高三数学(理科)试卷

合集下载

高三年级数学(理科)试卷2

高三年级数学(理科)试卷2

高三年级数学(理科)试卷2第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{}{}{}====Q P ,Q P ,b a Q a og P 则若0,,1,32A. {}0,3B. {}103,,C. {}203,,D. {}2103,,,2. 如图,若一个空间几何体的三视图中,正视图和侧视图都是直角三角形,其直角边均为1,则该几何体的体积为 A.13 B.12 C.16 D.13.“=2πθ”是“曲线()sin y x θ=+关于y 轴对称”的 A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.在等差数列{}()()135792354n a a a a a a ++++=中,,则此数列前10项的和10S =A.45B.60C.75D.905. 设向量()()cos ,1,2,sin a b αα=-= ,若a b ⊥ ,则tan 4πα⎛⎫- ⎪⎝⎭等于 A.13- B.13 C.3- D.36. 直线022=+-y x 经过椭圆)0(12222>>=+b a by a x 的一个焦点和一个顶点,则椭圆的离心率为 A. 55 B. 21 C. 552 D. 32 7.若实数11.e a dx x =⎰则函数()sin cos f x a x x =+的图象的一条对称轴方程为A.0x =B.34x π=-C.4π-D.54x π=- 8. 函数sin x y x =,(,0)(0,)x ππ∈- 的图象可能是下列图象中的9. 设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥-+≥+-≤--01022022y x y x y x ,则11++=x y s 的取值范围是A. ⎥⎦⎤⎢⎣⎡23,1B. ⎥⎦⎤⎢⎣⎡1,21C. []2,1D. ⎥⎦⎤⎢⎣⎡2,21 10. 已知函数()cos()f x A x ωϕ=+(0,0,0)A ωϕπ>><<为奇函数,该函数的部分图象如图所示,EFG ∆是边长为2的等边三角形,则(1)f 的值为A .3-B .6-C .3D .3-第II 卷(共90分)二、填空题:(本大题共4小题,每小题4分,共16分.把正确答案填写在答题纸给定的横线上.)11. 已知点),(n m A 在直线022=-+y x 上,则nm 42+的最小值为 .12.已知F 是抛物线2y x =的焦点,M 、N 是该抛物线上的两点,3MF NF +=,则线段MN 的中点到x 轴的距离为__________.13. 圆C :022222=--++y x y x 的圆心到直线01443=++y x 的距离是_______________.14. 已知函数()f x 的定义域为[]1,5-,部分对应值如下表,()f x 的导函数()y f x '=的图像如图所示,给出关于()f x 的下列命题:①函数()2y f x x ==在时,取极小值 ②函数()[]0,1f x 在是减函数,在[]1,2是增函数,③当12a <<时,函数()y f x a =-有4个零点 ④如果当[]1,x t ∈-时,()f x 的最大值是2,那么的最小值为0,其中所有正确命题序号为_________.三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.15.(本小题满分12分)已知数列{}n a 是递增数列,且满足1016·6253=+=a ,a a a 。

四川省泸县第四中学2022-2023学年高三上学期期末考试数学(理)试题含答案

四川省泸县第四中学2022-2023学年高三上学期期末考试数学(理)试题含答案

四川省泸县四中高2023届高三上期末考试理科数学本试卷共4页。

考试结束后,只将答题卡交回注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}2A x x =<,{}230B x x x =-<,则A B ⋃=A .()2,3-B .()2,0-C .()0,2D .()2,32.若复数()()211i z x x =-++为纯虚数(i 为虚数单位),则实数x 的值为A .-1B .0C .1D .-1或13.某车间从生产的一批产品中随机抽取了1000个零件进行一项质量指标的检测,整理检测结果得此项质量指标的频率分布直方图如图所示,则下列结论错误的是A .0.005a =B .估计这批产品该项质量指标的众数为45C .估计这批产品该项质量指标的中位数为60D .从这批产品中随机选取1个零件,其质量指标在[)50,70的概率约为0.54.若实数x ,y 满足约束条件2301030x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则2z x y =+的最小值为A .1-B .4C .5D .145.执行下面的程序框图,如果输出的n =4,则输入的t 的最小值为A .14B .18C .116D .1326.一个容器装有细沙3cm a ,细沙从容器底部一个细微的小孔慢慢地匀速漏出,min t 后剩余的细沙量为()3cm bt y ae -=,经过8min 后发现容器内还有一半的沙子,若容器中的沙子只有开始时的八分之一,则需再经过的时间为A .24min B .26min C .8min D .16min7.已知α满足sin()4πα+2tan tan 1αα=+A .3B .﹣3C .49D .49-8.已知曲线322y x x x =-++在1x =处的切线为l ,若l 与222:250C x y ax a +-+-= 相切,则实数=a A .2或3-B .2-或3C .2D .39.在5道题中有3道理科试题和2道文科试题.如果不放回地依次抽2道题,则第一次和第二次都抽到理科题的概率是A .25B .12C .35D .31010.已知定义在R 上的偶函数()f x ,其导函数为()f x ',若()2()0xf x f x '->,(3)1f -=,则不等式()19f x x x <的解集是A .(,3)(0,3)-∞- B .()3,3-C .(3,0)(0,3)-⋃D .(,3)(3,)-∞-⋃+∞11.已知双曲线1C :x y e =上一点11(,)A x y ,曲线2C :1ln ()y x x m =+-(0)m >上一点22(,)B x y ,当12y y =时,对于任意1x ,2x 都有AB e ≥恒成立,则m 的最小值为A .1e -B C .1D .1e +12.在三棱锥-P ABC 中,已知2PA AB AC ===,2PAB π∠=,23BAC π∠=,D 是线段BC 上的点,2BD DC =,AD PB ⊥.若三棱锥-P ABC 的各顶点都在球O 的球面上,则球O 的半径为A .1B CD二、填空题:本题共4小题,每小题5分,共20分.13.已知椭圆22x y 12516+=,则椭圆的焦点坐标是______.14.某正三棱锥正视图如图所示,则侧视图的面积为_______.15.已知AB ,CD 是过抛物线28y x =焦点F 且互相垂直的两弦,则11AF BF CF DF+⋅⋅的值为__________.16.已知函数()sin()(0,)R f x x ωϕωϕ=+>∈在区间75,126ππ⎛⎫⎪⎝⎭上单调,且满足73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.有下列结论:①203f π⎛⎫= ⎪⎝⎭;②若5()6f x f x π⎛⎫-= ⎪⎝⎭,则函数()f x 的最小正周期为π;③关于x 的方程()1f x =在区间[)0,2π上最多有4个不相等的实数解;④若函数()f x 在区间213,36ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,则ω的取值范围为8,33⎛⎤⎥⎝⎦.其中所有正确结论的编号为________.三、解答题:共70分。

巴蜀中学高三数学理科试卷

巴蜀中学高三数学理科试卷

一、选择题(每题5分,共50分)1. 已知函数f(x)=x^3-3x+1,则f(x)的图像大致为:A. 上升的抛物线B. 下降的抛物线C. 直线D. 垂直线2. 若a、b、c是等差数列,且a+b+c=0,则下列结论正确的是:A. a+b+c=0B. a^2+b^2+c^2=0C. a^3+b^3+c^3=0D. a^2+b^2+c^2=abc3. 已知等比数列{an}的首项为2,公比为q,且q≠1,若a1+a2+a3+a4=24,则q的值为:A. 2B. 3C. 4D. 64. 已知函数f(x)=x^3-3x^2+4x,若f(x)在区间[0,2]上存在极值,则f(x)的极值点个数为:A. 1B. 2C. 3D. 45. 已知数列{an}的通项公式为an=3^n-2^n,则数列{an}的前n项和Sn为:A. 3^n-2^nB. 3^n-2^(n-1)C. 2^n-3^nD. 2^n-3^(n-1)6. 已知函数f(x)=ln(x+1),则f(x)在区间(-1,+∞)上的单调性为:A. 单调递增B. 单调递减C. 先增后减D. 先减后增7. 已知数列{an}的通项公式为an=2n+1,则数列{an}的奇数项之和为:A. n^2+2nB. n^2+nC. n^2+2n+1D. n^2+n+18. 已知函数f(x)=x^2+2x+1,若f(x)在区间[1,2]上存在零点,则下列结论正确的是:A. f(1)=0B. f(2)=0C. f(1)≠0且f(2)≠0D. f(1)=0且f(2)=09. 已知等差数列{an}的首项为a1,公差为d,且a1+a2+a3+a4=24,则a1和d的关系为:A. a1+d=6B. a1+d=8C. a1+d=10D. a1+d=1210. 已知函数f(x)=x^3-3x^2+2x,若f(x)在区间(0,+∞)上存在极值,则f(x)的极值点个数为:A. 1B. 2C. 3D. 4二、填空题(每题5分,共25分)11. 已知函数f(x)=x^2-2x+1,若f(x)在区间[1,3]上的最大值为M,则M=______。

高三理科数学试卷(含答案)

高三理科数学试卷(含答案)

理科数学试卷参考答案及评分标准本试卷分第Ⅰ卷和第Ⅱ卷两部分,共11页,满分150分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上,并将准考证号条形码粘贴在答题卡上指定位置.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3. 第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤.第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集I 是实数集R , 3{|2}{|0}1x M x x N x x -=>=≤-与都是I 的子集(如图所示), 则阴影部分所表示的集合为A .{}2x x <B .{}21x x -≤<C .{}12x x <≤D .{}22x x -≤≤2.下列函数中既不是奇函数,又不是偶函数的是A .2xy = B . (lg y x =C . 22xxy -=+ D . 1lg1y x =+ 3.若曲线x x x f -=4)(在点P 处的切线平行于直线03=-y x ,则点P 的坐标为A .(1,0)B .(1,5)C .(1,-3)D .(-1,2)4.在ABC ∆中,a b 、分别是角A B 、所对的边,条件“a b <”是使 “cos cos A B >”成立的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.422142x x dx -⎛⎫-++= ⎪⎝⎭⎰ A .16 B .18 C .20 D .226. 已知函数),6cos()6sin()(ππ++=x x x f 则下列判断正确的是A .)(x f 的最小正周期为2π,其图象的一条对称轴为12π=xB .)(x f 的最小正周期为2π,其图象的一条对称轴为6π=xC .)(x f 的最小正周期为π,其图象的一条对称轴为12π=xD .)(x f 的最小正周期为π,其图象的一条对称轴为6π=x7. 一空间几何体的三视图如图所示,则该几何体的表面积为 A.2π+ B.42π+ C.6π+ D.62π+ 8. 若直线:10 l ax by ++=始终平分圆M :224210x y x y ++++=的周长,则()()2222a b -+-的最小值为AB .5C.D .109. 设b c 、表示两条直线,αβ、表示两个平面,下列命题中真命题是A .若c ∥α,c ⊥β,则αβ⊥B .若b α⊂,b ∥c ,则c ∥αC .若b α⊂,c ∥α,则b ∥cD .若c ∥α,αβ⊥,则c β⊥10.已知数列{}n x 满足3n n x x +=,21||()n n n x x x n N *++=-∈,若11x =,2 (1,0)x a a a =≤≠,则数列{}n x 的前2010项的和2010S 为A .669B .670C .1338D .134011. 在平面直角坐标系中,O 为坐标原点,设向量).3,1(),1,3(,,====其中若10,≤≤≤+=μλμλ且,C 点所有可能的位置区域用阴影表示正确的是俯视图正视图侧视图(第7题图)A .B .C .D .12.已知点F 是双曲线)0,0(12222>>=-b a by a x 的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A B 、两点,若ABE ∆是锐角三角形,则该双曲线的离心率e 的取值范围是A . ()1,+∞B .()1,2C.(1,1+D.(2,1+第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13. 对任意非零实数a b 、,若a b ⊗的运算原理如图所示,则()221log 82-⎛⎫⊗= ⎪⎝⎭___1___.14.在ABC ∆中,已知41AB AC ==,,ABCS AB AC ∆=⋅则的值为 ±2 .15. 设n S 表示等差数列{}n a 的前n 项和,且918S =,240n S =,若()4309n a n -=>,则n = 15 .16. 已知两个不相等的实数a b 、满足以下关系式:204a sin a cos πθθ⋅+⋅-=,204b sin b cos πθθ⋅+⋅-=,则连接A ()2a ,a 、 B ()2b ,b 两点的直线与圆心在原点的单位圆的位置关系是 相交 . 三、解答题:本大题共6个小题,共74分. 17.(本小题满分12分)已知函数2()sin cos f x x x x =. (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 解:(Ⅰ)∵2()sin cos f x x x x =+)12sin cos cos 212x x x =⋅++(第13题图)1sin 2cos 2222x x =++ ……………3分sin 23x π⎛⎫=++ ⎪⎝⎭ ……………5分 ∴ 函数()f x 的最小正周期22T ππ==. ……………6分 (Ⅱ)∵ 62x ππ-≤≤,40233x ππ≤+≤∴sin 213x π⎛⎫≤+≤ ⎪⎝⎭, ……………9分 ∴0sin 213x π⎛⎫≤++≤= ⎪⎝⎭, ∴ ()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值为22,最小值为0.……………12分 18.(本小题满分12分)已知等腰直角三角形RBC ,其中∠RBC =90º, 2==BC RB .点A 、D 分别是RB 、RC 的中点,现将△RAD 沿着边AD 折起到△PAD 位置,使PA ⊥AB ,连结PB 、PC . (Ⅰ)求证:BC ⊥PB ;(Ⅱ)求二面角P CD A --的余弦值. 解:(Ⅰ)∵点D A 、分别是RB 、RC 的中点,∴ BC AD BC AD 21//=且. …… 2分∴ ∠090=∠=∠=RBC RAD PAD . ∴ AD PA ⊥又PA ⊥AB ,DA AB A =∴ ABCD PA 面⊥ ∴BC PA ⊥ ∵ A AB PA AB BC =⊥ ,,∴ BC ⊥平面PAB . …… 4分 ∵ ⊂PB 平面PAB ,∴ PB BC ⊥. …… 6分 (Ⅱ)法一:取RD 的中点F ,连结AF 、PF .PCADBR(第18题图)∵ 1==AD RA ,∴ RC AF ⊥.又由(Ⅰ)知ABCD PA 面⊥, 而⊂RC 平面ABCD ,∴ RC PA ⊥. ………………… 8分 ∵ ,A PA AF= ∴ ⊥RC 平面PAF .∴ ∠AFP 是二面角P CD A --的平面角. ………………10分 在Rt △RAD 中, 22212122=+==AD RA RD AF , 在Rt △PAF 中, 2622=+=AF PA PF , ∴ 332622cos ===∠PF AF AFP . ………………11分 ∴ 二面角P CD A --的平面角的余弦值是33. ………………12分 (Ⅱ)法二:建立如图所示的空间直角坐标系xyz A -. 则D (-1,0,0),C (-2,1,0),P (0,0,1).∴=(-1,1,0), =(1,0,1), ……8分 设平面PCD 的法向量为),,(z y x n =,则n DC x y n DP x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩……10分 令1=x ,得1,1-==z y , ∴ )1,1,1(-=n.FR ADBCP (第18题图)R(第18题图)显然,是平面ACD 的一个法向量=(,0,01-).∴ cos<n ,33131=⨯=. ∴ 二面角P CD A --的余弦值是33. ………………12分 19.(本小题满分12分)已知数列{}n a 的首项15a =,前n 项和为n S ,且125n n S S n +=++()n N *∈.(Ⅰ)设1n n b a =+,求数列{}n b 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S . 解:(Ⅰ)由125n n S S n +=++()n N *∈得 ()1215n n S S n -=+-+(,2)n N n *∈≥两式相减得 121n n a a +=+ ……………………………… 3分 ∴ ()1121n n a a ++=+即 n n b b 21=+(,2)n N n*∈≥ …………………………………… 4分 又1165111122=+=++=-=a S S S a ∴ 12122=+=a b ,6111=+=a b∴ 122b b = …………………………………… 6分 ∴ 数列{}n b 是首项为6,公比为2的等比数列 ∴ n n n b 23261⋅=⋅=- ………………………………… 8分(Ⅱ)法一由(Ⅰ)知321nn a =⋅- ……………………………… 9分 ∴ 12n n S a a a =++⋅⋅⋅+2323232nn =⨯+⨯+⋅⋅⋅+⋅- ……………………………10分()221321n n -=⨯--1626326n n n n +=⋅--=⋅--. ……………………… 12分(Ⅱ)法二由已知125n n S S n +=++()n N *∈ ① 设()()112n n S c n d S cn d ++++=++ 整理得 12n n S S cn d c +=++- ②对照① 、②,得 1,6c d == ……………………………………8分 即①等价于 ()()11626n n S n S n ++++=++∴ 数列{}6n S n ++是等比数列,首项为11161612S a ++=++=,公比为2q = ∴ 11612232n n n S n -+++=⋅=⋅∴ 1326n n S n +=⋅--. …………………………………… 12分20.(本小题满分12分)如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 点在AM 上,D 点在AN 上,且对角线MN 过C 点,已知3=AB 米,2=AD 米.(I )要使矩形AMPN 的面积大于32平方米,则DN 的长应在什么范围内? (II )当DN 的长度是多少时,矩形花坛AMPN 的面积最小?并求出最小值. 解:(I )设DN 的长为x (0x >)米,则2AN x =+米∵AMDC ANDN =,∴()32x AM x+=, ……………………2分∴ ()232AMPN x S AN AM x+=⋅=由32>AMPN S 得()23232x x+> ,(第20题图)又0x >,得 2320120x x -+>,解得:2063x x <<> 或 即DN 长的取值范围是2(0)(6)3∞ ,,+ ……………………7分(II )矩形花坛AMPN 的面积为()22323121212312x x x y x xx x+++===++1224≥= ……………………10分 当且仅当1232x x ,x==即时矩形花坛AMPN 的面积取得最小值24. 故,DN 的长度是2米时,矩形AMPN 的面积最小,最小值为24平方米.…12分 21.(本小题满分12分)已知函数22()ln ()f x x a x ax a R =-+∈.(Ⅰ)当1a =时,证明函数()f x 只有一个零点;(Ⅱ)若函数()f x 在区间()1,+∞上是减函数,求实数a 的取值范围. 解:(Ⅰ)当1a =时,2()ln f x x x x =-+,其定义域是(0,)+∞∴ 2121()21x x f x x x x --'∴=-+=- …………2分令()0f x '=,即2210x x x ---=,解得12x =-或1x =. 0x >Q ,∴ 12x ∴=-舍去. 当01x <<时,()0f x '>;当1x >时,()0f x '<.∴ 函数()f x 在区间()01,上单调递增,在区间()1,+∞上单调递减 ∴ 当x =1时,函数()f x 取得最大值,其值为2(1)ln1110f =-+=. 当1x ≠时,()(1)f x f <,即()0f x <.∴ 函数()f x 只有一个零点. ……………………6分(Ⅱ)显然函数22()ln f x x a x ax =-+的定义域为(0,)+∞∴ 222121(21)(1)()2a x ax ax ax f x a x a x x x-++-+-'=-+== ………7分① 当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ② 当0a >时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即1x a≥ 此时()f x 的单调递减区间为1,a ⎡⎫+∞⎪⎢⎣⎭.依题意,得11,0.a a ⎧≤⎪⎨⎪>⎩解之得1a ≥.………10分③ 当0a <时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即12x a≥- 此时()f x 的单调递减区间为12,a ⎡⎫-+∞⎪⎢⎣⎭, ∴1120a a ⎧-≤⎪⎨⎪<⎩得12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 法二:①当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ②当0a ≠时,要使函数()f x 在区间()1,+∞上是减函数,只需()0f x '≤在区间()1,+∞上恒成立,0x > ∴只要22210a x ax --≥恒成立,2214210aa a a ⎧≤⎪∴⎨⎪--≥⎩解得1a ≥或12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 22.(本小题满分14分)已知椭圆C 中心在原点、焦点在x 轴上,椭圆C 上的点到焦点的最大值为3,最小值为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :()0y kx m k =+≠与椭圆交于不同的两点M N 、(M N 、不是左、右顶点),且以MN 为直径的圆经过椭圆的右顶点A .求证:直线l 过定点,并求出定点的坐标. 解:(Ⅰ)设椭圆的长半轴为a ,半焦距为c ,则31a c a c +=⎧⎨-=⎩ 解得 21a c =⎧⎨=⎩∴ 椭圆C 的标准方程为 22143x y +=. ………………… 4分(Ⅱ)由方程组22143x y y kx m⎧⎪+=⎨⎪=+⎩ 消去y ,得()2223484120k xk m x m +++-= 由题意:△()()()22284344120km km=-+->整理得:22340k m +-> ① ……7分 设()()1122,,M x y N x y 、,则122834kmx x k+=-+, 212241234m x x k -=+………………… 8分 由已知,AM AN ⊥ , 且椭圆的右顶点为A (2,0) ∴()()1212220x x y y --+=………………… 10分即 ()()()2212121240kx x km x x m++-+++=也即 ()()22222412812403434m km k km m k k--+⋅+-⋅++=++ 整理得: 2271640m mk k ++= 解得: 2m k =- 或 27km =-,均满足① ……………………… 12分 当2m k =-时,直线l 的方程为 2y kx k =-,过定点(2,0),舍去当27k m =-时,直线l 的方程为 27y k x ⎛⎫=- ⎪⎝⎭,过定点2(,0)7,故,直线l 过定点,且定点的坐标为2(,0)7.……………………… 14分。

学科网高三数学理科试卷

学科网高三数学理科试卷

一、选择题(每题5分,共50分)1. 下列函数中,在实数域内单调递增的是()A. y = -x^2B. y = 2x - 3C. y = x^3D. y = -2x + 52. 已知函数f(x) = x^2 - 4x + 4,则f(x)的对称轴方程为()A. x = 2B. x = -2C. y = 2D. y = -23. 在等差数列{an}中,若a1 = 3,d = 2,则a10的值为()A. 19B. 21C. 23D. 254. 若复数z满足|z - 1| = 2,则复数z的取值范围对应的图形是()A. 圆B. 矩形C. 正方形D. 菱形5. 已知向量a = (2, 3),向量b = (-1, 2),则向量a与向量b的夹角θ的余弦值为()A. 1/5B. 2/5C. 3/5D. 4/56. 若等比数列{an}中,a1 = 2,公比q = 3,则数列的前5项和S5为()A. 62B. 66C. 72D. 787. 已知函数y = ax^2 + bx + c的图像开口向上,且顶点坐标为(-1, 2),则a、b、c的取值分别为()A. a > 0, b < 0, c = 2B. a > 0, b > 0, c = 2C. a < 0, b < 0, c = 2D. a < 0, b > 0, c = 28. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若a = 3,b = 4,c = 5,则角A的余弦值为()A. 3/5B. 4/5C. 5/5D. 5/49. 已知函数f(x) = log2(x + 1),则f(x)的定义域为()A. (-1, +∞)B. [-1, +∞)C. (-∞, -1]D. (-∞, +∞)10. 若不等式x^2 - 2x - 3 < 0的解集为A,则不等式x^2 - 2x - 3 > 0的解集为()A. AB. -AC. A的补集D. -A的补集二、填空题(每题5分,共50分)11. 若函数f(x) = 2x^3 - 3x^2 + 4x - 1在x = 1处取得极值,则该极值为______。

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。

江西省临川第一中学2022-2023学年高三上学期期末考试理科数学试卷

江西省临川第一中学2022-2023学年高三上学期期末考试理科数学试卷

卷面满分:150江西省临川一中2022—2023学年上学期期末考试高三年级数学理科试卷分考试试卷:120分钟命题人:黄维京审题人:上官学辉一、单选题(每题5分,共60分)1.设集合2{|230}A x Z x x =∈-- ,{0,1}B =,则A B =ð()A.{3,2,1}--- B.{1,2,3}- C.{1,0,1,2,3}- D.{0,1}2.在复平面内,复数z 1,z 2对应的向量分别是OA =(1,−2),OB =(−3,1),则复数z 1z 2对应的点位于()A .第一象限B .第二象限C.第三象限D.第四象限3.对于实数,条件G +1≠52,条件G ≠2且≠12,那么是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.设a >0,b >0,且2a +b =1,则1a +2aa+b ()A.有最小值为4B.有最小值为22+1B.C.有最小值为14D.无最小值5.设a =57,b =c =log 3145,则a ,b ,c 的大小顺序是()A.b <a <cB.c <a <bC.b <c <aD.c <b <a6.已知(0,)4πα∈,4cos 25α=,则2sin (4πα+=()A.15B.25C.35 D.457.已知△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且(a 2+b 2−c 2)⋅(acosB +bcosA)=abc ,则角C =()A.30°B.45°C.60°D.90°8.已知函数=l 2−B +3在0,1上是减函数,则实数的取值范围是()A.0,1B.1,4C.0,1∪1,4D.2,49.已知圆:(−3)2+(−4)2=4和两点o −3s 0),o 3s 0)(>0).若圆上存在点,使得∠B =90°,则的最小值为()A.6B .5 C.2 D.310.已知双曲线22−22=1>0,>0的左、右焦点分别为1,2,点的坐标为−2,0,点是双曲线在第二象限的部分上一点,且∠1B 2=2∠1B ,B 1⊥12,则双曲线的离心率为()A.3B.2C.32D.211.在△B 中,B =4,B =3,B =5,点在该三角形的内切圆上运动,若B =B+B (s 为实数),则+的最小值为()A.12B.13C.16D.1712.若函数的定义域为,且2+1偶函数,3−1关于点1,3成中心对称,则下列说法正确的个数为()①的一个周期为2②2x =2−2x③的一个对称中心为6,3④J119=57 A.1B.2C.3D.4二、填空题(每题5分,共20分)13.已知2100+236=1上一点,1,2分别是椭圆的左、右焦点,若∠1B 2=60°,则△B 12的面积为________.14.若(1−3x)n 展开式中第6项的二项式系数与系数分别为p 、q ,则pq =_________.15.如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体BB 的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体BB 棱长为26,则模型中九个球的表面积和为__________.16.若函数op=3−o3+lnp的极小值点只有一个,则的取值范围是_________.三、解答题17.(12分)已知数列{}满足数列{r1−}为等比数列,1=1,2=2,且对任意的∈∗,r2=3r1−2.(1)求{}的通项公式;(2)=∙,求数列{}的前n项和S.18.(12分)如图,在直三棱柱B−111中,,,分别为线段11,1及B的中点,为线段1上的点,B=12B,B=8,B=6,三棱柱B−111的体积为240.(1)求点到平面1B的距离;(2)试确定动点的位置,使直线B与平面1B1所成角的正弦值最大.19.(12分)在一次购物抽奖活动中,假设某10张奖券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从这10张中任抽2张.(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X(元)的分布列.20(12分)已知抛物线:2=2B,抛物线上两动点A x1,y1,B x2,y2,x1≠x2且x1+x2=6(1)若线段AB过抛物线焦点,且B=10,求抛物线C的方程.(2)若线段AB的中垂线与X轴交于点C,求∆ABC面积的最大值.21(12分)已知op =e+2−s op =2−B −,s ∈(1)若op 与op 在x=1处的切线重合,分别求,的值.(2)若∀∈s op −op ≥op −op 恒成立,求的取值范围.四、选做题(共10分,请考生在22,23题任选一题作答,如果多选,则按所做第一题计分)22.(10分)在平面直角坐标系xOy 中,已知直线312:12x l y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)与圆23cos :(3sin x C y θθθ=+⎧⎨=⎩为参数)相交于A,B 两点.(1)求直线及圆C 的普通方程;(2)已知(1,0)F ,求||||FA FB +的值.23.(10分)已知0a >,0.b >(1)求证:3+3≥2+B 2;(2)若3a b +=,求14a b+的最小值.。

高三年级寒假理科数学试卷

高三年级寒假理科数学试卷

高三年级理科数学试卷第I 卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题意要求的.1. 已知全集¢/ =及,集合,则正确表示集合A 、B 关系的韦恩(Venn)图是2. 设i 是虚数单位,则复数的虚部是A. B. C.D.3. 已知-7, a 1, a 2 , -1四个实数成等差数列,-4, b 1 b 2, b 3 —1五个实数成等比数列,则=A. 1B. 2C. -1D. 土 14. 一个简单几何体的主视图,左视图如图所示,则其俯视图不可能为①长方形;②正方形;③圆;④椭圆.其中正确的是A. ①②B.②③C.③④D.①④5. 若等比数列{a n }满足: 354321=++++a a a a a ,122524232221=++++a a a a a ,则54321a a a a a +-+-的值是( )A .3 B .3-C . 4D .26. 已知,记.,要得到函数.的图像,只需将函数.的图像A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度7.圆关于直线.成轴对称图形,则a -b的取值范围是A. B. C. D.8.曲线在M(e,e)处的切线在x,y7轴上的截距分别为a,b,则a+b=A. B. C. D.9.F2|,则双曲线离心率为___________________________ ()A B C D10.某大学艺术系表演专业的报考人数连创新髙,报名刚结束,某考生想知道这次报考该专业的人数.已知该专业考生的考号是从0001,0002,…这样从小到大顺序依次排列的,他随机了解了 50个考生的考号,经计算,这50个考号的和是25025,估计2010年报考这所大学艺术表演专业的考生大约为________人.A.900B.1000C.1100D.120011.设点P是内一点(不包括边界),且,m、n e R,则的取值范围A. B. C. D.12.若x、y,z均为正实数,则的最大值A. B. C.l D.第II卷本卷包括必考题和选考题两部分’第13—第21题为必考题,每个试题考生都必须做答.第22—24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分,共20分13.定义某种运算,运算原理如图所示,则式子:的值是______________14. 已知抛物线的焦点为F ,准线与X 轴的交点为M , N为抛物线上的一点,且满足,则’= . ______________15. 有如下四个命题:①若直线12(1)10l kx k y ++++=与直线2:20l x ky -+=垂直,则实数k=1;②若函数()si n()(0)3f x x πωω=+>在[0,2]π上恰有一最大值与一个最小值则713.1212ω≤< ③已知定义在R 上的偶函数()f x 满足(2)(2),(1)1,f x f x f +=-=且则(2011)1;f = ④曲线22||||:1(0)x x y y C a b a b-=>>关于直线y x =-对称。

高三理科数学试卷+答案

高三理科数学试卷+答案

理科数学试题一、选择题(每题5分,共60分)1.已知i 是虚数单位,复数z 满足2(1i)1i z-=+则z =()B.2C.12.已知全集{}2|230,{3}U x x x A =+-≤=-,则U A =ð()A.(,3](1,)-∞⋃+∞B.(3,1]- C.[3,1)- D.[3,1]-3.已知0.30.3121,log 0.3,0.32a b c ⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系是()A.a b c<< B.c a b<< C.a c b << D.a c b<<4.函数2()cos ln f x x x =的图象大致为()A. B.C.D.5.已知向量,a b 的夹角为π4,且2,a b == ,则a b -= ()A.1B.2C.4D.66.若曲线e 1xy =+在0x=处的切线,也是ln y x b =+的切线,则b =()A.-1B.2C.4D.37.在等差数列{}n a 中,12018a =-,其前n 项和为n S ,若151051510S S -=则2020S =()A.0B.2018C.-2019D.20208、一个几何体的三视图如图所示,则该几何体的体积为()A.8π3+ B.8π+ C.82π3+D.89.如图,已知点()2,2A 与反比例函数2y x=,在正方形ABOC 内随机取一点P ,则点P 取自图中阴影部分的概率为()10.已知抛物线2:2(0)C y px p =>的焦点为F ,过F 且倾斜角为120的直线与抛物线C 交于,A B 两点,若,AF BF 的中点在y 轴上的射影分别为,M N ,且||43MN =,则抛物线C 的准线方程为()A.32x =-B.2x =- C.3x =- D.4x =-11.已知函数2,0()2ln ,0x x f x x x ⎧⎪<=⎨⎪>⎩,若函数()()1g x f x kx =--有且只有三个零点,则实数k 的取值范围()A.21(0,)eB.1(,0)2- C.(0,e)D.211(,)2e-12.已知等边ABC △的边长为23,,M N 分别为,AB AC 的中点,将AMN △沿MN 折起得到四棱锥A MNCB -.点P 为四棱锥A MNCB -的外接球球面上任意一点,当四棱锥A MNCB -的体积最大时,P 到平面MNCB 距离的最大值为()A.1312+ B.1312+ C.33+ D.35+二、填空题(每题5分,共20分)13.太极图被称为"中华第一图".从孔庙大成殿梁柱,到楼观台,三茅宫等的标记物,太极图无不跃居其上,这种广为人知的太极图,其形状如阴阳两鱼互抱在一起,因而被称为"阴阳鱼太极图".在如图所示的阴阳鱼图案中,阴影部分的区域可用不等式组222240(1)1x y x x y ⎧+⎪≤≤≥⎨⎪++⎩或22(1)1x y +-≤来表示,设(),x y 是阴影中任意一点,则z x y =+的最大值为_______.A.ln 22B.1ln 22+ C.2ln 22- D.1ln 22-14.某校举行歌唱比赛,高一年级从6名教师中选出3名教师参加,要求李老师,王老师两名老师至少有一人参加,则参加的三名老师不同的唱歌顺序的种数为______.(用数字作答)15.已知函数()2sin()(0)f x x ωϕω=+>满足π2,(π)04f f ⎛⎫== ⎪⎝⎭,且()f x 在区间ππ(,43上单调,则ω的值有_____个.16.已知双曲线2222:1(0,0)x y C a b a b-=>>的左,右顶点12,A A ,右焦点为1,F B 为虚轴的上端点,在线段1BF 上(不含端点)有且只有一点P满足120PA PA ⋅=,则双曲线的离心率为________.三、解答题(共70分)17、(本题12分)设n S 为数列{}n a 的前n 项和,且12n na a +=,149a a +=.(1)求数列{}n a 的通项公式;(2)记()12121log log 1n n n a b a S ++=⋅+,求数列{}n b 的前n 项和n T .18、(本题12分)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,120ABC ∠=︒,PA PB PC ==.(1)证明:PBD △为直角三角形;(2)若2PD =,E 是PC 的中点,且二面角P AB E --的余弦值为5714,求三棱锥P ABE -的体积.19、(本题12分)《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为A B B C C D D E +++、、、、、、、共8个等级.参照正态分布原则,确定各等级人数所占比例分别为371624241673%、%、%、%、%、%、%、%.选考科目成绩计入考生总成绩时,将A 至E 等级内的考生原始成绩,依照等比例转换法则,分别转换到[]91,100、[]81,90、[]71,80、[]61,70、[]51,60、[]41,50、[]31,40、[]21,30八个分数区间,得到考生的等级成绩.某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布()60,169N .(1)求物理原始成绩在区间()47,86的人数;(2)按高考改革方案,若从全省考生中随机抽取3人,记X 表示这3人中等级成绩在区间[]61,80的人数,求X 的分布列和数学期望.(附:若随机变量()2,N ξμσ~,则()0.682P μσξμσ-<<+=,()220.954P μσξμσ-<<+=,()330.997P μσξμσ-<<+=)20、(本题12分)已知椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为12,F F ,下顶点为M ,直线2MF 与E 的另一个交点为P ,连接1PF ,若1PMF △的周长为12PF F △的面积为313b .(1)求椭圆E 的标准方程;(2)若直线:(1)l y kx m m =+≠-与椭圆E 交于A ,B 两点,当m 为何值时,MA MB ⊥恒成立?21、(本题12分)已知函数213()e3x a f x x -=-,其中常数a ∈R .(1)若()f x 在(0,)+∞上是增函数,求实数a 的取值范围;(2)当1a =时,求证:导函数()y f x '=与函数241y x x =-+的图象有两个交点.22.(本题10分)在平面直角坐标系xOy 中,曲线C的参数方程为4cos 24sin x y αα=+⎧⎨=⎩(α为参数),以O 为极点以x 轴的非负半轴为极轴的极坐标系中,直线l 的极坐标方程为π6θ=.(1)求曲线C 的极坐标方程;(2)设直线l 与曲线C 相交于,A B 两点,求AB 的值.理科数学参考答案1.答案:A 解析:复数z 满足2(1i)1i z -=+,2(1i)2i 2i(1i)1i 1i 1i 2z ----∴====--++,||z ∴==2.答案:B 解析:全集{|(3)(1)0}[3,1],{3}U x x x A =+-≤=-=-,则(3,1]U A =-ð.3.答案:B 解析:0.3.311221110.31,log 0.3log 1222a ⎛⎫⎛⎫<<=>= ⎪ ⎪⎝⎭⎝⎭ ,c a b ∴<<.4.答案:C解析:易知()(),()f x f x f x -=∴为偶数,当(0,1)x ∈时,2cos 0,ln 0x x ><,所以当(0,1)x ∈时,()0f x <,故只有C 选项满足条件.5.答案:B解析:||82a b -===+= 6.答案:D解析: e 1x y =+的导数为'e x y =,曲线 e 1x y =+在0x =处的切线斜率为1k =,则曲线 e 1x y =+在0x =处的切线方程为2,ln y x y x b -==+的导数为1y x '=设切点为(),m n .则11m=解得1,3m n ==,即有3ln1b =+解得3b =.7.答案:D 解析:设等差数列{}n a 的公差为d ,由等差数列的性质可得112n S n a d n -=+为等差数列,n S n ⎧⎫⎨⎬⎩⎭的公差为2d .15105,5515102S S d -=∴⨯=.解得2d =.则2020202020192020(2018)220202S ⨯=⨯-+⨯=.8.答案:A 解析:该几何体是由一个四棱锥和一个圆柱的一半组成的几何体,体积为2118π12222π233⨯⨯⨯+⨯⨯⨯=+.9.答案:D解析:由题意可得正方形的面积为4,联立,22y y x =⎧⎪⎨=⎪⎩解得12x y =⎧⎨=⎩.所以阴影部分面积为221122d 22ln (42ln 2)(20)22ln 2x x x x ⎛⎫-=-=---=- ⎪⎝⎭⎰,所以所求概率22ln 21ln 242P --==.10.答案:C 解析:抛物线2(:20)C y px p =>的焦点为,02p F ⎛⎫⎪⎝⎭,过F 且倾斜角为120的直线方程设为)2py x =-联立抛物线的方程可得2220py +-=.设A 的纵坐标为1y ,B 的纵坐标为2y ,,M N 的纵坐标为1211,22y y ,可得21212y y y p +==-,则121||2y y -=,可得()212124192y y y y +-=,即为22192443p p =+解得6p =,则抛物线的准线方程为3x =-.11.答案:A解析:如图,作出函数,0()2ln ,0xx f x x x ⎧-<⎪=⎨⎪>⎩的图象,函数()()1g x f x kx =--有且只有三个零点,则函数()f x 与函数1y kx =+的图象有且只有三个交点,函数1y kx =+图象恒过点()0,1则直线1y kx =+在图中阴影部分内时,函数()f x 与1y kx =+有三个或两个交点.当直线1y kx =+与ln y x =的图象相切时,设切点为()00,ln x x 切线斜率为000011,ln 1k x x x x =∴=⋅+解得202211e ,,0,e ex k k ⎛⎫=∴=∴∈ ⎪⎝⎭.12.答案:A 解析:如图,由题意,易知,CM BM BN CN ⊥⊥,所以取BC 的中点E ,则E 是等腰梯形MNCB 外接圆圆心.AMN △为等边三角形,所以取MN 中点D ,连接AD ,在AD 上取点F 使2AF FD =,所以点为F AMN △外心.易知13,,1,.22AD MN DE MN DF AF DE ⊥⊥===设点O 为四棱锥A MNCB -的外接球球心OE ∴⊥平面MNCB ,OF ⊥平面AMN .当四棱锥A MNCB -的体积最大时,平面AMN ⊥平面MNCB .π31,,222ADE OF ED OE FD ∴∠=====设四棱锥A MNCB -的外接球半径R,则222134R AF OF =+=.所以当四棱锥A MNCB -的体积最大时,P 到平面MNCB距离的最大值为max d R OE =+=.13.答案:1解析:依题意,,,z x y y x z z =+∴=-+表示直线y x z =-+在y 轴上的截距,所以当直线y x z =-+与圆22(1)1x y +-=切于如图的点A 时,z 最大(1)z >.因为直线y x z =-+与圆相切,所以点()0,1到直线0x y z +-=的距离为1,即11z =>,1=,解得1z =+.14.答案:96解析:第一步:先选3人,李老师与王老师至少有一人参加,用间接法,有3364C C 20416-=-=种;第二步,将3人排序,有336A =种.故不同发言顺序的种数为16696⨯=.15.答案:9解析:由π2,(π)04f f ⎛⎫== ⎪⎝⎭知,*π3ππ,N 4244T kT k +=-=∈,*3π2(12),,N 123k T k k ω+∴==∈+又因为()f x 在区间ππ(,)43上单调,ππ342T ∴-≤故π2π,126T Tω≥∴=≤,即2(12)1712,32k k +≤∴≤,*N ,0,1,2,8k k ∈∴= 符合条件的ω的值有9个.16.解析:由题意1(,0),(0,)F c B b ,则直线1BF 的方程为0bx cy bc +-=,在线段1BF 上(不含端点)有且只有一点满足120PA PA ⋅=,则1PO BF ⊥,且PO a =,a ∴=即22222222b c a a b c b c =⋅+=+ ,42244230,310c a c a e e ∴-+=-+=,解得2351522e e ++=∴=.17.答案:(1) 设n S 为数列{}n a 的前n 项和,且12n na a +=,149a a +=.∴数列{}n a 为等比数列,公比2=q ,又149a a +=,11a ∴=.因此数列{}n a 的通项公式为12n n a -=,*n N ∈.(2)由()12121log log 1n n n a b a S ++=⋅+,得1221111(1)1log 2log 2n n n b n n n n +===-++.11111122311n n T n n n =-+-+-=++ .18.解析:(1)因为四边形ABCD 是菱形,120ABC ∠=︒,所以AD BD CD ==,取AB 的中点M ,连接DM ,PM ,易知DM AB ⊥,因为PA PB =,所以PM AB ⊥,因为PM DM M ⋂=,所以AB ⊥平面PDM ,又PD ⊂平面PDM ,所以PD AB ⊥.取BC 的中点N ,连接DN ,PN ,同理得PD BC ⊥,又AB BC B ⋂=,所以PD ⊥平面ABCD ,又BD ⊂平面ABCD ,所以PD BD ⊥,故PBD △为直角三角形.(2)由(1)可知,直线DM ,DC ,DP 两两垂直,故可以D 为坐标原点,DM ,DC ,DP 所在直线分别为x ,y ,z 轴建立空间直角坐标系D xyz -,如图所示.设AB a =,则,,02a A ⎫-⎪⎪⎝⎭,,,02a B ⎫⎪⎪⎝⎭,(0,,0)C a ,(0,0,2)P ,因为E 是PC 的中点,所以0,,12a E ⎛⎫⎪⎝⎭,则(0,,0)AB a =,,,222aPA a ⎛⎫=-- ⎪ ⎪⎝⎭,,0,12BE a ⎛⎫=- ⎪ ⎪⎝⎭,设平面PAB 的法向量为()111,,x y z =m ,则0,0,AB PA ⎧⋅=⎪⎨⋅=⎪⎩m m 得11110,320,22ay a ax y z =⎧--=⎪⎩令12x =,则2a ⎛⎫= ⎪ ⎪⎝⎭m .设平面ABE 的法向量为()222,,x y z =n ,则0,0,AB BE ⎧⋅=⎪⎨⋅=⎪⎩n n 得2220,30,2ay z =⎧⎪⎨-+=⎪⎩令21x =,则⎛⎫= ⎪ ⎪⎝⎭n,所以2324|cos ,|a +〈〉=m n .令2314t a =+,则14=,解得73t =或4t =,所以237143a +=或23144a +=,所以43a =或2a =.连接AC ,因为12P ABC P ABCD V --=,12E ABC P ABC V V --=,所以2111344312P ABE E ABC P ABCD V V AB DM PD a ---===⨯⨯⨯⨯=.当2AB =时,三棱锥P ABE -;当43AB =时,三棱锥P ABE -19.答案:(1)因为物理原始成绩()260,13N ξ~,所以()()()478647606086P P P ξξξ<<=<<+≤<()()1160136013602136021322P P ξξ=-<<++-⨯≤<+⨯0.6820.95422=+0.818=.所以物理原始成绩在()47,86的人数为20000.8181636⨯=(人).(2)由题意得,随机抽取1人,其成绩在区间[]61,80内的概率为25.所以随机抽取三人,则X 的所有可能取值为0,1,2,3,且23,5X B ⎛⎫~ ⎪⎝⎭,所以()332705125P X ⎛⎫=== ⎪⎝⎭;()21323541C 55125P X ⎛⎫==⋅⋅= ⎪⎝⎭;()22323362C 55125P X ⎛⎫==⋅⋅=⎪⎝⎭;()32835125P X ⎛⎫=== ⎪⎝⎭.所以X 的分布列为X 0123P2712554125361258125所以数学期望()26355E X =⨯=.20.解析:(1)设122F F c =.由椭圆的定义可知,1PMF △的周长为4a =a =直线2MF 的方程为by x b c =-,与22221x y a b +=联立可得点2322222,a c b P a c a c ⎛⎫ ⎪++⎝⎭,12PF F ∴△的面积为333222112223b b c c b a c c ⨯⨯==++,即232c c =+,解得1c =或2c =(舍),则2221b a c =-=,∴椭圆E 的标准方程为2212x y +=.(2)联立22,1,2y kx m x y =+⎧⎪⎨+=⎪⎩消去y 得()222214220k x kmx m +++-=,()228210k m ∆=-+>.由(1)可知(0,1)M -,设()()1122,,,A x y B x y ,则2121222422,2121km m x x x x k k -+=-=++,()212122242222121k m my y k x x m m k k +=++=-+=++,()()()2212121212y y kx m kx m k x x mk x x m =++=+++()22222222222242212121k m k m m k m k k k --=-+=+++,()()1122,1,1 MA MB x y x y ∴⋅=+⋅+uuu r uuu r ()()121211x x y y =+++1212121x x y y y y =++++22222222221212121m m k mk k k --=++++++.由MA MB ⊥得0MA MB ⋅=uuu r uuu r ,故23210m m +-=,解得13m =或1m =-(舍),∴当13m =时,MA MB ⊥恒成立.21.解析:(1)因为()f x 在(0,)+∞上是增函数,所以212()2e 0x f x ax -'=-≥在(0,)+∞上恒成立,即212e 2x a x -≤恒成立,只需使212mine 2x a x -⎛⎫≤ ⎪⎝⎭即可.设212e ()(0)x h x x x -=>,则2122121432e 2e 2(1)e ()x x x x x x h x x x -----'==.当(0,1)x ∈时,()0h x '<,函数()h x 在(0,1)上单调递减;当(1,)x ∈+∞时,()0h x '>,函数()h x 在(1,)+∞上单调递增,所以()h x 的最小值为(1)e h =,所以e 2a≤,解得2e a ≤,故实数a 的取值范围是(,2e]-∞.(2)证明:当1a =时,212()2e x f x x -'=-.令()221()()412e 41x g x f x x x x -'=--+=--,则21()44x g x e -'=-.令()0g x '>得12x >;令()0g x '<得12x <,所以()g x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,在1,2⎛⎫-∞ ⎪⎝⎭上单调递减,所以()g x 在12x =处取极小值,1102g ⎛⎫=-< ⎪⎝⎭.因为32(1)410e g -=+->,3(2)290g e =->,所以存在12111,,,222x x ⎛⎫⎛⎫∈-∈ ⎪ ⎪⎝⎭⎝⎭,使得()()120,0g x g x ==,所以()g x 有两个零点,即导函数()y f x '=与函数241y x x =-+的图象有两个交点.22.答案:(1)曲线C 的参数方程为4cos 24sin x y αα=+⎧⎨=⎩.得曲线C 的普通方程为224120x y x +--=.所以曲线C 的极坐标方程为24cos 12ρρθ-=.(2)设,A B 两点的极坐标方程分别为12ππ(,,66ρρ,12||AB ρρ=-,又,A B 在曲线C 上,则12,ρρ是2π4cos 1206ρρ--=的两根.12121212,||AB ρρρρρρ∴+==-∴=-=.23.答案:(1).∵0,0a b >>,1a b +=由基本不等式得:2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时等号成立,由ab m ≤恒成立,14m ∴≥(2).∵(),0,a b ∈+∞()4141459b a a b a b a b a b ⎛⎫∴+=++=++≥ ⎪⎝⎭故要使41212x x a b+≥--+恒成立,第7页共7页则2129x x --+≤当2x ≤-时,不等式化为:1229x x -++≤,解得62x -≤≤-当122x -<<时,不等式化为:1229x x ---≤,解得122x -<<当12x ≥时,不等式化为:2129x x ---≤,解得1122x ≤≤故 x 的取值范围[]6,12-.。

四川省攀枝花市2023届高三第三次统一考试理科数学试题

四川省攀枝花市2023届高三第三次统一考试理科数学试题

中该金属含量低于最原始的 5%时,至少需要循环使用该技术的次数为( )(参考数
据: lg2 » 0.301)
A.12
B.13
C.14
D.15
10.已知函数
f
(
x)
=
sin
æ çè
w
x
+
π 3
ö ÷ø
(w
>
0)
对任意
x
Î
æ çè
0,
3π 8
ö ÷ø
都有
f
(
x)
>
1 2
w ,则当

到最大值时, f ( x) 图象的一条对称轴为( )
7
天的最高气温的平均数为
28 ´
2
+
29 ´3 7
+
30
+
31
=
204 7
>
29
,D
错.
故选:D. 4.B
【分析】根据程序框图,明确该程序的功能是求分段函数
f
(x)
=
ìíîlxo-g12 ,xx,
x > 1的值,由此根 £1
据该函数值域,可求得答案. 【详解】由程序框图可知:运行该程序是计算分段函数的值,
(2)若射线q
=
π 6
(r
³
0) 分别与曲线 C1 , C2 相交于 A,B
两点,求△C2 AB
的面积.
23.已知函数 f ( x) = x -1 + x - 3 .
(1)解不等式 f ( x) £ x +1;
(2)设函数
f
(x)
的最小值为
c,正实数

江西省萍乡市2022-2023学年高三上学期期末考试数学理科试卷

江西省萍乡市2022-2023学年高三上学期期末考试数学理科试卷

准考证号姓名(在此卷上答题无效)萍乡市2022-2023学年度高三期末考试试卷理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人的准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答题无效.3.考试结束后,监考员将试题卷、答题卡一并收回.第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}1,0,1,2A =-,{}2,x B y y x A ==∈,则A B = A .{}1,2B .1,22⎡⎤⎢⎥⎣⎦C .[)1,2-D .{}12.已知i 为虚数单位,则复数11i+的实部与虚部之和为A .1-B .0C .1D .23.在各项均为正数的等差数列{}n a 中,23=a ,若235,1,3++a a a 成等比数列,则公差=d A .1-或2B .2C .1或2-D .14.已知m 和n 是空间中两条不同的直线,α和β是两个不重合的平面,下列命题正确的是A .若⊥m n ,n ⊂α,则α⊥m B .若m ⊂α,n ⊂β, αβ,则m n P C .若m αP ,⊥m n ,则α⊥n D .若α⊥m ,m β,则αβ⊥5.关于某校运动会5000米决赛前三名选手甲、乙、丙有如下命题:“甲得第一”为命题p ;“乙得第二”为命题q ;“丙得第三”为命题r .若∨p q 为真命题,∧p q 为假命题,()⌝∧q r 为假命题,则下列说法一定正确的为A .甲不是第一B .乙不是第二C .丙不是第三D .根据题设能确定甲、乙、丙的顺序6.在二项式6(2)-a x 的展开式中,若3x 的系数为160,则=aA .1-B .1C D .7.函数=y kx 与ln =y x 的图象有且只有一个公共点,则实数k 的取值范围为A .1=k B .1e=k C .1e=k 或0≤k D .1=k 或0≤k 8.分形是由混沌方程组成,其最大的特点是自相似性:当我们拿出图形的一部分时,它与整体的形状完全一样,只是大小不同.谢尔宾斯基地毯是数学家谢尔宾斯基提出的一个分形图形,它的构造方法是:将一个正方形均分为9个小正方形,再将中间的正方形去掉,称为一次迭代;然后对余下的8个小正方形做同样操作,直到无限次,如右上图.进行完二次迭代后的谢尔宾斯基地毯如右下图,从正方形ABCD 内随机取一点,该点取自阴影部分的概率为A .19B .1781C .29D .3179.已知()f x 是定义在R 上的奇函数,()'f x 是其导函数.当0≥x 时,()20'->f x x ,且()23=f ,则()()3113≥+f x x 的解集是A .[)2,+∞-B .[]2,2-C .[)2,+∞D .(],2∞--10.下列关于函数1()sin 2cos =+f x x x有关性质的描述,正确的是A .函数()f x 的最小正周期为2πB .函数()f x 的图象关于直线2π=x 对称C .函数()f x 的最小正周期为πD .函数()f x 的图象关于直线=πx 对称11.点M 为抛物线28=y x 上任意一点,点N 为圆22430+-+=x y x 上任意一点,P 为直线10---=ax y a 的定点,则+MP MN 的最小值为A .2B C .3D .2+12.已知函数()ln f x ax a =+,()e ln x g x x x =+-,若关于x 的不等式()()f x g x >在区间(0,)+∞内有且只有两个整数解,则实数a 的取值范围为A .(2e,e ⎤⎦B .2e (e,]2C .(23e ,e ⎤⎦D .23e e (,]23萍乡市2022-2023学年度高三期末考试试卷理科数学第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22,23题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.在平面直角坐标系中,角α的顶点在坐标原点,始边与x 轴的非负半轴重合,已知角α终边过点(2,1)-P ,则sin 2α=__________.14.在平面直角坐标系中,向量,a b 满足()()1,1,231,5=+=- a a b ,则⋅= a b __________.15.在∆ABC 中,内角,,A B C 的对边分别为,,a b c ,若∆ABC 的周长为7,面积为,且828ab c +=,则=c __________.16.已知球O 是棱长为1的正四面体的内切球,AB 为球O 的一条直径,点P 为正四面体表面上的一个动点,则⋅PA PB 的取值范围为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)记n S 为数列1⎧⎫⎨⎬⎩⎭n a 的前n 项和,已知11=a ,()21⋅=-n n a S n n .(1)求数列{}n a 的通项公式;(2)求数列1321+⎧⎫⋅⎪⎪⎨⎬+⎪⎪⎩⎭n n a n 的前n 项和n T .18.(本小题满分12分)如图,在五面体ABCDE 中,ABC ∆为等边三角形,平面ABC ⊥平面ACDE ,且222AC AE ED ===,90∠=∠=︒DEA EAC ,F 为边BC 的中点.(1)证明: DF 平面ABE ;(2)求EF 与平面ABE 所成角的正弦值.19.(本小题满分12分)甲、乙两人参加某知识竞赛对战,甲答对每道题的概率均为12,乙答对每道题的概率均为(01)<<p p ,两人答每道题都相互独立.答题规则:第一轮每人三道必答题,答对得10分,答错不加分也不扣分;第二轮为一道抢答题,每人抢到的概率都为12,若抢到,答对得10分,对方得0分,答错得0分,对方得5分.(1)若乙在第一轮答题中,恰好答对两道必答题的概率为()f p ,求()f p 的最大值和此时乙答对每道题的概率0p ;(2)以(1)中确定的0p 作为p 的值,求乙在第二轮得分X 的数学期望.20.(本小题满分12分)已知椭圆E 的中心在原点,周长为8的∆ABC 的顶点()A 为椭圆E 的左焦点,顶点,B C 在E 上,且边BC 过E 的右焦点.(1)求椭圆E 的标准方程;(2)椭圆E 的上、下顶点分别为,M N ,点(),2P m (),0R ≠∈m m ,若直线,PM PN 与椭圆E 的另一个交点分别为点,S T ,求证:直线ST 过定点,并求该定点坐标.21.(本小题满分12分)已知函数()1ln e +-=x xf x a x.(1)若0=a ,求()f x 的极值;(2)若()1≥f x 恒成立,求实数a 的取值范围.请考生在第22、23两题中任选一题做答,只能做所选定的题目.如果多做,则按所做的第一个题记分.做答时用2B 铅笔在答题卡上把所选题号后方框涂黑.22.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,已知曲线()()0100,,0:πθθθρ=∈≥C 与曲线22:4sin 30ρρθ-+=C 相交于,P Q 两点.(1)写出曲线2C 的直角坐标方程,并求出0θ的取值范围;(2)求11+OP OQ的取值范围.23.(本小题满分10分)选修4—5:不等式选讲已知函数()()10,0=--+>>f x a x b a b 的图象与x 轴围成的封闭图形的面积为1.(1)求实数,a b 满足的关系式;(2)若对任意R ∈x ,不等式()2<-f x x ab恒成立,求实数b 的取值范围.萍乡市2022—2023学年度高三期末考试理科数学参考答案及评分标准一、选择题(12×5=60分):ABBDC ;ACBCC ;AD .二、填空题(4×5=20分):13.45-;14.0;15.3;16.10,3⎡⎤⎢⎥⎣⎦.三、解答题(共70分):17.(1)由(21)n n a S n n =-得,(21)n n n n S a -=,当11(1)(23)2,n n n n n S a ----≥=,………(1分)两式相减得:11(21)(1)(23)n n n n n n n a a a ----=-,化简得:12123n n a n a n -+=-,………………(2分)21234211233212121239754112325275313n n n n n n n a a a a a a n n n n a a a a a a a a n n n -----+---=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅=--- ,…(4分)当1n =时,2141113a ⋅-==,符合上式,………………………………………………(5分)故2413n n a -=;……………………………………………………………………………(6分)(2)由(1)知13=(21)321n n n a n n +⋅-⋅+,………………………………………………………(7分)1231133353(23)3(21)3n nn T n n -=⨯+⨯+⨯++-⨯+-⨯ 23413133353(23)3(21)3n n n T n n +=⨯+⨯+⨯++-⨯+-⨯ ,……………………………(9分)两式相减得1234121323232323(21)3n n n T n +-=⨯+⨯+⨯+⨯++⨯--⨯ 21113(13)32(21)362(1)313n n n n n -++⨯-=+⨯--⨯=-+-⨯-,……………(11分)故13(1)3n n T n +=+-⋅.………………………………………………………………………(12分)18.(1)证明:取AB 的中点为M ,连接ME ,MF ,…………………………………(1分)因为F 为边BC 的中点,所以MF AC ,1=2MF AC ,……………………………………(2分)又DE AC ,12DE AC =,所以MF DE ,且MF DE =,即四边形EDFM 为平行四边形,所以DF EM ,………………………………………(4分)又EM ABE ⊂平面,DF ABE ⊄平面,所以DF ABE 平面;………………………(6分)【用面面平行性质得到线面平行同样给分】(2)平面ABC ⊥平面ACDE ,ABC 平面平面ACDE AC =,EA AC ⊥,EA ⊂平面ACDE ,则EA ⊥平面ABC ,…………………………………(8分)过点F 作FN AB ⊥于N ,则FN EA ⊥,且EA AB A = ,则FN ABE ⊥平面,连接EN ,则EF 与平面ABE 所成角为FEN ∠,………………………………………(10分)由题知,在直角FNE ∆中,有2FN EN EF =,则sin4FN FEN EF ∠=即EF 与平面ABE .…………………(12分)【建立空间直角坐标系求解同样给分】19.(1)由题知,22233()(1)33f p C p p p p =⋅⋅-=-,…………………………………(2分)2()693(23)f p p p p p '=-=-,则()f p 在2(0,)3单调递增,在2(,1)3单调递减,……(4分)故()f p 的最大值为24(39f =,此时,023p =;…………………………………………(6分)(2)由题知,X 的所有可能取值为0,5,10,……………………………………………(7分)11115(0)232212P X ==⨯+⨯=,111(5)224P X ==⨯=,121(10)233P X ==⨯=,……(9分)则X 的分布列为:………………………………………………………………………………………………(10分)乙在第二轮得分X 的数学期望51155()0510124312E X =⨯+⨯+⨯=.…………………(12分)20.(1)根据椭圆定义可知48a =,2a =,……………………………………………(2分)c =,1b ==,…………………………………………………………………(3分)故椭圆E 的标准方程为2214x y +=;………………………………………………………(4分)(2)由题知,(0,1)M ,(0,1)N -,………………………………………………………(5分)直线:1xPM y m =+,与椭圆方程联立、化简得:22(4)80m x mx ++=,则284S m x m -=+,2244S m y m -=+,……………………………………………………………(7分)同理可得22436T m x m =+,223636T m y m -=+,…………………………………………………(8分)()()()22423212121441216192161612T S STT S m m y y m m k x x m m m m m -+---====-++,………………………(9分)直线222221284121:(1644162m m m m ST y x x m m m m ---=⋅++=⋅+++,………………………(11分)故直线ST 过定点1(0,)2.…………………………………………………………………(12分)X 0510P512141321.(1)0a =,1ln ()xf x x -=,22ln ()0x f x x-+'==,得2x e =,…………………(1分)则()()20,,()0,x e f x f x '∈<单调递减;()()2,,()0,x e f x f x '∈+∞>单调递增,……(3分)故()f x 的极小值为221()f e e =-,无极大值;……………………………………………(4分)(2)【法一】由题知,1ln x axe x x +-≥,0x >,令()1ln x g x axe x x =+--,则()1'()1x g x x ae x ⎛⎫=+- ⎪⎝⎭,…………………………………(5分)①当0a ≤时,'()0g x <,(1)0g ae =≤,则1x >时,()(1)0g x g <≤,不合题意;…(7分)②当0a >时,设0x 满足001x ae x =,则()g x 在()00,x 单调递减,在()0,x +∞单调递增,则min 0000()()ln 1x g x g x ax e x x ==--+,……………………………………………………………(9分)001x ae x = ,00001,ln ln x ax e a x x ∴=+=-,………………………………………………(10分)故min 000()()1ln 1ln 20g x g x x a x a ==-+++=+≥,解得21a e≥,…………………………(11分)综上所述,实数a 的取值范围为21[,)e +∞.………………………………………………(12分)【法二】由题知,ln 1xx x a xe +-≥,0x >,………………………………………………(5分)令ln 1()x x x g x xe+-=,则()21(2ln )'()x x x x g x x e+--=,…………………………………………(6分)设0x 满足002ln x x =+,则()g x 在()00,x 单调递增,在()0,x +∞单调递减,…………(8分)故0000max 000ln 11()()x x x x g x g x x e x e +-===,…………………………………………………(9分)002ln x x =+ ,020x x e -∴=,故0max 2011()x g x x e e ==,即21a e ≥,……………………(11分)综上所述,实数a 的取值范围为21[,)e+∞.………………………………………………(12分)【法三】由题知,ln 1xaxe x x ≥+-,即ln ln 1x x ae x x +≥+-,…………………………(6分)令ln t x x =+,t R ∈,即1t ae t ≥-,即1()t t a g t e-≥=,………………………………(8分)2'()t tg t e-= ,()g t ∴在(),2-∞单调递增,在()2,+∞单调递减,…………………(10分)故max 21()(2)a g t g e ≥==,即实数a 的取值范围为21[,)e+∞.…………………………(12分)22.(1)曲线2C 的直角坐标方程为2243x y y +-=-,即()2221x y +-=,……(2分)当02πθ=时,曲线1:0C x =与曲线2C 有两个交点,符合题意,………………………(3分)当02πθ≠时,曲线1C 的直角坐标方程为:0tan y x θ=,设()20,2C 到曲线1C 的距离为d ,则1d r ==,得0tan θ0tan θ<4分)又0(0,)θπ∈ ,02,33ππθ⎛⎫∴∈⎪⎝⎭;…………………………………………………………(5分)(2)将0θθ=代入2C 的极坐标方程得:204sin 30ρθρ-+=,…………………………(6分)设,P Q 两点对应的极径分别为12,ρρ,则120124sin ,3ρρθρρ+==,…………………(7分)1212124sin 111103OP OQ θρρρρρρρ+≥∴+=+== ,……………………………………………(9分)由(1)知02,33ππθ⎛⎫∈ ⎪⎝⎭,则04sin 11433OP OQ θ⎤+=∈⎥⎝⎦.………………………………(10分)23.(1)(),11,1ax a b x f x a x b ax a b x -+≤⎧=--+=⎨-++>⎩,…………………………………………(1分)()y f x = 与x 轴交点坐标分别为1,0,1,0b b a a ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭,顶点坐标为()1,b ,……………(3分)21212b b S b a a∴=⨯⨯==,即2b a =;……………………………………………………(5分)(2)对于x R ∀∈,不等式左边=2221()121b x b f x x x b b b b--+==--+<-恒成立,……(6分)即对于x R ∀∈,121x x b b<-+-恒成立,…………………………………………………(7分)222111x x x x b b b-+-≥--+=- …………………………………………………………(8分)∴121b b <-,即211bb->或211b b-<-,…………………………………………………(9分)又0b > ,()()0,13,b ∴∈+∞ .…………………………………………………………(10分)命题:胡斌(市教研室)欧阳丽(芦溪中学)徐敏(莲花中学)江敏(萍乡三中)刘晓君(湘东中学)吕鋆(上栗中学)彭仕海(萍乡中学)审核:胡斌。

高三数学试题(理科)

高三数学试题(理科)

高三数学试题(理科)本试卷分Ⅰ、Ⅱ两卷,第Ⅰ卷1至2页,第Ⅱ卷3到6页,共150分,考试时间120分注意事项:1.考生必须将自己的姓名、学号、考试科目用铅笔涂写在答题卡上,并在答卷前将班别、姓名、学号、等填写在试卷上.2.第一大题每小题选出答案后,用铅笔把答题卡上对应的答案标号涂黑. 3.请用蓝色或黑色钢笔或圆珠笔答卷.考试结束后,试卷必须全部上交.参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B ) 如果事件A 在一次试验中的发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率为:P n (k )=C n k P k (1-p )n-k球的表面积公式为:S=4πR 2,其中R 表示球的半径. 球的体积公式为:V=34πR 3,其中R 表示球的半径. 第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的4个选项中,只有一项是符合题目要求的.1.已知U 为全集,若集合A 、B 、C 满足A ∩B=A ∩C ,则可以推出( ) A . B=C B .A ∪B=A ∪C C .A ∪(U C B)=A ∪(U C C) D .(U C A)∪B=(U C A)∪C 2.函数g (x )满足g (x )g (-x )=1,且g (x )≠1,g (x )不恒为常数,则函数f (x)=g(x)+1g(x)-1( )A .是奇函数不是偶函数B .是偶函数不是奇函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数3.已知函数f (x)=223(1)131(1)x x x x x x ⎧+->⎪-⎨⎪+≤⎩,则f –1(3)=( ) A .10 B .12 C . 23 D . -124.设f (x)=1()0x x ⎧⎨⎩为有理数(为无理数),使所有x 均满足x ·f (x)≤g (x)的函数g(x)是( )A .g (x)=sinxB .g (x)=xC .g (x)=x 2D .g (x)=|x| 5.二项式(1x-)n 展开式中含有x 4项,则n 的可能取值是( )A .5B .6C .3D .76.设OA u u u v =a v ,OB uuu v =b v ,OC u u u v =c v ,当c v =λa v +μb v (λ,μ∈R),且λ+μ=1时,点C 在( )A .线段AB 上 B .直线AB 上C .直线AB 上,但除去点AD . 直线AB 上,但除去点B7.从17个相异的元素中选出2a -1个不同元素的选法记为P ,从17个相异的元素中选出2a 个不同元素的选法记为Q ,从18个相异的元素中选出12个不同元素的选法记为S ,若P+Q=S ,则a 的值为( )A . 6B . 6或8C .3D .3或68.若一个平面与正方体的12条棱所成的角均为θ,那么cos θ等于( ) A.3 B .3 C .2 D.69.设OM u u u u v =(1,12),ON u u u v =(0,1),则满足条件0≤OP uuu v ·OM u u u u v ≤1,0≤OP uuu v ·ON u u u v ≤1的10.已知函数f k图象上相邻的一个最大值点与一个最小值点恰好在x 2+y 2=k 2上,则f (x)的最小正周期为( )A .1B .2C .3D .411.2003年12月,全世界爆发“禽流感”,科学家经过深入的研究终于发现了一种细菌M在杀死“禽流感”病毒N 的同时能够自我复制,已知1个细菌M 可以杀死1个病毒N ,并生成2个细菌M ,那么1个细菌M 和2047个“禽流感”病毒N 最多可生成细菌M 的数值是( )A . 1024B .2047C .2048D .204912.已知抛物线的一条过焦点F 的弦PQ ,点R 在直线PQ 上,且满足OR uuu v =12(OP uuu v +OQ uuu v),R 在抛物线准线上的射影为S ,设α,β是ΔPQS 中的两个锐角,则下面4个式子中不一定正确的是( )A .tan α·tan β=1B .sin α+sinC .cos α+cos β>1D .|tan(α-β)|>tan2αβ+高三(1-12班)数学试题(理科)班别____________ 学号______________ 姓名___________ 得分___________第II 卷 (非选择题 共90分)二、填空题13.把函数sin y x x =-的图象,按向量(),m n =-va (m >0)平移后所得的图象关于y 轴对称,则m 的最小正值为__________________14.若关于x 的不等式2-2x >|x -a | 至少有一个负数解,则a 的取值范围为__________________. 15.利用函数f (t)=12+3sin[2365π(t -81)]可用来估计某一天的白昼时间的长短,其中f (t)表示白昼的小时数,t 是某天的序号,t=0表示1月1日,依此类推0≤t ≤365,若二月份28天,则这一地区一年中白昼最长的大约是 月 日.16.在平面几何里,有勾股定理“设ΔABC 的两边AB 、AC 互相垂直,则AB 2+AC 2=BC 2”.拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的正确结论是:“设三棱锥O -ABC 的三个侧面OAB 、OAC 、OBC 两两相互垂直, 则______________________________________________.” 三、解答题:本大题6个小题,共74分17.(本小题满12分)已知A 、B 是ΔABC 的两个内角,a v sin 22A B A B i j +-+v v ,其中i j v v 、为互相垂直的单位向量,若||a =v.(Ⅰ) 试问tanA ·tanB 是否为定值? 若为定值,请求出;否则请说明理由. (Ⅱ) 求tanC 的最大值,并判断此时三角形的形状.18. (本小题12分)设数列{a n }的前n 项和为S n ,已知a 1=1,S n =na n ﹣2n(n ﹣1),(n ∈N*)(Ⅰ) 求证数列{a n }为等差数列,并写出通项公式; (Ⅱ) 是否存在自然数n ,使得40032321=++++nS S S S n Λ?若存在,求出n 的值; 若不存在,说明理由;19.(本小题满分12分)甲、乙两人进行乒乓球比赛,在每一局比赛中,甲获胜的概率为P . (Ⅰ)如果甲、乙两人共比赛4局,甲恰好负2局的概率不大于其恰好胜3局的概率,试求P的取值范围; (Ⅱ)如果P=13,当采用3局2胜制的比赛规则时,求甲获胜的概率.20. (本小题满分12分)在正四棱柱ABCD —A 1B 1C 1D 1中,侧棱是底面边长的2倍,P 是侧棱CC 1上的一点. (Ⅰ)求证:不论P 在侧棱CC 1上任何位置,总有BD ⊥AP ;(Ⅱ)若CC 1=3C 1P ,求平面AB 1P 与平面ABCD 所成二面的余弦值. (Ⅲ)当P 点在侧棱CC 1上何处时,AP 在平面B 1AC 上的射影是∠B 1AC 的平分线.21. (本小题满分14分)已知点Q 位于直线3x =-右侧,且到点()1,0F -与到直线3x =-的距离之和等于4. (Ⅰ) 求动点Q 的轨迹C ;(Ⅱ) 直线l 过点()1,0M 交曲线C 于A 、B 两点,点P 满足1()2FP FA FB =+u u u r u u u r u u u u r ,0EP AB =u u ur u u u r g ,又OE uuu r=(0x ,0),其中O 为坐标原点,求0x 的取值范围;(Ⅲ) 在(Ⅱ)的条件下,PEF ∆能否成为以EF 为底的等腰三角形?若能,求出此时直线l 的方程;若不能,请说明理由.ABCDA 1 D 1C 1 B 1P22.(本小题满分12分)已知函数f(x)满足f(x+y)= f(x)·f(y)且f(1)=1 2 .(Ⅰ)当n∈N+时,求f(n)的表达式.(Ⅱ)设a n=n·f(n),n∈N+,求证a1+a2+…+a n<2.答案:1.D 由A ∩B=A ∩C 知B ,C 在A 内部的元素相同,由韦恩图可得. 2.A3.C 2231x x x +--=(1)(3)1x x x -+-=x+3 依题意 当x>1时 f(x)>4当x ≤1时 f(x)=3x+1≤4 令t= f -1(3) ∴f(t)=3<4 即3t+1=3 ∴t=234.D 将f(x)拆成:当x 是有理数时,f(x)=1;当x 是无理数时,f(x)=0,然后一一验证即可5.C 展开式的通项为r nC (1x)n-r ·(-)r =(-1)r ·r n C 4()3r n r x --(r=0,1,2,…n )即存在自然数r ,使43r -(n -1) =4即7r=3n+12且n ≥r,故选C. 6.B ∵n+μ=1 ∴λ=1-μ,∵c v =λa v +μb v =a v +μ(b v -a v )=a v +μAB u u u v∴AC u u u v =c v -a v =μAB u u u v ,即AC u u u v 与AB u u u v共线.7.D 法一:反代法.分别取a=6,8代入验证。

高三数学综合测试题(含答案)

高三数学综合测试题(含答案)

高三数学试题(理科)一、选择题(本大题共12小题,每小题5.0分,共60分)1.已知复平面内的平行四边形ABCD中,定点A对应的复数为i(i是虚数单位),向量BC 对应的复数为2+i,则点D对应的复数为()A. 2 B. 2+2i C.-2 D.-2-2i2.在判断两个变量y与x是否相关时,选择了4个不同的模型,它们的相关指数分别为:模型1的相关指数为0.98,模型2的相关指数为0.80,模型3的相关指数为0.50,模型4的相关指数为0.25.其中拟合效果最好的模型是().A.模型1 B.模型2 C.模型3 D.模型43.设随机变量X的分布列如下表,且E(X)=1.6,则a-b=()A.0.2B.0.1C.-0.2D.-0.44.若方程x3-3x+m=0在[0,2]上有解,则实数m的取值范围是()A. [-2,2] B. [0,2]C. [-2,0]D. (-∞,-2)∪(2,+∞)5.已知圆上9个点,每两点连一线段,所有线段在圆内的交点有()A.36个 B.72个 C.63个 D.126个6.函数f(x)=ax3+x+1有极值的一个充分而不必要条件是()A.a<0 B.a>0 C.a<-1 D.a<17.若(n∈N*),且,则() A.81 B.16 C.8 D.18.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c∈(0,1)),已知他投篮一次得分的均值为2(不计其他得分情况),则ab的最大值为()A. B. C. D.9.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是()A. B. C. D.10.已知x与y之间的几组数据如表:假设根据如表数据所得线性回归直线方程为,若某同学根据表中的前两组数据(1,0)和(2,2)求得的直线方程为,则以下结论正确的是()A., B., C., D.,11.某人射击一发子弹的命中率为0.8,现在他射击19发子弹,理论和实践都表明,在这19发子弹中命中目标的子弹数X的概率满足P(X=k)=(k=0,1,2,…,19),则他射完19发子弹后,击中目标的子弹最可能是 ()A.14发 B.15发 C.16发 D.15发或16发12.函数f(x)=ax3+bx2+cx+d(a≠0),若a+b+c=0,导函数f′(x)满足f′(0)f′(1)>0,设f′(x)=0的两根为x1,x2,则|x1-x2|的取值范围是()A.323⎡⎫⎪⎢⎪⎣⎭,B.14,39⎡⎤⎢⎥⎣⎦C.133⎡⎫⎪⎢⎪⎣⎭, D.1193⎡⎫⎪⎢⎣⎭,第II 卷非选择题二、填空题(本大题共4小题,每小题5.0分,共20分)13.某人从某城市的A地乘公交车到火车站,由于交通拥挤,所需时间(单位:分钟)X~N(50,),则他在时间段(30,70]内赶到火车站的概率为________.14.如图(1),在三角形ABC中,AB⊥AC,若AD⊥BC,则AB2=BD·BC;若类比该命题,如图(2),三棱锥A-BCD中,AD⊥面ABC,若A点在三角形BCD所在平面内的射影为M,则有________.15.设M=,则M与1的大小关系是__________.16.若对任意的x∈A,则x∈,就称A是“具有伙伴关系”的集合.集合M={-1,0,,,1,2,3,4}的所有非空子集中,具有伙伴关系的集合的个数为________.三、解答题(本大题共6小题,共70分)17.(本小题共12分)已知一元二次方程x2-ax+1=0(a∈R).(1)若x=37+i44是方程的根,求a的值;(2)若x1,x2是方程两个虚根,且|x1-1|>|x2|,求a的取值范围.18. (本小题共12分)随着生活水平的提高,人们的休闲方式也发生了变化.某机构随机调查了n 个人,其中男性占调查人数的.已知男性中有一半的人的休闲方式是运动,而女性只有的人的休闲方式是运动.(1)完成如图2×2列联表:(2)若在犯错误的概率不超过0.05的前提下,可认为“休闲方式有关与性别”,那么本次被调查的人数至少有多少?(3)根据(2)的结论,本次被调查的人中,至少有多少人的休闲方式是运动?参考公式:=,其中n=a+b+c+d.参考数据:19.若n为正整数,试比较3·2n-1与n2+3的大小,分别取n=1,2,3,4,5加以试验,根据试验结果猜测一个一般性结论,并用数学归纳法证明.20.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n株沙柳.各株沙柳的成活与否是相互独立的,成活率为p,设ξ为成活沙柳的株数,数学期望E(ξ)为3,标准差为.(1)求n和p的值,并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种.求需要补种沙柳的概率.21.已知函数f(x)=(ax-x2)e x.(1)当a=2时,求f(x)的单调递减区间;(2)若函数f(x)在(-1,1]上单调递增,求a的取值范围;(3)函数f(x)是否可为R上的单调函数?若是,求出a的取值范围,若不是,说明理由.22.设函数f(x)=|x-a|+x.(1)当a=2时,求函数f(x)的值域;(2)若g(x)=|x+1|,求不等式g(x)-2>x-f(x)恒成立时a的取值范围.答案解析1.B2.A3.C4.A5.D【解析】此题可化归为:圆上9个点可组成多少个四边形,每个四边形的对角线的交点即为所求,所以,交点有=126(个)6.C7.A8.D9.C10. C11. D【解析】由≥且≥,解得15≤k≤16,即P(X=15)=P(X=16)最大12.A【解析】由题意得f′(x)=3ax2+2bx+c,∵x1,x2是方程f′(x)=0的两个根,∴x 1+x2=-,x1·x2=,∴|x1-x2|2=(x+x2)2-4x1·x2=.∵a+b+c=0,∴c=-a-b,∴|x 1-x2|2==()2+·+.∵f′(0)·f′(1)>0,f′(0)=c=-(a+b),且f′(1)=3a+2b+c=2a+b,∴(a+b)(2a+b)<0,即2a2+3ab+b2<0,∵a≠0,两边同除以a2,得()2+3+2<0,解得-2<<-1.由二次函数的性质可得,当=-时,|x 1-x2|2有最小值为,当趋于-1时,|x1-x2|2趋于,故|x 1-x2|2∈[,),故|x1-x2|∈[,).13. 0.9544 14.=S △BCM·S△BCD15.【答案】M<1【解析】∴M==1.16.【答案】15【解析】具有伙伴关系的元素组有-1;1;,2;,3;共4组,所以集合M的所有非空子集中,具有伙伴关系的非空集合中的元素,可以是具有伙伴关系的元素组中的任一组、二组、三组、四组,又集合中的元素是无序的,因此,所求集合的个数为+++=15.17.解(1)已知一元二次方程x2-ax+1=0(a∈R),若x=+i是方程的根,则x=-i也是方程的根.(+i)+(-i)=a,解得a=.(2)x 1,x2是方程x2-ax+1=0的两个虚根,不妨设x1=,x2=,a∈(-2,2),|x 1-1|>|x2|,∴(-1)2+(-)2>()2+()2,∴a<1.综上,-2<a<1.18.【解】(1)依题意,被调查的男性人数为,其中有人的休闲方式是运动;被调查的女性人数为,其中有人的休闲方式是运动,则2×2列联表如图。

高三年数学试卷(理科)(附答案)

高三年数学试卷(理科)(附答案)

高三年数学试卷(理科)(完卷时间:120分钟; 满分:150分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、复数i z +=31,i z -=12,则1z ·2z 在复平面内的对应点位于( )A .第一象限B .第二象限 C.第三象限 D.第四象限2、等差数列{}n a 中,若752a a =-,则1715a a -=( ) A .2- B .2 C .1- D .13、函数)1(121>+=+x y x 的反函数是( )A .)5(2log 2>-=x x yB .())5(11log 2>--=x x yC .)1(2log 2>-=x x yD . ())1(11log 2>--=x x y 4、为真命题的且为真命题是或""""q p q p 条件 A .充分非必要条件 B .必要非充分条件 C .既非充分也非必要条件 D .充要条件 5、一个容量为20的样本数据,分组后,组距与频数如下:A .201. B .41. C .107. D .21 6、关于x 的不等式0<-b ax 的解集为(1,+∞),则关于x 的不等式2--x bax >0的解集为( ) A .(-1,2) B .(-∞,-1)∪(2,+∞)C .(1,2)D .(―∞,―2)∪(1,+∞)7、已知函数)(x f 的导数为,44)(3x x x f -='且)(x f 图象过点(0,-5),当函数)(x f 取得极小值-6时,x 的值应为( ) A .0B .-1C .±1D . 18、设函数⎪⎩⎪⎨⎧>≤-=)0(log )0(8)31()(3x x x x f x,若f (a )>1,则实数a 的取值范围是( )A .)3,2(-B .)2,(--∞∪),3(+∞C .(3,+∞)D .)3,(--∞∪(0,+∞) 9、已知等差数列{a n }中,若1201210864=++++a a a a a ,则=1515S 项和前 ( ) A .240- B .360- C .240 D .360 10、已知数列{n a }中,*N n ∈,11-=a ,1121--+=n n n a a (2≥n ),则∞→n lim =+++)(21n a a a ( )A .2-B .2C . 32-D .3211、已知函数f (x )的定义域为[a ,b ],函数f (x )则函数f (| x |)的图象是( )A . B. C. D.12、已知()x f 为偶函数,且()()x f x f -=+22,当02≤≤-x 时()x x f 2=,若*N n ∈,()n f a n =则=2006a ( ) A . 2006 B .4 C .41D .4- 二、填空题:本大题共4小题,每小题4分,共16分。

高三理科金太阳数学试卷

高三理科金太阳数学试卷

一、选择题(每小题5分,共50分)1. 已知函数f(x) = x^3 - 3x,则f'(x)的零点为()A. 0B. 1C. -1D. 32. 若复数z满足|z-1|=|z+1|,则复数z的实部为()A. 0B. 1C. -1D. 23. 已知等差数列{an}的前n项和为Sn,若a1=1,公差d=2,则S10等于()A. 90B. 100C. 110D. 1204. 下列命题中正确的是()A. 若两个向量垂直,则它们的点积为0B. 若两个向量平行,则它们的点积为0C. 若两个向量垂直,则它们的数量积为0D. 若两个向量平行,则它们的数量积为05. 函数y = log2(3x - 1)的图像过点(2,1),则x的值为()A. 1B. 2C. 3D. 46. 已知等比数列{bn}的首项b1=2,公比q=3,则b4+b6等于()A. 18B. 27C. 36D. 547. 若不等式|ax + b| ≤ c的解集为[-1, 1],则a、b、c的关系为()A. a > 0,b > 0,c > 0B. a < 0,b < 0,c > 0C. a > 0,b < 0,c > 0D. a < 0,b > 0,c > 08. 若直线y = kx + 1与圆x^2 + y^2 = 1相切,则k的值为()A. ±1B. ±√2C. ±1/√2D. ±√39. 已知函数f(x) = e^x + e^(-x),则f'(x)的零点为()A. 0B. 1C. -1D. 无10. 已知等差数列{cn}的前n项和为Tn,若c1=1,公差d=2,则T10等于()A. 90B. 100C. 110D. 120二、填空题(每小题5分,共25分)11. 已知函数f(x) = x^2 - 2x + 1,则f(x)的最小值为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年高三数学(理科)试卷(11) 一、选择题:(本大题共8小题,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设P 、Q 是两个非空集合,定义集合间的一种运算“⊙”:P ⊙Q=}.|{Q P x Q P x x ⋂∉⋃∈,且 如果}0,4|{},4|{2>==-==x y y Q x y x P x ,则P ⊙Q= ( ) A ),2(]1,2[+∞⋃- B ),2[]1,2[+∞⋃- C [1,2] D (2,+∞)2.设x ,y 满足约束条件0,,4312.x y x x y ≥⎧⎪≥⎨⎪+≤⎩则231x y x +++的取值范围为( ) A .[]1,5 B .[]2,6 C .[]2,10 D .[]3,113.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于( )(A) 122n +- (B) 3n (C) 2n (D) 31n -4.不等式2()0f x ax x c =-->的解集为{|21}x x -<<,则函数()y f x =-的图象为( )5.已知)(2R x x x ∈=-⋅+⋅,其中A 、B 、C 三点共线,则满足条件的x ( )A .不存在B .有一个C .有两个D .以上情况均有可能6.已知直线x y a +=与圆224x y +=交于A 、B 两点,O 是坐标原点,向量OA u u u r 、OB u u u r 满足||||OA OB OA OB +=-u u u r u u u r u u u r u u u r ,则实数a 的值是( )(A )2 (B )2- (C 6或6 (D )2或2-7.如图,△PAB 所在的平面α和四边形ABCD 所在的平面β互相垂直,且αα⊥⊥BC AD ,,AD=4, BC=8,AB=6,若10tan 2tan =∠+∠BCP ADP ,则点P 在平面α内的轨迹是 ( )A .圆的一部分B .椭圆的一部分C .双曲线的一部分D .抛物线的一部分8.若函数,0)(210)1,0)(2(log )(2>≠>+=x f a a x x x f a )内恒有,在区间(则f (x )的单调递增区间是( )A .)41,(--∞ B .),41(+∞- C .)21,(--∞ D .(0,+∞)第Ⅱ卷(非选择题,共110分)二、填空题:本大题共6小题,共30分.9.酒杯的形状为倒立的圆锥,杯深8cm ,上口宽6cm ,水以202cm s 的流量倒入杯中,当水深为4cm 时,则水面升高的瞬时变化率是 . 10.已知a>b>0,则a 2 + 16b (a -b )的最小值是_________。

11.在ABC △中,AB BC =,7cos 18B =-.若以A ,B 为焦点的椭圆经过点C ,则该椭圆的离心率e = .12.已知数列}{n a 的通项公式为(2)n n a n =⋅-,则数列{n n a b }成等比数列是数列}{n b 的通项公式为n b n =的 条件(对充分性和必要性都要作出判断).13.棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图1,则图中三角形(正 四面体的截面)的面积是14.给出下列四个结论:① 函数sin y x =在第一象限是增函数;② 函数1cos 2y x =+的最小正周期是π ③若22,am bm <则a b <;④函数()sin f x x x =-(x R ∈)有3个零点;⑤对于任意实数x ,有()(),()(),f x f x g x g x -=--=且x>0时,()0,()0,f x g x ''>>则x<0时()().f x g x ''>其中正确结论的序号是 .(填上所有正确结论的序号) 三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.15(12分)已知函数()sin()sin()cos (,)66f x x x x a a R a ππ=++-++∈为常数. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)若函数()f x 在[-2π,2π]上的最大值与最小值之和为3,求实数a 的值. 16.(本小题满分12分)如图,三棱柱ABC —A 1B 1C 1中,AA 1⊥面ABC ,BC ⊥AC ,BC=AC=2,AA 1=3,D 为AC 的中点.(Ⅰ)求证:AB 1//面BDC 1;(Ⅱ)求二面角C 1—BD —C 的余弦值;(Ⅲ)在侧棱AA 1上是否存在点P ,使得CP ⊥面BDC 1?并证明你的结论.17、(本小题满分14分)如图,已知椭圆的中心在原点,焦点在x 轴上,长轴长是短轴长的2倍且经过点M (2,1),平行于OM 的直线l 在y 轴上的截距为m (m ≠0),l 交椭圆于A 、B 两个不同点。

图(1)求椭圆的方程;(2)求m 的取值范围;(3)求证直线MA 、MB 与x 轴始终围成一个等腰三角形。

18.已知函数f(x)=ax 3+bx 2-3x 在x=±1处取得极值.(Ⅰ)求函数f(x)的解析式;(Ⅱ)求证:对于区间[-1,1]上任意两个自变量的值x 1,x 2,都有|f(x 1)-f(x 2)|≤4; (Ⅲ)若过点A (1,m )(m ≠-2)可作曲线y=f(x)的三条切线,求实数m 的取值范围.19已知曲线)0(1)1(log )(2>++=x x x x f 上有一点列))(,(*N n y x P n n n ∈,点n P 在x 轴上的射影是)0,(n n x Q ,且)(12*1N n x x n n ∈+=-,11=x .(1)求数列}{n x 的通项公式;(2)设四边形11++n n n n P Q Q P 的面积是n S ,求证:4121121<+++nnS S S Λ20定义),0(,,)1(),(+∞∈+=y x x y x F y(1)令函数))94(log ,1()(22+-=x x F x f 的图象为曲线c 1,曲线c 1与y 轴交于点A (0,m ),过坐标原点O作曲线c 1的切线,切点为B (n ,t )(n >0)设曲线c 1 在点A 、B 之间的曲线段与OA 、OB 所围成图形的面积为S ,求S 的值;(2)当).,(),(,,*x y F y x F y x N y x ><∈证明时且高三数学答案一、选择题 ADCC CDBC二、填空题9.80cm s 9π 10.16 11. 38c e a == 12. 必要不充分 13. 2 14. ③⑤三、解答题:15.解:(Ⅰ)∵()2sin cos cos 6f x x x a π=++3sin cos x x a =++2sin 6x a π⎛⎫=++ ⎪⎝⎭……………………4分 ∴函数()f x 的最小正周期2T π= ………………………6分 (Ⅱ)∵,22x ππ⎡⎤∈-⎢⎥⎣⎦,∴2363x πππ-≤+≤ ∴当63x ππ+=-,即2x π=-时,()min 32f x f a π⎛⎫=-=-+ ⎪⎝⎭……8分 当62x ππ+=,即3x π=时,()max 23f x f a π⎛⎫==+ ⎪⎝⎭……10分 由题意,有(3)(2)3a a -+++=∴31a =- ……12分 16. (I )证明:连接B 1C ,与BC 1相交于O ,连接OD∵BCC 1B 1是矩形,∴O 是B 1C 的中点.又D 是AC 的中点,∴OD//AB 1.………………………………………………2分∵AB 1⊄面BDC 1,OD ⊂面BDC 1,∴AB 1//面BDC 1.…………………………………………4分(II )解:如力,建立空间直角坐标系,则C 1(0,0,0),B (0,3,2),C (0,3,0),A (2,3,0),D (1,3,0)……………………5分设n =(x 1,y 1,z 1)是面BDC 1的一个法向量,则 ,0011⎪⎩⎪⎨⎧=⋅=⋅D C n B C n 即)21,31,1(,030231111-=⎩⎨⎧=+=+n y x z y 取.…………6分 易知C C 1=(0,3,0)是面ABC 的一个法向量.723671,cos 11-=⋅-=>=<∴C .…………………………8分 ∴二面角C 1—BD —C 的余弦值为72.………………………………9分 (III )假设侧棱AA 1上存在一点P (2,y ,0)(0≤y ≤3),使得CP ⊥面BDC 1.则⎪⎩⎪⎨⎧==∴⎩⎨⎧=-+=-⎪⎩⎪⎨⎧=⋅=⋅.373,0)3(320)3(3,0011y y y y C C 即 ∴方程组无解.∴假设不成立.∴侧棱AA 1上不存在点P ,使CP ⊥面BDC 1.……………14分17. 解:(1)设椭圆方程为)0(12222>>=+b a by a x ……………………………1分 则⎪⎩⎪⎨⎧==⎪⎩⎪⎨⎧=+=2811422222b a b a b a 解得…………………………………………3分 ∴椭圆方程为12822=+y x ………………………………………………4分 (2)∵直线l 平行于OM ,且在y 轴上的截距为m 又K OM =21 m x y l +=∴21的方程为:……………………………………………………5分 由0422128212222=-++∴⎪⎪⎩⎪⎪⎨⎧=++=m mx x y x m x y ……………………………………6分 ∵直线l 与椭圆交于A 、B 两个不同点,分且解得8...........................................................0,22,0)42(4)2(22≠<<->--=∆∴m m m m(3)设直线MA 、MB 的斜率分别为k 1,k 2,只需证明k 1+k 2=0即可…………9分 设1122(,),(,)A x y B x y 则11112y k x -=-,22212y k x -=-,由222240x mx m ++-= 212122,24x x m x x m +=-=-………………10分 而12122112121211(1)(2)(1)(2)22(2)(2)y y y x y x k k x x x x -----+--+=+=----)2)(2()1(4)2)(2(42)2)(2()1(4))(2()2)(2()2)(121()2)(121(212212*********------+-=----+++=----++--+=x x m m m m x x m x x m x x x x x m x x m x13......................................................0)2)(2(444242212122=+∴=--+-+--=k k x x m m m m 分 故直线MA 、MB 与x 轴始终围成一个等腰三角形.…………………………14分 18. 解:(I )f ′(x)=3ax 2+2bx -3,依题意,f ′(1)=f ′(-1)=0,即,03230323⎩⎨⎧=--=-+b a b a …………………………………………2分 解得a=1,b=0.∴f(x)=x 3-3x.……………………………………………………4分 (II )∵f(x)=x 3-3x,∴f ′(x)=3x 2-3=3(x+1)(x -1),当-1<x<1时,f ′(x)<0,故f(x)在区间[-1,1]上为减函数,f max (x)=f(-1)=2,f min (x)=f(1)=-2……………………………………6分∵对于区间[-1,1]上任意两个自变量的值x 1,x 2,都有|f(x 1)-f(x 2)|≤|f max (x) -f min (x)||f(x 1)-f(x 2)|≤|f max (x)-f min (x)|=2-(-2)=4………………………………8分 (III )f ′(x)=3x 2-3=3(x+1)(x -1),∵曲线方程为y=x 3-3x ,∴点A (1,m )不在曲线上.设切点为M (x 0,y 0),则点M 的坐标满足.30300x x y -=因)1(3)(200-='x x f ,故切线的斜率为13)1(300302---=-x m x x x ,整理得03322030=++-m x x . ∵过点A (1,m )可作曲线的三条切线,∴关于x 0方程3322030++-m x x =0有三个实根.……………………10分设g(x 0)= 3322030++-m x x ,则g ′(x 0)=60206x x -,由g ′(x 0)=0,得x 0=0或x 0=1.∴g(x 0)在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减.∴函数g(x 0)= 3322030++-m x x 的极值点为x 0=0,x 0=1………………12分∴关于x 0方程3322030++-m x x =0有三个实根的充要条件是⎩⎨⎧<>0)1(0)0(g g ,解得-3<m<-2.故所求的实数a 的取值范围是-3<m<-2.……………………14分19. 解:(1)由)(12*1N n x x n n ∈+=-得)1(211+=+-n n x x ∵11=x , ∴01≠+n x ,故}1{+n x 是公比为2的等比数列112)1(1-⋅+=+⇒n n x x∴)(12*N n x n n ∈-=.…………………………………………………………6分(2)∵n n n n n n x f y 2112)112(log )(2=+-+-== , ∴n n n n n Q Q 2)12()12(||11=---=++, 而nn n n Q P 2||= , …………………9分 ∴四边形11++n n n n P Q Q P 的面积为:4132)221(21|||)||(|211111+=⋅++=⋅+=++++n n n Q Q Q P Q P S n n n n n n n n n n ∴)111(4)33131(12)13131(12)13(312)13(41+-=+-<+-=+=+=n n n n n n n n n n nS n , 故1211114(1)421n S S nS n +++<-<+L .……………………………………………14分 20. 解:(1)y x y x F )1(),(+=Θ942))94(log ,1()(2)94(log 2222+-==+-=∴+-x x x x F x f x x 故A (0,9)…………2分42)('-=x x f ,过O 作C 1的切线,切点为)0)(,(>n t n B ,⎪⎩⎪⎨⎧-=+-=∴42942n n t n n t 解得B (3,6) …………4分9|)9331()294(3023302=+-=-+-=∴⎰x x x dx x x x S …………6分 (2)令2)1ln(1)(')1()1ln()(x x x x x h x x x x h +-+=≥+= …………8分 令)0)(1ln(1)(>+-+=x x xx x P 0)1(11)1(1)('22<+-=+-+=∴x x x x x P [)+∞∴,0)(在x P 单调递减。

相关文档
最新文档