假设检验的类型和两类错误
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假设检验的类型和两类错误
关键词:假设检验
导语:作为质量改进的重要工具之一,假设检验是数理统计学中的一种统计推断方法,其根据一定假设条件,由样本推断总体,从而判断样本与样本、样本与总体的差异是由抽样误差引起的,还是本质差别造成的。
作为质量改进的重要工具之一,假设检验是数理统计学中的一种统计推断方法,其根据一定假设条件,由样本推断总体,从而判断样本与样本、样本与总体的差异是由抽样误差引起的,还是本质差别造成的。
假设检验的类型
统计假设一般可分为参数假设与非参数假设。
参数假设是指总体分布类型已知,对未知参数的统计假设。检验参数假设问题成为参数检验。当总体分布类型为正态分布时,则为正态总体参数检验。
非参数假设是指总体分布类型不明确,对参数的各种统计假设。检验非参数假设问题称为非参数检验,也称分布检验。由于非参数检验和非正态分布总体的参数检验都比较复杂,在QC小姐活动中很少应用。
假设检验的两类错误
在假设检验中,常将“小概率事件”的概率表示为α,称为显著性水平,把原先设定的假设称为原假设,记做H0,把与H0相反的假设称为备择假设,它是原假设被拒绝时而应接受的假设,记做H1。
做出接受或拒绝原假H0的判断,都可能犯如下的两类错误:
●Ⅰ类错误——弃真错误,发生的概率为α;
●Ⅱ类错误——取伪错误,发生的概率为β,见下表。
假设健谈决策的两类错误
检验决策H0为真H0非真
拒绝H0犯Ⅰ类错误的概率为α正确
接受H0正确犯Ⅱ类错误的概率为β
样本均值的显著性水平为α时,则得到该样本置信度为1-α的置信区间。
如果,显著性水平为α,均值为μ时,原假设H0是均值μ=μ0.那么,与H0相反的假设,即备择假设H1就是均值μ≠μ0。
因此,我们可以用计算确定出均值μ的1-α置信区间的方法来检验上述假设是否成立。如果计算出来的置信区间包含μ0,就接受H0;如果不包含就拒绝H0。
最后,值得注意的是,假设检验在判断结论时不能绝对化,应注意无论接受或拒绝检验假设,都有判断错误的可能性。因此,我们在日常的质量改进工作中,要用辩证的思想来看待假设检验结果。