直线与方程典型基础练习题
直线与方程单元测试基础试题
直线与方程单元测试姓名 成绩注意:考试时间120分钟一、选择题.(50分)1.若直线过点(1,2),(4,2),则此直线的倾斜角是( )(A )30° (B )45° (C )60° (D ) 0°2直线2y x =-的倾斜角大小为( )(A ) 45 (B )135 (C )120 (D )903.点P (-1,2)到直线x=1的距离为( )(A )2 (B )21 (C )1 (D )27 4.已知过点A (-2,m )和点B (m ,4)的直线与直线2x+y-1=0平行,则m 的值为( )(A )m =-8 (B )m =0 (C )m =2 (D )m =105.以A(1,3),B(-5,1)为端点的终点坐标是( )(A )(-4,4) (B )(-2,2) (C )(6,2) (D )(-6,-2)6.直线mx-y+2m+1=0经过一定点,则该点的坐标是 ( )(A )(-2,1) (B )(2,1) (C )(1,-2) (D )(1,2)7.直线0202=++=++n y x m y x 和的位置关系是( )(A )平行 (B )垂直(C )相交但不垂直 (D )不能确定8.如图1,直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则必有( )(A ) k 1<k 3<k 2 (B ) k 3<k 1<k 2(C ) k 1<k 2<k 3 (D ) k 3<k 2<k 19.已知A (1,2)、B (-1,4)、C (5,2),则ΔABC 的边AB 上的中线所在直线方程为( )(A )x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=010.如果直线L 经过两直线2x-3y+1=0和3x-y-2=0的交点,且与直线y=x 垂直,则原点到直线L 的距离为() (A )2 (B )1 (C )2 (D )22二、填空题.(25分)11.过点(3,4)A -且斜率为-1的直线方程为 .12.点(2,1)A -到直线3410x y --=距离为 .13.已知点)4,5(-A 和),2,3(B 则过点)2,1(-C 且与B A ,的距离相等的直线方程为14.过点P(1,2)且在x 轴,y 轴上截距相等的直线方程是 .15.直线5x+12y+3=0与直线10x+24y+5=0的距离是 .三、解答题.16.(Ⅰ)求过点(1,2)A -且平行于直线3x+4y-12=0直线的方程.(Ⅱ)求垂直于直线x+3y-5=0,且过点P(-1,0)的直线的方程.17.直线x+m 2y+6=0与直线(m-2)x+3my+2m=0,没有公共点,求实数m 的值.18.求过直线x-2y+1=0和x+3y-1=0的交点且与直线x=y 3垂直的直线方程.19.已知A (7,8),B (10,4),C (2,-4)三点,求ABC ∆的面积.20.直线5x+4y=2a+1与直线2x+3y=a的交点位于第四象限,求实数a的取值范围.21.直线L与直线x-3y+10=0及2x-y+8=0分别交于M、N两点,如果 MN的中点坐标是(0,1),求直线L的方程.。
(完整版)直线与方程练习题及答案详解
直线与方程练习题及答案详解一、选择题1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b aB .1=-b aC .0=+b aD .0=-b a2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限5.直线1x =的倾斜角和斜率分别是( )A .045,1 B .0135,1- C .090,不存在 D .0180,不存在6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( ) A .0≠m B .23-≠m C .1≠m D .1≠m ,23-≠m ,0≠m 二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________;若3l 与1l 关于x 轴对称,则3l 的方程为_________;若4l 与1l 关于x y =对称,则4l 的方程为___________; 3.若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。
4.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________. 5.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。
直线的方程基础练习题
一、 直线方程的四种表示形式1、下列四个命题中,真命题是()A .经过定点000(,)P x y 的直线都可以用方程00()y y k x x -=-表示B .经过任意两个不同的点111(,)P x y ,222(,)P x y 的直线都可以用方程121121()()()()y y x x x x y y --=--表示C .不经过原点的直线都可以用方程1x y a b+=表示 D . 经过定点的直线都可以用方程y kx b =+表示2、二元一次方程0Ax By C ++=表示为直线方程,下列不正确叙述是()A .实数AB ,必须不全为零. B .220A B +≠.C .所有的直线均可用220(0)Ax By C A B ++=+≠表示.D . 确定直线方程0Ax By C ++=须要三个点坐标待定A B C ,,三个变量. 3、已知直线0Ax By C ++=,⑴系数满足什么关系时,方程表示通过原点的直线;⑵系数满足什么关系时与坐标轴都相交;⑶系数满足什么条件时只与x 轴相交;⑷设()00P x y ,为直线0Ax By C ++=上一点,证明:这条直线的方程可以写成()()000A x x B y y -+-=.二、 选择适当形式求解直线方程1、过点(1,3),斜率为1的直线方程是()A . 20x y -+=B .20x y --=C .40x y +-=D .40x y -+=2、 一条直线过点(52),,且在x 轴,y 轴上截距相等,则这直线方程为() A .70x y +-= B .250x y -=B . 70x y +-=或250x y -= D .70x y ++=或250y x -=3、已知直线经过点(6,4),斜率为43-,则直线的方程.4、直线l 经过直线3260x y ++=和2570x y +-=的交点,且在两坐标轴上的截距相等,求直线l 的方程.5、 直线l 经过点(3,2),且在两坐标轴上的截距相等,求直线l 的方程.6、 已知:ABC ∆的三个顶点是(03)A ,,(33)B ,,(20)C ,,直线:l x a =将ABC ∆分割成面积相等的两部分,求a 的值.7、 若ABC ∆的顶点(34)A ,,(60)B ,,(52)C --,,求A ∠的平分线AT 所在的直线的方程.8、 在直角坐标系中,过直线230x y --=与直线2320x y --=的交点作一直线,使它与两坐标轴相交所成三角形的面积为5平方单位,求:这条直线的方程.9、 已知直线l 过点(12),,并且与点(2.3)A ,和(05)B -,的距离相等,求直线l 的方程.10、 已知两条直线1:3120l x y -+=,2:340l x y +-=,过定点(1,2)P -作一条直线l ,分别与直线12l l 、交于M N 、两点,若点P 恰好是MN 的中点,求直线l 的方程.11、 求过点(5,4)P --且分别满足下列条件的直线方程:⑴ 与两坐标轴围成的三角形面积为5;⑵ 与x 轴和y 轴分别交于A 、B 两点,且:3:5AP BP =.12、 已知抛物线212y x =-与过点(0,1)M -的直线l 相交于,A B 两点,且直线OA 与OB 的斜率之和为1,求直线l 的方程.13、 过点(14)P ,引一条直线,使它在两条坐标轴上的截距为正值,且它们的和最小,求这条直线方程.14、 已知ABC △的三个顶点分别为(30)A -,,(21)B ,,(23)C -,, ⑴求B 、C 所在直线的方程;⑵求BC 边上的中线AD 所在直线的方程.15、 求斜率为34且与两坐标轴围成的三角形的周长是12的直线l 的方程.16、 直线l 过点(86)P ,,且与两坐标轴围成等腰直角三角形,求直线l 的方程.17、 一直线过点(),0a -()0a >,分割第二象限得一三角形区域,此三角形面积为T ,则直线方程是.。
直线方程练习题
直线方程练习题一、选择题1. 已知直线l过点A(2,3)且与直线3x-4y+5=0平行,求直线l的方程。
A. 3x-4y-1=0B. 3x-4y+13=0C. 4x-3y+6=0D. 4x-3y-6=02. 直线l1: ax+by+c=0与直线l2: cx+dy+e=0平行,那么以下哪个条件是正确的?A. ad-bc=0B. ac-bd=0C. a/c=b/dD. a/c≠b/d3. 已知直线l的方程为y=kx+b,若该直线过点(1,0)且斜率为1,则k 的值为:A. 0B. -1C. 1D. 24. 直线方程x+y-2=0与x-y+2=0的交点坐标是:A. (0,2)B. (2,0)C. (-2,0)D. (0,-2)5. 已知直线l1: 2x-3y+4=0与直线l2: x+y-2=0,求它们之间的距离。
A. 1B. 2C. 3D. 4二、填空题1. 若直线方程为ax+by=c,且a、b不全为0,则直线的斜率k=______。
2. 直线方程y=2x+3与x轴的交点坐标为______。
3. 若直线l过点(-1,2)且斜率为-2,则直线l的方程为______。
4. 已知直线方程为x-2y+4=0,求与该直线垂直的直线方程。
5. 已知直线方程为3x+4y-5=0,求直线上点(1,-1)到该直线的距离。
三、解答题1. 已知直线l1: 2x-y+3=0与直线l2: x+y+1=0,求它们所围成的三角形的顶点坐标。
2. 已知直线l1: ax+by+c1=0与直线l2: cx+dy+c2=0相交,求交点坐标。
3. 已知直线l1: 3x+4y-7=0与直线l2: 6x-8y+15=0,判断它们是否平行或重合,并说明理由。
4. 已知直线l: y=-2x+5与x轴相交于点A,与y轴相交于点B,求点A和点B的坐标。
5. 已知直线l1: 2x-y+1=0与直线l2: x-2y+2=0,求它们所成的角的正切值。
四、证明题1. 证明:若直线l1: ax+by+c1=0与直线l2: cx+dy+c2=0垂直,则有ad+bc=0。
完整版)直线与方程测试题及答案解析
完整版)直线与方程测试题及答案解析1.若过点(1,2)和(4,5)的直线的倾斜角是多少?A。
30° B。
45° C。
60° D。
90°2.如果三个点A(3,1)。
B(-2,b)。
C(8,11)在同一直线上,那么实数b等于多少?A。
2 B。
3 C。
9 D。
-93.过点(1,2),且倾斜角为30°的直线方程是什么?A。
y + 2 = (3/√3)(x + 1) B。
y - 2 = 3/2(x - 1) C。
3x - 3y + 6 - 3 = 0 D。
3x - y + 2 - 3 = 04.直线3x - 2y + 5 = 0和直线x + 3y + 10 = 0的位置关系是?A。
相交 B。
平行 C。
重合 D。
异面5.直线mx - y + 2m + 1 = 0经过一定点,则该点的坐标是多少?A。
(-2,1) B。
(2,1) C。
(1,-2) D。
(1,2)6.已知ab < 0,bc < 0,则直线ax + by + c = 0通过哪些象限?A。
第一、二、三象限 B。
第一、二、四象限 C。
第一、三、四象限 D。
第二、三、四象限7.点P(2,5)到直线y = -3x的距离d等于多少?A。
√(23/2) B。
√(2/23) C。
√(23+5) D。
√(22)8.与直线y = -2x + 3平行,且与直线y = 3x + 4交于x轴上的同一点的直线方程是什么?A。
y = -2x + 4 B。
y = (1/2)x + 4 C。
y = -2x - 3 D。
y = (2/3)x - 39.如果直线y = ax - 2和直线y = (a+2)x + 1互相垂直,则a 等于多少?A。
2 B。
1 C。
-1 D。
-210.已知等腰直角三角形ABC的斜边所在的直线是3x - y + 2 = 0,直角顶点是C(3,-2),则两条直角边AC,BC的方程是什么?A。
3x - y + 5 = 0.x + 2y - 7 = 0 B。
直线与方程单元基础卷PDF版带答案
解得 xB =
7. k+2
因为 P (0, 1) 是 AB 的中点,则
7 3k − 1
+
7 k+2
=
0,解得
k
=
−
1 4
.
故所求直线 l 的方程为 y = − 1 x + 1,即 x + 4y − 4 = 0.
4
22.
(1) (2)
2(−√11,3−.2).
(3) 2x + y + 4 = 0.
所以 m = 6,
所以两条平行线的距离为 √|5 + 6| = 11 . 62 + 82 10
11. 令 P 可得
(P3P, 4′)的,中设点对称( 点3 +Pa′
,的4坐+标b 为) 在(a直, b线),x
−
y
+
6
=
0
上,
2
2
故可得 3 + a − 4 + b + 6 = 0. · · · · · · ①
2 2a c
4
13. 4
14. 15.
x√+ 5
6y − 16 =√0 解析: x2
+ y2
表示直线
2x
+
y
+
5
=
0
上的点与原点的距离,其最小值就是原点到直线
2x + y + 5 = 0 的距离 |0√+ 0 + 5| = √5. 4+1
16.
−
2 3
解析:由题意,可设直线 l 的方程为 y = k (x − 1) − 1(易知直线 l 的斜率存在),
直线与方程基础练习题
直线与方程基础练习题一、选择题1.过点(1,0)且与直线220x y --=平行的直线方程是( )A .210x y +-=B .210x y -+=C .220x y +-=D .210x y --= 2.已知直线l 过点(0,7),且与直线42y x =-+平行,则直线l 的方程为( ). A. 47y x =-- B. 47y x =- C. 47y x =-+ D. 47y x =+ 3.过点(-1,3)且垂直于直线x -2y +3=0的直线方程是( )A .x -2y +7=0B .2x +y -1=0C .x -2y -5=0D .2x +y -5=0 4.已知直线l 的方程为20(0)x y a a --=≠,则下列叙述正确的是( ) A. 直线不经过第一象限B. 直线不经过第二象限C. 直线不经过第三象限 D. 直线不经过第四象限5.过点(1,3)-且平行于直线032=+-y x 的直线方程为( )A.072=+-y xB.012=-+y x C .250x y --= D .052=-+y x 6.已知两条直线01:1=-+y x l ,023:2=++ay x l 且21l l ⊥,则a =A. 31-B .31C . -3D .37.在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )A .B .C .D . 8.若三点(2,3),(5,0),(0,)(0)A B C b b ≠共线,则b =A .2B .3C .5D .19.如果直线(m+4)x+(m+2)y+4=0与直线(m+2)x+(m+1)y-1=0互相平行,则实数m 的值等于( )A 、0B 、2C 、-2D 、0或-210.已知直线αsin :1x y l =和直线c x y l +=2:2,则直线1l 与2l ( )。
A.通过平移可以重合B.不可能垂直C.可能与x 轴围成等腰直角三角形 D.通过1l 上某一点旋转可以重合11.已知点A(0, –1),点B 在直线x –y+1=0上,直线AB 垂直于直线x+2y –3=0,则点B 的坐标是( )A.(–2, –3)B.(2, 3)C.(2, 1)D.(–2, 1)12.已知直线方程:1l :2x-4y+7=0, 2l :x-2y+5=0,则1l 与2l 的关系( ) A.平行 B.重合 C.相交 D.以上答案都不对13.如果直线220ax y -+=与直线320x y --=平行,那么系数a 等于( ).A . 6B .-3CD 14.若直线20mx y m +-=与直线(34)10m x y -++=垂直,则m 的值是( )A.1-或B.1或或1- 1 15.两条平行线l 1:3x-4y-1=0与l 2:6x-8y-7=0间的距离为( )A 、1 16.已知直线l 方程为25100x y -+=,且在x 轴上的截距为a ,在y 轴上的截距为b ,)A .3B .7C .10D .517.直线02=++by ax ,当0,0<>b a 时,此直线必不过 ( ) A .第一象限 B .第二象限 C .第三象限D .第四象限18在y 轴上的截距是( )A B .2b - C .b 2D .±b 19.若直线Ax +By +C=0与两坐标轴都相交,则有A 、0AB ⋅≠ B 、0A ≠或0B ≠C 、0C ≠D 、A 2+B 2=020.点(a,b)关于直线x+y=0对称的点是 ( )A 、 (-a,-b)B 、 (a,-b)C 、 (b,a)D 、 (-b,-a) 21.已知点(x ,-4)在点(0,8)和(-4,0)的连线上,则x 的值为 (A)-2 (B)2 (C)-8 (D)-622.已知两点A (1,2).B (2,1)在直线10mx y -+=的异侧,则实数m 的取值范围为( ) A .(,0-∞)B .(1,+∞)C .(0,1)D .(,0-∞)(1,)+∞23.对任意实数m ,直线(1)260m x m y -++=必经过的定点是A.(1,0)B.(0,3)-C.(6,3)- 24.过点P (4,-1)且与直线3x-4y+6=0垂直的直线方程是A 、4x+3y-13=0B 、4x-3y-19=0C 、3x-4y-16=0D 、3x+4y-8=0 25.点P (2,5)关于直线x 轴的对称点的坐标是 ( ) A .(5,2) B .(-2,5)C .(2,-5) D .(-5,-2)26.直线l 1: ax+3y+1=0, l 2: 2x+(a+1)y+1=0, 若l 1∥l 2,则a=A .-3B .2C .-3或2D .3或-2 27.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x 28. 直线:10l x y -+=关于y 轴对称的直线方程为( )A .10x y -+=B . 10x y +-=C .10x y ++=D .10x y --= 29.过点(1-,3)且垂直于直线032=+-y x 的直线的方程为A .2x +y -1=0B .2x +y -5=0C .x +2y -5=0D .x -2y +7=030.已知过点A (-2,m )和B (m ,4)的直线与直线012=-+y x 垂直,则m 的值为 A. -8 B. 0 C. 10 D. 231. 过点(1,0)且与直线022=--y x 平行的直线方程是A. 012=--y xB. 012=+-y xC. 022=-+y xD. 012=-+y x32.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A 、012=-+y xB 、052=-+y x C 、052=-+y x D 、072=+-y x 33.经过点)1,2(的直线l 到A )1,1(、B )5,3(两点的距离相等,则直线l 的方程为( ) A .032=--y xB .2=xC .032=--y x 或2=xD .都不对34.过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( )A 、4x+3y-13=0B 、4x-3y-19=0C 、3x-4y-16=0D 、3x+4y-8=035.AB C ∆中,(2,0)A - 、(2,0)B C(3,3)、,则 AB 边的中线对应方程为( ) A .x y = B .3)x x(0y ≤≤= C .x y -= D .3)x x(0y ≤≤-= 36.无论m 取何值,直线210mx y m -++=经过一定点,则该定点的坐标是 ( ). A.(-2,1) B.(2,1) C.(1,-2) D.(1,2) 37.直线02=+--m y mx 经过一定点,则该点的坐标是( ) A .)2,1(- B .)1,2(- C .)2,1( D .)1,2( 38.直线l 与直线0432=+-y x 垂直,则直线l 的方程可能是( )A.0123=-+y xB.0723=+-y xC.0532=+-y xD.0832=++y x39.若n m ,满足012=-+n m , 则直线03=++n y mx 过定点 (A. B. C. D.40.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为 A .01=+-y x B .0=-y x C .01=++y x D .0=+y x 41..已知点A (1,2)、B (3,1),则线段AB 的垂直平分线的方程是 A.4x +2y =5 B.4x -2y =5 C.x +2y =5 D.x -2y =5 42.直线210x y -+=关于直线1x =对称的直线方程是( )A.210x y +-=B.210x y +-=C.230x y +-=D.230x y +-= 43.过点(-1,3)且平行于直线032=+-y x 的方程是( )A .052=+-y xB .052=-+y x .012=-+y x D .072=+-y x 44.已知两直线1l :08=++n y mx 和012:2=-+my x l 若21l l ⊥且1l 在y 轴上的截距为 –1,则n m ,的值分别为 ( )A .2 ,7B .0,8C .-1,2D .0,-845.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( )A .0B .8-C .2D .1046.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则点P 的轨迹方程为( )A .360x y +-=B .320x y -+=C .320x y +-=D .320x y -+= 47.若直线0=++C By Ax 经过第一、二、三象限,则( ) A .AB<0,BC<0 B .AB>0,BC<0 C .AB<0,BC>0D .AB>0,BC>0二、填空题48.直线01052=--y x 与坐标轴围成的三角形的面积为 .49.直线过点 (-3,-2)且在两坐标轴上的截距相等,则这直线方程为 .直线与方程基础练习题(二)参考答案1.D 【解析】试题分析:因为所求直线与直线220x y --=平行,所以,设为20x y c -+=, 将(1,0)代入得c=1-,故过点(1,0)且与直线220x y --=平行的直线方程是210x y --=,选D 。
直线与方程典型题
直线与方程典型题1、光线从点()3,2A 射出在直线01:=++y x l 上,反射光线经过点()1,1B , 则反射光线所在直线的方程2、在等腰直角三角形ABC 中,AB=AC=4,点P 是边AB 上异于A ,B 的一点,光线从点P 出发,经BC ,CA 发射后又回到点P (如图).若光线QR 经过△ABC 的重心(三角形三条中线的交点),则AP=______3、点A (1,3),B (5,-2),点P 在x 轴上使|AP |-|BP |最大,则P 的坐标为:4、5、已知直线l:kx-y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线l不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为4,求直线l的方程.6、78、(1)要使直线l 1:m y m m x m m 2)()32(22=-+-+与直线l 2:x -y=1平行,求m 的值. (2)直线l 1:a x +(1-a)y=3与直线l 2:(a -1)x +(2a+3)y=2互相垂直,求a 的值.9、已知∆A B C 中,A (1, 3),AB 、AC 边上的中线所在直线方程分别为x y -+=210 和y -=10,求∆A B C各边所在直线方程.10、11、已知函数x a x x f +=)(的定义域为),0(∞+,且222)2(+=f . 设点P 是函数图象上的任意一点,过点P 分别作直线x y =和y 轴的垂线,垂足分别为N M 、. (1)求a 的值;(2)问:||||PN PM ⋅是否为定值?若是,则求出该定值,若不是,则说明理由; (3)设O 为原点,若四边形OMPN 面积为求P 点的坐标。
直线与直线方程-练习
索引
1.直线 x+ 3y+3=0 的倾斜角 α 为( D )
A.30° C.120°
B.60° D.150°
解析 由已知得斜率 k=- 33=tan α,
又倾斜角 0°≤α<180°,所以 α=150°.
1 2 3 4 5 6 7 8 9 10
2.直线ax2-by2=1 在 y 轴上的截距是( B )
1 2 3 4 5 6 7 8 9 10
(2)若直线l在x轴、y轴上的截距均不为0,点P(a,b)在直线l上,求3a+3b的最 小值. 解 由题意及(1)得l的方程为x+y-3=0, ∵点P(a,b)在直线l上, ∴a+b=3, ∴3a+3b≥2 3a·3b=2 3a+b=6 3, 当且仅当 a=b=32时等号成立.
∴3a+3b 的最小值是 6 3.
1 2 3 4 5 6 7 8 9 10
5.(多选)若方程(2m2+m-3)x+(m2-m)y-4m+1=0表示一条直线,则实数m
可以取下列哪些值( ACD )
A.0
B.1
C.2
D.3
解析 因为方程(2m2+m-3)x+(m2-m)y-4m+1=0表示一条直线,
所以2m2+m-3=0,m2-m=0不能同时成立,
两式同时成立时解得m=1,所以m≠1.故选ACD.
7.过点(1,3)且在x轴上的截距为2的直线方程是__3_x_+__y_-__6_=__0. 解析 由题意知直线过点(2,0)和点(1,3),由两点式可得3y--00=x1- -22, 整理得 3x+y-6=0.
1 2 3 4 5 6 7 8 9 10
8.若直线(2t-3)x+y+6=0不经过第一象限,则t的取值范围为___32_,__+__∞__ . 解析 方程可化为 y=(3-2t)x-6,因为直线不经过第一象限, 所以 3-2t≤0,得 t≥32.
直线与方程基础练习题1
直线与方程基础练习题一、选择题1.过点(1,0)且与直线220x y --=平行的直线方程是( )A .210x y +-=B .210x y -+=C .220x y +-=D .210x y --= 3.过点(-1,3)且垂直于直线x -2y +3=0的直线方程是( )A .x -2y +7=0B .2x +y -1=0C .x -2y -5=0D .2x +y -5=0 4.已知直线l 的方程为20(0)x y a a --=≠,则下列叙述正确的是( )A. 直线不经过第一象限B. 直线不经过第二象限C. 直线不经过第三象限D. 直线不经过第四象限 6.已知两条直线01:1=-+y x l ,023:2=++ay x l 且21l l ⊥,则a =A. 31-B .31C . -3D .3 7.在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )A .B .C .D .8.若三点(2,3),(5,0),(0,)(0)A B C b b ≠共线,则b =( )A .2 B .3 C .5 D .1 9.如果直线(m+4)x+(m+2)y+4=0与直线(m+2)x+(m+1)y-1=0互相平行,则实数m 的值等于( ) A 、0 B 、2 C 、-2 D 、0或-210.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是( ) A 3x-y-8=0 B 3x+y+4=0C C 3x-y+6=0 D 3x+y+2=011.已知点A(0, –1),点B 在直线x –y+1=0上,直线AB 垂直于直线x+2y –3=0,则点B 的坐标是( ) A.(–2, –3) B.(2, 3) C.(2, 1) D.(–2, 1)12.已知直线方程:1l :2x-4y+7=0, 2l :x-2y+5=0,则1l 与2l 的关系( ) A.平行 B.重合 C.相交 D.以上答案都不对13.如果直线220ax y -+=与直线320x y --=平行,那么系数a 等于( ). A. 6 B .-3 C .-23 D .3214.若直线20mx y m +-=与直线(34)10m x y -++=垂直,则m 的值是( ) A.1-或13B.1或13C.13-或1- D.13-或1 15.两条平行线l 1:3x-4y-1=0与l 2:6x-8y-7=0间的距离为( )A 、21 B 、53 C 、56D 、1 16.已知直线l 方程为25100x y -+=,且在x 轴上的截距为a ,在y 轴上的截距为b ,则a b +等于( )A .3 B .7 C .10 D .517.直线02=++by ax ,当0,0<>b a 时,此直线必不过 ( ) A .第一象限 B .第二象限 C .第三象限D .第四象限18.直线x a y b221-=在y 轴上的截距是( )A .b B .2b - C .b 2D .±b 19.若直线Ax +By +C=0与两坐标轴都相交,则有A 、0AB ⋅≠ B 、0A ≠或0B ≠C 、0C ≠D 、A 2+B 2=020.点(a,b)关于直线x+y=0对称的点是 ( )A 、 (-a,-b)B 、 (a,-b)C 、 (b,a)D 、 (-b,-a) 21.已知点(x ,-4)在点(0,8)和(-4,0)的连线上,则x 的值为 A .-2 B.2 C.-8 D.-622.已知两点A (1,2).B (2,1)在直线10mx y -+=的异侧,则实数m 的取值围为( ) A .(,0-∞)B .(1,+∞)C .(0,1)D .(,0-∞)(1,)+∞23.对任意实数m ,直线(1)260m x m y -++=必经过的定点是 A.(1,0) B.(0,3)- C.(6,3)- D. 63(,)1m m-- 25.点P (2,5)关于直线x 轴的对称点的坐标是 ( ) A .(5,2) B .(-2,5)C .(2,-5) D .(-5,-2)26.直线l 1: ax+3y+1=0, l 2: 2x+(a+1)y+1=0, 若l 1∥l 2,则a=A .-3B .2C .-3或2D .3或-2 28. 直线:10l x y -+=关于y 轴对称的直线方程为( )A .10x y -+=B . 10x y +-=C .10x y ++=D .10x y --=33.经过点)1,2(的直线l 到A )1,1(、B )5,3(两点的距离相等,则直线l 的方程为( ) A .032=--y xB .2=xC .032=--y x 或2=xD .都不对35.AB C ∆中,(2,0)A - 、(2,0)B C(3,3)、,则 AB 边的中线对应方程为( ) A .x y = B .3)x x(0y ≤≤= C .x y -= D .3)x x(0y ≤≤-= 36.无论m 取何值,直线210mx y m -++=经过一定点,则该定点的坐标是 ( ). A.(-2,1) B.(2,1) C.(1,-2) D.(1,2) 37.直线02=+--m y mx 经过一定点,则该点的坐标是( ) A .)2,1(- B .)1,2(- C .)2,1( D .)1,2( 38.直线l 与直线0432=+-y x 垂直,则直线l 的方程可能是( )A.0123=-+y xB.0723=+-y xC.0532=+-y xD.0832=++y x 39.若n m ,满足012=-+n m , 则直线03=++n y mx 过定点 ( ) A. )61,21( B. )61,21(- C. )21,61(- D. )21,61(-40.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为( ) A .01=+-y x B .0=-y x C .01=++y x D .0=+y x 42.直线210x y -+=关于直线1x =对称的直线方程是( )A.210x y +-=B.210x y +-=C.230x y +-=D.230x y +-=44.已知两直线1l :08=++n y mx 和012:2=-+my x l 若21l l ⊥且1l 在y 轴上的截距为 –1,则n m ,的值分别为( ) A .2 ,7 B .0,8 C .-1,2 D .0,-8 46.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则点P 的轨迹方程为( ) A .360x y +-= B .320x y -+= C .320x y +-= D .320x y -+= 47.若直线0=++C By Ax 经过第一、二、三象限,则( ) A .AB<0,BC<0 B .AB>0,BC<0 C .AB<0,BC>0D .AB>0,BC>0二、填空题48.直线01052=--y x 与坐标轴围成的三角形的面积为 .49.直线过点 (-3,-2)且在两坐标轴上的截距相等,则这直线方程为 . 50.与直线5247=+y x 平行,并且距离等于3的直线方程是____________三、解答题52. ①求平行于直线3x+4y-12=0,且与它的距离是7的直线的方程;②求垂直于直线x+3y-5=0, 且与点P(-1,0)的距离是1053的直线的方程.53.直线x+m2y+6=0与直线(m-2)x+3my+2m=0没有公共点,数m 的值.圆与圆的方程一、选择题1.圆的方程是(x -1)(x+2)+(y -2)(y+4)=0,则圆心的坐标是( ) A 、(1,-1) B 、(12,-1) C 、(-1,2) D 、(-12,-1) 2.过点A(1,-1)与B(-1,1)且圆心在直线x+y -2=0上的圆的方程为( )A .(x -3)2+(y+1)2=4B .(x -1)2+(y -1)2=4C .(x+3)2+(y -1)2=4D .(x+1)2+(y+1)2=4 3.方程()22()0x a y b +++=表示的图形是( )A 、以(a,b)为圆心的圆B 、点(a,b)C 、(-a,-b)为圆心的圆D 、点(-a,-b)4.两圆x 2+y 2-4x+6y=0和x 2+y 2-6x=0的连心线方程为( )A .x+y+3=0B .2x -y -5=0C .3x -y -9=0D .4x -3y+7=0 5.方程052422=+-++m y mx y x 表示圆的充要条件是( ) A .141<<m B .141><m m 或 C .41<m D .1>m7.圆22220x y x y +-+=的周长是( )A . B .2π C D .4π 9.点(1,2-a a )在圆x 2+y 2-2y -4=0的部,则a 的取值围是( ) A .-1<a <1 B . 0<a <1 C .–1<a <51 D .-51<a <1 10.点P (5a +1,12a )在圆(x -1)2+y 2=1的部,则a 的取值围是( ) A.|a |<1 B.a <131C.|a |<51 D .|a |<131 二、填空、解答题11.若方程x 2+y 2+Dx+Ey+F=0,表示以(2,-4)为圆心,4为半径的圆,则F=_____ 15.求过点A (2,0)、B (6,0)和C (0,-2)的圆的方程。
直线与方程习题(带答案)
直线与方程习题(带答案)直线与方程题(带答案)一、选择题1.若直线x=1的倾斜角为α,则α().A。
等于0B。
等于π/2C。
等于πD。
不存在斜率2.图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则().A。
k1<k2<k3B。
k3<k1<k2C。
k3<k2<k1D。
k1<k3<k23.已知直线l1经过两点(-1,-2)、(-1,4),直线l2经过两点(2,1)、(x,6),且l1∥l2,则x=().A。
2B。
-2C。
4D。
14.已知直线l与过点M(-3,2),N(2,-3)的直线垂直,则直线l的倾斜角是().A。
π/3B。
2π/3C。
π/4D。
3π/45.如果AC<0,且BC<0,那么直线Ax+By+C=0不通过().A。
第一象限B。
第二象限C。
第三象限D。
第四象限6.设A,B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程是().A。
x+y-5=0B。
2x-y-1=0C。
2y-x-4=0D。
2x+y-7=07.过两直线l1:x-3y+4=0和l2:2x+y+5=0的交点和原点的直线方程为().A。
19x-9y=0,19y=0B。
9x+19y=0C。
19x-3y=0D。
3x+7y=08.直线l1:x+a2y+6=0和直线l2:(a-2)x+3ay+2a=0没有公共点,则a的值是().A。
3B。
-3C。
1D。
-19.将直线l沿y轴的负方向平移a(a>0)个单位,再沿x轴正方向平移a+1个单位得直线l',此时直线l'与l重合,则直线l'的斜率为().A。
a/(a+1)B。
-a/(a+1)C。
(a+1)/aD。
-(a+1)/a10.点(4,5)关于直线5x+4y+21=0的对称点是().A。
(-6,8)B。
(6,-8)C。
(-6,-8)D。
(6,8)二、填空题11.已知直线l1的倾斜角α1=15°,直线l1与l2的交点为A,把直线l2绕着点A按逆时针方向旋转到和直线l1重合时所转的最小正角为60°,则直线l2的斜率k2的值为tan(75°)或2+√3.12.若三点A(-2,3),B(3,-2),C(1,m)共线,则m的值为-1.13.已知长方形ABCD的三个顶点的坐标分别为A(0,1),B(1,0),C(3,2),求第四个顶点D的坐标为D(2,3)。
直线与方程试题及答案
直线与方程试题及答案1. 已知直线方程为 \(y = 2x + 3\),求该直线与 \(x\) 轴的交点坐标。
答案:将 \(y\) 设为 0,解方程 \(0 = 2x + 3\) 得到 \(x = -\frac{3}{2}\)。
因此,直线与 \(x\) 轴的交点坐标为 \((-\frac{3}{2}, 0)\)。
2. 已知直线 \(y = mx + b\) 经过点 \(A(1, 2)\) 和点 \(B(3,4)\),求直线的方程。
答案:将点 \(A(1, 2)\) 和点 \(B(3, 4)\) 代入方程 \(y = mx + b\),得到两个方程:\[2 = m \cdot 1 + b\]\[4 = m \cdot 3 + b\]解这个方程组,得到 \(m = 1\),\(b = 1\)。
因此,直线的方程为\(y = x + 1\)。
3. 已知直线方程为 \(3x - 4y + 5 = 0\),求该直线的斜率。
答案:将方程 \(3x - 4y + 5 = 0\) 转换为斜截式 \(y = mx + b\),得到\(y = \frac{3}{4}x - \frac{5}{4}\)。
因此,直线的斜率为\(\frac{3}{4}\)。
4. 求过点 \(C(2, 3)\) 且与直线 \(y = 2x - 1\) 平行的直线方程。
答案:与直线 \(y = 2x - 1\) 平行的直线具有相同的斜率,即斜率为 2。
因此,所求直线方程为 \(y = 2x + b\)。
将点 \(C(2, 3)\) 代入方程,得到 \(3 = 2 \cdot 2 + b\),解得 \(b = -1\)。
因此,所求直线方程为 \(y = 2x - 1\)。
5. 已知直线 \(y = 3x + 7\) 与 \(x\) 轴相交于点 \(D\),与 \(y\) 轴相交于点 \(E\),求点 \(D\) 和点 \(E\) 的坐标。
答案:点 \(D\) 位于 \(x\) 轴上,因此 \(y = 0\)。
高二数学直线与方程精选50题
直线与方程精选50题1、求过点()5,3,倾斜角等于直线13+=x y 的倾斜角的一半的直线方程.★2、已知直线l 的倾斜角为α,53sin =α,且这条直线经过点()5,3P ,求直线l 的一般式方程.★3、已知矩形OACB 的顶点的坐标分别为()()()5,00,80,0B A O 、、,求该矩形的对角线所在直线方程.4、已知直线0632=+-y x ,这条直线的点方向式可以是________________★5、求过点P 且平行于直线0l 的一般式方程:(1)()04:,1,20=+x l P ★(2)()07143:,2,10=++y x l P6、求过点P 且垂直于直线1l 的直线的一般式方程:(1)()03:,1,21=-y l P(2)4231:),1,2(1+=---y x l P ★7、求满足下列条件的直线方程(1)直线l 经过()()7,3,0,2B A 两点★(2)直线l 经过点()4,3P ,且与向量()1,1-=d 平行★(3)直线l 经过点()4,3P ,且与向量()1,1-=d 垂直★8、已知直线()0816:1=--+y t x l 与直线()()01664:2=-+++y t x t l(1)当t 为何值时,21l l 与相交?(2)当t 为何值时,21l l 与平行?(3)当t 为何值时,21l l 与重合?(4)当t 为何值时,21l l 与垂直?★9、已知直线08:1=++n y mx l 与直线012:2=-+my x l .当直线1l 与直线2l 分别满足下列条件时,求实数m 、n 的值(1)直线1l 与直线2l 平行;(2)直线1l 与直线2l 垂直,且直线1l 在y 轴上的截距为1-..★10、根据下列条件,写出满足条件的直线的一般式方程.★(1)经过直线012=+-y x 与直线0122=-+y x 的交点,且与直线05=-y x 垂直.(2)经过直线01=+-y x 与直线022=+-y x 的交点,且与直线1243=+y x 平行.11、已知直线2:1++=k kx y l 与直线42:2+-=x y l 的交点在第一象限,求实数k 的范围.★12、已知集合(){}R y x y x y x A ∈=--=、,01|,,集合(){}R y x y ax y x B ∈=+-=、,02|,,且φ=⋂B A ,求实数a 的值.13、是否存在实数a ,使直线()()0121:1=--+-y a x a l 与直线()03326:2=--+y a x l 平行?若存在,求a 的值;若不存在,请说明理由.★14、求过点()3,2P 且与直线012=+-y x 垂直的直线方程★15、若坐标原点O 在直线l 的射影H 的坐标为()2,4-,求直线l 的方程★16、已知平面内三点()()()2,14,33,1---C B A 、、,点P 满足BC BP 23=,则直线AP 的方程是17、已知()()4,1,1,3--B A ,则线段AB 的垂直平分线方程是★18、已知三点()()()a C B a A 2,4,1,5,2,-共线,则实数a 的值是___________________19、不论m 取何实数,直线()()()01131=--+--m y m x m 恒过什么象限?20、分别写出下列直线的一个方向向量d 和一个法向量n ★(1)0543=-+y x(2)152=+y x (3)()5413+-=-x y (4)1=x(5)01=+y21、已知0,0<<bc ac ,则直线0:=++a cy bx l 不通过_______________象限22、直线l 的倾斜角的正弦值为54,则其斜率为______________★ 23、过()()a B a a A 2,3,1,1+-的直线的倾斜角为钝角,求实数a 的取值范围★24、直线l 的斜率k 满足13<≤-k ,求其倾斜角的取值范围★25、直线l 的倾斜角是()()2,6,1,2--B A 两点连线的倾斜角的两倍,求直线l 的倾斜角的大小26、直线l 过点()2,1且与两坐标轴围成等腰直角三角形,求l 的方程★27、求直线()R y x ∈=-+αα010cos 的倾斜角的取值范围28、直线()()039372:222=+-++-a y a x a a l 的倾斜角大小是4π,求实数=a __________★29、方程x k y =与方程()0>+=k k x y 的曲线有两个不同的公共点,则实数k 的取值范围是____________________30、过点()()3,0,0,4B A 的直线的倾斜角大小是________________★31、将直线033=++y x 绕着它与x 轴的交点顺时针旋转︒30后,所得的直线方程是★32、将直线0943=+-y x 绕其与x 轴的交点逆时针旋转︒90后得到直线l ,求直线l 的方程★33、ABC ∆的一个顶点()4,3B ,AB 边上的高CH 所在直线方程是01632=-+y x ,BC 边上的中线AM 所在的直线方程是0132=+-y x ,求边AC 所在直线方程.34、已知直线l 沿x 轴的负方向平移3个单位,再沿y 轴的正方向平移1个单位,又回到原来的位置,求直线l 的斜率k 和倾斜角α★35、过点()4,5-P 作一直线l ,使它与两坐标轴相交且与两坐标轴围成的三角形面积为5个面积单位,求直线l 的方程★36、直线()()01213:=----y a x a l (其中a 为实数)★(1)求证:不论a 取何值,直线l 恒过定点;(2)已知直线l 不通过第二象限,求实数a 的取值范围37、已知()()2211,,,y x B y x A 为直线()0≠+=k b kx y 上的两点(1)求证:2121x x k AB -+=;(2)根据(1)的形式特征,用21,,y y k 表示AB38、已知ABC ∆中,顶点()7,2-A ,AC 边上的高BH 所在直线方程为0113=++y x ,AB 边上中线CM 所在的直线方程072=++y x ,求ABC ∆三边所在直线方程39、从点()2,5A 发出的光线经过x 轴反射后,反射光线经过点()3,1-B ,求发射光线所在直线与x 轴的夹角大小★40、求经过0332:01:21=++=++y x l y x l 和的交点且与直线0523=-+y x 的夹角为4π的直线方程★'41、已知等腰直角三角形ABC 的斜边AB 的中点是()2,4,直角边AC 所在的直线方程是02=-y x ,求斜边AB 和直角边BC 所在直线的方程42、光线沿直线052=+-y x 的方向入射到直线0723=+-y x 后反射出去,求反射光线所在的直线方程43、已知()()8,4,3,2-B A 两点,直线l 经过原点,且A 、B 两点到直线l 的距离相等,求直线l 的方程★44、已知平行直线21l l 与的距离为5,且直线1l 经过原点,直线2l 经过点()3,1,求直线1l 和直线2l 的方程★45、已知直线l 过点()1,0P ,且被平行直线0243:0843:21=++=-+y x l y x l 与所截得的线段的长为22,求直线l 的方程46、求与直线032012=+-=+-y x y x 和距离相等的点的轨迹47、已知点()4,3P 到直线l 的距离为5,且直线l 在两坐标轴上的截距相等,则满足条件的直线是___________________★48、过点()2,1P 的所有直线中,与原点距离最大的直线方程是______________49、直线l 经过直线002477=-=-+y x y x 与直线的交点,且原点到直线l 的距离为512,则直线l 的方程为★50、经过直线032=-+y x 和直线0624=--y x 的交点,且与y 轴平行的直线方程为★。
直线与方程典型基础练习题
直线与方程典型基础练习题一、选择题1. 下列哪个方程表示一条斜率为2,经过点(-3,4)的直线?A. y = 2x - 10B. y = -2x + 10C. y = 2x + 10D. y = -2x - 102. 如果两条直线的斜率为相反数,它们是否一定垂直?A. 是B. 否3. 如何表示一条过点(4,6)且垂直于x轴的直线?A. y = 6B. y = 4C. x = 6D. x = 44. 斜率为零的直线与x轴的夹角是多少?A. 0°B. 45°C. 90°D. 180°5. 以下哪个方程表示x轴?A. x = 0B. y = 0C. x = 1D. y = 1二、填空题1. 过点(2, 5)和(4, 9)的直线的斜率是 ________。
2. 方程y = 3x - 2表示的直线与y轴的交点为 ________。
3. 方程2x + 5y = 10的斜率是 ________。
4. 过点(3, -2)且斜率为4的直线的方程为 ________。
5. 如果两条直线的斜率相等,它们是否一定平行?三、应用题1. 一辆汽车以每小时60英里的速度行驶,行驶了2小时后,汽车离起点多远?2. 通过点(1, 4)和(7, -2)的直线方程是什么?同时求出它与x轴的交点。
3. 通过点(-1, 2)且与x轴垂直的直线方程是什么?同时求出它与y轴的交点。
4. 通过点(-2, 5)和(4, -3)的直线方程是什么?同时求出它与y轴的交点。
5. 求方程3x + 2y = 10的斜率,并判断这条直线与x轴的夹角是锐角、直角还是钝角。
四、解答题1. 已知直线L1的斜率为-3,直线L2经过点(2, 5)且与L1垂直,求直线L2的方程。
2. 求过点(3, -2)且平行于直线y = 2x + 1的直线方程。
3. 通过点(1, -1)且与直线2x + 3y = 6平行的直线方程是多少?4. 求通过点(4, -3)且与直线y = -x + 2垂直的直线方程。
直线与方程练习题总
直线与方程练习题一、选择题1.若直线过点(1,2),(4,2+,则此直线的倾斜角是( ) A 030 B 045 C 060 D 0902. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a=( ) A 、 -3 B 、-6 C 、23- D 、323. 设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( )A. 1=+b aB. 1=-b aC. 0=+b aD. 0=-b a 4. 过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A. 012=-+y xB. 052=-+y xC. 052=-+y xD. 072=+-y x 5.点P (-1,2)到直线8x-6y+15=0的距离为( )A 2B 21 C 1 D 276. 点M(4,m )关于点N(n, - 3)的对称点为P(6,-9),则( )A m =-3,n =10 B m =3,n =10 C m =-3,n =5 D m =3,n =57.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是( )A 3x-y-8=0 B 3x+y+4=0 C 3x-y+6=0 D 3x+y+2=08.过点M(2,1)的直线与x 轴,y 轴分别交于P,Q两点,且|MP|=|MQ|,则l 的方程是( )A x-2y+3=0 B 2x-y-3=0 C 2x+y-5=0 D x+2y-4=0 9. 直线mx-y+2m+1=0经过一定点,则该点的坐标是 ( )A (-2,1)B (2,1)C (1,-2)D (1,2) 10. 直线0202=++=++n y x m y x 和的位置关系是 ( ) (A )平行 (B )垂直 (C )相交但不垂直 (D )不能确定 11. 如图1,直线l1、l2、l 3的斜率分别为k 1、k 2、k 3,则必有( ) A. k 1<k 3<k 2 B. k 3<k 1<k 2C. k 1<k 2<k 3D. k 3<k 2<k 112.已知A (1,2)、B (-1,4)、C (5,2),则ΔABC 的 边AB 上的中线所在的直线方程为( ) (A )x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=013. 已知0,0ab bc <<,则直线ax by c +=通过( )A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限14. 若直线l:y=kx-1与直线x+y-1=0的交点位于第一象限,则实数k 的取值范围是( )A.(-∞,-1)B.(-∞,-1]C.(1,+∞)D.[1,+∞) 15.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( )A. 0≠mB. 23-≠mC. 1≠mD. 1≠m ,23-≠m ,0≠m16. 已知直线1l 和2l 夹角的平分线所在直线的方程为x y =,如果1l 的方程是),0(0>=++ab c by ax 那么2l 的方程是( )A bx+ay+c=0 B ax-by+c=0 C bx+ay-c=0 D bx-ay+c=017.将直线y=3x 绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为( )A.y=3131+-xB.y=131+-xC.y=3x-3D.y=131+x18.下列说法的正确的是 ( )A .经过定点()P x y 000,的直线都可以用方程()y y k x x -=-00表示B .经过定点()b A ,0的直线都可以用方程y kx b =+表示C .不经过原点的直线都可以用方程x a yb+=1表示D .经过任意两个不同的点()()222111y x P y x P ,、,的直线都可以用方程 ()()()()y y x x x x y y --=--121121表示二、填空题(本大题共4小题,每小题3分,共12分)19.已知点(5,4)A -和(3,2)B 则过点(1,2)C -且与A,B 的距离相等的直线方程 为 .20.过点P(1,2)且在x 轴,y 轴上截距相等的直线方程是 . 21.直线5x+12y+3=0与直线10x+24y+5=0的距离是 . 22.原点O在直线l 上的射影为点H(-2,1),则直线l 的方程为 .23. 点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________直线与方程练习题参考答案:1.A ;2.B3.D ;4.A ;5.B ;6.D ;7.B ;8.D ;9.A ;10.C.11.A.12.A 13.C 14.C 15.C 16.A 17.A 18.D19.x+4y-7=0或x=-1; 20.x+y-3=0或2x-y=0; 21.261; 22.2x-y+5=0;23.8。
直线与方程专题训练
直线与方程基础练习题一、填空1、直线623=-y x 的斜率k 是_________.2、过点(1,0)且与直线x-2y-2=0平行的直线方程是 _________3、过点(1,3)P -且垂直于直线032=+-y x 的直线方程为________4、已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为_________5、如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a=_________6、点P (-1,2)到直线8x-6y+15=0的距离为_______7、已知直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,则k 得值是________8、原点到直线052=-+y x 的距离为________9、直线5x-2y-10=0在x 轴上的截距为a,在y 轴上的截距为b,则a =___,b=______10、已知点()1,2A ,()3,1B ,则线段AB 的垂直平分线的方程是____________.11、过点(1,2)且在两坐标轴上的截距相等的直线的方程12、已知A(-4,-6),B(-3,-1),C(5,a)三点共线,则a 的值为13、两直线2x+3y -k=0和x -ky+12=0的交点在y 轴上,则k 的值是14、两平行直线0962043=-+=-+y x y x 与的距离是 15如果直线l 与直线x +y -1=0关于y 轴对称,则直线l 的方程是 。
16、点P (2,5)关于直线 x +y =0 的对称点坐标是 。
二、解答题17、已知两条直线)(12:12,:2416l x m y m l mx y ++=-+=-. m 为何值时, 12:l l 与(1)相交 (2)平行 (3)垂直18、求经过直线0323:,0532:21=--=-+y x l y x l 的交点且平行于直线032=-+y x 的直线方程.19、求平行于直线20,x y --=且与它的距离为22的直线方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与方程练习题 一、选择题1. 设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( )
A. 1=+b a
B. 1=-b a
C. 0=+b a
D. 0=-b a 2. 过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A. 012=-+y x B. 052=-+y x C. 052=-+y x D. 072=+-y x 3. 已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( )A. 0 B. 8- C. 2 D. 10
4. 已知0,0ab bc <<,则直线ax by c +=通过( )A. 第一、二、三象限
B. 第一、二、四象限
C. 第一、三、四象限
D. 第二、三、四象限
5.点P (-1,2)到直线8x-6y+15=0的距离为( )
A 2
B 21
C 1
D 2
7 6. 直线mx-y+2m+1=0经过一定点,则该点的坐标是
A (-2,1)
B (2,1)
C (1,-2)
D (1,2)
7. 直线0202=++=++n y x m y x 和的位置关系是 A 平行 B 垂直 C 相交但不垂直 D 不能确定
8.已知A (1,2)、B (-1,4)、C (5,2),则ΔABC 的边AB 上的中线所在的直线方程为( )
A x+5y-15=0
B x=3
C x-y+1=0
D y-3=0
9.若直线l:y=kx-1与直线x+y-1=0的交点位于第一象限,则实数k 的取值范围是( )
A.(-∞,-1)
B.(-∞,-1]
C.(1,+∞)
D.[1,+∞)
10.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足
A. 0≠m
B. 23-≠m
C. 1≠m
D. 1≠m ,2
3-≠m ,0≠m 11.将直线y=3x 绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为
A.y=3131+-x
B.y=13
1+-x C.y=3x-3 D.y=13
1+x
12.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则满足点P 的集合为
A .360x y +-=
B .320x y -+=
C .320x y +-=
D .320x y -+= 二、填空题13.点(1,1)P -到直线10x y -+=的距离是________________.
14.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________
15.过点P(1,2)且在x 轴,y 轴上截距相等的直线方程是 .
16.直线5x+12y+3=0与直线10x+24y+5=0的距离是 .
17.原点O在直线l 上的射影为点H(-2,1),则直线l 的方程
18.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________.
为 .
三、解答题
19.求经过直线0323:,0532:21=--=-+y x l y x l 的交点且平行于直线032=-+y x 的直线方程.
20. ①求平行于直线3x+4y-12=0,且与它的距离是7的直线的方程; ②求垂直于直线x+3y-5=0, 且与点P(-1,0)的距离是105
3的直线的方程.
21.直线x+m 2y+6=0与直线(m-2)x+3my+2m=0没有公共点,求实数m 的值.
22.过点(5,4)A --作一直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为5.
23. 已知点(1,1)A ,(2,2)B ,点P 在直线x y 21=
上,求22PB PA +取得最小值时P 点的坐标。