关注是否采用了适当的研究方法和工具。
三、数据采集和分析:评审者将对参赛队伍提交的数据采集和分析进行评估。
要考察数据采集的完整性、准确性和可靠性,以及数据分析的逻辑性和严谨性。
评审者还将关注结果的可解释性和实用性。
四、成果和创新:评审者将对参赛队伍提交的成果和创新进行评估。
要考虑创新点的独特性和实用性,以及成果对现有石油工程设计领域的贡献。
评审者还将关注方案的可行性和可持续性。
五、论文质量:评审者将对参赛队伍提交的论文质量进行评估。
要考虑论文的结构和组织是否合理,语言表达是否清晰准确,参考文献是否充分,并重点关注对前人工作的批判性思考和新论点的提出。
六、报告演示:评审者将对参赛队伍的报告演示进行评估。
要考察演示的内容是否准确完整,逻辑性是否强,表达是否清晰流畅,以及对评审问题的回答是否准确。
七、团队协作与交流:评审者将对参赛队伍的团队协作和交流进行评估。
要考察团队成员之间的配合和合作效果,以及与评审者、观众的沟通和交流能力。
八、创意和视觉呈现:评审者将对参赛队伍的创意和视觉呈现进行评估。
要考虑呈现形式的创新性和吸引力,以及展示的专业性和全面性。
九、项目可行性与实施计划:评审者将对参赛队伍的项目可行性和实施计划进行评估。
要考虑项目的可行性和可实施性,以及是否提供了详细的实施计划和时间安排。
十、综合评价:评审者将对以上各个方面进行综合评价,综合考虑项目的科学性、技术难度、创新性、成果和创新、论文质量、报告演示、团队协作与交流、创意和视觉呈现、项目可行性与实施计划等因素,进行最终的评判。
第三届全国大学生油气储运设计大赛(赛题一特等奖)
出现气源中断,压力变化从首站开始,压力迅速依次朝向末站方向减少,沿线管道压力开始逐渐降低。
末站最低供气压力 末站最低供气压力 分输站最低供气压力 分输站最低供气压力
u 2025年4月,各分输站压力响应
u 2025年7月,各分输站压力响应
结论:以2025年4月为例,经核算,能维持沿线用户正常供气约17小时; 以2025年7月为例,经核算,能维持沿线用户正常供气约4.5小时;
油气储运工程设计大赛
Ø 高峰:
Ø 低谷: u 不同工况下工艺分析
2019年
p 2019~2021年 ü 全年利用地层压力;
2020年
p 2023年 ü 低谷利用地层压力; ü 季高峰增压输送;
2021年
2023年 p 2023~2025年及以后 ü 全年增压输送; ü 管道通过能力可满足 季节调峰的峰值需求 2025年
油气储运工程设计大赛
1 2 3 4
总论 输气工艺 线路工程 站场设计 辅助工程设计 HSE与经济评价
1
汇报提纲
REPORT OUTLINE
5 6
National Storage and Transportation Engineering Design Competition
油气储运工程设计大赛
主 要 内 容
季低谷 输气工艺 计划减产 气质合格 u 综合评价法比选 气田气 u 压缩机启动方案 气质不达标 天然气净化 u 事故工况模拟 u 季节+日调峰 脱CO2 120×108m3/a 脱水
天然气处理
线路工程
输气管道工程 站场工艺
u 差压液化工艺最优化 末站 u 放空天然气回收工艺 季高峰 日低谷 u 采用降噪装置 应急保供
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
团队编号:_______全国石油工程设计大赛方案设计类作品比赛类别:_______ _____ __单位名称:______ _ ___ __团队名称:______ _________ __队长姓名:_______ ________ __联系方式:指导教师:完成日期 2013 年 4 月 8 日全国石油工程设计大赛组织委员会制作品说明为了提升自身能力与专业水平,我们参加了此次大赛。
在本次设计大赛中,我们主要做了以下几项内容。
首先进行地质图件的Geomap 化,提取其中的地质参数。
然后结合大赛所给其他资料进行地质储量的计算与评价。
然后进行油藏工程方案设计,主要包括以下几个方面:①利用经验公式、极限经济井网密度初步确定井网密度,在已有井的基础上进行井网的部署;②建立东西南断层封闭,北边边水的层状油藏数值模拟模型;③开发方案的论证:a 天然能量开发指标计算预测 b 注水开发(注水时机:同期注水;注采井网:边部注水,面积注水—五点、反七点、反九点,注采强度:以注采比为基础,论证 0.8/1.0/1.2)论证,推荐三个可选优化方案。
进一步,从低渗油藏开发的现场经验及地下地质条件出发,选择丛式定向井进行钻井方案和采油方案的设计。
最后,对整个开发方案进行了经济评价。
本次设计主要侧重于使用油藏数值模拟对开发方案的论证。
在结合已有资料的基础上查阅了大量文献及资料,在老师的指导及团队成员的通力合作之下完成了本次设计大赛。
本参赛作品由团队成员独立完成,不存在剽窃、抄袭等侵权现象。
若违反自愿放弃参赛资格并承担相关责任。
负责人签字:团队成员签字:指导老师签字:时间:2010 年5 月6 日目录概述 (1)第1 章油藏地质特征 (2)1.1 概况 (2)1.1.1 地理位置和自然地理概况 (2)1.1.2 勘探开发历史 (3)1.2 油田地质特征 (4)1.2.1 构造位置 (4)1.2.2 地层分布及储层分布 (5)1.2.3 沉积特征 (8)1.2.4 储层性质 (8)1.2.5 储层流体特征 (11)1.2.6 储层渗流特征 (11)1.2.7 储层敏感性分析 (12)1.2.8 油藏类型 (16)1.3 储量计算与评价 (16)1.3.1 储量计算概述 (16)1.3.2 储量类别 (18)1.3.3 储量参数确定及储量计算 (19)1.3.4 地质储量计算及结果 (22)1.3.5 储量评价 (22)第2 章油藏工程设计 (23)2.1 开发原则 (23)2.2 开发层系划分及井网井距设计 (23)2.2.1 开发层系划分 (23)2.2.2 井网密度 (23)2.2.3 井距、排距的确定及优化 (25)2.3 数值模拟模型及方案优化 (29)2.3.1 数值模拟模型建立 (29)2.3.2 油田开发生产历史拟合 (29)2.3.3 对模拟区开发井网设计和指标预测 (30)2.4 油藏注水时机研究 (35)2.5 最终推荐方案 (43)第3 章钻井和采油工艺 (44)3.1 编制依据及基础资料 (44)3.1.1 编制的依据 (44)3.1.2 基础资料 (44)3.2 钻井工程设计 (45)3.2.1 钻前准备 (45)3.2.2 井身结构 (45)3.2.3 钻头及钻具 (46)3.2.4 定向井的设计 (48)3.2.5 钻机 (55)3.2.6 钻井液 (63)3.2.7 钻井其他要求 (69)3.2.8 钻井进度计划 (69)3.2.9 钻井费用 (70)3.3 完井设计 (70)3.3.1 完井方法 (70)3.3.2 射孔工艺 (72)3.4 采油工艺 (73)3.4.1 油管柱设计 (73)3.4.2 采油方式 (74)3.4.3 注水工艺 (76)3.5 油水井压裂 (80)3.5.1 压裂层位 (80)3.5.2 压裂液 (80)3.5.3 压裂步骤 (80)3.6 油层保护 (82)第4 章项目组织管理和生产作业 (83)4.1 生产管理 (83)4.2 动态监测要求 (83)第5 章投资估算与经济评价 (85)5.1 投资估算 (85)5.1.1 依据 (85)5.1.2 原则 (85)5.1.3 价格选取 (85)5.1.4 投资估算项目划分 (85)5.1.5 投资计算 (86)5.2 经济评价 (91)5.2.1 评价模式及原则 (91)5.2.2 评价指标与评价方法 (91)5.2.3 评价结果 (97)5.2.4 敏感性分析 (97)第6 章职业卫生、安全和环境保护 (101)6.1 总体原则 (101)6.2 健康与安全 (101)6.3 环保要求 (102)概述MM 油藏含油面积为 3.988km2 ,油层平均有效厚度为4.467m,有效孔隙度值为11.4%,平均含水饱和度为43.88%。
通过容积法公式,计算得到MM 油藏的石油地质储量为72.56×104t。
储量丰度为18.17×104t,确定MM 油藏属于小型特低丰度油藏。
通过对MM 油藏建立油藏数值模拟模型,对不同井网、井距及注水量的开采系统进行论证对比,从技术角度推荐得出三个较优开发井网系统对其进行经济评价。
井网形式为反九点井网,井距为260 米,井网密度为13.29 口/km2。
开采方式为滞后12 个月注水开采。
开采年限为14 年,采收率为27.9%。
井网形式为反七点井网,井距为280 米,井网密度为17.8 口/km2。
开采年限为20 年,采收率为 30.1%。
井网形式为七点井网,井距为 260 米,井网密度为14.4 口/km2。
开采年限为23 年,采收率为26.6%。
考虑到地面生产管理,采用丛式井进行钻井设计,一共使用7 个丛式井单元。
其中,定向井为42 口,直井为9 口。
采油工艺采用套管射孔完井,对油井进行压裂增产,滞后注水开采。
油井平均单井配产为每天6 方,使用有杆泵抽油机进行开采。
通过技术经济评价推荐方案,确定最优开发方案为:反九点井网,井距为260m,滞后12 个月注水开采,注水量为每天20 方左右。
4 年以后可以回收成本,投资收益为69812.3 万元,投资收益率为109.7%。
第1 章油藏地质特征1.1 概况1.1.1 地理位置和自然地理概况1.1.1.1 油田地理位置、气候地理位置位于A 市MN 区和W 省HZ 市之间的胜利村西南1 约公里,区内农田纵横交错,村庄遍布,交通便利。
年平均气温14℃,四季分明。
图1.1MM 断块地理卫星图1.1.1.2 油田地面状况该块为新增储量区,没有形成开发井网,周围无井站和集输管网及配套设施,M2 向北2.2 公里(穿过两条100 米宽河道,水3 3深 3-5 米)可进入最近的配套集输设施覆盖区 HE (由此可接入到 较大的集输场站,同时可交接油,也有足够的污水来源),M1 向 东沿河堤土路 4.6 公里上公路。
再绕行 10-12 公里可到达 HE 。
1.1.2 勘探开发历史1.1.2.1 勘探历程断块内钻探 3 口井,MM 断块油藏埋深-2680~-2913m ,油藏中 部海拔-2797m 。
M1、M2 井试油证实为工业油流井,M3 井为横向测 井,录井为油斑显示,综合评价为油层,油层分布稳定,未揭示油 水界面,油藏类型为层状构造油藏。
油藏驱动类型为边水驱动。
地 温梯度为 3.54℃/100m ,压力梯度为 1.09,为正常的温压系统。
据M1 井 Es 3①高压物性分析,饱和压力 9.80 MPa ,地层压力 35.52MPa , 属正常压力系统未饱和油藏。
1.1.2.2 开发简况 、试油试采情况:断块内钻探 3 口井,M1 井,2009 年 10 月完钻,Es 3 3①综合解释 油层 4.4m/2 层。
试油射开 40、41 号层,井段 2871.9-2881.6m ,2 层 6.6m ,压裂后 8mm 油嘴自喷,日产油 19.93t ,累产油 135.5t , 2010 年 5 月投产,冲程/冲次,6m/3 次,初期日产油 15.2t ,至 2010 年 11 月,累计产油 1251.2t, 累计产水 330.7m 3。
3① M2 井,2010 年 8 月完钻,Es 3 综合解释油层 3.0m/1 层,2010 年 10 月试油射开 48、49、50 号层,井段 2892.7-2906.3m ,3 层 8.0m ,压裂后泵排 15MPa ,日产油 5.7m 3,累产油 16.8m 3。
2010 年 11 月投产,冲程/冲次,6m/2 次,初期日产油 6.98t ,至 2010 年 11 月,累计产油 150.9t,水 183.3m 3。
M3 井是 1969 年 3 月完钻的一口老井,测井系列为横向测井,Es 3① 综合解释油层 4.8m/1 层。
表1.1 M1、M2 井试油成果表粘度:5.5mpa·s(50℃)凝固点:20℃表1.2 M1、M2 井生产数据表1.2 油田地质特征1.2.1 构造位置区域构造位置处于X 坳陷中区HB 断层下降盘,北、西为L 凸起,南至QH10 井断层。
MM 断块位于XX 油田的南部,是受南侧L1、西侧L2,东侧L3 三条断层夹持的向北西倾斜的断块圈闭构造。
高点位于M1 井以南,高点埋深-2680m,圈闭幅度320m,圈闭面积6.1km2。
3图 1.2 MM 断块油层构造图1.2.2 地层分布及储层分布XX 油田钻井揭示的地层自上而下依次为:第四系平原组,新 近系的明化镇组、馆陶组,古近系的东营组、沙河街组以及中生界。
新近系的馆陶组和古近系的东营组之间,古近系的沙三段和中生界 之间均为不整合接触。
在沙河街组内部,划分为沙一、沙三段,缺 失沙二段地层,沙一下地层直接覆盖在沙三段地层之上。
含油目的层为沙三段的沙三 3油组。
(见 M1、M2 地层分层及岩性剖面)沙三 3油组根据沉积旋回和油层分布特征,又划分为 2 个砂组。
3①Es 3 地层分布比较稳定,厚度 70-100m ,砂岩发育,岩性以浅灰色、灰褐色细砂岩为主,泥岩为深灰色。
Es 3②在 XX 油田钻遇井较少。
图1.3 油层对比图表 1.3 M1 井地层分层数据表1.4 M2 井地层分层数据表1.2.3 沉积特征沉积环境为近岸水下扇,储层岩性以长石砂岩和岩屑长石砂岩为主,成分成熟度低(石英含量25%~40%),风化程度中等,分选性中-好,颗粒磨圆度以次尖-次圆为主,接触关系为点-线、线接触,胶结类型为孔隙式、孔隙-接触式,结构成熟度较低。
胶结物以方解石为主,其次为泥质。
1.2.4 储层性质1.2.4.1 地层矿物组分分析利用在M1 井1280m 处取得的岩屑,进行了X-射线衍射分析实验,分析结果见表1.5 和表1.6。