二次函数练习题及答案27276
二次函数考试题目及答案
二次函数考试题目及答案1. 已知二次函数y=ax^2+bx+c的图象开口向上,且经过点(1,0)和(3,0),求二次函数的解析式。
答案:由于二次函数的图象开口向上,所以a>0。
又因为函数图象经过点(1,0)和(3,0),可以设二次函数的解析式为y=a(x-1)(x-3)。
将点(2,-4)代入,得到-4=a(2-1)(2-3),解得a=4。
因此,二次函数的解析式为y=4(x-1)(x-3)。
2. 抛物线y=ax^2+bx+c与x轴交于点A(-1,0)和点B(3,0),且抛物线的顶点在直线y=-2x上,求抛物线的解析式。
答案:设抛物线的解析式为y=a(x+1)(x-3)。
由于顶点在直线y=-2x上,设顶点坐标为(m,n),则有n=-2m。
根据抛物线的对称性,顶点的横坐标m=(3-1)/2=1,所以n=-2。
将顶点坐标(1,-2)代入抛物线解析式,得到-2=a(1+1)(1-3),解得a=1。
因此,抛物线的解析式为y=(x+1)(x-3)。
3. 已知二次函数y=ax^2+bx+c的图象经过点(0,2)和(2,0),且对称轴为直线x=1,求二次函数的解析式。
答案:由于二次函数的对称轴为直线x=1,可以设二次函数的解析式为y=a(x-1)^2+k。
将点(0,2)代入,得到2=a(0-1)^2+k,即2=a+k。
又因为函数图象经过点(2,0),代入得到0=a(2-1)^2+k,即0=a+k。
解得a=-2,k=2。
因此,二次函数的解析式为y=-2(x-1)^2+2。
4. 抛物线y=ax^2+bx+c与x轴的交点为A(-2,0)和B(4,0),且抛物线经过点(1,3),求抛物线的解析式。
答案:设抛物线的解析式为y=a(x+2)(x-4)。
将点(1,3)代入,得到3=a(1+2)(1-4),解得a=-1/3。
因此,抛物线的解析式为y=-1/3(x+2)(x-4)。
5. 二次函数y=ax^2+bx+c的图象开口向下,且经过点(-1,0)和(3,0),求二次函数的解析式。
二次函数测试题及答案
二次函数测试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是二次函数的一般形式?A. y = 2x + 1B. y = x^2 + 3x + 2C. y = 3x^3 - 5D. y = 4/x答案:B2. 二次函数y = ax^2 + bx + c的顶点坐标为(h, k),那么h的值为:A. -b/2aB. -b/aC. b/2aD. b/a答案:C3. 二次函数y = 2x^2 - 4x + 3的对称轴方程是:A. x = 1B. x = -1C. x = 2D. x = -2答案:A4. 如果二次函数y = ax^2 + bx + c的图象开口向上,那么a的值:A. 大于0B. 小于0C. 等于0D. 可以是任意实数答案:A5. 二次函数y = -x^2 + 4x - 3的顶点坐标是:A. (1, 2)B. (2, 1)C. (3, 0)D. (3, 4)答案:C6. 二次函数y = 3x^2 - 6x + 5的图象与x轴的交点个数是:A. 0个B. 1个C. 2个D. 3个答案:C7. 二次函数y = x^2 - 4x + 4的最小值是:A. 0B. 4C. -4D. 1答案:A8. 二次函数y = 2x^2 - 4x + 3的图象开口方向是:A. 向上B. 向下C. 向左D. 向右答案:A9. 二次函数y = -x^2 + 2x + 3的图象与y轴的交点坐标是:A. (0, 3)B. (0, -3)C. (0, 5)D. (0, -5)答案:A10. 二次函数y = 5x^2 - 10x + 8的图象与x轴的交点坐标是:A. (2, 0)B. (-2, 0)C. (1, 0)D. (-1, 0)答案:A二、填空题(每题4分,共20分)1. 二次函数y = ax^2 + bx + c的图象开口向上,且经过点(2, 0),则a的值至少为______。
答案:02. 二次函数y = 2x^2 - 4x + 3的顶点坐标是(______, ______)。
二次函数测试题及答案
二次函数测试题及答案一、选择题1. 下列哪个选项是二次函数的一般形式?A. y = x + 2B. y = x^2 + 3x + 1C. y = 2x^3D. y = 1/x答案:B2. 二次函数y = ax^2 + bx + c(a ≠ 0)的顶点坐标是:A. (-b, a)B. (-b/a, c)C. (-b/2a, 4ac - b^2/4a)D. (-b/2a, 4ac + b^2/4a)答案:C3. 如果二次函数y = ax^2 + bx + c的图像与x轴有两个交点,那么a、b、c之间的关系是:A. b^2 - 4ac > 0B. b^2 - 4ac < 0C. b^2 - 4ac = 0D. b^2 - 4ac ≠ 0答案:A二、填空题4. 二次函数y = -3x^2 + 6x - 5的顶点坐标是______。
答案:(1, -2)5. 如果二次函数y = ax^2 + bx + c的图像开口向上,那么a的值是______。
答案:> 0三、解答题6. 已知二次函数y = 2x^2 - 4x + 3,求其图像与x轴的交点。
解:令y = 0,得到方程2x^2 - 4x + 3 = 0。
通过求解这个方程,我们可以得到x的值。
首先计算判别式Δ = b^2 - 4ac = (-4)^2 - 4 * 2 * 3 = 16 - 24 = -8。
因为Δ < 0,所以这个二次方程没有实数解,即二次函数的图像与x轴没有交点。
7. 已知二次函数y = 3x^2 + 6x - 5,求其图像的对称轴。
解:二次函数y = ax^2 + bx + c的对称轴是x = -b/(2a)。
将a= 3, b = 6代入公式,得到对称轴为x = -6 / (2 * 3) = -1。
四、应用题8. 某工厂生产一种产品,其成本函数为C(x) = 0.5x^2 - 100x + 1000,其中x表示产品的数量。
二次函数数学试题及答案
二次函数数学试题及答案一、选择题1. 若二次函数y=ax^2+bx+c的图象开口向上,则a的取值范围是()。
A. a>0B. a<0C. a=0D. a≠0答案:A2. 二次函数y=ax^2+bx+c的顶点坐标为(h, k),则该函数的顶点式为()。
A. y=a(x-h)^2+kB. y=a(x+h)^2+kC. y=a(x-h)^2-kD. y=a(x+h)^2-k答案:A3. 对于二次函数y=ax^2+bx+c,若b^2-4ac>0,则该函数的图象与x 轴的交点个数为()。
A. 0个B. 1个C. 2个D. 3个答案:C二、填空题1. 已知二次函数y=ax^2+bx+c的对称轴为直线x=2,且图象经过点(1,3),则a+b+c=______。
答案:32. 若二次函数y=-2x^2+4x+1的顶点坐标为(h,k),则h=______,k=______。
答案:1,3三、解答题1. 已知二次函数y=ax^2+bx+c的图象经过点(-1,0)和(3,0),且图象开口向下,求a的取值范围。
解:由题意可知,二次函数的两个根为-1和3,因此可以设二次函数为y=a(x+1)(x-3)。
由于图象开口向下,所以a<0。
因此,a的取值范围为a<0。
2. 已知二次函数y=ax^2+bx+c的顶点坐标为(2,1),且图象经过点(0,5),求该二次函数的解析式。
解:根据顶点式,二次函数可以表示为y=a(x-2)^2+1。
将点(0,5)代入,得到5=a(0-2)^2+1,解得a=2。
因此,该二次函数的解析式为y=2(x-2)^2+1。
结束语:通过以上题目的练习,可以加深对二次函数性质的理解,提高解题能力。
九年级数学二次函数测试题含答案(精选5套)
九年级数学二次函数测试题含答案(精选5套)九年级数学二次函数测试题含答案(精选5套)第一套:1. 将函数 $y = 2x^2 - 3x - 2$ 化简为标准形式,并求出它的顶点坐标。
答案:将函数化简为标准形式得到 $y = 2(x-\frac{3}{4})^2 -\frac{33}{8}$,顶点坐标为 $(\frac{3}{4}, -\frac{33}{8})$。
2. 求函数 $y = -x^2 + 4x + 1$ 的零点。
答案:将函数化简为标准形式得到 $y = -(x-2)^2 + 5$,令 $y = 0$,解得 $x = 2 \pm \sqrt{5}$,即零点为 $x_1 = 2 + \sqrt{5}$ 和 $x_2 = 2 -\sqrt{5}$。
3. 给定函数 $y = x^2 - 6x + 5$,求其对称轴的方程式。
答案:对称轴的方程式为 $x = \frac{-b}{2a}$,代入 $a = 1$ 和 $b = -6$ 得到 $x = \frac{6}{2} = 3$。
4. 若函数 $y = ax^2 + bx - 9$ 与 $y = -x^2 + 7x$ 有相同的图像,求$a$ 和 $b$ 的值。
答案:由于两个函数有相同的图像,所以它们的系数相等。
比较两个函数的对应系数得到 $a = -1$ 和 $b = 7$。
5. 已知函数 $y = x^2 - 4x + 5$ 的图像上存在一点 $(h, k)$,使得 $x= h - 3$ 时,$y = 2k + 12$,求点 $(h, k)$ 的坐标。
答案:将 $x = h - 3$ 代入函数得到 $y = (h-3)^2 - 4(h-3) + 5$。
代入$y = 2k + 12$ 得到 $(h-3)^2 - 4(h-3) + 5 = 2k + 12$。
整理得到 $(h-3)^2 -4(h-3) - 2k - 7 = 0$。
由于该方程为二次方程,必然存在实数解。
二次函数练习题及答案
二次函数练习题及答案1. 已知二次函数的顶点为(2, 3),且经过点(1, 5),求该二次函数的解析式。
2. 抛物线y=ax^2+bx+c与x轴交于点A(-1, 0)和B(3, 0),求抛物线的对称轴方程。
3. 函数f(x)=2x^2-4x+m在区间[0, 2]上的最大值为8,求m的值。
4. 已知二次函数y=ax^2+bx+c的图象经过点(-1, 2)和(2, 2),且在x=1处取得最小值,求a、b、c的值。
5. 抛物线y=ax^2+bx+c的图象开口向上,且经过点(0, 1)和(2, 5),求a的取值范围。
6. 函数y=x^2-2x+3的图象与x轴的交点坐标为多少?7. 抛物线y=-2x^2+4x+1的顶点坐标是什么?8. 已知二次函数y=ax^2+bx+c的图象与y轴交于点(0, 2),且在x=-1处取得最大值,求a、b、c的值。
9. 函数f(x)=x^2-6x+8在区间[1, 4]上的最大值和最小值分别是多少?10. 抛物线y=3x^2-6x+2与x轴的交点坐标是什么?11. 已知二次函数y=ax^2+bx+c的图象经过点(1, 0)和(-2, 0),且在x=0处取得最小值,求a、b、c的值。
12. 函数y=2x^2-4x+1在区间[0, 3]上的最大值和最小值分别是多少?13. 抛物线y=-x^2+2x+3的图象开口向下,求抛物线的顶点坐标。
14. 已知二次函数y=ax^2+bx+c的图象经过点(-3, -2)和(1, -2),求a、b、c的值。
15. 函数y=x^2-4x+5的图象与x轴的交点坐标为多少?16. 抛物线y=4x^2-12x+9的顶点坐标是什么?17. 已知二次函数y=ax^2+bx+c的图象与y轴交于点(0, -1),且在x=2处取得最大值,求a、b、c的值。
18. 函数f(x)=-2x^2+8x-8在区间[0, 4]上的最大值和最小值分别是多少?19. 抛物线y=x^2-4x+5的图象开口向上,求抛物线的对称轴方程。
二次函数练习题及答案
二次函数练习题及答案一、选择题1.下列函数中,是二次函数的是()A. y=3x+2B. y=x^3+2xC. y=x^2-5x+6D. y=2^x2.二次函数y=ax^2+bx+c的图象是()A. 一条直线B. 一个抛物线C. 一个圆D. 一个双曲线3.已知二次函数f(x)=ax^2+bx+c的对称轴方程为x=2,则a、b和c 的值分别是()A. a=1, b=0, c=-4B. a=0, b=1, c=-4C. a=1, b=0, c=4D. a=0, b=1, c=4二、填空题1. 已知二次函数f(x)=2x^2+4x+1,求其对称轴的方程:________2. 二次函数y=x^2-4x+3的顶点坐标为:________3. 已知二次函数f(x)=ax^2+12x+3的图象与y轴交于点(0, -3),则a 的值为:________三、解答题1. 某商品的生产成本y(万元)与产量x(万件)之间的关系为二次函数y=2x^2-8x+20。
求:a) 生产2000件商品时的生产成本;b) 使生产成本最小的产量。
2. 已知二次函数y=ax^2+bx+c的图象顶点坐标为(-3, 4),且经过点(2, -2)。
求a、b和c的值。
答案及解析:一、选择题1. 答案:C解析:二次函数的标准形式为y=ax^2+bx+c,其中a不等于0。
只有选项C满足二次函数的形式。
2. 答案:B解析:二次函数的图象为一个抛物线。
3. 答案:A解析:对称轴方程的一般形式为x=-b/2a。
根据题目中对称轴方程为x=2,可以得出-b/2a=2,解得b=0和a=1。
由于对称轴方程不包含c,因此c的值可以是任意实数。
二、填空题1. 答案:x= -b/2a = -4/(2*2) = -1解析:对称轴方程的一般形式为x=-b/2a。
2. 答案:(-2, 7)解析:二次函数的顶点坐标为(-b/2a, f(-b/2a))。
3. 答案:a=-3解析:由题意可得,当x=0时,f(x)=y=-3。
二次函数基础练习题(含答案)(完整资料).doc
【最新整理,下载后即可编辑】二次函数练习题(一)1、一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式.2、下列函数:① 23yx ;②()21y x x x =-+;③()224y x x x =+-;④21yx x ;⑤()1y x x =-,其中是二次函数的是,其中a,b,c3、当m 时,函数()2235y m x x =-+-(m 为常数)是关于x 的二次函数4、当____m =时,函数2221mm ym m x 是关于x 的二次函数5、当____m =时,函数()2564m m y m x -+=-+3x 是关于x 的二次函数 6、若点 A ( 2,m )在函数12-=x y 的图像上,则 A 点的坐标是____.7、在圆的面积公式S=πr2中,s 与r 的关系是()A、一次函数关系B、正比例函数关系C、反比例函数关系D、二次函数关系8、正方形铁片边长为15cm,在四个角上各剪去一个边长为x(cm)的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S(cm2)与小正方形边长x(cm)之间的函数关系式;(2)当小正方形边长为3cm时,求盒子的表面积.9、矩形的长是4cm,宽是3cm,如果将长和宽都增加x cm,那么面积增加ycm2,①求y 与x 之间的函数关系式.②求当边长增加多少时,面积增加8cm2.10、已知二次函数),0(2≠axy当x=1时,y= -1;当x=2时,y=2,求该c=a+函数解析式.11、富根老伯想利用一边长为a米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1)如果设猪舍的宽AB为x米,则猪舍的总面积S(米2)与x有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?二次函数练习题(二)-----函数2ax y =的图象与性质1、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; (2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; 2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图象关于y 轴对称.其中正确的是 .3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D 5、函数2ax y =与b ax y +-=的图象可能是( )A .B .C .D .6、已知函数24mm ymx 的图象是开口向下的抛物线,求m 的值.stOstOstOstO7、二次函数12-=m mx y 在其图象对称轴的左侧,y 随x 的增大而增大,求m的值.8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系.9、已知函数()422-++=m m x m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大;(3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x的增大而减小?10、如果抛物线2y ax与直线1=-交于点,2b,求这条抛物线所对应的二y x次函数的关系式.二次函数练习题(三)-----函数c=2的图象与性质axy+1、抛物线322-y的开口,对称轴是,顶点坐标-=x是,当x 时, y随x的增大而增大, 当x 时, y随x的增大而减小.2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 .4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .二次函数练习题(四)-----函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 .2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标.(1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位.3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个).4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y 随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.二次函数练习题(五)-----()k h x a y +-=2的图象与性质 1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大. 4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到. 5、已知抛物线的顶点坐标为2,1,且抛物线过点3,0,则抛物线的关系式是 6、如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( ) A 、x>3 B 、x<3 C 、x>1 D 、x<1 7、已知函数()9232+--=x y .(1) 确定下列抛物线的开口方向、对称轴和顶点坐标; (2) 当x= 时,抛物线有最 值,是 .(3)当x 时,y随x的增大而增大;当x 时,y随x的增大而减小.(4)求出该抛物线与x轴的交点坐标及两交点间距离;(5)求出该抛物线与y轴的交点坐标;(6)该函数图象可由23x=的图象经过怎样的平移得到的?y-8、已知函数()412-y.+=x(1)指出函数图象的开口方向、对称轴和顶点坐标;(2)若图象与x轴的交点为A、B和与y轴的交点C,求△ABC的面积;(3)指出该函数的最值和增减性;(4)若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式;(5)该抛物线经过怎样的平移能经过原点.(6)画出该函数图象,并根据图象回答:当x取何值时,函数值大于0;当x取何值时,函数值小于0.二次函数练习题(六)-----c bx ax y ++=2的图象和性质 1、抛物线942++=x x y 的对称轴是 . 2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5、把二次函数215322y x x =---的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是 6、抛物线1662--=x x y 与x 轴交点的坐标为_________; 7、函数x x y +-=22有最____值,最值为___ ____;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( )A 、6,4B 、-8,14C 、-6,6D 、-8,-14 9、二次函数122--=x x y 的图象在x 轴上截得的线段长为( ) A 、22 B 、23 C 、32 D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标13、已知一次函数的图象过抛物线223yx x的顶点和坐标原点1)求一次函数的关系式;2)判断点()-是否在这个一次函数的图象上2,514、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?二次函数练习题(七)-----c+=2的性质axy+bx1、函数2y x px q的图象是以3,2为顶点的一条抛物线,这个二次函数的表达式为2、二次函数22y mx x m m的图象经过原点,则此抛物线的顶点坐标24是3、如果抛物线2y ax bx c与y轴交于点A(0,2),它的对称轴是1x,那么acb4、抛物线c+=2与x轴的正半轴交于点A、B两点,与y轴交于点C,y+xbx且线段AB的长为1,△ABC的面积为1,则b的值为______.5、已知二次函数c=2的图象如图所示,则a___0,b___0,c___0,y++axbx2-____0;acb46、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第 象限.7、已知二次函数2yax bxc (0≠a )的图象如图所示,则下列结论:1),a b 同号; 2)当1x 和3x时,函数值相同;3)40a b;4)当2422b b acy a-±-=-时,x 的值只能为0;其中正确的是 8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m= 9、二次函数2yx axb 中,若0ab,则它的图象必经过点()A ()1,1--B ()1,1-C 1,1D ()1,1-10、函数b ax y +=与c bx ax y ++=2的图象如图所示,则下列选项中正确的是( )A 、0,0>>c abB 、0,0><c abC 、0,0<>c abD 、0,0<<c ab111、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( ) A .4个 B .3个 C .2个 D .1个 13、抛物线的图角如图,则下列结论: ①>0;②;③>;④<1.其中正确的结论是( ). (A )①② (B )②③ (C )②④ (D )③④ 14、二次函数2y ax bxc 的最大值是3a ,且它的图象经过()1,2--,1,6两点,求a 、b 、c15、试求抛物线2y ax bx c与x轴两个交点间的距离(240b ac)二次函数练习题(八)-----确定二次函数解析式1、抛物线y=ax2+bx+c经过A(-1,0), B(3,0), C(0,1)三点,则a= , b= , c=2、把抛物线y=x2+2x-3向左平移3个单位,然后向下平移2个单位,则所得的抛物线的解析式为.3、二次函数有最小值为1,当0x时,1x,y,它的图象的对称轴为1则函数的关系式为4、根据条件求二次函数的解析式(1)抛物线过(-1,-6)、(1,-2)和(2,3)三点(2)抛物线的顶点坐标为(-1,-1),且与y轴交点的纵坐标为-3(3)抛物线过(-1,0),(3,0),(1,-5)三点;(4)抛物线在x轴上截得的线段长为4,且顶点坐标是(3,-2);5、已知二次函数的图象经过1,1、2,1两点,且与x轴仅有一个交点,求二次函数的解析式6、抛物线y=ax2+bx+c过点(0,-1)与点(3,2),顶点在直线y=3x-3上,a<0,求此二次函数的解析式.7、已知二次函数的图象与x轴交于A(-2,0)、B(3,0)两点,且函数有最大值是2.(1)求二次函数的图象的解析式;(2)设次二次函数的顶点为P,求△ABP的面积.8、以x为自变量的函数)32(2)1(42-mxy中,m为不小于零的整mx-+=m++-数,它的图象与x轴交于点A和B,点A在原点左边,点B在原点右边.(1)求这个二次函数的解析式;(2)一次函数y=kx+b的图象经过点A,与这个二次函数的图象交于点C ,且ABC S ∆=10,求这个一次函数的解析式.二次函数练习题(九)-----二次函数与方程和不等式1、已知二次函数772--=x kx y 与x 轴有交点,则k 的取值范围是 .2、关于x 的一元二次方程02=--n x x 没有实数根,则抛物线n x x y --=2的顶点在第_____象限;3、抛物线222++-=kx x y 与x 轴交点的个数为( ) A 、0 B 、1 C 、2 D 、以上都不对4、二次函数c bx ax y ++=2对于x 的任何值都恒为负值的条件是( ) A 、0,0>∆>a B 、0,0<∆>a C 、0,0>∆<a D 、0,0<∆<a5、12++=kx x y 与k x x y --=2的图象相交,若有一个交点在x 轴上,则k 为( ) A 、0 B 、-1 C 、2 D 、416、若方程02=++c bx ax 的两个根是-3和1,那么二次函数c bx ax y ++=2的图象的对称轴是直线( )A 、x =-3 B 、x =-2 C 、x =-1 D 、x =17、已知二次函数2y x pxq 的图象与x 轴只有一个公共点,坐标为1,0,求,p q 的值。
二次函数练习试题和答案及解析
二次函数练习题1、若是二次函数,则m的值为< >A.1 B.一2 C.1或一2 D.22、下列判断中唯一正确的是〔A.函数y=ax2的图象开口向上,函数y=-ax2的图象开口向下B.二次函数y=ax2,当x<0时,y随x的增大而增大C.y=2x2与y=-2x2图象的顶点、对称轴、开口方向、开口大小完全相同D.抛物线y=ax2与y= -ax2的图象关于x轴对称3、对于≠0>的图象下列叙述正确的是 < >A.a的值越大,开口越大 B.a的值越小,开口越小C.a的绝对值越小,开口越大D.a的绝对值越小,开口越小4、抛物线y=3<x-4>2+5的顶点坐标为〔A.〔4,5 B.〔-5,5 C.〔4,-5 D.〔-4,-55、函数的图象顶点坐标是 < >A.<1,一4> B.<一1,2>C.<1,2> D.<0,3>6、与抛物线顶点相同,形状也相同,而开口方向相反的抛物线对应的函数是〔A.B.C.D.7、把抛物线向右平移2个单位,再向上平移1个单位,所得的抛物线的解析式为< >1A.1 B.C.1 D.8、若A〔,B〔,C〔为二次函数的图象上的三点,则的大小关系是A. B.C. D.9、二次函数y=ax2+bx+c图象如图所示,则点A<ac,bc>在〔.A.第一象限B.第二象限C.第三象限D.第四象限10、已知抛物线与轴有两个交点,且都在点右边,则下列说法:〔①;②;③;④其中正确的有A.4个 B.3个 C.2个 D.1个11、已知的图象如图所示,则的图象一定过〔A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限12、小华在某次投篮中,球的运动路线是抛物线的一部分<如图>,若命中篮圈中心,则他与篮底的距离是〔A.3.5mB.4mC.4.5mD.4.6m13、某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆,当每张床位每天收费10元时,床位可全部租出.若每张床位每天收费提高2元,则相应的减少了10张床位租出.如果每张床位每天以2元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是 < >A.14元B.15元C.16元D.18元14、烟花厂为XX市烟花三月经贸旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度与飞行时间的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为〔A.B.C.D.15、若抛物线与x轴的交点为<一3,0>和<1,0>,则方程的解为〔A. B.C. D.16、若一次函数y=-2x+l的图象经过抛物线y=x2 +mx+1<m≠O>的顶点,则m的值为〔A、4B、-4C、1D、以上都不对17、对于二次函数,我们把使函数值等于0的实数x叫做这个函数的零点,则二次函数〔为实数的零点的个数是〔A.1 B.2 C.0 D.不能确定18、已知二次函数的最大值为0,则< >A., B.,C., D.,19、将函数进行配方正确的结果应为〔A. B.C D.20、已知二次函数的图象如图,对称轴是=1,则下列结论中正确的< > A.>0 B.<0C.<0 D.2+b=021、二次函数与轴的交点个数是 < >A.0 B.l C.2 D.322、已知二次函数,其中满足和,则该二次函数图象的对称轴是〔A.B.C.D.23、下列四个函数中,y随x增大而减小的是〔A.y=2x B.y= -2x+5 C.y= D.y= x2+2x124、如图,已知二次函数y1=ax2+bx+c<a≠0 与y2=kx+m<k≠0 的图象相交于点A<-2,4 ,B<8,2 ,则能使y1>y2成立的x的取值范围是〔A.x>-2B.x<8C.x<-2或x>8D.-2<x<825、在同一直角坐标系中,函数与的大致图象如图< >A B CD26、某校运动会上,某运动员掷铅球时,他所掷的铅球的高<m>与水平的距离<m>之间的函数关系式为,则该运动员的成绩是〔A.6mB.10mC.8mD.12m27、如果,那么= 〔A. B. C.2D.428、已知二次函数的图象如图所示,当时,的取值范围是〔A. B.C.D.或29、若,则由表格中信息可知与之间的函数关系式是〔A.B.CD.参考答案.一、选择题1、B2、D3、D4、A5、C6、B7、A8、B9、B10、A11、C12、B13、C14、B15、B16、B17、B18、D19、A20、D21、B22、B23、B.24、C25、D26、B27、D28、A29、A。
二次函数练习题(含答案)
1.抛物线y=x 2+3x 的顶点在( ) A.第一象限第一象限B.第二象限第二象限C.第三象限第三象限D.第四象限第四象限 2.抛物线y=-3x 2+2x-1的图象与x 轴、y 轴交点的个数是( ) A.没有交点没有交点B.只有一个交点只有一个交点C.有两个交点有两个交点D.有三个交点有三个交点 3.已知抛物线y=ax 2+bx+c(a≠0)在平面直角坐标系中的位置如图1所示,则有( ) A.a>0,b>0 B.a>0,c>0 C.b>0,c>0 D.a 、b 、c 都小于0 (1) (2) 4.若抛物线y=ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( ) A.13 B.10 C.15 D.145.如图2所示,二次函数y=x 2-4x+3的图象交x 轴于A 、B 两点, 交y 轴于点C, 则△ABC 的面积为( ) A.6 B.4 C.3 D.1 6.(2010年北京崇文区) 函数y=x 2-2x-2的图象如右图所示,根据其中提供的信息,可求得使y ≥1成立的x 的取值范围是(的取值范围是( ) A .31££-x B .31<<-x C .31>-<x x 或 D .31³-£x x 或7.二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y =ax 与正比例函数y =(b +c )x在同一坐标系中的大致图象可能是(象可能是( )A .B .C .D .8.(2010江苏泰州,5,3分)下列函数中,y 随x 增大而增大的是(增大而增大的是( )A.x y 3-= B. 5+-=x y C. 12y x= D. )0(212<=x x y9.二次函数y=ax 2+bx+c 的图象如图3所示,那么abc,b 2-4ac,2a+b,a+b+c 这四个代数式中,值为正数的有( ) A.4个 B.3个 C.2个 D.1个xy OxBACy O (3)-11xyO10.如图所示,当b<0时,函数y=ax+b 与y=ax 2+bx+c 在同一坐标系内的图象可能是( ) 11.二次函数y=2x 2- 4x+ 3 通过配方化为顶点式为通过配方化为顶点式为y= _________, 其对称轴是______,顶点坐标为_______,抛物线开口________,当x_______时,y 随x 的增大而增大;当x____时,y 随x 的增大而减小;当x=______时,y 最值=________. 12.已知抛物线y=ax 2+bx+c(a≠0)图象的顶点为P(-2,3),且过A(-3,0), 则抛物线的关系式为___________. 13.若二次函数y=ax 2+bx+c 的图象经过点(0,-1),(5,-1), 则它的对称轴方程是________. 14.在同一坐标系内,抛物线y=ax 2与直线y=2x+b 相交于A 、B 两点,若点A 的坐标是(2,4),则点B 的坐标是_________. 15.将抛物线y=ax 2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,-1),那么移动后的抛物线的关系式为__________. 16.若抛物线y=ax 2+bx+c 经过(0,1)和(2,-3)两点,且开口向下,对称轴在y 轴左侧,则a 的取值范围是_________. 17.已知抛物线y =ax 2 +bx +c 的对称轴为x =2,且经过点(1,4)和点(5,0),则该抛物线的解析式为_______________. 18.函数y =2x 2 – 4x – 1写成y = a (x –h)2 +k 的形式是________,抛物线y =2x 2 – 4x – 1的顶点坐标是_______,对称轴是__________.19.已知函数①y =x 2+1,②y =-2x 2+x .函数____(填序号)有最小值,当x =____时,该函数的最小值是_______ 20.当m=_________时,函数y = (m 2-4))3(42-+--m xm m x + 3是二次函数,其解析式是__________________,图象的对称轴是_______________,顶点是________,当x=______时,时, y 有最____值_______.21.已知二次函数的图象开口向下,且与y 轴的正半轴相交.请你写出一个满足条件的二次函数的解析式:___________ 22.抛物线c bx ax y ++=22如右图所示,则它关于y 轴对称的抛物线的解析式是__________.1、(2010年宁波市)如图,已知二次函数c bx x y ++-=221的图象经过A (2,0)、B (0,-6)两点。
二次函数的练习题及答案
二次函数的练习题及答案一、选择题:1. 若二次函数y=ax^2+bx+c的图像开口向上,且与x轴有交点,则a 和b应满足的条件是()。
A. a>0, b>0B. a<0, b<0C. a>0, b^2>4acD. a<0, b^2>4ac2. 二次函数y=-x^2+4x-1的顶点坐标是()。
A. (1,4)B. (2,3)C. (-2,3)D. (2,-3)3. 对于二次函数y=ax^2+bx+c,当x=-1时,函数值最大,那么a的取值范围是()。
A. a>0B. a<0C. a=0D. 无法确定二、填空题:1. 已知二次函数y=2x^2-8x+3,当x=______时,函数值最小。
2. 若二次函数y=-3x^2-6x+5的图像与x轴的交点坐标为(x1,0),(x2,0),则x1+x2=______。
三、解答题:1. 已知二次函数y=-2x^2+4x+1,求出当x取何值时,函数值y最大,并求出最大值。
2. 已知二次函数y=3x^2-6x+2,求出函数与x轴的交点坐标。
四、应用题:1. 某工厂生产一种产品,其生产成本与产品数量的关系可以近似为二次函数:C(x)=0.5x^2-100x+3000,其中x代表产品数量,C(x)代表成本。
求出当生产多少件产品时,成本最低,并求出最低成本。
2. 某公司计划在一块长为60米的空地上建一个矩形花园,花园的长和宽之和为30米。
设花园的长为x米,求出花园的面积最大时的长和宽,并求出最大面积。
答案:一、选择题:1. C2. B3. B二、填空题:1. 22. -2三、解答题:1. 当x=1时,函数值y最大,最大值为3。
2. 函数与x轴的交点坐标为(1,0)和(2,0)。
四、应用题:1. 当生产200件产品时,成本最低,最低成本为2000元。
2. 花园的长为15米,宽为15米时,面积最大,最大面积为225平方米。
二次函数练习题及答案
二次函数练习题及答案一、选择题1. 下列哪个选项不是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^2 + bxC. y = ax^2 + cD. y = ax + b2. 二次函数y = ax^2 + bx + c的顶点坐标是:A. (-b, c)B. (-b/2a, c)C. (-b/2a, 4ac - b^2 / 4a)D. (-b/a, c)3. 如果一个二次函数的图像开口向上,那么a的值:A. 必须大于0B. 必须小于0C. 可以是任何实数D. 必须等于04. 二次函数y = 2x^2 - 4x + 1的图像与x轴的交点个数是:A. 0B. 1C. 2D. 无法确定5. 二次函数y = -3x^2 + 6x - 2的图像关于y轴对称,那么它的顶点坐标是:A. (1, 1)B. (-1, 1)C. (0, -2)D. (0, 1)二、填空题6. 二次函数y = x^2 - 2x + 3的顶点坐标是________。
7. 如果一个二次函数的图像与x轴有两个交点,那么它的判别式Δ=________。
8. 二次函数y = 4x^2 - 12x + 9的图像与x轴的交点坐标是________。
9. 已知二次函数y = ax^2 + bx + c的图像经过点(1, 2)和(2, 1),那么a + b + c = ________。
三、解答题10. 已知二次函数y = -x^2 + 2x + 3,求它的图像与x轴的交点坐标。
11. 已知二次函数y = 2x^2 + 4x - 6,求它的顶点坐标,并判断图像的开口方向。
12. 已知二次函数y = 3x^2 - 6x + 5,求它的图像与y轴的交点坐标,并判断图像的对称轴。
答案:1. D2. C3. A4. C5. A6. (1, 2)7. Δ > 08. (3/2, 0)9. 010. 交点坐标为(-1, 0)和(3, 0)11. 顶点坐标为(-1, -8),图像开口向下12. 交点坐标为(0, 5),对称轴为x = 1【注】本试卷练习题及答案仅供参考,实际应用时请根据具体教学大纲和课程要求进行调整。
二次函数练习题及答案(解析版)
二次函数练习题及答案(解析版)一、选择题:1 下列关系式中,属于二次函数的是(x为自变量)( )2 函数y=x2-2x+3的图象的顶点坐标是( )A (1,-4) B(-1,2) C (1,2) D(0,3)23 抛物线y=2(x-3)的顶点在( )A 第一象限B 第二象限C x轴上D y轴上4 抛物线的对称轴是( )A x=-2 Bx=2 C x=-4 D x=45 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是( )A ab>0,c>0B ab>0,c<0C ab<0,c>0D ab<0,c<06 二次函数y=ax2+bx+c的图象如图所示,则点在第___象限( )A 一B 二C 三D 四7 如图所示,已知二次函数y=ax2+bx+c(a≠0) 的图象的顶点P 的横坐标是4,图象交 x 轴于点A(m,0) 和点B ,且m>4,那么AB 的长是( )A 4+mB mC 2m-8D 8-2m8 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是( )9 已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P 1(x1,y 1) ,P 2(x2,y 2) 是抛物线上的点,P3(x3,y 3) 是直线上的点,且-1A y110 把抛物线物线的函数关系式是( ) AC 的图象向左平移2个单位,再向上平移3个单位,所得的抛B D二、填空题:11 二次函数y=x2-2x+1的对称轴方程是______________12 若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=________13 若抛物线y=x2-2x-3与x 轴分别交于A 、B 两点,则AB 的长为_________14 抛物线y=x2+bx+c,经过A(-1,0) ,B(3,0) 两点,则这条抛物线的解析式为_____________15 已知二次函数y=ax2+bx+c的图象交x 轴于A 、B 两点,交y 轴于C 点,且△ABC 是直角三角形,请写出一个符合要求的二次函数解析式________________16 在距离地面2m 高的某处把一物体以初速度v 0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g 是常数,通常取10m/s2) 若v 0=10m/s,则该物体在运动过程中最高点距地面_________m17 试写出一个开口方向向上,对称轴为直线x=2,且与y 轴的交点坐标为(0,3) 的抛物线的解析式为______________18 已知抛物线y=x2+x+b2经过点,则y 1的值是_________三、解答题:19 若二次函数的图象的对称轴方程是,并且图象过A(0,-4) 和B(4,0) ,(1)求此二次函数图象上点A 关于对称轴对称的点A ′的坐标; (2)求此二次函数的解析式;20 在直角坐标平面内,点 O 为坐标原点,二次函数y=x2+(k-5)x-(k+4) 的图象交 x 轴于点A(x1,0) 、B(x2,0) ,且(x1+1)(x2+1)=-8 (1)求二次函数解析式;(2)将上述二次函数图象沿x 轴向右平移2个单位,设平移后的图象与y 轴的交点为C ,顶点为P ,求△POC 的面积21 已知:如图,二次函数y=ax2+bx+c的图象与x 轴交于A 、B 两点,其中A 点坐标为(-1,0) ,点C(0,5) ,另抛物线经过点(1,8) ,M 为它的顶点(1)求抛物线的解析式; (2)求△MCB 的面积S △MCB22 某商店销售一种商品,每件的进价为250元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是1350元时,销售量为500件,而单价每降低1元,就可以多售出200件请你分析,销售单价多少时,可以获利最大二次函数练习题参考答案与解析一、选择题1 考点:二次函数概念选A2 考点:求二次函数的顶点坐标解析:法一,直接用二次函数顶点坐标公式求法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k的形式,顶点坐标即为(h,k) ,y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2) ,答案选C3 考点:二次函数的图象特点,顶点坐标解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0) ,所以顶点在x 轴上,答案选C4 考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为解析:抛物线,直接利用公式,其对称轴所在直线为答案选B5 考点:二次函数的`图象特征解析:由图象,抛物线开口方向向下,抛物线对称轴在y 轴右侧,抛物线与y 轴交点坐标为(0,c) 点,由图知,该点在x 轴上方,答案选C6 考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征解析:由图象,抛物线开口方向向下,抛物线对称轴在y 轴右侧,抛物线与y 轴交点坐标为(0,c) 点,由图知,该点在x 轴上方,在第四象限,答案选D7 考点:二次函数的图象特征解析:因为二次函数y=ax2+bx+c(a≠0) 的图象的顶点P 的横坐标是4,所以抛物线对称轴所在直线为x=4,交x 轴于点D ,所以A 、B 两点关于对称轴对称,因为点A(m,0) ,且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C8 考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状解析:因为一次函数y=ax+b的图象经过第二、三、四象限,所以二次函数y=ax2+bx的图象开口方向向下,对称轴在y 轴左侧,交坐标轴于(0,0) 点答案选C9 考点:一次函数、二次函数概念图象及性质解析:因为抛物线的对称轴为直线x=-1,且-1-1时,由图象知,y 随x 的增大而减小,所以y 210 考点:二次函数图象的变化抛物线平移2个单位得到,再向上平移3个单位得到的图象向左答案选C二、填空题11 考点:二次函数性质解析:二次函数y=x2-2x+1,所以对称轴所在直线方程答案x=112 考点:利用配方法变形二次函数解析式解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2答案y=(x-1)2+213 考点:二次函数与一元二次方程关系解析:二次函数y=x2-2x-3与x 轴交点A 、B 的横坐标为一元二次方程x 2-2x-3=0的两个根,求得x 1=-1,x 2=3,则AB=|x2-x 1|=4答案为414 考点:求二次函数解析式解析:因为抛物线经过A(-1,0) ,B(3,0) 两点,解得b=-2,c=-3,答案为y=x2-2x-315 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一解析:需满足抛物线与x 轴交于两点,与y 轴有交点,及△ABC 是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-116 考点:二次函数的性质,求最大值解析:直接代入公式,答案:717 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一解析:如:y=x2-4x+318 考点:二次函数的概念性质,求值三、解答题19 考点:二次函数的概念、性质、图象,求解析式解析:(1)A′(3,-4)(2)由题设知:∴y=x2-3x-4为所求(3)20 考点:二次函数的概念、性质、图象,求解析式解析:(1)由已知x 1,x 2是x 2+(k-5)x-(k+4)=0的两根又∵(x1+1)(x2+1)=-8 ∴x 1x 2+(x1+x2)+9=0 ∴-(k+4)-(k-5)+9=0 ∴k=5 ∴y=x2-9为所求 (2)由已知平移后的函数解析式为: y=(x-2)2-9 且x=0时y=-5 ∴C(0,-5) ,P(2,-9)21 解: (1)依题意:(2)令y=0,得(x-5)(x+1)=0,x 1=5,x 2=-1 ∴B(5,0)由,得M(2,9)作ME ⊥y 轴于点E ,则可得S △MCB =1522 思路点拨:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式:总利润=单个商品的利润×销售量要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x 元,商品的售价就是(135-x)元了单个的商品的利润是(135-x-25)这时商品的销售量是(500+200x)总利润可设为y 元利用上面的等量关式,可得到y 与x 的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润解:设销售单价为降价x 元顶点坐标为(425,91125)即当每件商品降价425元,即售价为135-425=925时,可取得最大利润91125元数学速算的技巧1、“凑整”先算1.计算:(1)24+44+56 (2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124因为44+56=100是个整百的数,所以先把它们的和算出来。
二次函数基础练习题及答案
二次函数练习题(一)1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式.2、 下列函数:①y =()21y x x x =-+;③()224y x x x =+-;④ 21y x x =+; ⑤()1y x x =-,其中是二次函数的是 ,其中a = ,b = ,c =3、当m 时,函数()2235y m x x =-+-(m 为常数)是关于x 的二次函数 4、当____m =时,函数()2221mm y m m x --=+是关于x 的二次函数 5、当____m =时,函数()2564m m y m x-+=-+3x 是关于x 的二次函数 6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____.7、在圆的面积公式 S =πr 2中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的表面积.9、矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm ,那么面积增加 ycm 2,① 求 y 与 x 之间的函数关系式.② 求当边长增加多少时,面积增加 8cm 2.10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?二次函数练习题(二)-----函数2ax y =的图象与性质1、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;(2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图象关于y 轴对称.其中正确的是 .3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D5、函数2ax y =与b ax y +-=的图象可能是( ) A . B . C . D . 6、已知函数24m m y mx --=的图象是开口向下的抛物线,求m 的值.t tt7、二次函数12-=mmx y 在其图象对称轴的左侧,y 随x 的增大而增大,求m 的值.8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系.9、已知函数()422-++=m m x m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大;(3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小?10、如果抛物线2y ax =与直线1y x =-交于点(),2b ,求这条抛物线所对应的二次函数的关系式.-----函数c ax y +=2的图象与性质 1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小.2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 .4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .-----函数()2h x a y -=的图象与性质 1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 . 2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标.(1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位.3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个).4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y 随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.-----()k h x a y +-=2的图象与性质 1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大. 4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到. 5、 已知抛物线的顶点坐标为()2,1,且抛物线过点()3,0,则抛物线的关系式是6、 如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<17、已知函数()9232+--=x y . (1) 确定下列抛物线的开口方向、对称轴和顶点坐标;(2) 当x= 时,抛物线有最 值,是 .(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小.(4) 求出该抛物线与x 轴的交点坐标及两交点间距离;(5) 求出该抛物线与y 轴的交点坐标;(6) 该函数图象可由23x y -=的图象经过怎样的平移得到的?8、已知函数()412-+=x y . (1) 指出函数图象的开口方向、对称轴和顶点坐标;(2) 若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积;(3) 指出该函数的最值和增减性;(4) 若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式;(5) 该抛物线经过怎样的平移能经过原点.(6) 画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当x 取何值时,函数值小于0.二次函数练习题(六)-----c bx ax y ++=2的图象和性质1、抛物线942++=x x y 的对称轴是 .2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5、把二次函数215322y x x =---的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线1662--=x x y 与x 轴交点的坐标为_________;7、函数x x y +-=22有最____值,最值为___ ____;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( )A 、6,4B 、-8,14C 、-6,6D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为( )A 、22B 、23C 、32D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标:(1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标13、已知一次函数的图象过抛物线223y x x =++的顶点和坐标原点1) 求一次函数的关系式;2) 判断点()2,5-是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?二次函数练习题(七)-----c bx ax y ++=2的性质1、函数2y x px q =++的图象是以()3,2为顶点的一条抛物线,这个二次函数的表达式为 2、二次函数2224y mx x m m =++-的图象经过原点,则此抛物线的顶点坐标是 3、如果抛物线2y ax bx c =++与y 轴交于点A (0,2),它的对称轴是1x =-,那么acb= 4、抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,△ABC 的面积为1,则b 的值为______.5、已知二次函数c bx ax y ++=2的图象如图所示,则a___0,b___0,c___0,ac b 42-____0;6、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第 象限. 7、已知二次函数2y ax bx c =++(0≠a )的图象如图所示,则下列结论:1),a b 同号;2)当1x =和3x =时,函数值相同;3)40a b +=;4)当y =-x 的值只能为0;其中正确的是8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m=9、二次函数2y x ax b =++中,若0a b +=,则它的图象必经过点( )A ()1,1--B ()1,1-C ()1,1D ()1,1-10、函数b ax y +=与c bx ax y ++=2的图象如图所示,则下列选项中正确的是( ) A 、0,0>>c ab B 、0,0><c ab C 、0,0<>c ab D 、0,0<<c ab111、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( )A .4个B .3个C .2个D .1个 13、抛物线的图角如图,则下列结论:①>0;②;③>;④<1.其中正确的结论是( ).(A )①② (B )②③ (C )②④ (D )③④14、二次函数2y ax bx c =++的最大值是3a -,且它的图象经过()1,2--,()1,6两点,求a 、b 、c15、试求抛物线2y ax bx c =++与x 轴两个交点间的距离(240b ac ->)二次函数练习题(八)-----确定二次函数解析式1、抛物线y=ax 2+bx+c 经过A(-1,0), B(3,0), C(0,1)三点,则a= , b= , c=2、把抛物线y=x 2+2x-3向左平移3个单位,然后向下平移2个单位,则所得的抛物线的解析式为 .3、 二次函数有最小值为1-,当0x =时,1y =,它的图象的对称轴为1x =,则函数的关系式为4、根据条件求二次函数的解析式(1)抛物线过(-1,-6)、(1,-2)和(2,3)三点(2)抛物线的顶点坐标为(-1,-1),且与y 轴交点的纵坐标为-3 (3)抛物线过(-1,0),(3,0),(1,-5)三点;(4)抛物线在x 轴上截得的线段长为4,且顶点坐标是(3,-2);5、已知二次函数的图象经过()1,1-、()2,1两点,且与x 轴仅有一个交点,求二次函数的解析式6、抛物线y=ax 2+bx+c 过点(0,-1)与点(3,2),顶点在直线y=3x-3上,a<0,求此二次函数的解析式.7、已知二次函数的图象与x 轴交于A (-2,0)、B (3,0)两点,且函数有最大值是2. (1) 求二次函数的图象的解析式;(2) 设次二次函数的顶点为P ,求△ABP 的面积.8、以x 为自变量的函数)34()12(22-+-++-=m m x m x y 中,m 为不小于零的整数,它的图象与x 轴交于点A 和B ,点A 在原点左边,点B 在原点右边.(1)求这个二次函数的解析式;(2)一次函数y=kx+b 的图象经过点A ,与这个二次函数的图象交于点C ,且ABC S ∆=10,求这个一次函数的解析式.二次函数练习题(九)-----二次函数与方程和不等式1、已知二次函数772--=x kx y 与x 轴有交点,则k 的取值范围是 .2、关于x 的一元二次方程02=--n x x 没有实数根,则抛物线n x x y --=2的顶点在第_____象限;3、抛物线222++-=kx x y 与x 轴交点的个数为( ) A 、0 B 、1 C 、2 D 、以上都不对4、二次函数c bx ax y ++=2对于x 的任何值都恒为负值的条件是( ) A 、0,0>∆>a B 、0,0<∆>a C 、0,0>∆<a D 、0,0<∆<a5、12++=kx x y 与k x x y --=2的图象相交,若有一个交点在x 轴上,则k 为( ) A 、0 B 、-1 C 、2 D 、416、若方程02=++c bx ax 的两个根是-3和1,那么二次函数c bx ax y ++=2的图象的对称轴是直线( )A 、x =-3 B 、x =-2 C 、x =-1 D 、x =17、已知二次函数2y x px q =++的图象与x 轴只有一个公共点,坐标为()1,0-,求,p q 的值。
二次函数测试题及答案
二次函数测试题及答案一、选择题1. 已知二次函数\(y=ax^2+bx+c\)的图象开口向上,且经过点(1,0),则下列说法正确的是:A. \(a<0\)且\(b^2-4ac>0\)B. \(a>0\)且\(b^2-4ac>0\)C. \(a>0\)且\(b^2-4ac<0\)D. \(a<0\)且\(b^2-4ac<0\)答案:B2. 若二次函数\(y=x^2-2x+m\)的最小值为1,则\(m\)的值为:A. 2B. 1C. 0D. -1答案:A二、填空题1. 二次函数\(y=-2x^2+4x-1\)的顶点坐标为\(\boxed{(1,1)}\)。
2. 若抛物线\(y=x^2+2x-3\)与x轴有两个交点,则这两个交点的坐标为\(\boxed{(-3,0),(1,0)}\)。
三、解答题1. 已知二次函数\(y=x^2-4x+c\)的图象与x轴有两个交点,求\(c\)的取值范围。
解:由于二次函数的图象与x轴有两个交点,根据判别式的性质,有\(b^2-4ac>0\)。
将\(a=1, b=-4\)代入,得到\((-4)^2-4\times1\times c>0\),即\(16-4c>0\),解得\(c<4\)。
2. 已知抛物线\(y=x^2+bx+c\)经过点(0,2)和(1,1),求该抛物线的解析式。
解:将点(0,2)和(1,1)代入抛物线方程,得到两个方程:\(2=0^2+b\times0+c\),即\(c=2\);\(1=1^2+b\times1+c\),即\(1=1+b+2\),解得\(b=-2\)。
因此,抛物线的解析式为\(y=x^2-2x+2\)。
二次函数测试题及答案(完整资料).doc
【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】二次函数一、 选择题:1. 抛物线3)2(2+-=x y 的对称轴是( ) A. 直线3-=x B. 直线3=x C. 直线2-=x D. 直线2=x2. 二次函数c bx ax y ++=2的图象如右图,则点),(ac b M 在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3. 已知二次函数c bx ax y ++=2,且0<a ,0>+-c b a ,则一定有( ) A. 042>-ac b B. 042=-ac b C. 042<-ac b D. ac b 42-≤0 4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式是532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=cC. 3=b ,3=cD. 9-=b ,21=c 5. 已知反比例函数xk y =的图象如右图所示,则二次函数222k x kx y +-=的图象大致为( )x6. 下面所示各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数c ax y +=的大致图象,有且只有一个是正确的,正确的是( )B D7.抛物线322+-=xxy的对称轴是直线()A. 2-=xB. 2=xC. 1-=xD. 1=x8.二次函数2)1(2+-=xy的最小值是()A. 2-B. 2C.1- D. 19.二次函数cbxaxy++=2的图象如图所示,若cbaM++=24cbaN+-=,baP-=4,则()A. 0>M,0>N,0>PB. 0<M,0>N,0>PC. 0>M,0<N,0>PD. 0<M,0>N,0<P二、填空题:10.将二次函数322+-=xxy配方成khxy+-=2)(的形式,则y=______________________.11.已知抛物线cbxaxy++=2与x轴有两个交点,那么一元二次方程02=++cbxax的根的情况是______________________.12.已知抛物线cxaxy++=2与x轴交点的横坐标为1-,则ca+ =_________.13.请你写出函数2)1(+=xy与12+=xy具有的一个共同性质:_______________.14.有一个二次函数的图象,三位同学分别说出它的一些特点:甲:对称轴是直线4=x;【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】乙:与x 轴两个交点的横坐标都是整数;丙:与y 轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式:15. 已知二次函数的图象开口向上,且与y 轴的正半轴相交,请你写出一个满足条件的二次函数的解析式:_____________________.16. 如图,抛物线的对称轴是1=x ,与x 轴交于A 、B 两点,若B 点坐标是)0,3(,则A 点的坐标是________________.三、解答题:1. 已知函数12-+=bx x y 的图象经过点(3,2). (1)求这个函数的解析式;(2)当0>x 时,求使y ≥2的x 的取值范围.2. 如右图,抛物线n x x y ++-=52经过点)0,1(A ,与y 轴交于点B .【最新整理,下载后即可编辑】(1)求抛物线的解析式;(2)P 是y 轴正半轴上一点,且△PAB 是以AB 为腰的等腰三角形,试求点P 的坐标.3. 某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s (万元)与销售时间t (月)之间的关系(即前t 个月的利润总和s 与t 之间的关系). (1)由已知图象上的三点坐标,求累积利润s (万元)与销售时间t (月)之间的函数关系式; (2)求截止到几月累积利润可达到30万元; (3)求第8个月公司所获利润是多少万元?提高题 1. 如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m ,如果水位上升3m 时,水面CD 的宽是10m. (1)求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计). 货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行). 试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?2.某机械租赁公司有同一型号的机械设备40套. 经过一段时间的经营发现:当每套机械设备的月租金为270元时,恰好全部租出. 在此基础上,当每套设备的月租金提高10元时,这种设备就少租出一套,且未租出的一套设备每月需要支出费用(维护费、管理费等)20元,设每套设备的月租金为x(元),租赁公司出租该型号设备的月收益(收益=租金收入-支出费用)为y (元).(1)用含x的代数式表示未租出的设备数(套)以及所有未租出设备(套)的支出费用;(2)求y与x之间的二次函数关系式;【最新整理,下载后即可编辑】【最新整理,下载后即可编辑】(3)当月租金分别为4300元和350元时,租赁公司的月收益分别是多少元?此时应该租出多少套机械设备?请你简要说明理由; (4)请把(2)中所求的二次函数配方成ab ac a b x y 44)2(22-++=的形式,并据此说明:当x 为何值时,租赁公司出租该型号设备的月收益最大?最大月收益是多少?参考答案一、选择题:1. 2)1(2+-=x y2. 有两个不相等的实数根3. 14. (1)图象都是抛物线;(2)开口向上;(3)都有最低点(或最小值)5. 358512+-=x x y 或358512-+-=x x y 或178712+-=x x y 或178712-+-=x x y 6. 122++-=x x y 等(只须0<a ,0>c ) 7. )0,32(-8.3=x ,51<<x ,1,4三、解答题:1. 解:(1)∵函数12-+=bx x y 的图象经过点(3,2),∴2139=-+b . 解【最新整理,下载后即可编辑】得2-=b .∴函数解析式为122--=x x y .(2)当3=x 时,2=y .根据图象知当x ≥3时,y ≥2.∴当0>x 时,使y ≥2的x 的取值范围是x ≥3.2. 解:(1)由题意得051=++-n . ∴4-=n . ∴抛物线的解析式为452-+-=x x y .(2)∵点A 的坐标为(1,0),点B 的坐标为)4,0(-. ∴OA =1,OB =4. 在Rt △OAB 中,1722=+=OB OA AB ,且点P 在y 轴正半轴上.①当PB =PA 时,17=PB . ∴417-=-=OB PB OP .此时点P 的坐标为)417,0(-.②当PA =AB 时,OP =OB =4 此时点P 的坐标为【最新整理,下载后即可编辑】(0,4).3. 解:(1)设s 与t 的函数关系式为c bt at s ++=2,由题意得⎪⎩⎪⎨⎧=++-=++-=++;5.2525,224,5.1c b a c b a c b a 或⎪⎩⎪⎨⎧=-=++-=++.0,224,5.1c c b a c b a解得⎪⎪⎩⎪⎪⎨⎧=-==.0,2,21c b a∴t t s 2212-=. (2)把s =30代入t t s 2212-=,得.221302t t -= 解得101=t ,62-=t (舍去)答:截止到10月末公司累积利润可达到30万元. (3)把7=t 代入,得.5.10727212=⨯-⨯=s把8=t 代入,得.16828212=⨯-⨯=s5.55.1016=-. 答:第8个月获利润5.5万元.4. 解:(1)由于顶点在y 轴上,所以设这部分抛物线为图象的函数的解析式为1092+=ax y .【最新整理,下载后即可编辑】因为点)0,25(-A 或)0,25(B 在抛物线上,所以109)25(·02+-=a ,得12518-=a .因此所求函数解析式为109125182+-=x y (25-≤x ≤25).(2)因为点D 、E 的纵坐标为209,所以10912518209+-=,得245±=x .所以点D 的坐标为)209,245(-,点E 的坐标为)209,245(. 所以225)245(245=--=DE .因此卢浦大桥拱内实际桥长为385227501.01100225≈=⨯⨯(米).5. 解:(1)∵AB =3,21x x <,∴312=-x x . 由根与系数的关系有121=+x x . ∴11-=x ,22=x .∴OA =1,OB =2,2·21-==amx x .∵1tan tan =∠=∠ABC BAC ,∴1==OBOC OAOC .∴OC =2. ∴2-=m ,1=a .【最新整理,下载后即可编辑】∴此二次函数的解析式为22--=x x y .(2)在第一象限,抛物线上存在一点P ,使S △PAC =6. 解法一:过点P 作直线MN ∥AC ,交x 轴于点M ,交y 轴于N ,连结PA 、PC 、MC 、NA .∵MN ∥AC ,∴S △MAC =S △NAC = S △PAC =6.由(1)有OA =1,OC =2.∴6121221=⨯⨯=⨯⨯CN AM . ∴AM =6,CN =12.∴M (5,0),N (0,10). ∴直线MN 的解析式为102+-=x y .由⎩⎨⎧--=+-=,2,1022x x y x y 得⎩⎨⎧==;4311y x ⎩⎨⎧=-=18,422y x (舍去) ∴在 第一象限,抛物线上存在点)4,3(P ,使S △PAC =6. 解法二:设AP 与y 轴交于点),0(m D (m >0)∴直线AP 的解析式为m mx y +=.⎩⎨⎧+=--=.,22m mx y x x y ∴02)1(2=--+-m x m x . ∴1+=+m x x P A ,∴2+=m x P .又S △PAC = S △ADC + S △PDC =P x CD AO CD ·21·21+=)(21P x AO CD +.∴6)21)(2(21=+++m m ,0652=-+m m∴6=m (舍去)或1=m .∴在 第一象限,抛物线上存在点)4,3(P ,使S △PAC =6. 提高题1. 解:(1)∵抛物线c bx x y ++=2与x 轴只有一个交点,∴方程02=++c bx x 有两个相等的实数根,即042=-c b . ① 又点A 的坐标为(2,0),∴024=++c b . ② 由①②得4-=b ,4=a .(2)由(1)得抛物线的解析式为442+-=x x y . 当0=x 时,4=y . ∴点B 的坐标为(0,4).在Rt △OAB 中,OA =2,OB =4,得5222=+=OB OA AB . ∴△OAB 的周长为5265241+=++.2. 解:(1)76)34()10710710(1022++-=--⨯++-⨯=x x x x x S .当3)1(26=-⨯-=x 时,16)1(467)1(42=-⨯-⨯-⨯=最大S . ∴当广告费是3万元时,公司获得的最大年利润是16万元.(2)用于投资的资金是13316=-万元.经分析,有两种投资方式符合要求,一种是取A 、B 、E各一股,投入资金为13625=++(万元),收益为0.55+0.4+0.9=1.85(万元)>1.6(万元); 另一种是取B 、D 、E 各一股,投入资金为2+4+6=12(万元)<13(万元),收益为0.4+0.5+0.9=1.8(万元)>1.6(万元).3. 解:(1)设抛物线的解析式为2ax y =,桥拱最高点到水面CD 的距离为h 米,则),5(h D -,)3,10(--h B . ∴⎩⎨⎧--=-=.3100,25h a h a 解得⎪⎩⎪⎨⎧=-=.1,251h a∴抛物线的解析式为2251x y -=.(2)水位由CD 处涨到点O 的时间为1÷0.25=4(小时),货车按原来速度行驶的路程为40×1+40×4=200<280, ∴货车按原来速度行驶不能安全通过此桥. 设货车的速度提高到x 千米/时, 当2801404=⨯+x 时,60=x .∴要使货车安全通过此桥,货车的速度应超过60千米/时. 4. 解:(1)未出租的设备为10270-x 套,所有未出租设备的支出为)5402(-x 元.(2)54065101)5402()1027040(2++-=----=x x x x x y .∴540651012++-=x x y .(说明:此处不要写出x 的取值范围)(3)当月租金为300元时,租赁公司的月收益为11040元,此时出租的设备为37套;当月租金为350元时,租赁公司的月收益为11040元,此时出租的设备为32套. 因为出租37套和32套设备获得同样的收益,如果考虑减少设备的磨损,应选择出租32套;如果考虑市场占有率,应选择出租37套. (4)5.11102)325(1015406510122+--=++-=x x x y . ∴当325=x 时,y 有最大值11102.5. 但是,当月租金为325元时,租出设备套数为34.5,而34.5不是整数,故租出设备应为34套或35套. 即当月租金为为330元(租出34套)或月租金为320元(租出35套)时,租赁公司的月收益最大,最大月收益均为11100元.二次函数测试题(B)一、选择题(每小题4分,共24分)1.抛物线y=-3x2+2x-1的图象与坐标轴的交点情况是( ) (A)没有交点.(B)只有一个交点.(C)有且只有两个交点.(D)有且只有三个交点.2.已知直线y=x与二次函数y=ax2-2x-1图象的一个交点的横坐标为1,则a的值为( )(A)2.(B)1.(C)3.(D)4.3.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y轴于点C,则△ABC的面积为( )(A)6.(B)4.(C)3.(D)1.4.函数y=ax2+bx+c中,若a>0,b<0,c<0,则这个函数图象与x轴的交点情况是( )(A)没有交点.(B)有两个交点,都在x轴的正半轴.(C)有两个交点,都在x轴的负半轴.(D)一个在x轴的正半轴,另一个在x轴的负半轴.5.已知(2,5)、(4,5)是抛物线y=ax2+bx+c上的两点,则这个抛物线的对称轴方程是( )(A)x=a.(B)x=2.(C)x=4.(D)x=3.b6.已知函数y=ax2+bx+c的图象如图1所示,那么能正确反映函数y=ax +b 图象的只可能是( )二、填空题(每小题4分,共24分)7.二次函数y =2x 2-4x +5的最小值是______.8.某二次函数的图象与x 轴交于点(-1,0),(4,0),且它的形状与y =-x 2形状相同.则这个二次函数的解析式为______.9.若函数y =-x 2+4的函数值y >0,则自变量x 的取值范围是______.10.某品牌电饭锅成本价为70元,销售商对其销量与定价的关系进行了调查,结果如下: 为获得最大利润,销售商应将该品牌电饭锅定价为 元.11.函数y =ax 2-(a -3)x +1的图象与x 轴只有一个交点,那么a 的值和交点坐标分别为______.12.某涵洞是一抛物线形,它的截面如图3所示,现测得水面宽1.6AB m ,涵洞顶点O 到水面的距离为2.4m ,在图中的直角坐标系内,涵洞所在抛物线的解析式为________.三、解答题(本大题共52分) 13.(本题8分)已知抛物线y =x 2-2x -2的顶点为A ,与y 轴的交点为B ,求过A 、B 两点的直线的解析式.14.(本题8分)抛物线y =ax 2+2ax +a 2+2的一部分如图3所示,求该抛物线在y 轴左侧与x 轴的交点坐标.15.(本题8分)如图4,已知抛物线y=ax2+bx+c(a>0)的顶点是C(0,1),直线l:y=-ax+3与这条抛物线交于P、Q 两点,且点P到x轴的距离为2.(1)求抛物线和直线l的解析式;(2)求点Q的坐标.16.(本题8分)工艺商场以每件155元购进一批工艺品.若按每件200元销售,工艺商场每天可售出该工艺品100件;若每件工艺品降价1元,则每天可多售出该工艺品4件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?17.(本题10分)) 杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第1个月到第x个月的维修保养费用累计为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g (万元),g 也是关于x 的二次函数.(1)若维修保养费用第1个月为2万元,第2个月为4万元.求y 关于x 的解析式;(2)求纯收益g 关于x 的解析式;(3)问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?18(本题10分)如图所示,图4-①是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m ,支柱A 3B 3=50m ,5根支柱A 1B 1、A 2B 2、A 3B 3、A 4B 4、A 5B 5之间的距离均为15m ,B 1B 5∥A 1A 5,将抛物线放在图4-②所示的直角坐标系中. (1)直接写出图4-②中点B 1、B 3、B 5的坐标; (2)求图4-②中抛物线的函数表达式; (3)求图4-①中支柱A 2B 2、A 4B 4的长度.图4-①B A 5A 4A 31A 2四、附加题(本题为探究题20分,不计入总分)19、 (湘西自治州附加题,有改动)如图5,已知A (2,2),B (3,0).动点P (m ,0)在线段OB 上移动,过点P 作直线l 与x 轴垂直.(1)设△OAB 中位于直线l 左侧部分的面积为S ,写出S 与m 之间的函数关系式;(2)试问是否存在点P ,使直线l 平分△OAB 的面积?若有,求出点P 的坐标;若无,请说明理由.参考答案一、1.B 2.D 3.C 4.D 5.D 6.B二、7.3 8.y =-x 2+3x +4 9.-2<x <2 10.130 11.a =0,(13-,0);a =1,(-1,0);a =9,(13,0)12.2154y x =-三、13.抛物线的顶点为(1,-3),点B 的坐标为(0,-2).直线AB 的解析式为y =-x -214.依题意可知抛物线经过点(1,0).于是a +2a +a 2+2=0,解得a 1=-1,a 2=-2.当a =-1或a =-2时,求得抛物线与x 轴的另一交点坐标均为(-3,0)15.(1)依题意可知b =0,c =1,且当y =2时,ax 2+1=2①,-ax +3=2②.由①、②解得a =1,x =1.故抛物线与直线的解析式分别为:y =x 2+1,y =-x +3;(2)Q (-2,5) 16.设降价x 元时,获得的利润为y 元.则依意可得y =(45-x )(100+4x )=-4x 2+80x +4500,即y =-4(x -10)2+4900.故当x =10时,y 最大=4900(元)17.(1)将(1,2)和(2,6)代入y =ax 2+bx ,求得a =b =1.故y =x 2+x ;(2)g =33x -150-y ,即g =-x 2+32x -150;(3)因y =-(x -16)2+106,所以设施开放后第16个月,纯收益最大.令g =0,得-x 2+32x -150=0.解得x =16x ≈16-10.3=5.7(舍去26.3).当x =5时,g <0, 当x =6时,g >0,故6个月后,能收回投资18.(1)1(30)B -,0,3(030)B ,,5(300)B ,; (2)设抛物线的表达式为(30)(30)y a x x =-+,把3(030)B ,代入得(030)(030)30y a =-+=. 130a =-∴. ∵所求抛物线的表达式为:1(30)(30)30y x x =--+. (3)4B ∵点的横坐标为15, 4B ∴的纵坐标4145(1530)(1530)302y =--+=. 3350A B =∵,拱高为30,【最新整理,下载后即可编辑】 ∴立柱44458520(m)22A B =+=. 由对称性知:224485(m)2A B A B ==. 四、19.(1)当0≤m ≤2时,S =212m ;当2<m ≤3时,S =12×3×2-12(3-m )(-2m +6)=-m 2+6m -6.(2)若有这样的P 点,使直线l 平分△OAB 的面积,很显然0<m <2.由于△OAB 的面积等于3,故当l 平分△OAB 面积时,S =32.21322m =∴.解得m.故存在这样的P 点,使l 平分△OAB 的面积.且点P 的坐标为,0).。
二次函数题目及答案
二次函数题目及答案一、 选择题:1.抛物线y=(x-2)²+3的对称轴是( )A. 直线x=-3B. 直线x=3C. 直线x=-2D.直线x=23.已知二次函数y=ax ²+bx+c, 且a<0, a-b+c>0, 则一定有 ( )A. b ²-4ac>0B. b ²-4ac=0C. b ²-4ac<0D. b ²-4ac ≤04.把抛物线y=x ²+bx+c 向右平移3个单位,再向下平移2个单位,所得图象的解析式是 y=x ²-3x+5.则有( )A. b=3. c= 7B. b=-9, c=-15C. b=3, c=3D. b=-9, c=216. 抛物线 y=x ²-2x+3| 的对称轴是直线( )A. x=-2B. x=2C. x=- 1D. x=12.二次函数y=ax ²+bx+c 的图象如右图,则点M (b ,c a)在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限5. 下面所示各图是在同一直角坐标系内, 二次函数y=ax²+(a+c)x+c与一次函数 y=ax+c 的大致图象,有且只有一个是正确的,正确的是( )7. 二次函数 y=(x-1)²+2的最小值是( )A. - 2B.2C. - 1D.18. 二次函数 y=ax²+bx+c的图象如图所示,若 M=4a+2b+cN=a-b+c, P=4a-b, 则 ( )A. M>0, N>0, P>0B. M<0, N>0, P>0C. M>0, N<0, P>0D. M<0, N>0, P<0二、填空题:9. 将二次函数y=x²-2x+3配方成y=(x-h)²+k的形式,则y= .10. 已知抛物线y=ax²+bx+c 与x轴有两个交点,那么一元二次方程ax²+bx+c= 0 的根的情况是 .11. 已知抛物线y=ax²+x+c 与x 轴交点的横坐标为-1, 则a+c= .12.请你写出函数 y=(x+1)².与y=x²+1 具有的一个共同性质: .13.已知二次函数的图象开口向上,且与y轴的正半轴相交,请你写出一个满足条件的二次函数的解析式: .14. 如图,抛物线的对称轴是x=1,与x轴交于A、 B两点,若B点坐标是(√3,0),则A点的坐标是 .三、解答题:1. 已知函数y=x²+bx-1的图象经过点(3,2).(1) 求这个函数的解析式.(2)当x>0时,求使y≥2的x的取值范围.2、如右图,抛物线y =-x²+5x+n 经过点A(1,0),与y轴交于点 B.(1) 求抛物线的解析式:(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.参考答案一、选择题:二、填空题:9. y=(x-1)²+2 10.有两个不相等的实数根 11.112.(1)图象都是抛物线:(2)开口向上:(3)都有最低点(或最小值)13. y=-x²+2x+1 等(只须a<0, c>0)14.(2−√3,0)三、解答题:1.解: (1) ∵函数 y=x²+bx-1 的图象经过点(3, 2), ∴9+3b-1=2.解得b=-2.∴函数解析式为y=x²-2x-1.(2) 当x=3时, y=2.根据图象知当x≥3时, y≥2∴当x>0时,使y≥2的x的取值范围是x≥3.2.解:(1)由题意得-1+5+n=0.∴n=-4.∴抛物线的解析式为 y=-x²+5x-4.(2) ∵点A的坐标为(1,0),点B的坐标为(0,-4).∴OA=1, OB=4.在 Rt△OAB中, AB=√OA2+OB2=√17,且点P在y轴正半轴上。
二次函数测试题及答案
二次函数测试题及答案一、选择题(每小题 3 分,共 30 分)1、二次函数 y = x²+ 2x 3 的图象的顶点坐标是()A (-1,-4)B (1,-4)C (-1,4)D (1,4)答案:A解析:对于二次函数 y = ax²+ bx + c 的顶点坐标公式为(b/2a, (4ac b²)/4a),在函数 y = x²+ 2x 3 中,a = 1,b = 2,c =-3,所以顶点横坐标为 b/2a =-2/(2×1) =-1,纵坐标为(4ac b²)/4a = 4×1×(-3) 2²/(4×1) =(-12 4)/4 =-16/4 =-4,所以顶点坐标为(-1,-4)。
2、抛物线 y =-2(x 1)²+ 3 的开口方向、对称轴和顶点坐标分别是()A 开口向下,对称轴为 x =-1,顶点坐标为(1,3)B 开口向下,对称轴为 x = 1,顶点坐标为(1,3)C 开口向上,对称轴为 x =-1,顶点坐标为(-1,3)D 开口向上,对称轴为 x = 1,顶点坐标为(-1,3)答案:B解析:在抛物线 y = a(x h)²+ k 中,当 a < 0 时,开口向下,对称轴为 x = h,顶点坐标为(h,k)。
在抛物线 y =-2(x 1)²+ 3 中,a =-2 < 0,所以开口向下,对称轴为 x = 1,顶点坐标为(1,3)。
3、把抛物线 y = x²向左平移 1 个单位,然后向上平移 3 个单位,则平移后抛物线的解析式为()A y =(x 1)²+ 3B y =(x + 1)²+ 3C y =(x 1)² 3D y =(x + 1)² 3答案:B解析:抛物线平移遵循“上加下减,左加右减”的原则。
抛物线 y =x²向左平移 1 个单位得到 y =(x + 1)²,然后向上平移 3 个单位得到y =(x + 1)²+ 3。
(完整版)二次函数练习题及答案
(1)求证:以点P为圆心,PM为半径的圆与直线y=-1的相切;
(2)设直线PM与抛物线y= x2的另一个交点为点Q,连接NP,NQ,求证:∠PNM=∠QNM.
24.研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x(吨)时,所需的全部费用y(万元)与x满足关系式y= x2+5x+90,
12.已知(-2,y1),(-1,y2),(2,y3)是二次函数y=x2-4x+m上的点,
则y1,y2,y3从小到大用 “<”排列是__________.
13.(2011•攀枝花)在同一平面内下列4个函数;①y=2(x+1)2﹣1;②y=2x2+3;③y=﹣2x2﹣1;④ 的图象不可能由函数y=2x2+1的图象通过平移变换得到
17.若二次函数y=(x-m)2-1,当x<1时,y随x的增大而减小,则m的取值范围是______
三、解答题
18.已知二次函数 .
(1)求二次函数 的图象与两个坐标轴的交点坐标;
(2)在坐标平面上,横坐标与纵坐标都是整数的点 称为整点. 直接写出二次函数 的图象与 轴所围成的封闭图形内部及边界上的整点的个数.
19.(8分)张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米.矩形ABCD的面积为S平方米.
(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围)
(2)当x为何值时,S有最大值?并求出最大值.
20.如图,矩形ABCD中,AB=16cm,AD=4cm,点P、Q分别从A、B同时出发,点P在边AB上沿AB方向以2cm/s的速度匀速运动,点Q在边BC上沿BC方向以1cm/s的速度匀速运动,当其中一点到达终点时,另一点也随之停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数练习题一、选择题:1.下列关系式中,属于二次函数的是(x为自变量)()A. B. C. D.2. 函数y=x2-2x+3的图象的顶点坐标是()A. (1,-4)B.(-1,2)C. (1,2)D.(0,3)3. 抛物线y=2(x-3)2的顶点在()A. 第一象限B. 第二象限C. x轴上D. y轴上4. 抛物线的对称轴是()A. x=-2B.x=2C. x=-4D. x=45. 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是()A. ab>0,c>0B. ab>0,c<0C. ab<0,c>0D. ab<0,c<06. 二次函数y=ax2+bx+c的图象如图所示,则点在第___象限()A. 一B. 二C. 三D. 四7. 如图所示,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是()A. 4+mB. mC. 2m-8D. 8-2m8. 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是()9. 已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线上的点,且-1<x1<x2,x3<-1,则y1,y2,y3的大小关系是()A. y1<y2<y3B. y2<y3<y1C. y3<y1<y2D. y2<y1<y310.把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A. B.C. D.二、填空题:11. 二次函数y=x2-2x+1的对称轴方程是______________.12. 若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=________.13. 若抛物线y=x2-2x-3与x轴分别交于A、B两点,则AB的长为_________.14. 抛物线y=x2+bx+c,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________.15. 已知二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于C点,且△ABC是直角三角形,请写出一个符合要求的二次函数解析式________________.16. 在距离地面2m高的某处把一物体以初速度v0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g是常数,通常取10m/s2).若v0=10m/s,则该物体在运动过程中最高点距地面_________m.17. 试写出一个开口方向向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式为______________.18. 已知抛物线y=x2+x+b2经过点,则y1的值是_________.三、解答题:19. 若二次函数的图象的对称轴方程是,并且图象过A(0,-4)和B(4,0),(1)求此二次函数图象上点A关于对称轴对称的点A′的坐标;(2)求此二次函数的解析式;20. 在直角坐标平面内,点 O 为坐标原点,二次函数 y=x 2+(k-5)x-(k+4) 的图象交 x 轴于点A(x 1,0)、B(x 2,0),且(x 1+1)(x 2+1)=-8. (1)求二次函数解析式;(2)将上述二次函数图象沿x 轴向右平移2个单位,设平移后的图象与y 轴的交点为C ,顶点为P ,求△POC 的面积.21.已知:如图,二次函数y=ax 2+bx+c 的图象与x 轴交于A 、B 两点,其中A 点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M 为它的顶点. (1)求抛物线的解析式; (2)求△MCB 的面积S △MCB .22.某商店销售一种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大.3. 解:(1)设抛物线的解析式为2ax y =,桥拱最高点到水面CD 的距离为h 米,则),5(h D -,)3,10(--h B .∴⎩⎨⎧--=-=.3100,25h a h a 解得⎪⎩⎪⎨⎧=-=.1,251h a∴抛物线的解析式为2251x y -=. (2)水位由CD 处涨到点O 的时间为1÷0.25=4(小时), 货车按原来速度行驶的路程为40×1+40×4=200<280, ∴货车按原来速度行驶不能安全通过此桥. 设货车的速度提高到x 千米/时, 当2801404=⨯+x 时,60=x .∴要使货车安全通过此桥,货车的速度应超过60千米/时. 4. 解:(1)未出租的设备为10270-x 套,所有未出租设备的支出为)5402(-x 元. (2)54065101)5402()1027040(2++-=----=x x x x x y . ∴540651012++-=x x y .(说明:此处不要写出x 的取值范围) (3)当月租金为300元时,租赁公司的月收益为11040元,此时出租的设备为37套;当月租金为350元时,租赁公司的月收益为11040元,此时出租的设备为32套.因为出租37套和32套设备获得同样的收益,如果考虑减少设备的磨损,应选择出租32套;如果考虑市场占有率,应选择出租37套.(4)5.11102)325(1015406510122+--=++-=x x x y . ∴当325=x 时,y 有最大值11102.5. 但是,当月租金为325元时,租出设备套数为34.5,而34.5不是整数,故租出设备应为34套或35套. 即当月租金为为330元(租出34套)或月租金为320元(租出35套)时,租赁公司的月收益最大,最大月收益均为11100元.答案与解析: 一、选择题1.考点:二次函数概念.选A.2.考点:求二次函数的顶点坐标.解析:法一,直接用二次函数顶点坐标公式求.法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k 的形式,顶点坐标即为(h ,k),y=x 2-2x+3=(x-1)2+2,所以顶点坐标为(1,2),答案选C.3.考点:二次函数的图象特点,顶点坐标.解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0),所以顶点在x 轴上,答案选C.4. 考点:数形结合,二次函数y=ax 2+bx+c 的图象为抛物线,其对称轴为.解析:抛物线,直接利用公式,其对称轴所在直线为答案选B.5.考点:二次函数的图象特征.解析:由图象,抛物线开口方向向下,抛物线对称轴在y轴右侧,抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方,答案选C.6. 考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征.解析:由图象,抛物线开口方向向下,抛物线对称轴在y轴右侧,抛物线与y轴交点坐标为(0,c)点,由图知,该点在x轴上方,在第四象限,答案选D.7. 考点:二次函数的图象特征.解析:因为二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,所以抛物线对称轴所在直线为x=4,交x轴于点D,所以A、B两点关于对称轴对称,因为点A(m,0),且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C.8.考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状.解析:因为一次函数y=ax+b的图象经过第二、三、四象限,所以二次函数y=ax2+bx的图象开口方向向下,对称轴在y轴左侧,交坐标轴于(0,0)点.答案选C.9. 考点:一次函数、二次函数概念图象及性质.解析:因为抛物线的对称轴为直线x=-1,且-1<x1<x2,当x>-1时,由图象知,y随x 的增大而减小,所以y2<y1;又因为x3<-1,此时点P3(x3,y3)在二次函数图象上方,所以y2<y1<y3.答案选D.10.考点:二次函数图象的变化.抛物线的图象向左平移2个单位得到,再向上平移3个单位得到.答案选C.二、填空题11.考点:二次函数性质.解析:二次函数y=x2-2x+1,所以对称轴所在直线方程.答案x=1.12.考点:利用配方法变形二次函数解析式.解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2.答案y=(x-1)2+2.13. 考点:二次函数与一元二次方程关系.解析:二次函数y=x2-2x-3与x轴交点A、B的横坐标为一元二次方程x2-2x-3=0的两个根,求得x1=-1,x2=3,则AB=|x2-x1|=4.答案为4.14.考点:求二次函数解析式.解析:因为抛物线经过A(-1,0),B(3,0)两点,解得b=-2,c=-3,答案为y=x2-2x-3.15.考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一.解析:需满足抛物线与x轴交于两点,与y轴有交点,及△ABC是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-1.16.考点:二次函数的性质,求最大值.解析:直接代入公式,答案:7.17.考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一.解析:如:y=x2-4x+3.18.考点:二次函数的概念性质,求值.答案:.三、解答题19. 考点:二次函数的概念、性质、图象,求解析式.解析:(1)A′(3,-4)(2)由题设知:∴y=x2-3x-4为所求(3)20. 考点:二次函数的概念、性质、图象,求解析式.解析:(1)由已知x1,x2是x2+(k-5)x-(k+4)=0的两根又∵(x1+1)(x2+1)=-8 ∴x1x2+(x1+x2)+9=0∴-(k+4)-(k-5)+9=0 ∴k=5 ∴y=x2-9为所求(2)由已知平移后的函数解析式为:y=(x-2)2-9且x=0时y=-5 ∴C(0,-5),P(2,-9).21. 解:(1)依题意:(2)令y=0,得(x-5)(x+1)=0,x1=5,x2=-1∴B(5,0)由,得M(2,9)作ME⊥y轴于点E,则可得S△MCB=15.22.思路点拨:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式:总利润=单个商品的利润×销售量.要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大.因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x元,商品的售价就是(13.5-x)元了.单个的商品的利润是(13.5-x-2.5)这时商品的销售量是(500+200x)总利润可设为y元.利用上面的等量关式,可得到y与x的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润.解:设销售单价为降价x元.顶点坐标为(4.25,9112.5).即当每件商品降价4.25元,即售价为13.5-4.25=9.25时,可取得最大利润9112.5元。